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Abstract: This paper presents three batch estimation methods that use noisy ground velocity
and heading measurements from a vehicle executing a circular orbit (or similar large heading
change maneuver) to estimate the speed and direction of a steady, uniform, flow-field. The
methods are based on a simple kinematic model of the vehicle’s motion and use curve-fitting or
nonlinear least-square optimization. A Monte Carlo simulation with randomized flow conditions
is used to evaluate the batch estimation methods while varying the measurement noise of the
data and the interval of unique heading traversed during the maneuver. The methods are also
compared using experimental data obtained with a Bluefin-21 unmanned underwater vehicle
performing a series of circular orbit maneuvers over a five hour period in a tide-driven flow.
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1. INTRODUCTION

Autonomy and control algorithms can leverage estimates
of the flow-field to improve the operation of marine ve-
hicles, for example, in path planning to achieve greater
efficiency and robustness. This paper is motivated by the
authors’ prior work [Wolek et al. 2021] that investigated
time-optimal path planning for an underwater vehicle to
re-inspect points of interest along circular orbits with a
sonar sensor. In such applications, the presence of a flow-
field impacts the vehicle motion and the pointing angle of
a directional sonar sensor (due to sideslip). The methods
presented here can be used to estimate flow direction and
magnitude on-the-fly (e.g., after executing each circular
inspection orbit) to support path re-planning.

For a vehicle operating in a steady, uniform, flow-field the
flow-relative velocity vrel, the flow velocity w, and the
inertial (ground) velocity vg are related by the equation
vg = vrel + w, as illustrated in Fig. 1. When two of
the three quantities are known, the remaining one can
be determined by direct computation. For marine vehi-
cles, ground velocity, vg, is provided by the navigation
system by processing GPS position measurements, acous-
tic ranging measurements and/or a Doppler velocity log
(DVL) sensor operating in bottom-lock mode. The vehi-
cle flow-relative velocity vrel can also be measured with
appropriate instrumentation (e.g., pitot tubes or a DVL
operating in water current profiling mode). The flow ve-
locity w may be inferred using various filtering techniques
based on the vehicle’s kinematics [Rhudy et al. 2015] or
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a dynamic model [Hegrenaes and Hallingstad 2011]. Non-
uniform flow-fields can be estimated, for example, using
motion tomography [Chang et al. 2017].

Fig. 1. Left: The velocity triangle. The dashed circle
represents the set of attainable ground velocities for
a fixed magnitude ||vrel||. The center of the circle
is defined by the flow velocity w. Right: At least
three unique ground velocity vectors are required to
determine the dashed-line circle.

The contributions of this paper are three batch estima-
tion techniques to estimate water current direction and
magnitude for a marine craft using noisy measurements
of kinematic variables and a basic model of the vehicle’s
motion. The methods do not require knowledge of the
vehicle’s flow-relative speed (since it is estimated as part of
the procedure) and they are relatively simple to implement
with minimal tuning required. The first method is based
on quadratic curve fitting to speed-over-ground magnitude
and heading angle data when the vehicle executes a 360
degree heading change maneuver (e.g., a circular orbit).



The second method relies on a constrained nonlinear least-
square optimization to match speed-over-ground velocity
components and heading data. The third method is simi-
lar to the second but uses speed-over-ground magnitude,
rather than velocity components, for optimization. The
approaches are compared to each other, as well as to
another existing method in the literature based on circular
curve fitting, using both simulated and experimental data.

The remainder of the paper is organized as follows. Sec-
tion 2 describes two curve-fitting based methods. Section 3
describes two optimization-based methods. Sections 4 and
5 provide a comparison with simulated and experimental
data, respectively. Section 6 concludes the paper.

2. CURVE-FITTING-BASED METHODS

Consider the following kinematic equations describing the
motion of a marine craft in the horizontal plane:

ẋ(t) = fx(ψ; v, w, θ) = v cosψ(t) + w cos θ (1)

ẏ(t) = fy(ψ; v, w, θ) = v sinψ(t) + w sin θ , (2)

where (x, y) is the planar position, v = ||vrel|| is the flow-
relative speed, w = ||w|| is the magnitude of the current,
and θ is the current direction. The speed v is assumed
constant (e.g., corresponding to a fixed propeller speed).
The current magnitude and direction, (w, θ), is assumed to
be steady and uniform over the space in which a heading
change maneuver is performed. This section describes two
methods for estimating (v, w, θ) in (1)–(2) based on curve
fitting to noisy data of either ground velocity components
or ground velocity magnitude as a function of heading.

2.1 Circular Curve Fit with (ẋ, ẏ) Data

In [McLaren 2008] it was shown that given a minimum of
three unique ground velocity component measurements,
v = [ẋ, ẏ]T from (1)–(2), the parameters (v, w, θ) can be
estimated. Here, we summarize this approach and use it
for comparisons later on in Secs. 4 and 5.

Consider the sketch in Fig. 1 (right panel) showing the
velocity triangle and a triplet of velocity triangles for
three different flow-relative velocities. A circle that passes
through the three ground velocity vectors can be inscribed
and its center corresponds to the current velocity w =
[wx, wy]

T = [w cos θ, w sin θ]T. The radius of the circle is
the vehicle’s flow-relative speed v. One can confirm, by
substituting (1)–(2), that all points on the circle satisfy

(ẋ− wx)
2 + (ẏ − wy)

2 = v2 , (3)

which can re-arranged as

−2wxẋ− 2wy ẏ + (−v2 + w2
x + w2

y) = −ẋ2 − ẏ2 . (4)

Suppose that N measurements {ẋi, ẏi}Ni=1 are recorded
while the vehicle performs a maneuver. In the absence of
noise, the data satisfies Ac = b, where

A =






ẋi ẏi 1
...

...
...

ẋN ẏN 1




 , b =






−ẋ2i − ẏ2i
...

−ẋ2N − ẏ2N




 , (5)

and c = [−2wx,−2wy,−v2 + w2
x + w2

y]
T = [c1, c2, c3]

T.

If, instead, the data {ẋi, ẏi}Ni=1 is corrupted by zero-mean
additive Gaussian random variables with variance σ2, then

the system of equations can only be satisfied in a least-
square sense (i.e., minimizing J = ||Ac − b||2) where c is
estimated as c = A

†
b and A

† = (AT
A)−1 is the matrix

pseudo-inverse. The flow-field parameters are then:

ŵ =
1

2

√

c21 + c22 (6)

θ̂ = atan2(c2, c1) (7)

v̂ =
√

(1/4)(c21 + c22)− c3 . (8)

An illustrative example of fitting a circular curve to
(ẋ, ẏ) data using this method is shown in Fig. 2 for a
maneuver where the heading completes one full revolution
(i.e., ∆ψ = 2π). The approach can also be applied for
maneuvers with ∆ψ < 2π.
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Fig. 2. Example of a circle fit (blue line) to a noisy (ẋ, ẏ)
dataset of N = 100 points (black dots) generated for
parameters (v, w, θ) =(3 m/s, 1 m/s, 90 deg.) with
sensor noise standard deviation σ = 0.1. The red x
marker indicates the true center point (wx, wy). Using
the circular curve-fit method the estimated values are
(v̂, ŵ, θ̂) = (3.00 m/s, 0.991 m/s, 90.10 deg.).

2.2 Quadratic Curve Fit with (vg, ψ) Data

Now, suppose that the vehicle has access to the ground
speed magnitude vg := ||vg|| (rather than the velocity
components) along with heading angle information. That
is, the data is {vg,i, ψi}Ni=1 where

vg = fvg(ψ; v, w, θ) =
√

ẋ(t)2 + ẏ(t)2 (9)

=
√

v2 + w2 + 2vw cos(θ − ψ) . (10)

Again, the data is assumed to be corrupted by additive
zero-mean Gaussian noise. In general this assumption is
made throughout this work, however, it is worth mention-
ing that for a vessel continuously rotating in one direc-
tion that is not aft-fore symmetric there may be a bias
present based on the direction of rotation. To mitigate
this bias, the dataset could include maneuvers performed
in both clockwise and counter-clockwise orientations. If
the heading undergoes a full revolution, then the curve
vg(ψ) contains a maximum and a minimum (see Fig. 3).
These minima and maxima can be approximated with a

quadratic curve fit to estimate (ŵ, v̂, θ̂) as described next.
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Fig. 3. Example of a quadratic curve fit (red lines) to
(vg, ψ) data (corresponding to the data in Fig. 2). The
noise-free curve vg(ψ) is shown as a black line. Using
the quadratic curve-fit method the estimated values

are (v̂, ŵ, θ̂) = (2.98 m/s, 0.994 m/s., 92.6 deg).

Differentiating (10) with respect to ψ gives the condition
for a critical point:

d

dψ
vg =

vw sin(θ − ψ)
√

v2 + w2 + 2vw cos(θ − ψ)
= 0 , (11)

which is satisfied at ψ = θ and ψ = θ+ π. The speed over
ground is a maximum when the vehicle heading is aligned
with the current, vg(ψ = θ) = v+w, and a minimum when
they are opposed, vg(ψ = θ + π) = v − w. Now consider
a Taylor series approximation at these two points. At the
maximum:

vg ≈ (v + w)− vw√
v2 + 2vw + w2

(ψ − θ)2 (12)

= (−vwδ+)
︸ ︷︷ ︸

a+

ψ2 + (2θvwδ+)
︸ ︷︷ ︸

b+

ψ + (v + w − vwδ+θ2)
︸ ︷︷ ︸

c+

,

(13)

where δ+ = 1/
√
v2 + 2vw + w2. Similarly, at the minimum

vg ≈ (v − w) +
vw√

v2 − 2vw + w2
(ψ − (θ + π))2 (14)

= (vwδ−)
︸ ︷︷ ︸

a−

ψ2 −(2vwδ−(θ + π))
︸ ︷︷ ︸

b−

ψ (15)

+ (v − w + vwδ−(θ + π)2)
︸ ︷︷ ︸

c−

, (16)

where δ− = 1/
√
v2 − 2vw + w2. Since δ+ < δ− the

curvature at the minimum is greater. Let ψ+
0 denote a

guess for the heading angle of the maximum. Applying a
second-order polynomial least-square fit to the the data
on the interval [ψ+

0 − λ, ψ+
0 + λ] to give the coefficients

(a+, b+, c+). Equating these coefficients to the Taylor se-

ries approximation one can solve for an estimate (v̂, ŵ, θ̂).
A similar approach at the minimum gives the coefficients
(a−, b−, c−) and another estimate. To utilize more of the
available data, both sets of parameters can be used. Let
the coordinate of the maximum and minimum be

(ψmax, vmax) = (−b+/(2a+), c+ − (b+)2/(4a+)) (17)

(ψmin, vmin) = (−b−/(2a−), c− − (b−)2/(4a−)) , (18)

respectively. Then, the estimates are:

v̂ = (vmax + vmin)/2 (19)

ŵ = (vmax − vmin)/2 (20)

θ̂ = atan2(sinψmax − sinψmin, cosψmax − cosψmin) (21)

The estimate θ̂ in (21) averages ψmin − π and ψmax while
considering angle wrap-around. The approach applied to
example data is shown in Fig. 3.

3. OPTIMIZATION-BASED METHODS

This section proposes two optimization-based approaches
to estimate the vehicle speed and current magnitude and
direction. The first method applies to (ẋ, ẏ, ψ) data and
the second method applies to (vg, ψ) data.

3.1 Least-square Optimization with (ẋ, ẏ, ψ) Data

Suppose that the vehicle obtains noise corrupted data of
the form {ẋi, ẏi, ψi}Ni=1 and consider the cost function:

J =
1

2

N∑

i=1

{[ẋi − fx(ψi; v, w, θ)]
2 + [ẏi − fy(ψi; v, w, θ)]

2}

=
1

2

N∑

i=1

{
v2 + w2 + ẋ2i + ẏ2i − 2ẋi cos θ − 2wẏi sin θ

− 2vẋi cosψi − 2vẏi sinψi + 2vw cos θ cosψi
+2vw sin θ sinψi} . (22)

Now define the following constants that depend on the
data collected:

k1 :=

N∑

i=1

ẋi , k2 :=

N∑

i=1

ẏi , k3 :=

N∑

i=1

ẋ2i

k4 :=

N∑

i=1

ẏ2i , k5 :=

N∑

i=1

cosψi , k6 :=

N∑

i=1

sinψi

k7 :=

N∑

i=1

ẋi cosψi , k8 :=

N∑

i=1

ẏi sinψi .

The cost function is then rewritten as

J =
N

2

2

v2 +
N

2
w2 +

1

2
k3 +

1

2
k4 − k1w cos θ

− k2w sin θ − k7v − k8v + k5vw cos θ + k6vw sin θ ,
(23)

and notice that (23) is linear in the data-dependent vari-
ables k1, . . . , k8. These terms only need to be computed
once before the optimization proceeds. The gradient with
respect to the parameters is:

∇J = [ ∂J/∂v, ∂J/∂w, ∂J/∂θ ]
T
, (24)

where

∂J/∂v = Nv − k7 − k8 + k5w cos θ + k6w sin θ (25)

∂J/∂w = Nw + (k5v − k1) cos θ + (k6v − k2) sin θ (26)

∂J/∂θ = (k1 − k5v)w sin θ + (k6v − k2)w cos θ . (27)

The symmetric Hessian matrix is:

H =

[
Hvv Hvw Hvθ

Hwv Hww Hwθ

Hθv Hθw Hθθ

]

(28)

with entries



Hvv = N

Hvw = k5 cos θ + k6 sin θ

Hvθ = k6w cos θ − k5w sin θ

Hww = N

Hwθ = (k1 − k5v) sin θ + (k6v − k2) cos θ

Hθθ = (k1 − k5v)w cos θ + (k2 − k6v)w sin θ

where Hwv = Hvw, Hθv = Hvθ, and Hθw = Hwθ.

The cost, gradient, and Hessian are essential for opti-
mization (e.g., via Newton-Rhapson’s method). By de-
riving the analytical forms of the gradient and Hessian
the use of finite difference techniques can be avoided to
improve optimization efficiency and robustness. In this
work, we supply ∇J and H to an interior-point optimizer
implemented by the fmincon function in MATLAB. A
constrained optimization problem is formulated subject to
the linear inequality constraints










−1 0 0
1 0 0
0 1 0
−1 1 0
0 0 1
0 0 −1










[
v
w
θ

]

f










vmin

vmax

0
0
0
2π










, (29)

where vmin and vmax are user-supplied lower and up-
per bounds on the vehicle’s flow-relative speed. The con-
straints (29) also encode for the assumption w f v that is
required for the problem to be well posed. Local minima
can occur along the boundaries of the constraint set since
the topology of θ is not considered in (29). Additionally,
local minima may occur with noisier datasets or when the
maneuver contains a smaller range of heading angles. To
improve robustness the optimization is run from multiple
start points and the lowest cost solution is selected. The
initial starting points are selected as the corners of the
polytope represented by the constraints and as the cen-
troid of the polytope. An example of the cost function and
optimization scheme is shown in Fig. 4. The level sets of
the cost function are indicative of the uncertainty in the
parameter space around the estimated point.

3.2 Least-square Optimization with (vg, ψ) Data

Lastly, we consider an optimization-based estimation algo-
rithm that assumes speed-over-ground measurements and
heading data are available. Consider the cost function

J =
1

2

N∑

i=1

[(vg)i − fvg(ψ; v, w, θ)]
2 . (30)

The gradient with respect to the parameters has the same
form as (24) with entries

∂J

∂v
= −

N∑

i=1

(2v + 2w(cψθ)i)
(
(vg)i −

√
αi
)

√
αi

(31)

∂J

∂w
= −

N∑

i=1

(2w + 2v(cψθ)i)
(
(vg)i −

√
αi
)

√
αi

(32)

∂J

∂θ
= −

N∑

i=1

2vw(sψθ)i
(
(vg)i −

√
αi
)

√
αi

, (33)

where αi =
(
v2 + 2 cos (ψi − θ) vw + w2

)
. The symmetric

Hessian matrix is the same as in (28) with entries
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Fig. 4. Top: A surface plot of the cost function (22) over
two slices of the (v, w, θ) parameter space for the noisy
(ẋ, ẏ, ψ) data corresponding to Fig. 2. The left panel
is a slice of the cost function at the true value θ,
and the right panel is a slice at the true value v.
The shaded areas represent the parameter space that
does not satisfy the constraints. The true (v, w, θ)
point is indicated by a white x marker, and the
optimizer iterations, projected on to each plane, are
shown in magenta. Bottom: Visualization of the same
optimization using data generated for a maneuver
with a smaller heading angle change of ∆ψ = π.

Hvv =

N∑

i=1

2
(

αi
3/2 − (vg)iw

2 + (vg)iw
2(cψθ)i

2
)

αi3/2

Hvw =

N∑

i=1

(2v + 2w(cψθ)i) (2w + 2v(cψθ)i)

2αi

− 2(cψθ)i
(
(vg)i −

√
αi
)

√
αi

+
(2v + 2w(cψθ)i) (2w + 2v(cψθ)i)

(
(vg)i −

√
αi
)

2αi3/2

Hvθ =

N∑

i=1

−2w(sψθ)i
(
(vg)iw

2 − αi
3/2 + v(vg)iw(cψθ)i

)

αi3/2

Hww =

N∑

i=1

−2v(sψθ)i
(
v2(vg)i − αi

3/2 + v(vg)iw(cψθ)i
)

αi3/2

Hwθ =

N∑

i=1

−2v(sψθ)i
(
v2(vg)i − αi

3/2 + v(vg)iw(cψθ)i
)

αi3/2

Hθθ =

N∑

i=1

−2w(sψθ)i
(
(vg)iw

2 − αi
3/2 + v(vg)iw(cψθ)i

)

αi3/2

where cψθ = cos (ψi − θ) and sψθ = sin (ψi − θ) and
with Hwv = Hvw, Hθv = Hvθ, and Hθw = Hwθ. Both
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Fig. 5. Top: A surface plot of the cost function (30) for the
dataset in Fig. 3 with optimization iterations shown
in magenta. Bottom: A similar plot for a dataset for a
smaller change in heading ∆ψ = π. Refer to the Fig. 4
caption for further details.

the gradient and the Hessian are well-defined only if
αi ̸= 0. In practice, the case αi = 0 occurs rarely and
during implementation we check for and remove any such
instances from the dataset.

Unlike the previous optimization case, the cost function,
gradient, and Hessian depend non-linearly on the data.
The summations involving {ẋi, ẏi, ψi}Ni=1 must be recom-
puted at each iteration. As described earlier, the analytical
forms of ∆J and H are provided to fmincon along with
constraints (29). An example of the cost function and
optimization sequence is shown in Fig. 5.

4. COMPARISON USING SIMULATED DATA

To compare the performance of the four methods described
in Secs. 2 and 3, a Monte Carlo experiment was conducted
using simulated data. The data was simulated for three
different noise settings, σ = {0.01, 0.05, 0.10} m/s, and
three different heading angle changes, ∆ψ = {2π, 3π/2, π}.
For each combination of σ and ∆ψ a total of 250 unique
datasets of N = 100 noisy samples were generated and
transformed to the appropriate form for each algorithm.
Each dataset was generated by randomizing the true pa-
rameters (v, w, θ) and drawing them uniformly at random
from the interior of the polytope represented by the con-
straints with vmin = 0.5 and vmax = 5 m/s. For each
dataset the circular fit algorithm, optimization with (ẋ, ẏ)
data, and optimization with (v̇g, ψ) data were tested. The
quadratic fit approach was evaluated only for the ∆ψ = 2π
case. The estimate each algorithm produced was compared
to the actual value and the absolute error was recorded.
The mean of the absolute error, average over 250 trials, is
shown in Fig. 6.

As expected, the error for each algorithm increased as
the measurement noise is increased and as the range of
data is reduced. The quadratic fit method produced the
largest errors (e.g., almost 18 deg in mean current direction
error for the highest noise setting). The optimization with
the (vg, ψ) data was not as accurate as the optimization
with (ẋ, ẏ, ψ) data. This is not surprising since more in-
formation is available when the components of the ground
velocity are known, rather than the magnitude. The circle
fit, which uses (ẋ, ẏ) data, in most cases had an intermedi-
ate error in comparison to the the two optimization-based
methods. The optimization method using (ẋ, ẏ, ψ) data
produced the most accurate results — for example, in the
case of data collected for ∆ψ = 2π maneuvers the vehicle
and current speed errors were < 0.01 m/s and the current
direction error was < 5 degrees.
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Fig. 6. Monte Carlo experiment results. Mean error in
v, w, and θ is presented on each row with columns
corresponding to a different heading change intervals.

5. COMPARISON USING EXPERIMENTAL DATA

The four methods described in Secs. 2 and 3 were also eval-
uated using experimental data obtained by a Bluefin-21
unmanned underwater vehicle operated by the U.S. Naval
Research Laboratory. The Bluefin-21 is a 20 ft length, 21
inch diameter vehicle developed by Bluefin Robotics that
features a fiber-optic gyroscope inertial navigation system
and Doppler velocity log (DVL) navigation suite. The
vehicle was deployed on June 22, 2016 near Boston Harbor
southeast of Nahant Bay. The vehicle was programmed to
execute a series of circular orbits around points of interest
to test an onboard sonar system. The ground track of the
vehicle is shown in Fig. 7 along with the flow direction
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Fig. 7. Ground tracks during an at-sea experiment with
overlay of estimated flow-field direction after each
circular orbit (magenta lines).
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Fig. 8. Example experimental data along a single orbit
with overlayed vg(ψ) curves for each estimate.

estimated by the optimization method with (ẋ, ẏ, ψ) data.
The radii of the smaller and larger orbits were 70 and 120
meters, respectively. The data under analysis was trun-
cated to be within 10 meters of these orbits and input into
all four estimation algorithms. An example of the dataset
along one such orbit is shown in Fig. 8. The parameters
estimated by each algorithm were used to superimpose a
vg(ψ) curve over the data points. The dataset exhibits
outliers that do not conform to the model (e.g., due to
transient motions as the vehicle enters and exits each
orbit). To address this issue the optimization algorithms
are wrapped in a random sample consensus (RANSAC)
algorithm outer loop.

The estimated current direction and magnitude was also
compared to historical data from an instrumented buoy
(identifier: BOS1132) deployed by the National Oceanic
and Atmospheric Administration (NOAA) located in Stell-
wagen Bank about 51 km away directly east from the
testing area (15nm NNE of Race Point at a depth of
27ft). The results show good agreement with the ebb and
flow tidal directions reported by the buoy. The current
magnitude matches the general trend and variations may
be due to the spatial separation of the buoy and vehicle
leading to different tidal flows closer to shore.

6. CONCLUSION

Three batch estimation methods were presented that de-
termine the direction and magnitude of a steady, uniform,
flow-field, and the vehicle’s speed, using noisy kinematic
measurements during heading change maneuvers, such as
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Fig. 9. Comparison of estimaties with NOAA buoy data.

circular orbits or 180 degree turns. The three methods
proposed included a quadratic curve fitting approach with
(vg, ψ) data and least-square optimization methods with
either (ẋ,ẏ, ψ) or (vg, ψ) data. The methods were compared
through a Monte Carlo experiment with simulated data
to illustrate the impact of measurement noise and head-
ing angle change during the maneuver. The comparison
included an existing circular curve fitting method from
the literature that uses (ẋ, ẏ) data. The results indicated
that the optimization with (ẋ,ẏ, ψ) led to the lowest mean
errors. The methods were also evaluated using a experi-
mental data obtained by an underwater vehicle performing
a series of circular orbits during a tidal change. The esti-
mated values had modest agreement with data recorded
by a nearby buoy.

The advantages of the proposed methods are that they
are relatively simple to implement, depend on only a small
number of parameters, and do not require a vehicle model
or assumption of vehicle flow-relative speed. The opti-
mization methods also allow visualizing the uncertainty in
the parameter space as level sets of a corresponding cost
function. Future work may consider running the estimators
onboard a vehicle, comparing to dynamic state estimators
(e.g., Kalman filters that estimate flow-field conditions),
and using flow-field estimates to optimize mission plans.
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