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Abstract

It is projected that 10million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying
new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received
significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have
witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering
AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides,
which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based
computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to
conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting
signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide
fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms
existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC),
G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP
identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have
developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.
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Introduction
Antibiotics are a remarkable medication that has saved thou-
sands of lives by defeating various infectious diseases [1–6]. How-
ever, the long-term and rapid increase of antibiotic use for disease
treatment in large populations has resulted in drug resistance
in pathogens [6–10]. According to the World Health Organization
(WHO), approximately 700,000 patients worldwide die from drug-
resistant bacterial infections every year, and the total number
of deaths is predicted to increase to 10 million by 2050 [11].
Therefore, expanding a large range of new antimicrobial agents
to fight against pathogens is essential to relieve the huge burden
of global health [12].

Antimicrobial peptides (AMPs) are amino-acid-based oligomers,
naturally widespread in all forms of life, such as bacteria,
animal, and plant [13–15]. They served as the first line of
defense against pathogens by interrupting pathogen-associated
molecular processes [16–20]. AMPs, with their effectiveness
against multi-resistant bacteria, fungi, parasites, and viruses,

are promising for developing new antibiotics. [21–25]. However,
the discovery of natural AMPs often depends on traditional wet-
lab experiments that are time-consuming and labor-intensive. To
streamline this process, developing in-silico predictive models to
identify potential AMP candidates can facilitate a more efficient
and convenient selection process before proceeding to synthesis
and wet lab testing. In the past decade, numerous computational
models based on various algorithms, such as support vector
machine (SVM) [26], random forest (RF) [27], and logistic
regression (LR) [28], have been introduced to identify peptides [29].
Most recently, Huang et al. [30] constructed a sequential model
ensemble pipeline (SMEP) consisting of multiple steps, including
empirical selection, classification, ranking, regression, and wet-
lab validation. Algorithms, like boosting method (XGBoost) [31],
RF as well as deep learning (DL) such as the convolutional
neural network (CNN) [32] and the long short-term memory
(LSTM) [33], were applied in different modules. With SMEP, a
series of potent AMPs from the entire search space of peptide
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libraries were identified accurately within a short period of
time. In another study [34], multiple natural language processing
neural network models, including LSTM layer, attention layer, and
Encoder Representations from Transformers (BERT) [35], were
combined to form a unified pipeline which has been used to
mine functional peptides from metagenome data for in-depth
investigations. The algorithms applied in the prediction models
can be divided into two main categories. The first category is
based on DL architectures, like AMPScanner V2 [36] and Deep-
AmPEP30 [37]. AMPScanner V2 applied deep neural networks
(DNN) [38] with convolutional, maximal pooling and LSTM layers
for AMPs prediction. Deep-AmPEP30 is based on a CNN with two
convolutional layers, two maximum pooling layers, and one fully
connected hidden layer. As for the second category of models,
conventional machine learning (ML) algorithms are generally
exploited, such as iAMPpred [39], which uses SVM to classify
positive or negative peptides. Previous studies [40] indicated that
DL models did not always outperform conventional ML models
due to the modeling complexities and/or modeling overfitting
during the process of DL model construction based on training
limited AMPs. Therefore, DL models are not necessarily the most
suitable approach for AMPs identification [40]. Nonetheless, no
matter the ML or DL-based methods, existing computational
methods rely primarily on features derived from the composition,
physicochemical, and structural features of the peptide sequence.
These features may not be sufficient to fully express the rich
information contained in AMPs and there is still considerable
room for enhancing the accuracy of AMP prediction.

To address the aforementioned concerns,we propose herein an
ensemble randomprojection (RP) [41] based computationalmodel
named SAMP, for which we develop a new type of feature called
proportionalized split amino acid composition (PSAAC) [42] in
addition to conventional sequence-based features to improve the
prediction performance of AMP identification. Previous studies
[43, 44] have evidenced that the composition of these regions can
vary significantly across different types of proteins. Analyzing
the composition of these regions independently provides more
detailed information than analyzing the composition of the entire
sequence. The primary advantage of this approach is that it allows
for greater emphasis on proteins that have specific signals or fea-
tures concentrated at either the N-terminal or C-terminal. Mean-
while, we demonstrate that SAMP outperforms existing state-
of-the-art methods in terms of accuracy, Matthews correlation
coefficient (MCC), the geometric mean of recall and precision
(G-measure), and F1-score, including iAMPpred and AMPScan-
ner V2, when benchmarking on both balanced and imbalanced
datasets fromdifferent natural peptide groups, including humans,
bacteria, amphibians, and plant. Furthermore, we integrate an
ensemble RP architecture into SAMP to strengthen its ability
to handle large-scale AMP screening while achieving enhanced
performance compared to those without RP. In addition, we have
developed a software package, SAMP, that is available for users to
install and use on GitHub (https://github.com/wan-mlab/SAMP).
Users can access the complete code for SAMP on GitHub along
with a step-by-step guide document that explains how to use
SAMP with an example dataset.

Materials and methods
Datasets
The positive data set for natural AMPs was accumulated in the
antimicrobial peptide database in the past 20 years [45, 46] and the
negative data set was extracted from UniProt [47]. To benchmark

the performance of SAMP and other state-of-the-art approaches,
we selected two sets of training data reported in the literature. As
many existing approaches only provide web servers which have
already been trained in different training data, to make a fair
comparison, we will compare SAMP with those approaches based
on the same training dataset based on which the corresponding
web servers were trained. Specifically, the first set consists of 984
positive and 984 negative AMPs collected from the reference of
iAMPpred [39]. This set is used to train our model and compare
our proposedmodel SAMPwith iAMPpred (Fig. 1A). The second set
consists of 2021 positive and 2021 negative AMPs, exceeding 4000
sequences in total, collected from the reference of AMPScanner
V2 [36], as shown in Fig. 1B. This set is used to train our model
and compare SAMP with AMPScanner V2.

In addition, independent testing data were collected from the
dbAMP database [48], containing AMP and non-AMP sequences
(Fig. 1C). Specifically, we chose the AMP and non-AMP datasets
across four different sources: plants, bacteria, amphibians, and
humans, which were originally collected in the APD [45, 46]
database. Given the varying peptide sequence length distributions
of our AMP datasets (Fig. 1A–C), we filtered out sequences
shorter than 10 amino acids and longer than 500 amino acids.
The sequences containing non-standard amino acids were also
removed. In the dbAMP benchmark dataset (Fig. 1D–E), there
are 1089 AMPs and 9732 non-AMPs. Specifically, for the AMPs
(Fig. 1D) of the dbAMP dataset, around half are amphibian, one-
third belong to plant, and one-fifth are bacteria. On the contrary,
in the non-AMP cases (Fig. 1D), amphibian sequences account
for only 10%, and half of them are bacteria. Interestingly, human
sequences constitute less than 10% in both AMPs and non-AMPs
(Fig. 1D–E).While for the amino acid sequence length distribution
(Fig. 1F–I), most AMPs for all sources are with shorter amino
acid sequences compared to non-AMPs, suggesting significantly
different sequence distributions between AMPs and non-AMPs.
However, it is unlikely to use the length of peptide sequences to
determine whether a peptide is an AMP or non-AMP, given that a
significant portion of AMPs are also overlapped with non-AMPs,
especially for bacteria, humans, and plants (Fig. 1F–I).

Feature extraction
Conventional features
We embedded the string of peptide sequences into categories of
numeric feature vectors similar to those proposed by Meher et al.
[39], which include amino acid sequence compositional features
and physio-chemical (PHYC) features. The compositional features
include amino acid composition (AAC), pseudo amino acid com-
position (PAAC), and normalized amino acid composition (NAAC).
The PHYC features consider the hydrophobicity, net-charge, and
iso-electric point of peptide sequences, and were calculated using
the ‘Peptide’ package [49] in R.

Proportionalized split amino acid composition (PSAAC)
To maximally extract peptide sequence information, we propose
a new compositional feature called proportionalized split amino
acid composition (PSAAC). This concept refines the split amino
acid composition (SAAC) approach, which differentiates between
the AAC at the N and the C-terminal of protein sequences [43,
44]. PSAAC adapts this concept specifically for peptide sequences,
dividing them into distinct segments according to proportions
defined by the users. Given a peptide sequence P of length L, we
split it into 3 segments using proportions (or percentage) p1, p2
and p3, where p1, p2 and p3 represent the proportion of amino acid
segments for the N-terminal region, the middle region and the
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Figure 1. Peptide sequence distribution of AMPs and non-AMPs in benchmarking datasets. (A–C) The peptide sequence distribution of AMPs and
non-AMPs collected from the iAMPpred dataset (A), the AMPScanner V2 dataset (B) and the dbAMP dataset (C), respectively. (D–E) Species breakdowns
of AMPs (D) and non-AMPs (E) in the dbAMP dataset. (F-I) Source-specific peptide sequence distribution of AMPs and non-AMPs in the dbAMP dataset,
including amphibian (F), bacteria (G), human (H) and plant (I).

C-terminal region, respectively, and p1 + p2 + p3 = 1. The lengths
of these segments, L1, L2, and L3, are:

L1 = ⌈
L × p1

⌉
(1)

L2 = ⌈
L × p2

⌉
(2)

L3 = L − L1 − L2 (3)

The segments are:

l1 = P �1 : L1� (4)

l2 = P �L1 : (L1 + L2)� (5)

l3 = P �(L1 + L2 + 1) : L� (6)

Now, let A be the set of 20 standard amino acids. The AAC in
segment li for X ∈ Ais given by:

AACi,X = Count of X in li
L

(
i = 1, 2, 3

)
(7)

Note that the count of the X in each segment was divided by
the whole length of the peptide sequence. Then, the PSAAC is:

PSAACi,X = [AAC1,A,AAC1,C, · · · ,AAC1,Y,AAC2,A, · · · ,AAC3,Y] (8)

Previous studies [50, 51] have reported that some sorting
signals exist in the short segments of amino acid sequences
around the N-terminal, representing special information on
amino acid composition. In other words, different regions of a
protein sequence can provide extra information. For example,
some specific regions may form structural domains that
determine the function of proteins, such as binding sites for
other molecules, active sites for enzymes, or domains for protein–
protein interaction [51]. The PSAAC feature captures the residue
patterns around both the N-terminal region and the C-terminal
region while also retaining the sequence order information from
themiddle region.Based on peptide sequences proposed byDaniel
et al. [36], the amino acid compositions for each segment (e.g. the
N-terminal region, the C-terminal region, and the middle region)
were calculated, respectively. As shown in Fig. 2, Glycine and
Leucine are the most abundant amino acids in AMPs and non-
AMPs datasets, respectively (Fig. 2A and B). There are obvious
differences in the composition of each amino acid at the N-
terminal, the C-terminal, and middle region for both datasets
(Fig. 2C and D). In the non-AMPs dataset, Leucine is the most
abundant in all three segments. For the AMPs dataset, Glycine
is the most abundant at both the N-terminal and the middle
region, while Lysine is the most abundant at the C-terminal.
Then, all the features are scaled by subtracting the mean from
each column and dividing it by the standard deviation. For the
data collected from AMPScanner V2 and dbAMP, the amino
acid distribution at the N-terminal, the C-terminal and middle
region is also investigated and shown in Supplementary Figs S1–
S2. In addition, we also calculated the delta differences of
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Figure 2. Amino acid distribution in AMPs and non-AMPs datasets based on the dataset collected from iAMPpred. Amino acid distribution of all
sequences in (A) AMPs and (B) non-AMPs dataset. Distribution of amino acid sequences in the N-terminal region, the middle region and the
C-terminal region of (C) AMPs dataset, and (D) non-AMPs dataset.

amino acid distributions between AMPs and non-AMPs for
the total amino acid sequences and split regions (i.e. the
C-terminal region, the middle region, and the N-terminal region)
in three datasets (namely datasets from iAMPpred, AMPScanner
V2, and dbAMP). As shown in Supplementary Fig. S3, Lysine
exhibited the most significant difference in proportion of amino
acids between AMPs and the non-AMPs. On the contrary, the
largest differences of amino acid proportions between AMPs
and non-AMPs for the N-terminal region, the middle region,
and the C-terminal region were observed in Glycine, Lysine,
and Cysteine, respectively. Similarly, for the dataset collected
from AMPScanner V2, we demonstrated the delta differences
of amino acid distributions between AMPs and non-AMPs
in Supplementary Fig. S4. Specifically, the most remarkable
differences among the 20 standard amino acids between AMPs
and non-AMPs in the four cases (i.e. the overall amino acids, the
C-terminal region, the middle region, and the N-terminal region)
were Glutamate, Glycine, Glycine and Cysteine, respectively. In
Supplementary Fig. S5, for the dataset from dbAMP, Cysteine was
observed as the most significant difference amino acid between
AMPs and non-AMPs for three cases (i.e. the overall amino acid
sequences, the N-terminal region, and the C-terminal region),
whereas Glycine was the most difference for the middle region.
Of note, Glycine and Cysteine are also more abundant in natural
AMPs than in globular proteins when all the natural sequences

are considered [46]. For each peptide sequence, the PSAAC feature
will be generated with 60 dimensions.

Random projection
Random projection (RP) is a dimension reduction technique pro-
posed based on the Johnson-Lindenstrauss lemma [52]. For our
experimental analysis, we used the Gaussian random matrix as
our RP matrix, which is generated from the following distribution

N
(
0, 1

mcomponents

)
where mcomponents represents the number of dimen-

sions to which the data is to be reduced. In our experiments, the
optimal number of components to be kept was determined by
the model training step using a grid-search approach. We also
enabled the option of using a sparse matrix as the RP matrix in
our package.

For dimension reduction, from original R dimension to the
reduced r dimension, a very sparse random matric Q∈ R

r×R is
designed to reduce the computational complexity [53]. Specifi-
cally, elements of Q (i.e. qi,j) are defined as:

qi,j = √
t

⎧⎪⎨
⎪⎩

1 with probability 1
2t

0 with probability 1 − 1
t , where i = {1, · · · , r}, j = {1, · · · ,R}

−1 with probability 1
2t

(9)

As suggested by [53], we select t =
√
R.
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Figure 3. Schematic representation of SAMP workflow. Benchmarking data consisting of AMPs and non-AMPs were used for training. Features,
including our proposed PSAAC, as well as conventional sequence features, were constructed. RP was applied multiple times to reduce the feature
dimension for robustness. For each RP, the feature matrix was transformed in a low-dimensional space and was then fed into a classification model.
The decision scores generated by the RBF-SVM model were integrated by an ensemble learning scheme, based on which predictions for independent
test data were made to identify AMPs.

Ensemble learning
We use an ensemble learning model in SAMP (Fig. 3) where given
the training and testing feature matrices Mtrain and Mtest that
have been scaled, and whose scaling process will be detailed in
the feature scaling session, we first applied RP on the matrices
respectively to get the new feature matrices M∗

train and M∗
test in

a lower dimension. We then used the SVM as our base model
to train and test on M∗

train and M∗
test respectively. We repeated

the above steps 10 times to stabilize the result of RP, where
randomness is often introduced when generating the RP matrix.
Finally, the decision function scores in each iteration are recorded
and averaged to get the final scores.

We then compared and selected the appropriate classifiers for
AMP sequences classification, including RF, LR, SVM, multilayer
perceptron (MLP), and XGBoost. Specifically, SVM allows for the
use of different kernel functions to make predictions on both
linear and non-linear data. Here, we use Radial Basis Function
(RBF) kernel. RF works by building multiple decision trees and
merging their outputs to make predictions. LR models the rela-
tionship between variables based on logistic/sigmoid function.
MLP consists of at least three layers of notes, including an input
layer, one/more hidden layers, and an output layer. XGBoost is
designed for scalable gradient boosting, combining multiple deci-
sion trees for prediction. In each iteration of five classifier models,
we trained themby performing a grid searchwith repeated 10-fold
cross-validation to search for the best hyperparameters. Then,
the model with the best hyperparameters was used to generate
decision function scores for the independent testing datasets. The
classifier demonstrating the highest accuracy will be selected to
form the foundational architecture of SAMP.

Overview of SAMP
SAMP is an ensemble-based model that accurately classifies AMP
by averaging the prediction scores from a set of base SVMmodels.
Importantly, SAMP introduces the PSAAC feature, in addition to
the widely used numeric features for AMP prediction task pro-
posed in iAMPpred [39].

SAMP first encoded the peptide sequence into numeric fea-
tures, such as AAC, PHYC, and PSAAC. The features were then
scaled and projected to a pre-defined lower dimension using a RP
technique. Base SVMmodels were built to generate the prediction
scores for each run, which were eventually integrated by an

ensemble learning scheme. SAMP was then evaluated on inde-
pendent test data from four species (including amphibian, bac-
teria, human, and plant) and compared to other state-of-the-art
methods, including iAMPpred and AMPScanner V2. To make fair
comparisons, the same training data and independent test data
were used to compare SAMP and other state-of-the-art methods.

Overall, the PSAAC enables SAMP to capture the peptide
sequence information from both the middle region and the
N/C-terminal regions, which significantly boosts the model
performance in comparison to state-of-the-art methods.

Benchmarking with the state-of-the-art methods
We compared the performance of our model with two state-of-
the-art methods, iAMPpred and AMPScanner V2. The benchmark
test was performed by using the AMP and non-AMP data collected
from the dbAMP database. The training data reported in the
papers [36, 39] for iAMPpred and AMPScanner V2 were obtained to
train SAMP separately. To demonstrate the importance of PSAAC
and the robustness of our ensemble-based SVM model design,
we conducted two types of further analyses. First, we trained
models both with and without the PSAAC features, evaluating
the results to ascertain the importance of PSAAC. Following this,
we employed both the ensemble-based SVM model design and
basic SVM model with one-time RP for training. For performance
evaluation, we considered four major metrics: accuracy, MCC, G-
measure, and F1-score. Here, MCC is a measure that produces
a high score only if the prediction obtained good performance
in all four aspects, true and false positives and negatives, of
the confusion matrix, making it a reliable rate particularly for
imbalanced datasets, as it is not biased toward the majority class
[54]. The closer the value of MCC is to 1, the better the prediction
effect of the classifier is. G-measure is the geometric mean of
precision and recall, and it effectively balances the extreme ratio
of positive to negative instances. The value ranges from 0 to 1,
then a value closer to 1, indicating the classifier is performingwell
in both predicting the positive cases and maintaining accuracy.
F1-score is the harmonic mean of precision and recall, and it
differs from G-measure in that, F1-score is more sensitive to
extreme values; if there is low precision or recall, the F1-score
decreases significantly; however, g-measure will bemore tolerant.
Similarly, a closer value to 1 means the better prediction ability of
the classifier.
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Figure 4. Comparing different classifiers for SAMP. All classifiers were trained on the same dataset collected from iAMPpred to perform 10 times of
10-fold cross-validation. Performance measures based on (A) Accuracy, (B) MCC, (C) G-measure, and (D) F1-score were reported. Classifiers include
logistic regression (LR), multi-layer perceptron (MLP), random forest (RF), SVM (support vector machine), and XGBoost.

Results
Model performance and classifier selection
To enhance the prediction capability of SAMP,we initially selected
SVM, RF, LR, MLP and XGBoost, using the same training and
independent test dataset to train and test, then evaluated their
performance.We performed 10-fold cross-validation for 10 times,
each time we got an assessment value, as shown in Fig. 4, SVM
had better performance than LR, MLP, RF and XGBoost, based
on accuracy, MCC, G-measure and F1-score. Then, five trained
classifiers were applied to predict labels for independent test
data, as shown in Fig. 5, SVM exhibited the highest accuracy,MCC,
G-measure and F1-score among all four test datasets. In summary,
SVM presents a better performance than RF, MLP, XGBoost and
LR, which was determined to serve as the basement of SAMP for
further analysis. It was evident that the training performance in
Fig. 4 was better than evaluation performance in Fig. 5. This dis-
crepancy could be attributed to class imbalance. While the train-
ing set had a balanced class ratio (1:1), with 984 AMP sequences
and 984 non-AMP sequences, the test set was highly skewed. For
instance, the amphibian dataset contained 517 AMP and 932 non-
AMP sequences (1:2), the bacteria dataset contained 226 AMP and
4721 non-AMP sequences (1:21), the human dataset contained 39
AMP and 894 non-AMP sequences (1:23), and the plant dataset
contained 307 AMP and 3185 non-AMP sequences (1:10). Upon
analyzing SAMP’s prediction results, we found that the perfor-
mance for AMP prediction was strong, with accuracy rates of
0.97, 0.91, 0.85, and 0.93 across species, respectively. However,
for non-AMP prediction, the accuracy was significantly lower, at
0.67, 0.66, 0.64, and 0.66, respectively. This indicated that while
SAMP performs well in predicting AMPs, it struggled with non-
AMP predictions due to class imbalance.

We also measured the performance of SAMP across differ-
ent dimensions of RP and all the possible proportions of PSAAC
(Table 1). Grid-search with repeated 10-fold cross-validation was

applied to assess the model performance on training datasets.
The number of dimensions used in RP was 50, 100, and 150.
Importantly, the novel feature of PSAAC enables a customized
proportion of information to be obtained from a peptide sequence.
To this end, we also evaluated the effect of different proportions
of PSAAC on model performance. A given peptide sequence was
first split into three parts according to the proportions specified.
Next, the amino acid composition within each split was calcu-
lated, resulting in a total of 60 new features (see Method). The
proportions evaluated include 2:2:6, 6:2:2, 2:6:2, and 3:4:3, where,
for example, 2:2:6 represents cutting the peptide sequence from
the N-terminal for 20% of the total sequence length, another 20%
in the middle, and the remaining 60% for the C-terminal.

As shown in Table 1, it presented a comprehensive overview of
the SAMP performance under varying ratios of PSAAC with dif-
ferent dimensions. It emphasized how different splitting schemes
influenced the performance of SAMP, such as accuracy, MCC, Sn,
Sp, and AUC. The accuracy presentedminimum variation, ranging
from 93.04 to 93.65, which indicated a consistently good perfor-
mance across different configurations. The MCC, Sn, Sp, and AUC
values varied slightly more but still could demonstrate the robust
performance of SAMP, with MCC ranging from 86.06 to 87.36, Sn
from 90.55 to 92.07, Sp from 94.82 to 95.83, and AUC ranging
from 97.58 to 97.93. Among all the configurations, the 6:2:2 PSAAC
ratio reached the highest Sp, while the 2:6:2 ratio got the best
accuracy, and the 3:4:3 ratio outperformed others in terms of
accuracy, MCC, Sn, and AUC. Analyzing performance based on
dimensions, obviously, the dimension of 50 led in accuracy and
MCC, the dimension of 100 exceeding in Sp, and the dimension
of 150 topped in accuracy, Sn, and AUC. We used the prediction
accuracy to determine the best ratio or proportion of the PSAAC.
In this study, we hypothesize that the N and C-terminal contain
key residue information regarding peptide stability, binding, and
interaction. Different proportions were tried and were selected
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Figure 5. Comparison of five ML models based on independent tests across multiple sources. (A) Accuracy, (B) MCC, (C) G-measure, and (D) F1-score
were compared across all sources, including bacteria, humans, amphibians, and plants. All models were trained on the dataset collected from [39] and
tested on independent test datasets collected from [48].

Table 1. Comparing different splitting schemes and reduced dimensions for SAMP

PSAAC split Dimensions Evaluation metrics

Accuracy MCC Sn Sp AUC

2:2:6 50 93.04 86.04 91.06 94.92 97.58
100 93.29 86.24 91.16 95.02 97.79
150 93.09 86.43 91.57 94.82 97.77

6:2:2 50 93.24 86.28 90.65 95.53 97.63
100 93.24 86.70 90.75 95.83 97.68
150 93.29 86.59 90.75 95.73 97.72

2:6:2 50 93.09 86.29 90.55 95.63 97.63
100 93.60 87.24 91.97 95.22 97.87
150 93.65 87.35 91.97 95.33 97.82

3:4:3 50 93.65 87.36 91.77 95.53 97.83
100 93.39 86.85 91.57 95.22 97.89
150 93.65 87.34 92.07 95.22 97.93

The splitting scheme means different ratios of the sequence lengths of the N-terminal region, the middle region, and the C-terminal region. For example, 2:2:6
means splitting a peptide into three regions as the N-terminal region accounting for 20% of the total sequences, the middle region 20%, and the C-terminal
region 60%. Here we tried four different splitting schemes including 2:2:6, 6:2:2, 2:6:2, and 3:4:3. For reduced dimensions of features, we tried three different
cases, 50, 100, and 150. MCC, Matthews correlation coefficient; Sn, sensitivity; Sp, specificity; AUC, area under the receiver operating characteristic curve.
Numbers in bold represent the best performance for each splitting scheme.

the best combination for AMP prediction. Based on the accuracy
performance, 2:6:2 (with the dimension of 150) corresponded to
the highest accuracy, 93.65%. We also noticed that 3:4:3 also gave
the equivalently best accuracy, so it should also be regarded as
the best proportion. In addition, we have evaluated whether the
fixed length (e.g. the first 20 amino acids as the N-terminal region
and the last 20 amino acids as the C-terminal region, with the
remaining portion considered the middle region) based PSAAC
construction method can get more stable result compared with
the ratio-based (e.g. the first 20% of amino acids as the N-terminal
region, the last 20% as the C-terminal region, and the middle
60%as themiddle region) PSAAC constructionmethod. Sequences

longer than 100 amino acids from AMPScanner V2 and dbAMP
were selected for model training and evaluation, respectively.
However, sequences from amphibian species were excluded due
to the lack of AMP sequences meeting the length requirement.
As shown in Supplementary Fig. S6, SAMP has better prediction
performance.

Benchmarking with the state-of-the-art methods
To further evaluate the predictive performance of SAMP, we first
retrained SAMP with the same training data from the iAMPpred
and AMPScanner V2, respectively.We tested their performance by
using datasets collected from the dbAMP database. In particular,
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Figure 6. Comparing SAMP with state-of-the-art methods on different source datasets. Comparing SAMP and iAMPpred across different sources in
terms of (A) Accuracy, (B) MCC, (C) G-measure and (D) F1-score. SAMP was trained on the same training dataset collected from iAMPpred and tested on
independent test dataset collected from dbAMP. Comparing SAMP and AMPScanner V2 across different sources in terms of (E) Accuracy, (F) MCC, (G)
G-measure and (H) F1-score. SAMP was trained on the same training dataset collected from AMPScanner V2 and tested on an independent test dataset
collected from dbAMP.

we chose the AMPs and non-AMPs from plants, bacteria, amphib-
ians, and humans.We considered accuracy, MCC, G-measure, and
F-1 score as our major evaluation metrics.

First, SAMP was trained on 984 AMPs and 984 non-AMPs
obtained from the iAMPpred paper. The trained SAMP was
tested on the independent dataset from dbAMP. To assess
the performance of iAMPpred, we uploaded the independent
testing dataset to their web portal (http://cabgrid.res.in:8080/
amppred/). Similarly, we trained SAMP using the exact same
training dataset from AMPScanner V2 and uploaded the testing
data to the web portal provided on https://www.dveltri.com/
ascan/v2/ascan.html. For the performance differences among
four sources, as shown in Fig. 6, regardless of whether the model
was trained using data collected from iAMPpred or AMPScanner
V2, the prediction performance was similar among four sources.
Amphibian outperformed the other three sources in terms of
accuracy, followed by plants, then bacteria, with humans showing
the poorest performance. A similar trend was observed for MCC,
G-measure, and F1-score. We conjecture that this might be
due to the skewed class ratios within each dataset, where the
amphibian dataset contains 517AMP and 932 non-AMP sequences
(1:2), the bacteria dataset contains 226 AMP and 4721 non-AMP
sequences (1:21), the human dataset contains 39 AMP and 894
non-AMP sequences (1:23), and the plant dataset contains 307
AMP and 3185 non-AMP sequences (1:10). Additionally, SAMP
demonstrates better performance compared to both iAMPpred
and AMPScanner V2 across all four metrics. When specifically
comparing SAMP with iAMPpred (Fig. 6A–D), the most obvious
advantage of SAMP is observed in MCC for predicting amphibian
labels, where SAMP is 73% more accurate than iAMPpred. On
the other hand, the smallest difference is noticed in the F1-score
for predicting human labels, with SAMP being 11% more effective
than iAMPpred.Notably, all MCC values for iAMPpred are negative,

indicating this tool may predict adverse results. Comparing SAMP
with AMPScanner V2 (Fig. 6E–H) reveals similar trends. Probably
due to a smaller dataset in the APD, the largest disparity is seen
in accuracy for human AMP predictions, where SAMP shows a
29% improvement over AMPScanner V2, whereas the smallest
difference is in the G-measure for humanpredictions,with a small
improvement of 8%by SAMP over AMPScanner V2.Moreover, Fig. 6
highlights obvious performance differences between four sources
and it likely should be attributed to the selection of independent
testing data; additionally, factors such as data imbalance and the
quality of the training data could also play significant roles.

Furthermore, we evaluated the impact of PSAAC and the
ensemble-based SVM model architecture on the predictive
performance (Fig. 7). After training with data from iAMPpred,
SAMP consistently outperformed both the SAMP without the
PSAAC feature and the vanilla SVM model without ensemble
learning. This improvement was consistent in all performance
metrics. Specifically, SAMP demonstrated at least an 11% increase
in accuracy, 9% in MCC, 5% in G-measure, and 7% in F1-
score compared to that without the PSAAC features, and SAMP
significantly outperformed that without ensemble learning.
Similar outcomes were observed when trained with AMPScanner
V2 data, with SAMP outperforming the aforementioned situations
across all measures.

Feature scaling
A crucial step in ML modeling is feature scaling. Intuitively, if
features are measured in different scales, the decision boundary
calculation of SVM would be dominated by the features with the
largest scales. In our study,we always scaled the features after the
feature generation stage using the scale function in R. In particular,
the peptide sequence features are calculated in different scales.
For example, the amino acid composition is measured as some
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Figure 7. PSAAC and ensemble learning contribute to improving prediction performance of SAMP for identifying AMPs. Comparing SAMP and SAMP
without the PSAAC feature across different sources in terms of (A) Accuracy, (B) MCC, (C) G-measure, and (D) F1-score. All models were trained on the
same training dataset collected from iAMPpred and tested on an independent test dataset collected from dbAMP. Comparing SAMP and SAMP without
ensemble learning across different sources in terms of (E) Accuracy, (F) MCC, (G) G-measure, and (H) F1-score. All models were trained on the same
training dataset collected from AMPScanner V2 and tested on independent test dataset collected from dbAMP.

Table 2. Scaling the features is crucial for SAMP for identifying
AMPs

Dataset Metrics SAMP
(scaled)

SAMP
(no scale)

plant AMPs Accuracy 0.668 0.102
AUC 0.744 0.112
MCC 0.332 −0.184

bacteria AMPs Accuracy 0.647 0.071
AUC 0.703 0.088
MCC 0.234 −0.165

amphibian AMPs Accuracy 0.779 0.336
AUC 0.844 0.039
MCC 0.624 −0.169

human AMPs Accuracy 0.637 0.058
AUC 0.712 0.137
MCC 0.204 −0.2

The scaling is performed by subtracting the mean of each feature and
dividing by the feature’s standard deviation. Scaling is a crucial step for
SAMP. MCC, Matthews correlation coefficient; AUC, area under the receiver
operating characteristic curve.

values between 0 and 1, but certain physio-chemical properties,
such as hydrophobicity, can have various ranges of value. We
generated two sets of features from the peptide sequences used
to train iAMPpred, in which one set of features was scaled and
the other was not. Two separate SAMP models were trained and
evaluated on the independent test datasets. Our results indicate
that scaling is indeed extremely important for SAMP, consistently
boosting the model performance by at least 50% across datasets
(Table 2).

Discussion
AMPs have gained greater attention as an alternative to chemical
antibiotics or food preservatives [55]. Computational methods are
developed as a supplement for wet lab experiments to design and

identify AMPs, which reduces the cost and resources required.
In this study, we present a novel ensemble-based model that
achieves better AMP prediction performance than existing state-
of-the-artmethods. To the best of our knowledge, SAMP is the first
method that adopts PSAAC as one of the numeric features for
AMP prediction tasks. Amino acid compositional splitting sheds
new light on amino acid compositions of natural AMPs,whichwas
initially discovered in 2009 [56]. As for the biological rationale for
selecting PSAAC ratios, specifically how to determine these ratios,
lies in the inherent variability in the sequence lengths of the N-
terminal, and C-terminal regions of peptides. These regions can
differ significantly in length depending on the type of peptide or
protein. For instance, the C-terminal region of the mouse Cplx1
molecule comprises residues 71–134 [57], almost half of the entire
molecule. Similarly, the C-terminal of the assembly domain con-
sists of residues 140–149 [58], acting as a morphogenetic switch.
Additionally, the C-terminal domain (CTD) of human RNA poly-
merase II can have up to 52 repeats of the sequence Tyr-Ser-Pro-
Thr-Ser-Pro-Ser [59]. Thus, the size of a C-terminal can vary widely
among different proteins. Therefore, the length of C-terminal
region, N-terminal region and middle region is dynamic and for
a specific dataset, users could experiment with different ratios
based on the prediction performance. However, based on prior
experience, the proportion 2:2:6 has shown promising results,
with relatively stable outcomes observed so far. In natural AMPs,
Alanine, Glycine, Leucine, and Lysine are frequently occurring
amino acids, while Histidine, Methionine, and Tryptophan are
least abundant amino acids [46]. Our sequence splitting here
reveals that Leucine is preferentially dominant at the N-terminal
of AMPs, while Alanine is mainly located in the middle region.
Glycine can appear frequently both at the N-terminal region and
the middle region. In contrast, Lysine is primarily abundant in
the middle and C-terminal of natural AMPs. Interestingly, after
sequence splitting, the least abundant Methionine and Trypto-
phan appear mainly in the middle and the C-terminal regions,
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whereas Histidine occupies the N-terminal. Also of note is that
acidic glutamic acid is located at the N-terminal, and acidic aspar-
tic acid prefers the C-terminal region. However, overall acidic
amino acids are sparse in natural AMPs [46].

By combining this novel sequence-splitting feature with
an ensemble-based SVM model architecture, SAMP is able to
maximally extract peptide sequence information and outperform
methods that apply either DL or traditional ML techniques. Addi-
tionally, we developed SAMP based on RP, a powerful dimension-
reduction algorithm based on the Johnson–Lindenstrauss lemma
[52], which can preserve the distances between data points
while reducing the dimension [60]. As the number of data
points continues to grow, the accuracy of prediction may be
influenced due to the low efficiency of computational efficiency.
Therefore, RP-based models should have better performance
compared to those without it. This has been evidenced in a large-
scale single-cell RNA-sequencing (scRNA-seq) data processed
algorithm, which showed a higher classification efficiency under
the contribution of ensemble RP layer [61]. In our proposed
method SAMP, the ensemble learning is to assemble scores from
multiple applications of RP. As shown in Fig. 3, we extracted
features from the training dataset and subsequently applied
the RP method for dimension reduction. Due to the inherent
randomness in the RP method, we performed 10 times of RP.
For each RP, the resulting dimension-reduced features were used
to train an individual SVM model, resulting in the creation of 10
distinct SVM models. When evaluating the independent testing
data, we extracted features and fed them into the 10 trained SVM
models, generating 10 prediction scores for each input sequence.
These prediction scores were then combined using an ensemble
learning approach. Specifically, we averaged the 10 prediction
scores, and based on these averaged scores, determining whether
the input sequence was an AMP or not. As expected, our model
with the ensemble RP layer also has a better performance, as
shown in Fig. 7.

In addition, regarding whether a single model is an optimal
approach to predict AMPs across different species (Fig. 6), it is
generally more effective to train the model using data from a
representative source and then apply the trainedmodel to predict
data from the same source. However, from the perspective of ML,
the architecture of the ML model for data from different sources
is the same. In this case, SAMP can be regarded as a single model
for predicting AMPs across sources. Finally, as for whether there
is a hidden hierarchy to the AMPs conditioned on source, we
agree that information learned from training data across different
sources might variably contribute to AMP identification with
respect to different sources. However, whether those differences
could constitute source-specific prediction results with statistical
significance remains to be seen. As can be seen from our results
(e.g. Fig. 6), there might be some differences in the accuracies
among different sources, but these differences might not be sta-
tistically significant. In addition, a hidden hierarchy seems more
like a hidden layer in a DL architecture. In our study, the method
we proposed is based on ensemble SVM, which has no hidden
hierarchy architecture.

Our prediction also implies that data size influences prediction
performance since the human AMPs, with the least data (<150
AMPs in the current APD), behave poorest compared to AMPs
from bacteria, plant, and amphibian with more known positive
data. In addition, for the amino acid sequence length distribution
among all four sources, length of the AMPs is always shorter
than the non-AMPs which indicates there might be a significant
difference of length distribution between AMPs and non-AMPs

sequences. To evaluate the significance of the sequence length
feature, we have calculated the length of each sequence collected
from iAMPpred and dbAMP and included it as a feature, along
with other features, to train and test the model respectively. As
shown in Supplementary Fig. S7, the performance of the model
incorporating the length feature, labeled as “SAMP+”, was com-
pared with the prediction performance of SAMP. SAMP+ exhibited
worse results in terms of accuracy, MCC, G-measure, and F1-
score across all four peptide sources. Therefore, incorporating the
length feature into themodel training resulted in lower prediction
performance compared to the model without this feature. We
should point out that this negative data set has not been validated
experimentally.

We also assessed the performance of SAMP with specific tools,
like iAMPpred and AMPScanner V2, which are also designed for
AMPprediction based on SVMandDNN, respectively. SAMPproved
to have slightly better performance than AMPScanner V2 and
obviously higher accuracy than iAMPpred. Possible explanation
for this discrepancy should be the omission of PSAAC and ensem-
ble RP layer. In addition, we collected the data from one of the
most recent methods, named E-CLEAP [62], which was just pub-
lished in 2024. This method uses two independent features, AAC
and PseACC feature, corresponding to two different models to
predict the AMP. We have compared the E-CLEAP models and
SAMP based on the same training dataset and the same inde-
pendent test dataset. The training dataset was collected from E-
CLEAP reference and the independent test datasets were collected
from AMPScanner V2. As shown in Supplementary Fig. S8, SAMP
outperformed both E-CLEAP models in terms of accuracy, MCC,
G-measure and F1-score, demonstrating the superiority of SAMP
over the latest state-of-the-art approaches for AMP identification.
Overall, this newly designed tool, SAMP, is expected to compensate
for the existing tools for AMP prediction.

For future research directions, we will consider different
ensemble methods by including more diverse model categories
to improve the prediction accuracy. Another potential research
direction for SAMP is to predict the potential biological or clinical
significance of AMPs. With the advance of DL, it would be
appealing to investigate the performance of DL-based models
combined with PSAAC features, or whether the deep neural
networks are able to capture the PSAAC features within their
embedding space.

Key Points

• Wepropose a novelmethod named SAMP that develops a
new type of features called proportionalized split amino
acid composition (PSAAC) to significantly boost the per-
formance of identifying antimicrobial peptides.

• PSAAC can identify residue patterns at both the N-
terminal and the C-terminal as well as to retain
sequence order information from the middle region of
peptide fragments.

• SAMP leverages an ensemble learning framework based
on random projection to integrate various classifiers
into a cohesive framework, effectively improving perfor-
mance accuracy.

• SAMP outperforms state-of-the-art methods for AMP
identification in terms of accuracy,G-measure,MCC, and
F1-score.

• SAMP is a versatile tool capable of identifying AMPs from
a variety of organisms including human, plant, bacteria
and amphibian.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/23/6/879/7906678 by U

niversity of N
ebraska-Lincoln Libraries user on 16 Septem

ber 2025

https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae046#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae046#supplementary-data


Identifying antimicrobial peptides by an ensemble learning model | 889

Supplementary data
Supplementary data are available at Briefings in Functional
Genomics online.

Author contributions
SW conceived and designed the study. JF and MS developed the
algorithm, performed the experiments and analyzed the data.
JF implemented the SAMP package. All authors participated in
writing the paper. The manuscript was approved by all authors.

Conflict of interest
The authors have declared that no competing interests exist.

Funding
Research reported in this publication was supported by the Office
Of The Director, National Institutes Of Health of the National
Institutes of Health under Award Number R03OD038391, and by
the National Cancer Institute of the National Institutes of Health
under Award Number P30CA036727. This work was supported by
the American Cancer Society under award number IRG-22-146-
07-IRG, and by the Buffett Cancer Center, which is supported by
the National Cancer Institute under award number CA036727.
This work was supported by the Buffet Cancer Center, which is
supported by the National Cancer Institute under award number
CA036727, in collaboration with the UNMC/Children’s Hospital &
Medical Center Child Health Research Institute Pediatric Cancer
ResearchGroup.This studywas supported, in part, by theNational
Institute on Alcohol Abuse and Alcoholism (P50AA030407-5126,
Pilot Core grant). This study was also supported by the Nebraska
EPSCoR FIRST Award (OIA-2044049). This work was also partially
supported by the National Institute of General Medical Sciences
under Award Numbers P20GM103427 and P20GM130447. This
study was in part financially supported by the Child Health
Research Institute at UNMC/Children’s Nebraska. This work was
also partially supported by the University of Nebraska Collab-
oration Initiative Grant from the Nebraska Research Initiative
(NRI). The content is solely the responsibility of the authors and
does not necessarily represent the official views from the funding
organizations.

Data availability
All the data used in this manuscript are publicly available in the
corresponding references.

References
1. Fernandes P.Antibacterial discovery and development—the fail-

ure of success? Nat Biotechnol 2006;24:1497–503.
2. Adedeji WA. The TREASURE called antibiotics. Ann Ib Postgrad

Med 2016;14:56–7.
3. Thomas L. The Youngest Science: Notes of a Medicine-Watcher.

Penguin Publishing Group, Pennsylvania, USA, 1995.
4. Aminov RI. A brief history of the antibiotic era: lessons learned

and challenges for the future. Front Microbiol 2010;1:134.
5. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past,

present and future.Curr OpinMicrobiol 2019;51:72–80.https://doi.
org/10.1016/j.mib.2019.10.008.

6. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a
global multifaceted phenomenon. Pathog Glob Health 2015;109:
309–18. https://doi.org/10.1179/2047773215Y.0000000030.

7. De Oliveira DM, Forde BM, Kidd TJ. et al. Antimicrobial resis-
tance in ESKAPE pathogens.ClinMicrobiol Rev 2020;33:e00181–19.
https://doi.org/10.1128/cmr.00181-19.

8. Huemer M, Mairpady Shambat S, Brugger SD. et al. Antibiotic
resistance and persistence—implications for human health and
treatment perspectives. EMBO Rep 2020;21:e51034.

9. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect
Public Health 2017;10:369–78. https://doi.org/10.1016/j.jiph.2016.
08.007.

10. Lei J, Sun L, Huang S. et al. The antimicrobial peptides and
their potential clinical applications. Am J Transl Res 2019;11:
3919–31.

11. de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million
people die a year due to antimicrobial resistance by 2050? PLoS
Med 2016;13:e1002184.

12. Chen CH, Lu TK. Development and challenges of antimicrobial
peptides for therapeutic applications. Antibiotics 2020;9:24.

13. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ.
Antimicrobial host defence peptides: functions and clinical
potential.Nat Rev Drug Discov 2020;19:311–32. https://doi.org/10.
1038/s41573-019-0058-8.

14. Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of
antimicrobial peptides in innate host defense. Curr Pharm Des
2009;15:2377–92.

15. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide
database as a tool for research and education. Nucleic Acids Res
2016;44:D1087–93. https://doi.org/10.1093/nar/gkv1278.

16. Hiemstra PS,AmatngalimGD,VanDer Does AM. et al.Antimicro-
bial peptides and innate lung defenses. Chest 2016;149:545–51.
https://doi.org/10.1378/chest.15-1353.

17. Silva ON, De La Fuente-Núñez C, Haney EF. et al. An
anti-infective synthetic peptide with dual antimicrobial and
immunomodulatory activities. Sci Rep 2016;6:35465.

18. Frohm M, Agerberth B, Ahangari G. et al. The expression of the
gene coding for the antibacterial peptide LL-37 is induced in
human keratinocytes during inflammatory disorders. J Biol Chem
1997;272:15258–63.

19. Liang W, Diana J. The dual role of antimicrobial peptides in
autoimmunity. Front Immunol 2020;11:545577.

20. De La Fuente-Núñez C, Silva ON, Lu TK. et al. Antimicrobial
peptides: role in human disease and potential as immunother-
apies. Pharmacol Ther 2017;178:132–40. https://doi.org/10.1016/j.
pharmthera.2017.04.002.

21. Li C, Zhu C, Ren B. et al. Two optimized antimicrobial pep-
tides with therapeutic potential for clinical antibiotic-resistant
Staphylococcus aureus. Eur J Med Chem 2019;183:111686.

22. Fan L, Wei Y, Chen Y. et al. Epinecidin-1, a marine antifun-
gal peptide, inhibits Botrytis cinerea and delays gray mold in
postharvest peaches. Food Chem 2023;403:134419.

23. Adade CM, Oliveira IR, Pais JA, Souto-Padrón T. Melittin pep-
tide kills Trypanosoma cruzi parasites by inducing different cell
death pathways.Toxicon 2013;69:227–39.https://doi.org/10.1016/
j.toxicon.2013.03.011.

24. Huan Y, Kong Q, Mou H. et al.Antimicrobial peptides: classifica-
tion, design, application and research progress inmultiple fields.
Front Microbiol 2020;11:582779.

25. Wachinger M, Kleinschmidt A, Winder D. et al. Antimicrobial
peptides melittin and cecropin inhibit replication of human
immunodeficiency virus 1 by suppressing viral gene expression.
J Gen Virol 1998;79:731–40.

26. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;
20:273–97.

27. Breiman L. Random forests.Mach Learn 2001;45:5–32.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/23/6/879/7906678 by U

niversity of N
ebraska-Lincoln Libraries user on 16 Septem

ber 2025

https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae046#supplementary-data
https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.1179/2047773215Y.0000000030
https://doi.org/10.1179/2047773215Y.0000000030
https://doi.org/10.1179/2047773215Y.0000000030
https://doi.org/10.1179/2047773215Y.0000000030
https://doi.org/10.1128/cmr. 00181-19
https://doi.org/10.1128/cmr. 00181-19
https://doi.org/10.1128/cmr. 00181-19
https://doi.org/10.1128/cmr. 00181-19
https://doi.org/10.1016/j.jiph.2016.08.007
https://doi.org/10.1038/s41573-019-0058-8
https://doi.org/10.1093/nar/gkv1278
https://doi.org/10.1093/nar/gkv1278
https://doi.org/10.1093/nar/gkv1278
https://doi.org/10.1093/nar/gkv1278
https://doi.org/10.1093/nar/gkv1278
https://doi.org/10.1378/chest.15-1353
https://doi.org/10.1378/chest.15-1353
https://doi.org/10.1378/chest.15-1353
https://doi.org/10.1378/chest.15-1353
https://doi.org/10.1016/j.pharmthera.2017.04.002
https://doi.org/10.1016/j.pharmthera.2017.04.002
https://doi.org/10.1016/j.pharmthera.2017.04.002
https://doi.org/10.1016/j.pharmthera.2017.04.002
https://doi.org/10.1016/j.pharmthera.2017.04.002
https://doi.org/10.1016/j.toxicon.2013.03.011
https://doi.org/10.1016/j.toxicon.2013.03.011
https://doi.org/10.1016/j.toxicon.2013.03.011
https://doi.org/10.1016/j.toxicon.2013.03.011
https://doi.org/10.1016/j.toxicon.2013.03.011


890 | Feng et al.

28. Tolles J, Meurer WJ. Logistic regression: relating patient char-
acteristics to outcomes. JAMA 2016;316:533–4. https://doi.
org/10.1001/jama.2016.7653.

29. Wang G, Vaisman II, Van Hoek ML. Machine learning pre-
diction of antimicrobial peptides. Comput Pept Sci 2022;2405:
1–37.

30. Huang J, Xu Y, Xue Y. et al. Identification of potent antimicrobial
peptides via a machine-learning pipeline that mines the entire
space of peptide sequences. Nat Biomed Eng 2023;7:797–810.
https://doi.org/10.1038/s41551-022-00991-2.

31. Chen T, Guestrin C. Xgboost: a scalable tree boosting system.
In: Krishnapuram B, Shah M, Smola AJ, Aggarwal CC, Shen D,
Rastogi R (eds.), Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Association
for Computing Machinery, San Francisco, California, USA, 2016,
785–94.

32. LeCun Y, Bottou L, Bengio Y. et al. Gradient-based learning
applied to document recognition. Proc IEEE 1998;86:2278–324.

33. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput 1997;9:1735–80.

34. Ma Y, Guo Z, Xia B. et al. Identification of antimicrobial pep-
tides from the human gut microbiome using deep learning.
Nat Biotechnol 2022;40:921–31. https://doi.org/10.1038/s41587-
022-01226-0.

35. Devlin J, Chang M-W, Lee K. et al. Bert: pre-training of deep
bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 2018.

36. Veltri D, Kamath U, Shehu A.Deep learning improves antimicro-
bial peptide recognition. Bioinformatics 2018;34:2740–7. https://
doi.org/10.1093/bioinformatics/bty179.

37. Yan J, Bhadra P, Li A. et al. Deep-AmPEP30: improve short
antimicrobial peptides prediction with deep learning. Mol Ther-
Nucleic Acids 2020;20:882–94. https://doi.org/10.1016/j.omtn.
2020.05.006.

38. Lee KJ. Architecture of neural processing unit for deep neural
networks. Adv Comput 2021;122:217–45.

39. Meher PK, Sahu TK, Saini V. et al. Predicting antimicrobial pep-
tides with improved accuracy by incorporating the composi-
tional, physico-chemical and structural features into Chou’s
general PseAAC. Sci Rep 2017;7:42362.

40. García-Jacas CR, Pinacho-Castellanos SA, García-González LA.
et al. Do deep learning models make a difference in the
identification of antimicrobial peptides? Brief Bioinform 2022;
23:bbac094.

41. Bingham E, Mannila H. Random projection in dimensionality
reduction: applications to image and text data. In: Provost F,
Srikant R, Schkolnick M, Lee D (eds.), Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Association for Computing Machinery, San Fran-
cisco, California, 2001, 245–50.

42. Wan S, Mak M-W, Kung S-Y. Ensemble linear neighborhood
propagation for predicting subchloroplast localization of multi-
location proteins. J Proteome Res 2016;15:4755–62.

43. Verma R, Varshney GC, Raghava GPS. Prediction of mitochon-
drial proteins of malaria parasite using split amino acid compo-
sition and PSSM profile.Amino Acids 2010;39:101–10. https://doi.
org/10.1007/s00726-009-0381-1.

44. Hayat M, Khan A, Yeasin M. Prediction of membrane proteins
using split amino acid and ensemble classification. Amino Acids
2012;42:2447–60. https://doi.org/10.1007/s00726-011-1053-5.

45. Wang Z. APD: the antimicrobial peptide database. Nucleic Acids
Res 2004;32:590D-2.

46. Wang G. The antimicrobial peptide database is 20 years old:
recent developments and future directions. Protein Sci 2023;
32:e4778.

47. Lata S, Sharma B, Raghava G.Analysis and prediction of antibac-
terial peptides. BMC Bioinformatics 2007;8:263.

48. Jhong J-H, Chi Y-H, Li W-C. et al. dbAMP: an integrated resource
for exploring antimicrobial peptides with functional activities
and physicochemical properties on transcriptome and proteome
data. Nucleic Acids Res 2019;47:D285–97. https://doi.org/10.1093/
nar/gky1030.

49. Osorio D, Rondón-Villarreal P, Torres R. Peptides: a package for
data mining of antimicrobial peptides. Small 2015;12:44–444.

50. Nakai K. Protein sorting signals and prediction of subcellular
localization. Adv Protein Chem 2000;54:277–344.

51. Emanuelsson O. Predicting protein subcellular localisation from
amino acid sequence information. Brief Bioinform 2002;3:361–76.

52. Johnson WB, Lindenstrauss J, Schechtman G. Extensions of Lip-
schitz maps into Banach spaces. Isr J Math 1986;54:129–38.

53. Li P, Hastie TJ, Church KW. Very sparse random projections. In:
Ungar L, Craven M, Gunopulos D, Eliassi-Rad T (eds.), Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Association for Computing Machinery,
Philadelphia, PA, USA, , 2006, 287–96.

54. Chicco D, JurmanG.The advantages of theMatthews correlation
coefficient (MCC) over F1 score and accuracy in binary classifi-
cation evaluation. BMC Genomics 2020;21:1–13.

55. Mishra B, Reiling S, Zarena D, Wang G. Host defense antimi-
crobial peptides as antibiotics: design and application strate-
gies. Curr Opin Chem Biol 2017;38:87–96. https://doi.org/10.1016/
j.cbpa.2017.03.014.

56. Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide
database and its application in peptide design. Nucleic Acids Res
2009;37:D933–7. https://doi.org/10.1093/nar/gkn823.

57. Reim K. Complexins. In: Stein J (ed.), Reference Module in Neuro-
science and Biobehavioral Psychology, Elsevier, Amsterdam, Nether-
lands, 2017.

58. Zlotnick A,ChengN, Stahl SJ. et al. Localization of the C terminus
of the assembly domain of hepatitis B virus capsid protein:
implications for morphogenesis and organization of encapsi-
dated RNA. Proc Natl Acad Sci U S A 1997;94:9556–61.

59. Hsin J-P, Manley JL. The RNA polymerase II CTD coordinates
transcription and RNA processing. Genes Dev 2012;26:2119–37.
https://doi.org/10.1101/gad.200303.112.

60. Frankl P,Maehara H.The Johnson-Lindenstrauss lemma and the
sphericity of some graphs. J Comb Theory Ser B 1988;44:355–62.

61. Wan S, Kim J, Won KJ. SHARP: hyperfast and accurate pro-
cessing of single-cell RNA-seq data via ensemble random
projection. Genome Res 2020;30:205–13. https://doi.org/10.1101/
gr.254557.119.

62. Wang S-C. E-CLEAP: an ensemble learning model for efficient
and accurate identification of antimicrobial peptides. PloS One
2024;19:e0300125.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/23/6/879/7906678 by U

niversity of N
ebraska-Lincoln Libraries user on 16 Septem

ber 2025

https://doi.org/10.1001/jama.2016.7653
https://doi.org/10.1001/jama.2016.7653
https://doi.org/10.1001/jama.2016.7653
https://doi.org/10.1001/jama.2016.7653
https://doi.org/10.1038/s41551-022-00991-2
https://doi.org/10.1038/s41551-022-00991-2
https://doi.org/10.1038/s41551-022-00991-2
https://doi.org/10.1038/s41551-022-00991-2
https://doi.org/10.1038/s41587-022-01226-0
https://doi.org/10.1093/bioinformatics/bty179
https://doi.org/10.1093/bioinformatics/bty179
https://doi.org/10.1093/bioinformatics/bty179
https://doi.org/10.1093/bioinformatics/bty179
https://doi.org/10.1093/bioinformatics/bty179
https://doi.org/10.1016/j.omtn.2020.05.006
https://doi.org/10.1007/s00726-009-0381-1
https://doi.org/10.1007/s00726-009-0381-1
https://doi.org/10.1007/s00726-009-0381-1
https://doi.org/10.1007/s00726-009-0381-1
https://doi.org/10.1007/s00726-011-1053-5
https://doi.org/10.1007/s00726-011-1053-5
https://doi.org/10.1007/s00726-011-1053-5
https://doi.org/10.1007/s00726-011-1053-5
https://doi.org/10.1093/nar/gky1030
https://doi.org/10.1093/nar/gky1030
https://doi.org/10.1093/nar/gky1030
https://doi.org/10.1093/nar/gky1030
https://doi.org/10.1093/nar/gky1030
https://doi.org/10.1016/j.cbpa.2017.03.014
https://doi.org/10.1016/j.cbpa.2017.03.014
https://doi.org/10.1016/j.cbpa.2017.03.014
https://doi.org/10.1016/j.cbpa.2017.03.014
https://doi.org/10.1016/j.cbpa.2017.03.014
https://doi.org/10.1093/nar/gkn823
https://doi.org/10.1093/nar/gkn823
https://doi.org/10.1093/nar/gkn823
https://doi.org/10.1093/nar/gkn823
https://doi.org/10.1093/nar/gkn823
https://doi.org/10.1101/gad.200303.112
https://doi.org/10.1101/gad.200303.112
https://doi.org/10.1101/gad.200303.112
https://doi.org/10.1101/gad.200303.112
https://doi.org/10.1101/gr.254557.119
https://doi.org/10.1101/gr.254557.119
https://doi.org/10.1101/gr.254557.119
https://doi.org/10.1101/gr.254557.119

	 SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition
	Introduction
	Materials and methods
	Results
	Discussion
	Key Points
	Supplementary data
	Author contributions
	Conflict of interest
	Funding
	Data availability


