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Abstract

®

CrossMark

A bulk gadolinium (Gd) single crystal exhibits virtually zero remnant magnetization, a common
trait among soft uniaxial ferromagnets. This characteristic is reflected in our magnetometry data
showing virtually hysteresis free isothermal magnetization loops with large saturation
magnetization. The absence of hysteresis allows to model the measured easy axis magnetization
as a function of temperature and applied magnetic field, rather than a relation, which permits the
application of Maxwell relations from equilibrium thermodynamics. Demagnetization effects
broaden the isothermal first-order transition from negative to positive magnetization. By
analyzing magnetization data within the coexistence regime, we deduce the isothermal entropy
change and the field-induced heat capacity change. Comparing the numerically inferred heat
capacity with relaxation calorimetric data confirms the applicability of the Maxwell relation.
Analysis of the entropy in the mixed phase region suggests the presence of hitherto unresolved
nanoscale magnetic structures in the demagnetized state of Gd. To support this prediction,
Monte Carlo simulations of a 3D Ising model with dipolar interactions are performed.
Analyzing the cluster size statistics and magnetization from the model provides strong

qualitative support of our analytic approach.

Keywords: entropy, domains, gadolinium, magnetocaloric, Monte Carlo, heat capacity,

magnetometry

1. Introduction

Gadolinium (Gd) is a magnetically soft, archetypical mag-
netocaloric material often used as reference standard for
magnetocaloric applications in near room temperature
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refrigeration [1-5]. Its superb magnetocaloric properties ori-
ginate from the near room temperature critical temperature,
Tc =292 K, and its large atomic moment comprising a 7 pp
contribution from localized 4f electrons and a 0.55 up con-
tribution from itinerant 5d valence electrons. Notably, exper-
iments with ultrashort optical excitation show that these two
contributions have distinctly different dynamic responses[6].
However, this intriguing effect can be disregarded in the
context of static magnetometry and calorimetry. Magnetic
and caloric properties of Gd have been intensely studied [1,
7-9]. Investigations into fundamental magnetic properties
involve density functional theory (DFT) calculations to ana-
lyze ground state properties, such as the magnetic moment, by
applying and comparing both the local density approximation

© 2024 The Author(s). Published by IOP Publishing Ltd
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and the generalized gradient approximation for the exchange-
correlation functional [10]. Frietsch et al employed DFT to
calculate the intra- and inter-atomic exchange energies, which
were used as input parameters for numerically solving the
stochastic Landau-Lifshitz—Gilbert equation revealing the
temperature dependence of the magnetization contributions
from the 4f and 5d spins [6]. However, it is important to note
that this approach does not account for the effects of dipolar
interaction, which are investigated in our work. Fundamental
questions regarding the magnetism of Gd, including the exact
nature of its magnetic ordering remain under debate [11].

In this study, we examine the isothermal entropy change in
the demagnetization-broadened regime of coexisting up and
down magnetization and explore its implications for heat capa-
city and magnetic domain structure. While the entropy change
in Gd has been extensively studied at temperatures near and
above T¢ [12], the entropy change occurring at the isothermal
first-order transition at temperatures 7 < T¢ has received little
attention. This contrasts with the well-studied entropy changes
at temperature-driven first-order transitions in materials such
as metamagnets and Heusler shape-memory alloys [13, 14].

There are a number of reasons for limited interest in iso-
thermal first order transitions in the context of magnetocaloric
phenomena. Firstly, the entropy change and adiabatic temper-
ature change are generally small away from T¢. That holds
for the paramagnetic phase but is especially true in the long
range ordered phase. Additionally, in many magnetic mater-
ials, long-range order is accompanied by magnetic hyster-
esis, which is detrimental to magnetocaloric performance [15].
Second, when guided by an oversimplified theoretical picture,
where dipolar interaction between magnetic moments is neg-
lected and the isothermal first order transition is strictly dis-
continuous, the Clapeyron relation suggests absence of iso-
thermal entropy change. This occurs because, in a first-order
transition, the entropy change is proportional to the slope of
the phase transition line. The description of isothermal mag-
netization reversal in terms of a first order phase transition is
well established in the literature [16]. For a ferromagnet, the
phase transition line is given by H (T < T¢) = 0, which implies
that dH/dT = 0. However, in real samples, where the applied
magnetic field, H,, and the internal magnetic field, H, differ by
the demagnetizing field, the first order transition is broadened.
In the absence of hysteresis, the magnetization, M, becomes a
continuous function of H,. There are quasi equilibrium mag-
netization states in the vicinity of M(H, =0,T < Tc) which
do not exist in the absence of demagnetizing effects where M
is discontinuous at H = 0.

In soft uniaxial ferromagnets such as Gd, M(H, =0,T <
Tc) = 0 implies the presence of a fully demagnetized multi-
domain state entailing a highly inhomogeneous internal mag-
netic field, H. As a result, there is no individual value H, other
than the theoretical construct of the spatial average, which can
be associated with a given value of the applied homogeneous
field H,. In this situation, which is more common than excep-
tional, the concept of a purely geometry-dependent demag-
netizing tensor or demagnetizing factor does not apply [17].
When attempting to artificially associate H, with a field H =
H, — DM, the effective demagnetizing factor, D¢, becomes

weakly temperature dependent. The T-dependence indicates
the breakdown of the concept of a homogeneous demagnetiz-
ing field which requires VM = 0, a condition clearly violated

in a multi-domain state. When ignoring the inapplicability of
the concept of a geometry dependent demagnetizing factor and
plotting M versus H = H, — DeggM with Degg = 1/ 3—%‘ A const,
the resulting M versus H curve displays, per construction, a
discontinuous step AM at H = 0 reminiscent of a theoret-
ical model with negligible dipolar interaction. Although this
procedure is often used in the literature to compare theoret-
ical and experimental results, it is, strictly speaking, based on
prerequisites which are not fulfilled. The appropriate repres-
entation of experimental data in the generic case of inhomo-
geneous magnetization is M versus H, as measured without
data manipulation motivated by an idealized theory that does
not include dipolar interaction and geometry of finite samples
[18]. In this work we investigate the little explored thermal
and magnetic properties within the mixed phase region of the
demagnetization broadened first order isothermal transition of
a Gd single crystal.

2. Experimental results, modeling, simulation and
discussion

2.1 Magnetometry

Figure 1 displays M versus H, data measured via integ-
ral superconducting quantum interference device (SQUID)
magnetometry (Quantum Design MPMS) at temperatures of
T = 280 K (red squares connected by lines) and 7 = 290 K
(blue line). These measurements were conducted on a cyl-
indrical sample with a mass of 4.87 mg, with H, applied
along the cylinder axis collinear to the crystal’s c-axis. The
upper left inset of figure 1 shows M vs H for both temper-
atures (same color coding), where H = H, — De¢tM (H,, T).
The respective Deg was determined as Degr = 1/(0OM/0H,)
from the reciprocal slopes of linear best fits in the field
regime —0.04 < Hy < 0.04 MA m~!, i.e. within the region
of phase coexistence. There is a small but significant dif-
ference (about 5%) between Deg (T =280 K) =0.323 and
Der (T=290 K) =0.333. A systematic investigation of the
temperature dependence of Deg is shown in the lower right
inset of figure 1 where D.g has been numerically calculated
from a set of M versus T data taken at various applied mag-
netic fields 7.4 < H, < 126.7kA m~"'. Those M versus T data
are shown in figure 2 (right panel) together with the 7 = 280 K
isothermal cut creating the M vs H, data shown as open circles
in the left panel. Those circles fall virtually perfectly on the
data shown as squares (figure 2 left panel) from the measure-
ment of the M vs H, isotherm. Arrows between the right and
left panel of figure 2 visualize the mapping between M vs T
and M vs H, data.

2.2. Modeling the equation of state from magnetization data

The isothermal entropy change and the change in heat capa-
city with applied magnetic field can be determined from
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Figure 1. M versus H, data at T = 280 K (red squares connected by lines) and 7' = 290 K (blue line). Upper left inset shows M vs H with
H = H, — DettM (H,,T) and Degr (T = 280 K) = 0.323 and Degr (T = 290 K) = 0.333. Lower right inset shows systematic investigation of
the temperature dependence of Desr with Desr numerically calculated from M versus T data taken at various applied magnetic fields

74<H,<1267kAm .

0.4

0.6

M (A/m) (7368.87)
M (A/m) (15326.62)
M (A/m) (23284.37)
M (A/m) (31242.12)
M (A/m) (39199.86)
M (A/m) (47157.61)
M (A/m) (55115.36)
M (A/m) (63073.11)
M (A/m) (71030.85)
M (A/m) (78988.60)
M (A/m) (86946.34)
M (A/m) (94904.09)
M (A/m) (102861.8)
M (A/m) (110819.6)
M (A/m) (118777.3)
M (A/m) (126735.1)

0.2
H [MA/m]

0.4

1
290 300

TIKI

Figure 2. (Right panel) M vs T for applied magnetic fields 7.4 < H, < 126.7 kA m™~'. Vertical arrow represents the isothermal cut through
the data set at 7 = 280 K creating the M vs H, data shown as open circles in the left panel. Arrows between right and left panel visualize the
mapping between M vs T and M vs H, data. (Left panel) shows M vs H, (solid squares) from isothermal SQUID measurement. The solid

line resembles a best fit of a phenomenological model function.

magnetization data by integrating the Maxwell relation asso-
ciated with the analytical behavior of the Gibbs free energy
[18]. The heat capacity change depends on the temperature
ﬂ)
art ) .
Numerical calculation of higher order derivatives from exper-
imental data is often hampered by noise. To address this issue,
we design a phenomenological functional form of the equation
of state M (H,,T) which summarizes all field and temperat-
ure dependent measured data and allows to calculate derivat-
ives of the magnetization without accumulation of noise. For

derivative of the entropy change and thus involves (

simplicity, but without loss of generality, we begin modeling
M (H,,T) by looking at the first quadrant of M vs H,.

In the regime of coexisting up and down magnetization,
H, < H.(T), we express the integral magnetization of the Gd
sample as

M (H,,T) = x (T)Ha

+ <MT(T)VT‘</H"1) +M¢(T)V¢‘(/Ha)). )
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Here H, (T) is the magnetic field strength above which the
sample is in a magnetic single domain state, x (7) is a temper-
ature dependent effective local linear magnetic susceptibility,
which is the same for up (1) and down () magnetized regions,
M; | (T) is the temperature dependent up/down spontaneous
magnetization with My = —M| and V; | is the up/down mag-
netized volume of the sample of total volume V=V; +V,.
Because the magnetization isotherms (see figure 1) show in
very good approximation a linear H,-dependence for H, <
H.(T) one can conclude that the volume fractions V; | /V

are linear functions of H, according to V4 | /V = % (1 =+ Z—;‘)
Substituting this result into equation (1) yields

H,
M (Ha,T) = X (T) Ha ot My 1 )

For H, > H. (T), i.e. outside the coexistence regime when
the sample is uniformly up magnetized such that V4 =V, we
obtain M (H,,T) = x (T) H, + M+. Combining this result with
equation (2) yields the empirical equation of state at tem-
peratures below T¢ and above the spin reorientation temper-
ature Tsg = 230 K. Tsr is the temperature below which the
magnetic easy axis starts to deviates from the [0001] direc-
tion of the hexagonal lattice [1, 19]. We restrict our investiga-
tion to temperatures T > Tsg. The final functional form of the
equation of state reads

X (T) Hy + M4 (T) gty forHy < He ()

M (H,,T) =
{ X (T)Hy + M4 (T) forH, > H, (T)
3)

Figure 3 shows, for the example of the 7 = 280 K magnet-
ization isotherm, how the experimental data provide the para-
meters entering equation (3).

The critical field A, (T = 280 K) marks the transition from
the phase coexistence regime of high slope, g—% =x + Mf,
to the single domain regime with slope x . The spontaneous
magnetization M4 (T = 280K) is obtained when extrapolating
the linear H,-dependence of the single domain regime back
to H, = 0. When plotting the resulting parameters for various
temperatures it is possible to fit their temperature dependen-
cies to simple functional forms. The functional form of the
spontaneous magnetization M4 (7T) is theoretically well motiv-
ated and can be fitted by a power law My = A(T¢ — T)B . When
using A and T¢ as fit parameters while keeping the critical
exponent [ fixed at the 3D Heisenberg value 5 = 0.38 one
obtains A =0.218 £ 0.0035% and the critical temperat-
ure Tc =291.89 +0.23K very close to the reported literat-
ure value [1]. Similarly one can fit H (T) to an empirical
power law Hc = Hpyax (Tc — T)?. When leaving Tc fixed at
Tc =291.89 K one obtains Hyax = 0.115+0.0013MA and
g = 0.2455 +0.0013. The peculiar magnetic properties of Gd,
likely associated with the field-driven unwinding of a long-
period sinusoidal spin structure [11], make it difficult to phys-
ically motivate a simple functional form of the magnetic sus-
ceptibility below T¢. Here a power law is not an appropriate

|
08} i ¥ =0.351
| M (T=280K)= 0.562 ilylgm,_.
04+ |
£
= O .
= . |
04+ L
| ] '
" |
L L H
08k |
S : H-=0.21 MA/m
-04 -0.2 0 0.2 0.4
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Figure 3. Solid squares show the M vs H, isotherm of Gd at

T = 280 K with H, applied along the easy axis. The data provide
the parameters which enter equation (3). Vertical arrow

indicatesH. (T = 280 K). x (T = 280 K) is given by the slope of the
linear behavior at H, > H.. Extrapolation of the linear regime to

H, = 0 (dash-dotted line) provides M+ (T = 280K).

approximation. To overcome this problem we investigate gTM

vs T and utilize equation (3) to express g—I’Z as g—gﬁ =x(T)+

A:Ij((TT)) With IZ,I((TT)) = H/:ax (Tc — T)? ™% and known paramet-

ers A, Hnx, Tc, B and g we find through a least squares fit
that x (T) = Xo + X T+ XoT? with Xg =78.174+2.3, X; =
—0.57748 £ 0.016K™!, and X, = 0.001 07 2.9 x 109K
is a good approximating empirical function for y (7) for tem-
perature between 280 and 285 K.

2.3. Magnetic field dependence of the heat capacity

Before we model the measured heat capacity, Cy, vs Hy, it is
instructive to qualitatively compare heat capacity and magnet-
ization data. Figure 4 shows the corresponding isotherms Cy,
vs H, (squares) and M vs H, (circles) measured at T = 280 K,
The heat capacity was measured with the help of a relaxa-
tion calorimeter implemented in the Quantum Design Physical
Properties Measurement System. The regime of phase coex-
istence, i.e. up and down magnetization, reveals itself prom-
inently as the demagnetization broadened linear regime in M
vs H, (figure 4 circles). The region is visualized in figure 4 by
the two vertical dashed lines at +H.. Within the mixed phase
region, Cp, vs H, is virtually constant. This is consistent with
the T and H,-dependence of M in the mixed phase region dis-
played in figure 2 respectively.

This can be seen when inspecting the expression of the
heat capacity change which follows from the Maxwell rela-

OH,
sample volume. Together with the thermodynamic relation

tion <@>T = o (2¥) 4, Where s =S/V is the entropy per
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Figure 4. Magnetic field dependence of the heat capacity (squares)
measured at 7 = 280 K and magnetization isotherm measured at the
same temperature (circles). Field region between the vertical dashed
lines indicates the phase coexistence regime of demagnetization
broadened first order transition.

Cy, = T(g—;) ., one obtains

H,

0*M
C(HayT)_C<Ha:07T) :MOT/ <8T2)HdHa (€]
O a

with ¢ = Cy,/V the volume specific heat capacity. From

azM) ~ 0 which, after
aTz H )

¢(H,, T = const) = const follows (
two-fold integration, implies M~ a(H,)T+b (H,) with
a(H,) and b (H,) being temperature independent functions
of H,. Utilizing the experimental finding M = f(T) H, in the
mixed phase region one obtains M = (aT+ b) H, with a, b
being constants. This approximate result for M (H,,T) has
interesting qualitative consequences we discuss next. First we
notice that (%—Aﬁ) = aH, = const is consistent with the M vs
T data shown in figure 2.
oM

Because (W) " # 0 in the mixed phase region there is a

nonzero isothermal entropy change

H,

As=s(Hy,T) —s(Hy = 0,T) :uo/<
0

oM

T ) N dH, (5
where s = S/V is the entropy density. For a < 0, as implied
by the data in figure 2, equation (5) yields As = % poaH? <
0. The decrease in entropy with increasing applied magnetic
field is in agreement with the intuitive picture that the fully
demagnetized multi-domain state of high entropy at H, =0
approaches the state of uniform magnetization with reduced
entropy at H, = H.. Note that a sizable entropy change does
not necessarily imply field-dependent change in the heat capa-
city. Only if the entropy change is temperature dependent there
is heat capacity change. Similarly, it is worth to mention that

T-dependence of the effective demagnetizing factor Dy =

@ = i originates from M vs T not being constant at

OHy )1

T < Tc. Therefore, a necessary condition for the validity of the
concept of a purely geometry dependent demagnetizing factor
is (21), =0 for T < Tc. This condition is neither strictly
fulfilled for the Gd sample under investigation nor generally
strictly observed for other ferromagnets even if their shape is
ellipsoidal. Geometries that produce a uniform internal mag-
netic field under conditions of homogeneous magnetization
do not necessarily imply that magnetization remains homo-
geneous at magnetic fields below saturation. With the help of
equations (3) and (4) we obtain a functional form for Cy, vs H,
and apply it to data measured at 7 = 280 K and at T = 285 K.
Using the density of Gd, pgq =7.9 gcm ™, we convert the
volume specific heat capacity change of equation (4) into a
mass specific heat capacity change, ACM = A< This conver-
sion allows for comparison with the absolute values of the heat
capacity measured via relaxation calorimetry in units J gk !

Figure 5 shows the relaxation calorimetrically measured
Cu, vs H, data (symbols) for T = 280 K (squares) and
T = 285 K (circles) together with single parameter best fits
(lines) of functional forms derived with the help of equation (3)
and (4). In the case of the T = 280 K data (squares) the para-
meter X, was opened as free fitting parameter to obtain a vir-
tually perfect fit in the entire field regime. The fit provides
X> =249 x 107* £ 1.6 x 107°K 2. The need to introduce
X, as fitting parameter arises because 280 K represents the
lower temperature boundary of the measured M vs T data set
(see figure 2). Since the M vs T data define the functional
shape of x (7), the empirical expression for x (7T) is anti-
cipated to become less trustworthy as temperatures approach
280 K. At T = 285 K, nearing the critical temperature, the
critical exponent 3 needed to be treated as a free parameter
to achieve a reasonable best fit. The need to adjust S may
arise because, nearing Tc, the non-zero magnetic anisotropy
of Gd begins to induce a transition from 3D Heisenberg to
3D Ising critical behavior. Indeed, the fit changed the value
of 5 from the 3D Heisenberg value 5 = 0.38 used in the mag-
netic equation of state to 8 = 0.324+0.004 a value close to
the 3D Ising critical exponent theoretically predicted to be
B =35/16 [20]. Crossover from Heisenberg to Ising behavior
and the lack of a clear cut distinction between Heisenberg and
Ising criticality have been frequently reported for experiments
on Gd. It reflects the competition between isotropic exchange
favoring Heisenberg interaction and the hexagonal structure of
Gd favoring uniaxial magnetic anisotropy with Ising criticality
[21, 22].

2.4. Isothermal entropy change and adiabatic temperature
change

The data in figure 2 unambiguously show (3%), # 0 for T <
Tc giving rise to isothermal entropy change, As, in the demag-
netization broadened coexistence regime. As can be evaluated
with the help of equation (5) and utilization of the equation
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Figure 5. Magnetic field dependence of the heat capacity measured
via relaxation calorimetry at 7 = 280 K (squares) and 7' = 285 K
(circles). Lines display single parameter best fits (see text).

of state given by equation (3). Figure 6 show the resulting
field dependence of the total isothermal entropy change, As =
Asy + ASy, (line), and its decomposition into the two terms

As, = %Hf% (up triangles) and Asy, = 2LH?2 (AZTI)
(down triangles). As,, is the entropy contribution originating
from the field-induced magnetization change associated with
the local susceptibility x (7). Note that As, increases with
increasing H, contrary to the behavior at T > T¢. At T > T¢,
i.e. in the paramagnetic phase, an applied magnetic field aligns
the otherwise disordered spins and thus reduces the entropy.
To intuitively understand the behavior at T < T¢ one can visu-
alize a virtually uniformly magnetized system where the spon-
taneous magnetization points downward. At finite temperat-
ure 7 < T¢ there are fluctuations which reduce the negative
saturation. aa—’; > 0 implies that those fluctuations increase on
approaching T¢ from below just as fluctuations increase on
approaching T¢ from above. Application of a positive mag-
netic field will support those fluctuations which oppose the
long range order and thus increase entropy.

ASMT is associated with the field-induced transition from
the demagnetized multi-domain state to the single domain
state. Both the spontaneous magnetization M4 and H, decrease
with increasing temperature. Because 8 = 0.38 > g = 0.2455

one finds % x (Tc — T)""** and thus (% (%) < 0 such that

Asy, decreases with increasing H, in accordance with the
intuitive expectation for the transition from a multi-domain to
a single domain state.

Next we utilize the total entropy change As to evalu-
ate the adiabatic temperature change, AT,g, when increas-
ing the applied field from H, = 0 to H, = Hc. Using AT, =
—uoV |, (fl ¢ % (%) 11, dHa, the fact that the heat capacity Cp, is
virtually constant within the mixed phase region (see figure 6),
and |ATy| < T one obtains in very good approximation
ATy~ -5 At T = 280 K and with He = 0.21 MAm™!

600 .
300 -
X
£ 0 -
2
(2]
<
-300 -
-600 -
0 0.05 0.1 0.15 0.2 0.25
H, (MA/m)

Figure 6. Line shows the magnetic field dependence of the
isothermal entropy change, As = Asy + Asy,,of Gdat T =280 K
calculated from magnetization data with the help of equations (3)
and (5). Up (down) triangles show As, (Aspy, ) vs Ha.

we find, As = —226.25 ] m—3K~! (see figure 6) and CH, =
0.32 LK£2.53 x 109 Tm—3K™! (see figure 6) which yields
AT, = 0.025K. Note that, although the adiabatic temperat-
ure change in the coexistence regime is small compared to
AT, slightly above T¢c where magnetocaloric applications
take place, it is significant that AT,q is non-zero. The insight is
that there is an adiabatic temperature change associated with
the first order transition which can be missed when artificially
correcting the experimental data with the help of an effective
demagnetizing factor.

The significance of the demagnetizing field for the mag-
netocaloric effect has been acknowledged and investigated at
T > T where magnetization is homogeneous and the concept
of a purely geometry dependent demagnetizing factor is
applicable. For instance, in [23] the difference in the internal
magnetic field associated with the orientation of an applied
magnetic field relative to the normal of a plate of Gd has been
utilized for magnetocaloric cooling.

2.5. Inference of nanoscale magnetic domains from entropy
of the multi-domain state

2.5.1 A simple model to estimate entropy change associated
with domain reversal.  Given the well-established occurrence
of 3D domain branching in uniaxial ferromagnets, we anti-
cipate the presence of small-scale magnetic structures in the
demagnetized state of Gd [24-27]. We utilize the field-induced
entropy change to estimate the previously unresolved charac-
teristic length scales associated with domain formation in the
demagnetized state of Gd. As of today, domains in the basal
plane of a Gd bulk single crystal have only been resolved down
to micron-sized structures, which are accessible via optical
microscopy [28, 29]. Itis well-known that domain images lim-
ited by optical resolution, such as those obtained via Faraday
microscopy in (LuBi);FesOy;, can hide a rich magnetic fine
structure. In the case of (LuBi);FesO1, this fine structure has
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been resolved with the help of magnetic force microscopy
revealing a striking difference between images obtained with
magneto-optical techniques and those which overcome the
limitations due to diffraction in the far field [30]. Such high
resolution data are, however, not available for the (0001) sur-
face of bulk Gd. Recently, a nanometric spin-stripe periodicity
has been experimentally revealed with the help of coherent
soft x-ray scattering in an amorphous and centrosymmetric
Fe/Gd magnetic thin film [31]. More closely associated with
bulk Gd, spin-polarized scanning tunneling microscopy data
measured at 7 = 5 K expose branching domains with a peri-
odicity of 160 nm in a 600 atomic layer thick Gd(0001) film
on W(110) [32]. For a thin film sample of 120 atomic lay-
ers of Gd(0001) on W(110), Hiértl et al revealed, the pres-
ence of stable magnetic structures as small as %: 30 nm
[32]. The authors mentioned that even smaller magnetic struc-
tures could not be excluded. Although these interesting find-
ings are not directly transferable to bulk Gd at temperatures
of T = 280 K, they strongly motivate the search for nanoscale
magnetic structures in bulk Gd. The subsequent entropy con-
siderations further support the case for the existence of such
nanoscale magnetic structures.

Our entropy approach is based on the assumptions that
there is a vast configuration space of nearly degenerate domain
structures and that the contribution of the domain wall energy
to the total energy of the domain state in the presence of
an applied field is small. Although the latter approximation
breaks down near H, = 0, it is conceivable to hold for most of
the non-zero applied magnetic fields within the mixed phase
region. We start by considering the potential energy of a
magnetic up/down domain of characteristic volume Vj in an
applied magnetic field. It reads

1
Ey = —ho <2X (T)Hy+ My, (T)) H,Vo. (6)

In the lowest order approximation, the total energy of the
domain state is the sum of the potential energies of the indi-
vidual domains, each with an average volume Vj approximat-
ing the distribution of cluster sizes in a real sample. This crude
but useful approximation, allows to evaluate the magnetic field
dependence of the entropy of the domain state in terms a two
level system [33]

S (Ha) = nkg [=fInf — (1 —f)In(1 —f)] )

where n = ny +ny is the total number of domains at H, =0
and f = nT’Im is the fraction of domains pointing up relative
to the orientation of the applied magnetic field. With V; | /V =

% (1 + %C), V4.1 = n4,1 Vo, and V = nV, one obtains
SH, n 1 (H, 1 (H,
=—kg|—z|+1|Inz |+ +1
v v a\m )\t

1 H\ . 1 H,

S(H,)
nkB

(solid line) and its quadratic low field approximation

Figure 7 displays

in accordance with equation (8)

S(Ha)
> nkg

~
~

0.8 T T

Sinkg [1]
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H,(MA/m)
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Figure 7. Graphic representation of equation (8) for
H.=0.21 MA m~"' (solid line) and its second order Taylor
expansion around H, = 0 (dashed line).

In2 — %%, (dashed line) which is reminiscent of the entropy
of Ising spins in a field [34]. Equating s(H,) —s(0) ~

— ok with the entropy change Asy, = o (%),

V72 H?
allows determining the average volume V, = % of a charac-

teristic magnetic structure in the demagnetized state as
kg

Vo= o ()
MOHCZ,ETT (7)

©))

With 3% (AZTI) = f’“;%xq)(Tc - T)quf1 and the numer-
ical values for A, 8,q, Tc,Hmax at T = 280 K we obtain Vy =

8.33 x 1077 m>. This characteristic magnetic volume corres-

ponds to a characteristic magnetic length Ly = Vé ~ 2 nm. As
it is the case in (LuBi)3;Fe5;0;;, such a small magnetic struc-
ture might be the fine structure of branching domains and part
of a larger meander domain which is stable against thermal
fluctuations.

The experimental observation of a magnetic fine structure
in (LuBi);FesO; and Gd films makes the above entropy based
estimate of hitherto undetected nanoscale magnetic structures
in the demagnetized state of bulk Gd plausible. In the absence
of a direct experimental observation of such nanoscale mag-
netic structure in bulk Gd and at 7 > 5 K we perform Monte
Carlo simulations to test if the simple analytic approach util-
izing the entropy of a two level system provides meaningful
estimates of magnetic structure sizes.

2.5.2. Relation between cluster size distribution and entropy
in the demagnetized state from Monte Carlo simulations.

Because Gd is a soft uniaxial ferromagnet with a crossover
from Heisenberg to Ising behavior near T¢, the most real-
istic simulation of the magnetic behavior of Gd at temper-
atures around 7' = 280 K would utilize an anisotropic 3D
Heisenberg model which includes dipolar interaction. The
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dipolar interaction is essential to capture the effect of broaden-
ing of the isothermal first order transition due to demagnetiz-
ation effects. The combination of isotropic Heisenberg sym-
metry and long-range dipolar interaction with open bound-
ary conditions make a 3D simulation computational expens-
ive. To limit the complexity of the problem while still captur-
ing the essential properties we are interested in -specifically,
the relationship between magnetic cluster size distribution and
entropy- we employ a 3D Ising model with truncated dipolar
interaction and a geometry reminiscent of the Gd cylinder of
the real sample. A Metropolis algorithm is implemented in
a Wolfram Mathematica environment executing 10° Monte-
Carlo steps for each field or temperature step for a system of
N = N, X N, x N, spins with Ny = N, = 100 and N, = 10. The
classical Ising spins with values s; = 1 point up or down rel-
ative to the applied magnetic field oriented along the z-axis.
The spins are located on a cubic 3D lattice. Each spin inter-
acts with its respective z = 6 nearest neighbors via interaction
J > 0. We include truncated dipolar interaction with nearest
and next nearest neighbors. For a given distance between
spins, the dipolar interaction strength is set via the parameter
1+ which controls the magnetic dipole moment per spin. The
Hamiltonian, H, of this cubic 3D Ising system with truncated
dipolar interaction reads [35]

H=—d> sisg—HY sitnd " (1-3cosy), (10)
.
@ i iz

where r; = |r | is the distance between two spins on sites i

)

and j and 6;; isjthe angle between the vector r;and the z-axis.
For r;; parallel to the z-axis one finds cos6; = 1 and for r;; per-
pendicular to the z-axis one finds cos6; = 0. The summation
over (i,j) includes all pairs of neighboring spins and the i # j-
summation is truncated to include nearest and next nearest
neighbors. This truncation does not reflect the true long range
nature of dipolar interaction but is sufficient to incorporate
the desired effects on the hysteresis loops which, for proper
choice of pu, eliminates hysteresis and allows to apply equilib-
rium thermodynamics in the mixed phase region.

Dipolar interaction leads to the formation of magnetic
domains. The details of the domain structure are also sens-
itive to the geometry of the sample. We therefore use open
boundary conditions to include the effects of sample geometry
and demagnetizing fields created by surface magnetic dipoles.
The strength of the dipolar interaction also affects the degree
of hysteresis in isothermal loops at 7 < T¢ and the extent
of demagnetization at zero applied field. To closely mimic
the experimental observation of a fully demagnetized state at
H, =0 in the bulk Gd sample, we adjust the dipolar inter-
action strength such that hysteresis is minimized to virtually
zero. Note that in order to suppress hysteresis in the 3D Ising
ferromagnet with truncated dipolar interaction, an unrealist-
ically strong dipolar interaction is required. The very large
and truncated dipolar interaction together with the use of an
Ising model instead of an anisotropic Heisenberg model, com-
bined with simulating a cubic lattice structure rather than a

Figure 8. Simulated hysteresis loops for . = 0 (squares), ;= 1.00
(triangles) and p = 1.61 (open circles). Images show domain
structure at various fields of the down branch of the loop for
w=1.61.

hexagonal one, implies that the model is not appropriate for
simulating Gd. However, the model is well-suited to demon-
strate that magnetic cluster sizes can be deduced from an
entropy analysis.

In a cubic 3D Ising model with z = 6 nearest neighbors
interacting via ferromagnetic exchange, J, and in the absence
of dipolar interaction, the T = 0 coercive field reads H‘é =2zJ
with H2 =12 for J/ = 1 and z = 6. Its Curie temperature is
Tc ~4.51J/kg which, in units with kg = 1 and for J = 1,
reads Tc ~ 4.51. This value is significantly below the mean-
field value T¢ ~ é known to overestimate T¢. Figure 8 shows
isothermal hysteresis loops simulated at T=4 and J = 1 for
various parameters of dipolar strength y = 0 (squares), 1.00
(triangles), and 1.61 (open circles). For y = 0 the simulation
reveals a pronounced hysteresis with a coercive field approx-
imately given by HX = 12. With increasing x the hysteresis
decreases until it is virtually suppressed for p = 1.61. For
such a hysteresis-free loop, equilibrium thermodynamics can
be applied similar to the experimental data obtained from the
Gd sample.

Figure 9 shows the temperature dependence of the magnet-
ization, M, for p = 1.20 simulated on field-cooling in applied
magnetic fields H, = 0.5 (solid line), 0.4 (dashed line), 0.3
(dotted line), 0.2 (dash dot line), and 0.1 (dash dot dot line).
The right axis is associated with the simulated magnetiza-
tion obtained on field-cooling in H, =2 for strong dipolar
interaction with = 1.61 (circles). The vertical line marks
Tc = 4.51. The data for M vs T simulated with 4 = 1.61 show
that with the onset of ferromagnetic long range correlation the
magnetization decreases with decreasing temperature. This at
first glance unexpected behavior is a consequence of magnetic
domain formation where up and down magnetized domains
compensate giving rise to a net reduced total magnetization. In
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Figure 9. Temperature dependence of normalized magnetization
simulated for p = 1.20 and various applied magnetic fields H, =0.5
(solid line), 0.4 (dashed line), 0.3 (dotted line), 0.2 (dash dot line),
and 0.1 (dash dot dot line) applied during field-cooling. Open circles
show T-dependence of normalized magnetization simulated for

= 1.61 and field-cooling in H, =2.

H, = 0 this compensation is virtually complete in accordance
with the zero moment multi domain state of the y = 1.61 hys-
teresis (see circles figure 8). For H, =2, up and down domains
do not fully compensate and small field-induced net magnet-
ization remains down to 7 = 0. The low magnetization in the
M vs T data below T aligns with the narrowing of the hys-
teresis loops near H, = 0, showing virtually zero remanent
magnetization, as observed in the simulation data and in the
experimental magnetization isotherms of Gd.

In order to calculate the isothermal entropy change at 7=
4 in analogy to the analysis of the experimental isotherms
of Gd, we simulate isothermal loops at T=4 and T=4.2K
and numerically approximate the partial 7-derivative of M
by (%)Ha ~ M(T=4‘2’H*‘33M(T=4’H“). AS/N is calculated in
accordance with equation (5) through numerical integration of

(%4),, withrespect to H,. Because there is very small hyster-

or
esis remaining in the simulated loops, we calculate (%7 ), and

the entropy change for one of the branches of the loop selected
here to be the down branch.

The inset of figure 10 shows (aé#)m vs H, at T=4
which, after numerical integration and taking into account
S(H, =30) =0, yields S/N vs H, (circles in main panel of
figure 10). S/N vs H, is calculated separately for data between
—30 < H, <0 (solid circles) and 0 < H, < 30 (open circles).
There is a striking similarity between the data in figure 10
and those shown in figure 7. The simulation data in figure 10
reveal the presence of an intermediate field range where S/N
vs H, follows the quadratic H,-dependence anticipated by the
low field expansion of equation (8). As expected, this simple
parabolic behavior breaks down near H, = 0 and smears out
with an asymptotic approach of § =0 in the limit of large
magnetic fields. The solid line in figure 10 shows a best fit
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Figure 10. Circles show calculated field dependence of the entropy
per spin at 7' = 4. Solid line parabola is the result of a best fit of the
S/N vs. H, using data from the field intervals —10 < H, < —6.5 and
6.5 < H, < 10. Dashed parabola is an extrapolation outside the
fitting regime. The inset shows the numerically calculated (‘g—"f ) H,

vs. H,.

of the functional form % = aH?+ B to the S/N vs H, data
within the field regimes —10 < H, < —6.5 and 6.5 < H, <
10. The dashed parabola extrapolates the fit to outside this
regime. The result of the best fit provides the parameters
a=-0.00364+1x 10"* and B =0.624 £ 0.009. Note that
B < In2 =~ 0.7 implies that, in the fully demagnetized state, the
presence of small clusters of uniformly aligned spins is expec-
ted rather than random orientation of individual spins. Next we
will explore the cluster size distribution in the demagnetized
state. The cluster size distribution of up magnetized clusters
is utilized to calculate a typical/average cluster size and com-
pare it with the cluster size obtained from the entropy analysis.
The validity of the approach used to predict the presence of
nanometer-sized magnetic structures in Gd is determined by
comparing the two results.

The quadratic approximation of equation (8) implies
(S(H,) —5S(0)) /N~ —21 Z—‘z which allows to estimate §;, the
number n of average size magnetic clusters per total number
of spins N, as

n
N —2aHE. (11)

H¢ can be defined via the field-coordinate of the inflection
point where the isotherm at 7 = 4 K changes its curvature into
the convex regime of saturation. This approach yields Hc = 9.
Substitution of H¢ and « into equation (11) yields % ~ 0.58.
That implies that the number of spins which constitute an aver-
age size cluster is about 1.7 in qualitative agreement with the
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Figure 11. Cluster size distribution (squares) P versus g with P
being the relative frequency of finding clusters of up spins forming
connected groups of size g. Line is a best fit of a power law P o< ¢~
with s = 2.44. Inset show the same distribution in a log—log plot
together with a linear best fit (line) of slope s.

s

fine grained magnetic structure displayed in figure 8 for the
demagnetized state.

The Monte Carlo simulation allows to determine the cluster
size distribution in the demagnetized state. Figure 11 shows
the magnetic cluster size distribution of the hysteresis-free
T = 4 isotherm at H, = 0 (squares). The distribution follows
the expected power law behavior P (g) o< ¢—* with g being the
number of spins within a cluster and s being a temperature
dependent exponent which has been reported to vary between
2.2 and 2.5 in the absence of dipolar interaction [36]. The
line shows a best fit of this power law behavior which yields
s =2.4440.01. The depicted domain image shows the fully
demagnetized state at 7 = 4 K identical to the one displayed
in figure 8. The inset of figure 11 shows the corresponding
log—log plot of the cluster size distribution with a linear region
of slope s determined by a linear best fit (line). The slope of
the linear line is identical to s obtained from the direct fit of
the power-law. The log—log data in the inset reveal finite size
effects for large clusters through scatter and deviation from the
linear behavior. For the subsequent analysis aiming at determ-
ining a typical cluster size we therefore employ the result
P (q) o< g~ >* of the fit rather than the noisy data. With the
help of P (g) we calculate an average cluster size according to

oo l—Yd _ . .
(q) = % = =1 which yields (g) = 3.27 for s = 2.44.

=
Because the power-law distribution is highly skewed, the
median, gmedian, 1S generally considered to be a better approx-

imation for a typical cluster size than the average (g). We
dmedian ,—S,
therefore calculate gmegian from the condition }Tidqdq = %
1
It yields Gmedian = 277. With s = 2.44 we obtain gmedian =
1.62. This value is remarkably close to the typical cluster size

estimated via the entropy analysis above which resulted in 1.7

spins in a typical cluster. Correspondingly, we calculate the
number of typical clusters per total number of spins accord-
ing to § = L_ —0.62 which is very close to the value of

Gmedian

2 estimated via % ~ —2aHg ~ 0.58. The fact that these two
values agree within less than 7% error is strong evidence that
the entropy approach is a meaningful way for the inference of

nanoscale magnetic domains in Gd.

3. Conclusion

Gd, recognized as a uniaxial soft ferromagnet and an archetyp-
ical magnetocaloric material, still presents many intriguing
characteristics that merit further investigation. Its nearly
hysteresis-free magnetization isotherms enable the examina-
tion of the demagnetization broadened regime of coexisting
up and down magnetization within the context of equilibrium
thermodynamics. Our magnetometry and calorimetry data
suggest that this mixed-phase regime is characterized by an
almost constant heat capacity with a slight quadratic depend-
ence on the magnetic field. The transition from a demagnetized
multi-domain state to a state of homogeneous magnetization
exhibits isothermal entropy change and a small but non-zero
adiabatic temperature change. The isothermal entropy change
is employed to draw conclusions on the complexity of the
demagnetized zero-field state, leading to the prediction of a
nanometric magnetic fine structure, which has yet to be exper-
imentally resolved in bulk Gd. Recent studies of Gd and Fe/Gd
films strongly suggest the presence of magnetic nanodomains
in bulk Gd. In the absence of experiments resolving nanomag-
netic structures in the basal plane of bulk Gd, we conducted
3D Monte Carlo simulations with dipolar interaction and open
boundary conditions to validate our entropy-based analysis.
The estimated number and size of magnetic clusters, derived
from entropy considerations using simulated magnetization
data, qualitatively matches the number and size of clusters
revealed by the cluster size distribution obtained from the
Monte Carlo simulation. Thus the simulations robustly sup-
ports our conclusion about the presence of nanoscale magnetic
structures in bulk Gd, drawn from experimental magnetization
data through entropy analysis. We hope this work encourages
advanced experimental investigations of the domain structure
in the basal plane of bulk Gd and other soft ferromagnets, with
the aim of uncovering a potentially rich nanoscale magnetic
fine structure that has remained unresolved until now.
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