Remote Sensing Based Crop Monitoring Techniques: A Case Study for the Navajo Nation

Varatharajaperumal Thangavel!, Sudhagar Nagarajan?, Madasamy Arockiasamy?, Md. Tarique Khan*, George Sklivanitis?
lythangavel2024@fau.edu.in, 2snagarajan@fau.edu, 3arockias@fau.edu
4tkhan@navajotech.edu, gsklivanitis @fau.edu
1235 Department of Civil, Environmental and Geomatics Engineering Florida Atlantic University, Florida, USA
4School of Engineering, Math & Technology Faculty, Navajo Technical University, Crownpoint, New Mexico

Keywords: Agriculture; Satellite Images; Crop Mapping; Random Forest; Crop Data Layer

Abstract

Agriculture plays a major role in eradicating poverty, promoting prosperity, and nourishing a projected 10 billion people by 2050
globally. In a changing climate, achieving optimal agricultural yields requires a deeper understanding of available natural r esources
and crops. This is especially important for places like the Navajo Nation, which faces significant challenges in food supply chain
management due to various factors such as water demand, water quality, and insufficient information about land fertility and crops
timings/seasons. Additionally, itis the largest Native American reservation in the U.S. It covers 27,425 square miles across Arizona,
Utah, and New Mexico and has a population of 165,158 people, accordingto the 2020 census. Agriculture has been a key part of life
in the Navajo Nation since the late 19" and early 20" centuries, playinga big role in the region’s development and stability. However,
the lack of knowledge about decisions and actions during the crop growing season has resulted in lower crop productivity, as evidenced
by the USDA statistical report for the Navajo Nation in 2012 and 2017. To support farmers by providingbetter decision -making and
actionable insights, high-resolution, open-source Sentinel-2 satellite images are being used to develop advanced crop mapping
techniques for identifying the spatial extent of various agricultural crops in the Navajo Nation. To address this, a collection of research
papers was reviewed, leading to the development of a new methodology for analysing Sentinel-2 data from the 2017 and 2023 growing
seasons within the Navajo Nation. The collected data was pre-processed by creatingmonthly median composites of surface reflectance
to remove noise and enhance the results more accurately. After preprocessing, spectral indices were calculated from the spectral bands,
including NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), GCVI (Green Chlorophyll Vegetation
Index), and LSWI (Land Surface Water Index), to differentiate the crops more precisely. The training datasets were obtained from the
USDA’s Crop Data Layer (CDL) and split into 80% for training and 20% for validating the Random Forest supervised classification
algorithm. The classification resulted in an accuracy of 80%. Finally, the accuracy of the results was compared with independ ent
ground truth data. This research identifies notable discrepancies between the CDL data and the Navajo Nation agricultural census
statistical report, particularly in estimating corn acreage for the Chinle and Fort Defiance agencies. Ultimately this approach
information is used to provide actionable insights to Navajo Nation farmers.

Technologies such as remote sensing, precision agriculture, and
machine learning enable farmers to make data-driven decisions
that improve efficiency and sustainability. Remote sensing, for
instance, uses satellite data to monitor crop health, soil moisture,
and land-use patterns in real time. This information allows
farmers to respond promptly to changes in crop conditions,
leading to better yields and resource management. In addition,
precision agriculture techniques help optimize inputs like water,
fertilizers, and pesticides by applying them only where needed,

1. Introduction
Agriculture is central to human society, providing essential food
and resources while supporting economic stability and
development. It serves as a significant foundation for the
livelihoods of millions worldwide and has been recognized for its
role in addressing global challenges such as poverty, hunger, and
environmental sustainability. With a world population projected
to reach nearly 10 billion by 2050, agriculture faces immense
pressure to increase production sustainably and adapt to changing ’ ¢ . ;
climatic conditions (FAO, 2021; United Nations, 2019). This redqcmg waste  and enV1r0.nmental impact  (Sustainable
demand makes agricultural innovation crucial to ensure food Agriculture Research & Education, 2021).
security, economic growth, and environmental health.
In many regions, agricultural challenges are exacerbated by
climate change, which affects weather patterns, water
availability, and soil fertility. Extreme weather events, such as
droughts, floods, and temperature fluctuations, disrupt crop
yields and threaten the livelihoods of farmers, especially in
developingnations where resources are limited. These challenges
have highlighted the importance of sustainable agricultural
practices and climate-resilient crop production systems to secure . . : . .
food supplies in the face of uncertainty (IPCC, 2019). At the insights into crop health, §91l quality, and water use, enabling
same time, agriculture itself is a significant contributor to them to .make tlm?ly decisions to support crop growth under
environmental issues, such as greenhouse gas emissions and challenging conditions (USDA, 2020).
deforestation, which calls for a balanced approach that

maximizes productivity while minimizing negative impacts on ghls dresearch wgrk.explores t};e .potcf:ntlal of remote Slel? smﬁg-
ecosystems (World Bank, 2020). ased crop monitoring as a solution for remote areas like the

Navajo Nation, providingan overview of how these technologies
contribute to sustainable agriculture. By combining satellite
imagery and field sensors data, farmers can optimize the use of

These advancements are especially beneficial for regions facing
specific agricultural and environmental challenges, such as the
Navajo Nation in the United States. The Navajo Nation covers a
vast, arid region, and local agriculture is essential for the
community’s food security and economic stability. However, the
region's challenging climate, limited water resources, and soil
conditions make traditional farming difficult. By integrating
modern technologies, farmers in such regions can gain actionable

To address these issues, technological advancements in
agriculture have become a vital part of modern farming.
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natural resources, enabling more efficient crop management.
These technologies allow for informed decision-making on
critical aspects and stages. As aresult, they not only help increase
crop yields but also ensure the sustainable use of essential
resources, such as water and soil. High-resolution satellite
imagery, when integrated with data analysis, improves the
accuracy of agricultural activity monitoring, providing farmers
with timely and reliable information. This enables them to make
decisions that enhance productivity while addressing
environmental and resource-based challenges.

In recent years, remote sensing technologies, particularly satellite
imagery, have played a crucial role in improving agricultural
practices, especially in crop mapping and classification. High-
resolution satellite imagery i.e., Sentinel-2 has significantly
enhanced the accuracy of crop classification by providing 10-
meter surface reflectance data, which improves field boundary
detection and overall classification precision compared to lower-
resolution data like the 30-meter Cropland Data Layer (CDL)
(Tran et al., 2022). These advancements are complemented by
the use of spectral indices such as NDVI and NDWI, which help
monitor crop health, soil conditions, and water usage. Remote
sensing methods often integrate machine learning algorithms like
Random Forest (RF) and deep learning models, allowing for the
automation of crop mapping by processing large-scale data sets
and improving classification accuracy, even with limited early -
season data (Zhang et al., 2022; Hao et al., 2016). Additionally,
the combination of multisource satellite data, including imagery
from Landsat 8 & 9 and Sentinel-2, with historical CDL data, has
led to the development of tools like the In-Season Crop Data
Layer (ICDL), which provides timely and accurate crop
classifications across vast regions (Li et al,, 2024). These
innovations enable farmers to make informed decisions about
crop selection, irrigation, and pest management, ultimately
supporting sustainable agriculture. The integration of remote
sensing data with other resources, such as soil sensors and
weather forecasts, further enhances the ability to optimize
resource use, leading to improved crop yields while minimizing
environmental impacts (Guan et al., 2017; Alami et al., 2023).
These technologies not only address the challenges of precision
in crop classification but also offer promising solutions for
sustainable agricultural practices, especially in regions facing
specific environmental and resource-based constraints.

Recent research has led to the development of new methods that
combine these technologies, such as categorizing crops from
April through November 2017 and comparing the results with
databases like CDL and Agricultural Census information. This
approach aims to improve the accuracy of existing agricultural
data, providing valuable insights for decision-making and
supporting sustainable agricultural practices in remote regions.
This work underscores the potential of these advancements to
transform agriculture, particularly in regions with unique
environmental challenges.

2. Study Area

The Navajo Nation, the biggest land tract kept by a Native
American tribe in the United States, covers 27,425 square miles
(70,000 square kilometres) in northeastem Arizona, southeastern
Utah, and northwestern New Mexico, as shown in figure 1
(Navajo Families). It is divided into five agencies: Chinle
(Central) Agency, Eastern Navajo (Crownpoint) Agency, Fort
Defiance Agency, Shiprock (Northern) Agency, and Western
Navajo (Tuba City) Agency. Each agency manages the welfare of
its communities, focusing on areas such as agriculture, land use,

natural resources, and economic development, aiming to enhance
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Figure.1. Navajo Nation - Study Area Extent/Boundary

According to the 2010 Census, the reservation has a total
population of 173,637 individuals, including 169,321 Native
Americans. The total land area is 17,035,180.68 acres, and the
overall Navajo population in the United States is 331,813
(Census Reporter, 2020). With a land base larger than the state of
West Virginia, the Navajo Nation is one of the largest tribal
governments in North America. It operates as a sovereign nation
under agreements with the U.S. Congress.

3. Methodology

The entire workflow of this research project is outlined in figure
2, which spans from the initial data collection phase to the final
stages of accuracy assessment and result comparison.
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Figure.2. Methodology flowchart for the Research work

The analysis was conducted using satellite imagery, the Google
Earth Engine platform, and the Random Forest (RF) supervised
classification model, ensuring an efficient approach to the
classification and analysis of the agricultu ral data. Two different
types of data were obtained during the data collection phase:
Sentinel-2 data, which is publicly available and open source,
with a 10m resolution for the selected bands and 30m and 60m
resolution for the remaining bands (Sentinel Hub
Documentation). The data were retrieved from the Copernicus
Data Space Environment website (Copernicus). Additionally,
the duration of the crop season (i.e Corn), from April to
November, was selected based on the crop calendar available on
the U.S. Department of Agriculture (USDA) website. The
USDA crop calendar provides important insights into planting
and harvesting periods for various crops, which helped define
the time frame for this study. This period aligns with typical crop
growing seasons in the Navajo Nation, where seasonal
variations and agricultural practices are closely tied to climate



and soil conditions. By analysing crop data during this time
frame, the research aims to capture the most relevant agricultural
activity to improve classification and productivity insights
(USDA, 2020). On the other hand, the Cropland Data Layer
(CDL), with a 30m resolution, was obtained from the USDA
website and is freely accessible (Figure 3). The red-colored
rectangular box in figure 3 highlights an area within the Navajo
Nation that shows a higher level of agricultural activity
according to the CDL data.
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Figure.3. Crop Data Layer from USDA for the year 2017

This dataset is a critical resource for agricultural monitoring
policymaking, and research, enabling accurate and
comprehensive analysis of crop distributions and land
management practices. Both datasets correspond to the year
2017. For better visualization and differentiation of agricultural
land from other vegetation types, the combination of Sentinel -2
bands 2, 8, and 11 is effective. These bands enhance the ability
to distinguish agricultural land from surrounding vegetation
(Figure 4). Furthermore, the research required the Navajo Nation
Agriculture Statistical Report for a more comprehensive
understanding of crop statistics (USDA, 2017). Therefore, the
report for the year 2017 was obtained from the USDA website
(Table.1).

Crops Farms Acres
Corn, traditional, acres 1,977 4,977
Hay and haylage, acres 482 30,010
Vegetables, acres 1,243 8,394
Cantaloupes, acres 209 83
Honeydew melons, acres 102 45
Squash, all, acres 1,013 798
Watermelons, acres 826 802

Table.1 Agriculture Statistical Report for Navaja Nation
(Source: USDA National Agricultural Statistics Service)
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Figure.4. Band Combination for Agriculture Land for the
selected Region (Red-Color- Rectangular box

3.1 Monthly Median Calculation

To improve the accuracy of the agricultural crop classification, it
was essential to preprocess the Sentinel-2 data by reducingnoise
and mitigating atmospheric disturbances. This was achieved by
calculating the monthly mean and median of the Sentinel-2 data.
These monthly calculations help to smooth temporal variations
and remove transient anomalies such as cloud cover and
atmospheric interference, which could otherwise distort the
vegetation signal. The mean and median values for each month
provide a clearer and more consistent representation of
vegetation and land cover dynamics, improvingthe reliability of
subsequent spectral indices calculations.

3.2 Spectral Indices

Based on the literature review (Cai, Y et al., 2018), selective
spectral indices were chosen for the research work. These indices
are essential in agricultural crop classification and mapping, as
they provide vital information on crop health, growth, and type,
which aids in decision-making for agricultural management.
Spectral indices have been widely used to enhance crop
monitoring, allowing for the detection of plant stress and
variations in growth stages (Fensholtetal., 2012). In this research
work, four main spectral or vegetation indices were calculated
using Sentinel-2 satellite data: the Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Green Chlorophyll Vegetation Index (GCVI), and Land Surface
Water Index (LSWI). The corresponding equations for these
indices are expressed in Equations (1) to (4). These indices help
to differentiate crop types effectively.
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Figure.5. NDVI calculation for the Month of April 2017

0 07515

3 Miles

¥

Figure.6. GCVI calculation for the Month of April 2017

The Normalized Difference Vegetation Index (NDVI) is widely
used to assess vegetation health by calculating the difference
between red and near-infrared (NIR) reflectance. High NDVI
values indicate healthy vegetation, which reflects strongly in the
NIR and absorbs red light effectively. This index is valuable for
monitoring crop growth, detecting stress conditions, and
estimating crop yields, as it helps differentiate between vegetated
and non-vegetated areas, supporting land cover classification and
change detection (Figure 5).



The Green Chlorophyll Vegetation Index (GCVI), sensitive to
chlorophyll content, is used to estimate plant chlorophyll levels,
which are crucial indicators of crop health and productivity.
GCVI helps identify nutrient deficiencies or stress caused by
environmental factors (Figure 6). The Enhanced Vegetation
Index (EVI) enhances sensitivity to vegetation in areas with high
biomass by correcting for atmospheric and soil background
effects. It is particularly useful in dense canopies and provides
more reliable vegetation monitoring than NDVI in such areas
(Figure 7).
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Figure.7. EVI calculation for the Month of April 2017

The Land Surface Water Index (LSWI) monitors surface water
content and detects changes in water availability, which is vital
for irrigation management and drought assessment. LSWI
provides insights into the interaction between vegetation and
water resources, helping to assess plant water stress and overall
health (Figure 8).
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Figure.8. LSWI calculation for the Month of April 2017

The Spectral Indices are calculated for each month of the growing
season (April to November 2017). Thus, there are a total of 8
months and 4 indices, resulting in 32 layers overall.

NDVI = (NIR-RED)/(NIR+RED)
GCVI=NIR/GREEN-1 e Q)
EVI=G*(NIR—RED)/(NIR+C1 xRED~C2 xBLUE+L) ---- (3)
LSWI=(NIR-SWIR1)/(NIR+SWIRI) ~  =mmmem- @)

3.3 Training Samples

To train the Random Forest supervised classifier model, the CDL
layer was used as the ground truth. Training samples were
collected for each crop type based on the statistical data from the
Navajo Nation Report. These crops included alfalfa, corn, dry
beans, popcorn corn, potatoes, pumpkins, shrubland, grassland,
open water, winter wheat, and evergreen forest. For each crop
type, 120 training points were selected (Figure 9). The training
samples for all crop types were merged to ensure comprehensive
and accurate classification. The Random Forest (RF) supervised
classifier was trained using these merged training samples, which

were split into 80% for training and 20% for validation. The
classification process was then carried out using the trained
model, producinga reliable output for agricultural crop mapping.
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Figure.9. Combined Spelct.ral Indices layer for the Month of
April 2017

4. Results and Discussion

4.1 Classification Results

The red-colored rectangular box in Figure 3 highlights a region
within the Navajo Nation characterized by higher agricultural
activity, as indicated by the Cropland Data Layer (CDL) data.
This region was the primary focus of the classification analysis.
The combined spectral indices layers (Figure. 10) were classified
using the training samples and the Random Forest Supervised
Classifier Model, resulting in a total of 8 layers. Each of the 8
layers (from April to November) was individually classified. But
some groups of pixels were misclassified into incorrect classes.
To address this issue, the monthly combined indices (i.e., 8
layers) were merged into a single layer using the mean reducer
function in Google Earth Engine. The classification process was
then repeated using the training samples and the RF supervised
classifier model. The results clearly demonstrated that the new
categorization was superior to the previous results. (Figure 11).

4.2 Accuracy Assessment

The accuracy of the classified layers was assessed to evaluate the
performance of the Random Forest (RF) supervised classifier
model. Training and validation samples were taken from the 2017
Crop Data Layer (CDL), with 80% used for trainingand 20% for
validation. The classification achieved an overall accuracy of
80.07% and a Kappa coefficient of 0.78.

A confusion matrix was also used to calculate User's accuracy,
which measures how well pixels of a class are correctly
identified, and Producer's accuracy, which reflects the likelihood
that a pixel from a class is correctly classified. These metrics,
along with overall accuracy and the Kappa coefficient, provided
a comprehensive evaluation of the model's performance
(Table.2).

4.3 Comparison with Databases

The classified layer’s crop acreage for corn was compared
against CDL and Agricultural census records. According to the




agricultural census, two agencies: Chinle and Fort Defiance
reported higher corn acreage within the Navajo Nation compared
to other regions, as shown in Table 3.
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Alfalfa | Corn | Potatoes B‘zﬁ‘ Wter "“é‘“gl'" ?E;‘::i: Glf:“"r':“ OL":': Sum | User's Accuracy

Alfalfa 20 0 0 0 2 0 0 0 0 0 1 23 86.96

Corn 0 1 0 1 0 6 2 0 0 1 0 21 5238

Potatoes 0 1 15 0 0 1 0 0 0 0 0 17 88.24

Dry Beans 0 0 0 24 0 0 4 0 0 1 0 29 82.76

Winter Wheat 0 0 0 0 19 0 0 0 0 0 0 19 100.00

Pop O Corn 0 6 0 0 0 17 2 0 0 0 0 25 68.00

Pumpkins 0 0 4 4 0 1 16 0 0 0 0 25 64.00

Shrubland 0 0 0 0 0 0 0 2 2 2 0 26 84.62

Ever Green Forest 0 0 0 0 0 0 0 0 25 1 0 26 96.15

Grassland Pasture 0 1 0 0 1 0 1 4 0 19 0 26 73.08

Open Water 0 0 0 0 0 1 0 1 0 0 17 19 8947
St 20 19 19 29 22 26 25 27 27 24 18 256

Prody y 1100.00] 57.89 | 78.95 | 82.76 | 86.36 | 65.38 | 64.00 | 81.48 | 92.59 | 79.17 | 94.44 8039

Table. 2 Confusion Matrix of Random Forest Classification
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in figure 12 and similarly The classified layer and Fort Defiance Census of Classified
agency cron acregae is available in figure 13. Agency g(:)l% Agriculture layer 2017
2017 (Acre) (Acre)
Agency No. of Farmland Corn(Acres) Chinle Nil 1539 1135.206
: (16129) (4977) Fort Defiance Nil 865 893.136
Chinle 3428 1539 Table.4 Corn Area Comparison with Different Databases
Fort Defiance 4047 865

Table.3 Corn Acreage data from Agriculture Statistical Report
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Figure. 12 Chinle agency cron acregae from classified layer
Additionally, data from the Soil Survey Geographic Database
(SSURGO) provides further insight into agricultural activities
within the Chinle Agency of Navajo Nation, highlighting
farmland distribution (Figure 13).

According to the CDL data, there is no spatial information
indicating agricultural activities within the Chinle (Figure.14)
and Fort Defiance agencies in the Navajo Nation. A summary
comparison of corn acreage based on different databases is
provided in Table 4.
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Figure.14. Chinle Agency with Crop Data Layer

5. Conclusion

This research identifies notable discrepancies between the CDL
data and the Navajo Nation agricultural census statistical report,
particularly in estimating corn acreage for the Chinle and Fort
Defiance agencies. Using Sentinel-2 data and spectral indices, the
study achieved nearly 80% classification accuracy, effectively
aligning corn crop data from the Census of Agriculture, CDL,
and the classified layer for the year of 2017. These results
emphasize the challenges of aligning datasets from different
sources in agricultural monitoring, while also demonstrating the
potential of remote sensing techniques for improving accuracy.




In future work, the focus will be on refining the crop
classification process by exploring various machine learning
algorithms to enhance accuracy and robustness. Furthermore,
extending the study to analyze data from multiple years will
allow for the identification of temporal trends and better capture
the dynamics of crop changes over time. Additionally, validating
the model with ground truth data will be crucial to assess its real-
world accuracy, ensuring that the classification results align with
observed crop patterns. By incorporating these elements, the
accuracy and reliability of agricultural monitoringin the Navajo
Nation will be significantly improved.
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