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ADM mass for CY metrics and distortion
under Ricci—DeTurck flow

By Paula Burkhardt-Guim at New York

Abstract. We show that there exists a quantity, depending only on C? data of a Rie-
mannian metric, that agrees with the usual ADM mass at infinity whenever the ADM mass
exists, but has a well-defined limit at infinity for any continuous Riemannian metric that is
asymptotically flat in the C° sense and has nonnegative scalar curvature in the sense of Ricci
flow. Moreover, the C° mass at infinity is independent of choice of C°-asymptotically flat
coordinate chart, and the C° local mass has controlled distortion under Ricci—DeTurck flow
when coupled with a suitably evolving test function.
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1. Introduction

In recent years considerable attention has been devoted to the study of Riemannian
metrics with lower scalar curvature bounds in various nonsmooth settings (see, for instance,
[2,14,16,22,23,26] among others). In the C 0 setting, Gromov [14] showed that pointwise lower
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scalar curvature bounds are preserved under uniform convergence. Somewhat more recently,
the Ricci and Ricci—DeTurck flows have emerged as useful tools in this setting since they pro-
vide a smoothing of the metric under which the scalar curvature has a well-behaved evolution
equation (a Ricci—-DeTurck flow is a parabolic flow that is related to a Ricci flow via pullback
by a family of diffeomorphisms; the precise definition is given in Section 3). For instance, in
[2], Bamler provided a Ricci flow proof of Gromov’s [14] result (see also [11,15,19,21]). In
[7] (see also [6,8]), the author introduced a synthetic notion of pointwise lower scalar curvature
bounds for C° Riemannian metrics using Ricci flow.

In light of this context, it is natural to ask whether other metric quantities associated with
the scalar curvature may be formulated using only C° data of the metric, and whether anything
can be learned about these quantities by letting the metric evolve by Ricci or Ricci-DeTurck
flow. One such quantity is the ADM mass. Recall that if (M", g) is a smooth Riemannian mani-
foldand ®: M \ K — R”" \ B(0, 1) is a smooth coordinate chart for M, where K is a compact
subset of M, then the ADM mass (introduced in [1]) is given by (see [30, p. 143])

1 " .
1.1 = llm ——— 0igii —0;gii)v’) dS,
(1.1) mapm(g) rl>rgo 472 (1 — Dom—s /;(r) Z_ZI( i 8ij jglz)v

where the coordinate expression in the integrand corresponds to the coordinates @,
S(r)y={xeR": (x"H)2 +... 4+ ("2 =r?},

v denotes the outward unit normal to S(r) with respect to the Euclidean metric, w,—; denotes
the Euclidean volume of the (n — 1)-dimensional unit sphere, and dS denotes the Euclidean
surface measure on S(r). Henceforth, if we wish to emphasize the coordinate chart ®, then we
write mapm(g, D).

A priori, it is not clear whether the limit (1.1) should always exist, or whether the limit
depends on the choice of @, but Bartnik [4, Theorems 4.2 and 4.3] (see also [10] for the asymp-
totically Minkowski case) showed that, under certain conditions, the ADM mass does indeed
exist, is finite, and is independent of choice of coordinate chart.

Theorem 1.1 (cf. [4]). Let (M™, g) be a smooth Riemannian manifold. Suppose that,
for some compact set K C M, there exists a coordinate chart &: M \ K — R"™ \ B(0, 1) for
M such that, for some t > (n — 2)/2, we have

(1.2) [(@«g)ij — 8ijllx = O(x[5™),
(13) 9 (@42)ijllx = O(xI5™™ ) for [k = 1,2,

where § denotes the Euclidean metric and k is a multiindex, and

(1.4) f IR(g)| < oo,
M

where R(g) denotes the scalar curvature of g. Then the limit from (1.1) with respect to ® exists,
is finite, and is independent of choice of ® satisfying (1.2) and (1.3).

Henceforth, we will say that a continuous Riemannian metric is C®-asymptotically flat
if, for some smooth coordinate chart, it satisfies (1.2) but not necessarily (1.3). As noted above,
the ADM mass is a metric quantity that is associated with lower scalar curvature bounds; this
is because of the Riemannian Positive Mass Theorem.
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Theorem 1.2 (cf. [27-29,32]). Forn > 3, let (M", g) be a smooth Riemannian mani-
fold and suppose that there exists a compact set K C M and a coordinate chart

&: M\ K—R"\ B(0,1)

for M such that, for some t > (n —2)/2, (1.2), (1.3), and (1.4) hold. If R(g) > 0, then we
have mapm(g) > 0. Moreover, mapm(g) = 0 if and only if g is flat.

Here we have stated the result for a manifold with a single asymptotically flat end, but
the result also holds for multiple ends; see [28,32]. There have been a number of proofs of the
Positive Mass Theorem using different techniques, the earliest of which were due to Schoen—
Yau [27, 28] and Witten [32]. We refer the reader to [5, Section 3.1] for a more thorough
discussion of the various proofs and their techniques. Moreover, we remark that the Ricci and
Ricci-DeTurck flows have already emerged as useful tools in the context of the Riemannian
Positive Mass Theorem; see, for instance, [11,24,25]. In view of Theorem 1.2, we often impose
the condition that the Riemannian metric has nonnegative scalar curvature (in a generalized
sense) throughout the rest of this paper.

Several compelling notions of C° masses, involving volumes and capacities, have been
introduced; see [17, 18]. In this paper, we will take a different approach from these works, with
the intention of evolving the metric by Ricci—-DeTurck flow in order to show the existence of
a limit at infinity even for metrics that have only C° control. Towards the C? setting, observe
that mapm(g, ®) is computed by integrating over a single coordinate sphere, but when the limit
mapm (g, @) exists, one may alternatively compute mapm (g, @) by integrating over a family
of spheres weighted by some test function since, if ¢: R — R is any smooth function with
Jod @(€)de # 0, then
0or ©(5) [sy Xi=1@igij — 0jgii)v7 dS dt

dr(n — Dwp_1r f01.'91 ) d!
oo 90 fsery Yol @igi; — 3gii)v’ dS de
47t (n — Dwn—1 fyo 9(£) d2 r—o0

In fact, observation (1.5) is an entry point to proving a C? version of the Positive Mass
Theorem: the significance of the left-hand side of (1.5) is that it may be expressed solely in
terms of the C? data of g; see Definition 2.1. In order to get a well-defined limit at infinity, we
replace ¢ with a family of functions ¢” that vary with r. We will explain how ¢" relates to ¢ in
Section 2. We summarize this fact in the following theorem; a more precise statement is given
in the next section (see Theorem 2.9).

(1.5)

mapm(g. ®).

Theorem 1.3. Let M be a smooth manifold, and g a continuous Riemannian metric
on M. Suppose there is a smooth coordinate chart ®: M \ K — R”" \ B(0, 1) for M, where K
is some compact set. For any smooth cutoff function ¢: R — RZ% with Supp(¢) CC (0.9, 1.1)
and for any r > 0, there exists a smooth family of functions (¢");>o0: R — R such that

r c>
LA

and there exists a quantity Mco(g, ®, ¢" . r), depending only on the C° data of ®g, for which
the following is true.

(i) If g is C* and mapm(g, ®) exists, then mapm(g, D) = limy 0o Mco(g, D, 9", r).
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(ii) If g has nonnegative scalar curvature in the sense of Ricci flow on M \ K and (1.2)
holds for ® for some v > (n — 2)/2, thenlimy oo Mco(g, ©, ", r) exists, is either finite
or +o0, and is independent of choice of such ® and ¢. Moreover, this limit is finite if
and only if a particular condition involving the scalar curvature of time slices of Ricci—
DeTurck flows associated to g is satisfied.

Furthermore, in the case that M has multiple ends, the result holds if M \ K is replaced by
a neighborhood of an end of M that is diffeomorphic to R™ \ B(0, 1).

Corollary 1.4. Let M" be a smooth manifold and suppose g is any C? Riemannian
metric on M. Suppose that there is a smooth coordinate chart ®: M \ K — R" \ B(0, 1),
where K is some compact set, such that

(i) there is some Tt > (n — 2)/2 for which ®g satisfies (1.2) for t, and
(ii) the classical ADM mass mapm(g, ©) exists.

If g has nonnegative scalar curvature, then mapm(g, @) is independent of choice of ® satisfy-
ing (1) and (i1), regardless of whether @4 g satisfies (1.3) or not. In particular, in the coordinate
invariance statement in Theorem 1.1, hypothesis (1.3) may be replaced with the condition that
mapm (g, @) exists, when the scalar curvature of the metric is assumed to be nonnegative.

Proof of Corollary 1.4. The first statement of Theorem 1.3 applied to ® implies that,
for any such @,

mapm(g, ®) = lim Mco(g, ®,¢",r).
r—>o0
On the other hand, the second statement of Theorem 1.3 implies that lim; o Mco(g, ®,¢", 1)
is independent of choice of ® satisfying (1.2) for t > (n — 2)/2. O

As we will explain, Theorem 1.3 follows from a monotonicity result for the C° local
mass, the precise statement of which is given in the next section (see Theorem 2.12).

Theorem 1.5. Let M be a smooth manifold and g a C° metric on M. Suppose that
U, and U, are open subsets of M for which, for m = 1,2, there exist coordinate charts
d": Uy — R™ \ B(0, 1) that determine the same end of M (see Definition 2.8) and such that,
for some T, > (n — 2)/2, (1.2) holds for ®™ and ty,,. If g has nonnegative scalar curvature in
the sense of Ricci flow and ¢n > 0 are smooth cutoff functions with Supp(¢m) CC (0.9,1.1),
then for all sufficiently large r,

Mco(g, CI>1,<p%00r, 200r) > Mco(g, ®2, oy r)y—cr @
for some w > 0, where ¢ and w do not depend on r.

It is natural to ask where the C° quantity lim, o, Mco(g, ®,¢", r) agrees with other
C? notions of mass that have already been introduced.

Question 1. How does
lim Mco(g’ I? ¢rv L )
r—00

relate to Huisken’s isoperimetric mass [18, Definition 11] and Jauregui’s isocapacitary mass
[17, Definition 4]?
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Towards proving a C° version of Theorem 1.2, we ask the following question.

Question 2. [f g satisfies the hypotheses of (ii) in Theorem 1.3 and moreover g has
nonnegative scalar curvature in the sense of Ricci flow everywhere on M, do we have

lim Mco(g, ®,¢",r) > 0?
r—>00

2. Technical introduction

We now make precise some of the statements from the previous section. We first define
the C° mass.

Definition 2.1. Letr >0, g be a C O metric on a smooth manifold M, ®:U — R”
a smooth coordinate chart for M such that A(0,0.9r,1.1r) C ®(U), where A(0,0.97,1.1r)
denotes the annulus in R” measured with respect to the Euclidean metric, and ¢: R — R some
smooth function such that fol_'gl @(s)ds # 0. Writing g;; for (P«g);;, we define the C 0 local
mass of g with respect to ¢ and ® at r by

(2.1) Mco(g, ®.¢.7)
L (47 (n — l)a)n—l)_1
r oy o(0)de

n
_ | )
’ i,jz=1 [/A("’O~9r,1~1r)(n|x|2(p(%|) + ;¢/(|):_|)>8,J (gij — dij)

# (o) 2o (M) 507 s

xtxl
+ [ (a1 — ) ()
0A4(0,0.9r,1.17) Y Y | x| (”)
x! | x| i
_(gjj _8jj)m(/)(7)‘) dS],

where v denotes the outward unit normal vector with respect to the Euclidean metric along
0A4(0,0.9r,1.1r) and dS is the Euclidean surface measure on 0A(0,0.97,1.1r). If we are
working with a given coordinate chart ®, or with a Riemannian metric on R”, then we write
Mco(g, ¢, r) rather than Mco(g, D, ¢, r). Henceforth, we will suppress the summation nota-
tion in (2.1) and the normalization constant (47 (n — 1)w,—1)~! for the sake of brevity.

Remark 2.2. For any smooth ¢: R — R with f01.'91 @(s)ds #0,if hj; := gij — dij, we

have
1.1r

Cou
/ (0 8ij — aigjj)vl§0<_> dsS du
S(u) r
1.1r ) u
=/ / @hij — oo (™) dS du
0.9r JS(u) r

1.1r ) u
+/ / @8 — a8V 0(*) dS du
0.9r JS(u) r

0.9r
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/01 ) fsm)(af'hif - afhff)viw(z) dS du +0
=/A(o,o.9r,1_1,)(afh o e (M) ax
Lo o) (e
L oo M5 o)t as
:[A(O,o.gr,l.m i |8xJ| (M)Mﬁ%w(";—')—hﬁ%”@)

+h”|8l:| (le) H(|);|)32( ) JJ(TX); (@)dx
)Ci X

&l x|
+/aA(o,0.9r,1.1r)h |x|‘/’(—)v1_ ..| | ( )v s
=2, (X i
- /A(o,0.9r,1.1r) tr(”.l n|x| ‘/’(%) +'tr5'h;<p’(%>
+hij%§0(|:—|>—hij%(p/(¥) I

xl

|x| xtrlxy
—|—/ hij—e|— v —h~~—(p(— v dS.
9A(0,0.97,1.1r) |X| ( ) Y x| r )

0oy Jsa©igij —Bigi)vie(¥)dS du

r [y o(0)de

Therefore,

Mco(g, D, ¢,r) = (4n(n — l)a)n_l)_1

In particular, if mapm(g, @) exists, then (1.5) implies that

mADM(g7 q)) = rll>nolo Mco(g, (Dv ¢, I’).

We now discuss the meaning of “nonnegative scalar curvature in the sense of Ricci flow”,
which takes the place of the classical nonnegative scalar curvature condition in the C? setting
(cf. [6-8]).

Definition 2.3. Let M" be a smooth manifold and g be a continuous Riemannian metric
on M. For € (0,1/2), we say that g has scalar curvature bounded below by k¢ € R in the
B-weak sense at x € M if there exists a coordinate chart ®: Uy — ®(Uy) for M, where Uy is
a neighborhood of x, and there exists a continuous metric go on R” and a Ricci-DeTurck flow
(g1)te(o0,1 for go, with respect to the Euclidean background metric, satisfying (3.8), (3.9), and
(3.10) (cf. [20]), such that go|o,) = P+g and such that

(2.2) Cl’gfo(h?{.l(l)lf(Bg(ég)f,Ctﬁ) R(g,))) > K.

We say that g has scalar curvature bounded below by k¢ € R in the sense of Ricci flow on an
open region U C M if there exists some 8 € (0, 1/2) such that, for all x € U, g has scalar
curvature bounded below by k¢ in the f-weak sense at x.
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Remark 2.4. As explained in [6, Section 6.2], Definition 2.3 is an extension of the defi-
nition introduced in [7, 8] to noncompact manifolds. Also, by the discussion in [6, Section 6.2]
and [8, Remark 3.6 and Theorem 3.7], if || @« g — §||cO(a(v)) is sufficiently small so that 4 g
may be extended to a continuous metric go on R” for which there is a Ricci-DeTurck flow
(g1)re(o,1] for go, with respect to the Euclidean background metric, satisfying (3.8), (3.9),
and (3.10), then it is equivalent to require that there exists some 8 € (0, 1/2) such that, for all
y € o),

2.3 inf (lim inf inf R > Ko,
23) ot (minf(inf | R(z0)) = o

i.e. that (2.2) holds for a fixed Ricci—-DeTurck flow that is independent of choice of x € U.

Remark 2.5. By invariance of the Ricci—-DeTurck flow under parabolic rescaling (see
Remark 3.1), the f-weak condition (2.2) is invariant under rescaling of g when ko = 0.

We next provide the precise statements of Theorems 1.3 and 1.5, and explain how the
functions ¢" are related to ¢. Much of Theorem 1.5 is proved by using estimates for the Ricci—
DeTurck flow on perturbations of Euclidean space (see [20]) to control the distortion of the C°
local mass, when coupled with a suitably evolving smooth function.

Lemma2.6. Let ¢:R — RZ0 be a smooth cutoff function with Supp(¢) CC (0.9, 1.1).
Forallr > 0, n > 0, there exists a smooth function ¢,—n(£,t): R x [0,77"] — R such that

Orpr=n(|x|.1) = =Agr—n(|x].7)

(2.4) + }#wr—n(m, t) for (x,t) € R" x (0,r™ "),

or—n(L, 17T = p(£) forall { € R.

Moreover, there exists 7 = r(n, n) such that, for all r > r, the following is true. Suppose that
go is a continuous metric on R" such that ||go — 8| cowrr) < € for some ¢ < 1, and for which
there exists a smooth Ricci—DeTurck flow, (g¢)s>0, with respect to the Euclidean background
metric, satisfying (3.8), (3.9), and (3.10). Then

7 d t
| e (seprn (- 55).r) |
< c(n, 9)e*r" 2 + c(n, )r" 2T/ 27N exp(—D(Supp(p))r”),

where D = D(n).

In particular, there exists ¥ = r(n, n, Supp(¢), co, T) such that, for all r > 7, the follow-
ing is true. Suppose that gg is a continuous metric on R" such that ||go — §||co®rr) < cor™*
for some t > (n —2)/2. Suppose that (g¢)¢>0 is a smooth Ricci—-DeTurck flow for go, with
respect to the Euclidean background metric, satisfying (3.8), (3.9), and (3.10). Then

7 d t
/O ‘EMCO(gt,SOr_"(' . r—z),r)‘ dt < c(n, @, co)r" 2727,

Observe that, because of the specified lower bound for 7, n —2 — 2t < 0, so the right-
hand side decays to 0 as r — oo. Typically, we will take go to be a continuous extension of
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a C° metric 214(0,0.9r,1.1r) Where g is defined on A(0, 0.8r, 1.2r) and satisfies
lg — 8llco4(0,0.8r,1.2r)) < cor .

Remark 2.7. If u is any spherically symmetric solution to the backwards heat equa-
tion 0;u = —Au on Euclidean space, then the evolution equation from (2.4) is precisely the
evolution equation for the radial derivative of u.

In order to address the case when (M, g) has multiple ends, we now discuss what we
mean by a CC-asymptotically flat end of (M, g). We use the convention of [13, p.201] to
describe the ends. Note that, because M is a topological manifold, it admits a compact exhaus-
tion. Let

KiC K, CK3C--

be an exhaustion of M by compact sets. Consider a sequence (X;)?2, such that each X; is
a connected component of M \ K; and such that X1 D X5 D X3 D ---. Suppose (Klf)?il 18
another compact exhaustion of M and (X/)?° | is another such sequence, i.e. each X is a con-
nected component of M \ K/ and X| D X} D X} D ---. We say that (X;)?, and (X/)$2,
are equivalent if, for all i € N, there exist j and k such that X; D X J’ and X/ D Xj. The ends
of M are the equivalence classes of such sequences.

Suppose that U C M is an open subset of M for which there exists a diffeomorphism
o:U — R"\ B(0,1)

such that @ satisfies (1.2) for some v > 0. Then ® determines an end of M as follows. Let
V = & 1(R"\ B(0,2)). Consider the sequence of annuli A’ = A(0,2, 10¢). Observe that
®~1(A4;) is compact because A; is compact in R” \ B(0, 1) and ® is a diffeomorphism onto
this region. We extend ®~!(4;) to a compact exhaustion of M as follows. Let K ! be any com-
pact exhaustion of M. Let K; = (K] \ V) U ®~1(A;). Then the K; are compact because they
are all unions of two compact sets, and they exhaust M since K]\ V' exhausts M \ V and
®~1(4;) exhausts V (because A; exhausts R” \ B(0,2)).
Foralli € N, let X! denote the connected component of M \ K; that contains

O 1(R" \ B(0, 10%));

this is possible since ® is a diffeomorphism onto its image and hence ®~1(R” \ B(0, 10)) is
connected. We actually have that, for all sufficiently large i € N, X/ = ®~1(R” \ B(0, 10)):
to see this, it is sufficient to show that ®~1(R” \ B(0, 10?)) is clopen in M \ K;. Certainly,
it is open in M \ K; by continuity since R” \ B(0, 10’) is open in R” and M \ K; is open
in M. To show closedness, let y € M \ K; be a limit point of ®~1(R” \ B(0, 10?)) so that
there exists a sequence of points y; € ®~1(R” \ B(0, 107)) such that y; — y. Then 67 2)a
is a Cauchy sequence with respect to g. Let x; = ®(yx) € R” \ B(0, 10?) so that (Yr)pey 18
Cauchy with respect to @ g and hence is also Cauchy with respect to § since @ g is uniformly
bi-Lipschitz to § outside of a large compact set. By completeness, x; — x € R \ B(0,10'),
so either x € R” \ B(0, 107) or x € dB(0, 10%). By continuity, we have

® (x)= lim & '(xx) = lim y; = y.
k—o00 k—o00
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If x € 0B(0, 10), then x € A; and hence y € ®~1(4;) C K;, a contradiction. Therefore,
x € R"\ B(0,10/) and y e & 1(R"\ B(0,10%)),
so ®1(R” \ B(0, 10")) is closed in M \ K;. In particular, ®~1(R” \ B(0, 10?)) is a con-

nected component of M \ K;. Then X! D X2 > ..-,s0 (Xi)l?’i1 determines an end of M.

Definition 2.8. We say that an end E of M is C°-asymptotically flat if it is determined
by some such ®, and we say that ® is a C °-asymptotically flat coordinate chart for E. We now
establish some terminology. If ® has the property that, for all |x| > ro,

[(Dxg)ijlx — 8ij| < colx|™",
then we say that rg is the decay threshold of ®, cq is the decay coefficient, and 7 is the decay

rate.

Theorem 2.9. Let M be a smooth manifold and g a continuous Riemannian metric
on M. Suppose E is an end of M and that ®:U — R™ \ B(0, 1) is a C°-asymptotically flat
coordinate chart for E. Let ¢: R — RZ° be a smooth cutoff function with

Supp(¢) CC (0.9, 1.1).

Forallr > 0andn > 0, let or—n (L, t) denote the smooth time-dependent function correspond-
ing to ¢ given by Lemma 2.6. Then the following is true.

() If g is C? and mapm(g. ®) exists, then for all n > 0, we have
mapm(g, ®) = lim Mco(g, O, o—n(-,0),r).
r—>00

(i) If g has nonnegative scalar curvature in the sense of Ricci flow on U and (1.2) holds for
® for some T > (n — 2)/2, then for all 0 < n < 2t —n + 2, the limit

lim Mco(g, ®, gr—n(-,0),r)
r—>00

exists, is either finite or +00, and is independent of choice of C°-asymptotically flat
coordinate chart for E with decay rate t > (n — 2)/2 and choice of ¢ with

Supp(¢) CC (0.9, 1.1).

Moreover, limy oo Mco(g, ©, o—n(-,0),r) is finite if and only if the following condi-
tion holds.

There exists a sequence of numbers ry — 0o such that ri 1 > 1.1/0.9r, > 0 for all k,
and such that, for all k, there exists an extension gg of ®«g|R"\B(0,0.7r¢) to all of R"
for which there is a Ricci—-DeTurck flow (gf) t>o0 satisfying (3.8), (3.9), and (3.10), such
that

2.5) lim  sup / R(E v
A(0,0.97,1.17) (0~9/1.1rk)2 n

k—0011>1.1/0.974
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Remark 2.10. The limit lim, o, Mco(g, ¢—n(-,0),r) is also independent of choice
of n € (0,2t —n + 2), as we will explain in Section 7.

Remark 2.11. A keen reader will note that, while Theorem 2.9 is an analogous state-
ment to Theorem 1.1 for C° metrics, it deviates from Theorem 1.1 in the following way:
Theorem 1.1 assumes that the scalar curvature is in L' (1.4) in order to conclude that the ADM
mass is a well-defined, finite limit. On the other hand, Theorem 2.9 does not assume an inte-
grability condition for the scalar curvature, instead substituting this condition for the condition
that the scalar curvature of the metric is nonnegative (in a weak sense, in a neighborhood of
infinity), and concluding that the corresponding limit is well-defined, but possibly infinite.

The condition that the scalar curvature of the metric be nonnegative in a weak sense is
natural for the purposes of pursuing a C© version of the Riemannian Positive Mass Theorem,
and there is precedent in the literature for imposing this condition (see, for instance, [22, Theo-
rem 1.1 and Proposition 2.4 (2)]). Nonetheless, it is natural to ask whether this condition could
instead be replaced by a C© version of the condition that the scalar curvature be in L.

Question 3. Suppose g is a continuous Riemannian metric on a smooth manifold M.
Suppose that E is an end of M and that ®:U — R"™ \ B(0, 1) is a C°-asymptotically flat
coordinate chart for E. Let ¢ and @,—n be as in Theorem 2.9. Does there exist a condition (x)
such that

(1) if g satisfies (x), then lim, oo Mco(g, @, ¢r—n(-,0),r) is well-defined and finite, and
(i) if g is C? and satisfies (1.2), (1.3), and R(g) € L'(E), then (%) holds for g?

A C9 condition (*) should satisfy both of these items in order to be a C°-weak ver-
sion of condition (1.4). We expect that a suitable modification of (2.5) would satisfy both of
these items, though we do not show such a thing in this paper. The proof of Theorem 7.3
implies that when condition (2.5) holds, then there exists a sequence of radii 7, — oo such that
limy_, oo Mc0(g, o7,)—n(-,0), 7)) exists and is finite; the nonnegativity of the scalar curva-
ture is only used to guarantee that the limit does not depend on the sequence of radii. Whether
condition (2.5) can be modified to satisfy the second item in Question 3 is more subtle: in the
classical setting, McFeron—Székelyhidi [25, Lemma 10] showed uniform-in-time decay of the
integral of the scalar curvature outside of balls of large radii, for time slices of the Ricci flow.
Therefore, we would expect some version of condition (2.5) to hold in the classical setting
when R(g) € L'. However, this is not immediate from [25, Lemma 10] since, in this paper,
we use Ricci-DeTurck, rather than Ricci flow.

Finally, we remark that Lee—LeFloch [22, Proposition 2.4] have shown that, for metrics
g € C% N W that are asymptotically flat in a suitable sense, condition (1.4) can be replaced
by the condition that the scalar curvature of g be a finite, signed measure outside of a com-
pact set. This condition is not available in our setting since the scalar curvature does not have
a distributional interpretation for general C© metrics.

The proof of first statement in Theorem 2.9 is relatively straightforward, as we will
explain in Section 7. The second statement follows from the monotonicity result Theorem 2.12,
as we will also explain in Section 7. Therefore, we devote the bulk of the paper to proving
Theorem 2.12.
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Theorem 2.12. Let M be a smooth manifold and g a continuous metric on M. Suppose
oL Uy - R"\ B(0,1) and ®* U, - R"\ B(0,1)

are two C-asymptotically flat coordinate charts for the same end so that, for m = 1,2, there
exist ¢ > 0, 1y > 1, and 1, > (n — 2)/2 such that

(@Y g)ij — 8ij| < cml|x|7™  forall |x| > rp.

Then there exist i = i(®1, P2, @', 0%, 0, B.n) and ¢ = c(®1, P2, @', 02, 1, B, n) such that if
g has nonnegative scalar curvature in the B-weak sense on Uy U Uy, @' and ¢? are smooth cut-
off functions with Supp(p™) CC (0.9,1.1) form = 1,2, and 0 < n < 2min{ty, 12} — n + 2,
then for allr > r,

Mco(g, ®! ’ §0(1200r)—’i(' ,0),200r) > Mco(g, @2’ (p,%—n(' ,0),7) — crn—2—2min{r1,r2}+n’

where w},n(ﬁ, t) and ¢r2,n(ﬁ, t) are the smooth functions corresponding to ' and ¢? respec-
tively, given by Lemma 2.6. In particular,

. 2 2 1 11
rll)llgoMCO(ga¢ 7(pr_77('70)7r) _rE)n;oMCO(g’CD ’(pr_r]( 70)7r)'

We now will explain the structure of the rest of the paper: In Section 3, we introduce the
Ricci and Ricci-DeTurck flows and provide estimates for the heat kernel and scalar curvature
under the flows. We also record some elementary facts, and discuss properties of glued locally
bi-Lipschitz maps and transition maps between C®-asymptotically flat coordinate charts. In
Section 4, we prove Lemma 2.6. In Section 5, we prove a preliminary version of the mono-
tonicity statement in Theorem 2.12, for a single C°-asymptotically flat coordinate chart. In
Section 6, we prove the full version of the monotonicity statement in Theorem 2.12, using mol-
lification and gluing statements from Appendix B, which rely heavily on the results concerning
bi-Lipschitz maps and almost-isometries recorded in Appendix A. In Section 7, we prove the
full statements of Theorems 2.9 and 2.12.

3. Preliminaries

3.1. Ricci and Ricci-DeTurck flow preliminaries. If M is a smooth manifold and
(&1)te(o,1) is a smooth family of Riemannian metrics on M, recall that g; evolves by Ricci
flow if

(3.1) 0:g: = —2Ric(gy).

We use the notation g; to distinguish this flow from the Ricci-DeTurck flow, which we use
more often in this paper, and which we will denote by g;. The Ricci—-DeTurck flow, introduced
by DeTurck in [12], is a strongly parabolic flow that is related to the Ricci flow by pullback via
a family of diffeomorphisms. More specifically, we define the following operator, which maps
symmetric 2-forms on M to vector fields:

(3.2) Xz(g) = Z(vge,- — VEe;),

i=1
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where {e;}7_, is any local orthonormal frame with respect to g. Then the Ricci-DeTurck
equation is

(3.3) 0:g(1) = —2Ric(g(1)) — Lx;) (2 (0))&(1):

where g(¢) is a background Ricci flow.

Remark 3.1. If g, solves (3.3) with respect to some background Ricci flow g; for
t € (a,b), then for all A > 0, the parabolically rescaled flow g; := Ag;/, solves (3.3) with
respect to the background Ricci flow g} := Ag;/a fort € (Aa, Ab).

In this paper, we work with Ricci-DeTurck flows on R” with respect to a Euclidean
background, so we take g(¢) = 6 and (3.3) becomes

(3.4) 0:g(t) = —2Ric(g(1)) — Lx;(g(1)& ).

As mentioned, if g(¢) solves (3.3), then it is related to a Ricci flow via pullback by diffeo-
morphisms. More precisely, if g(¢) solves (3.3) and (x¢)se0,7): M — M is the family of
diffemorphisms satisfying

0
Xew (@) f =~ (foy) forall freCT(M).
=id,

(3.5)

then g(¢) := yx; g(r) solves (3.1) with the condition g(7) = g(7).
It is known (see [3, Appendix A]) that if g; solves (3.3) with respect to the background
Ricci flow g;, and if h; = g; — g¢, then the evolution equation for 4, is given by

(3.6) Othy = —Lhy + Qlhq],
where

Lht = —Agtht — 2ngt [ht]

= —A8h; —2gPIRY hgm dx' ® dx/ + 3P (hyj Ryi + hipRy))

(note that our notation convention for Rmé&: [/1;] differs slightly from that of [3] as we do not
use the Uhlenbeck trick in this paper) and Q denotes the quadratic term

(QzheD)ij = (& + 1P~ g7 (V2ghij + R g + Rihimg)
@+ h)Pq)(R,,,q o+ RIS him)
L@@
X (=VihpmVihgt — 2VmhipVahg + 2VmhipVihjg
+2Vphi¢Vihgm + 2VihpmVah;y)
= Vp(((g + W)P? = gP")Vqhij)

— (Vp((g + )P — é_’pq))V hij

+ (8 + )P4 =GP (RE: hing + RS iTmq)

+ (@ + h)”qu,pq o+ R ghim)
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@+ PG+
X (=VihpmVihge —2VmhipVahio + 2VmhipVihjg
+2VphigVihgm + 2VihpmVahjg),
where here V denotes the covariant derivative with respect to g;. The second equality follows

from the Leibniz rule.
We often write Q[h;] = Q% + V*Q!, where

1 _ -
07 = — @+ @E+n™
X (—V,-hpmvthg — 2thiquhjm + 2thipVehjq
—+ 2Vph,-gvthm + 2V,~hpquhjg)
- (Vp((g + h)pq - gpq))vth,j + (g + h)pq - gpq)(RZ;jhmq + Z‘ihmq)
=@+h) ' x@+h) "« VExVAE+ (@ +h) =37 « Rmé «h
and
V*0; = Vp(((§ + WP? = gP)Vghij) = V(& + )" =&~ * Vh),
where we use the notation A x B for two tensor fields A and B to mean a linear combination
of products of the coefficients of A and B, and (g + #)~! and g~ ! denote tensor fields with
coefficients (g + h)" and g" respectively. Henceforth, we will use the notation 4 g B to
denote any linear combination of tensor fields obtained from A ® B by using g to raise or
lower any number of indices or by contracting any indices of such tensor fields using g, any
number of times. Since in this paper we often work on Euclidean space, we will use 4 % B to
denote any term such that |A x Blg < c¢(n)|A|s|B]ls.
Henceforth, we take all covariant derivatives and measure all balls and all norms with

respect to the Euclidean metric § on R”, unless otherwise stated. When g(z) = §, (3.6) becomes
(see [20, (4.4)])

1
(3.7) Ochij = Ahij + - (5 + h)P4 (8 + h)™*
X (V,-hpmvthe -+ 2th,~pvthm — vahipVghjp
— Vp((8 + h)Pq)th,-j + Vp (((5 + h)pq — 81"1)th,-,-)
=: Ahij + Q°[h] + V*Q'[Al.

where

QO] = 55 + WP + ™
X (V[hpmthqg + 2th,-quhjm — vahl‘pVghjp
— ZVphmthqm — 2Vihpqul’lj4) — Vp((8 + h)”q)thij
=Vh*Vh,
V*QUR] = Vp(((§ + h)P9 — §P9)Vyh;;) = V(h * Vh),
where A denotes the usual Euclidean Laplacian.

We now record the following result concerning Ricci—-DeTurck flows starting from small
co perturbations of Euclidean space (cf. [20, Theorem 4.3], [7, Lemma 3.3 and Corollary 3.4]).
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Lemma 3.2. There exist £ = £(n) < 1 and ¢ = c(n) such that the following is true. If
go is any continuous Riemannian metric on R" such that ||go — 8||cO®n) < &, then there exists
a smooth solution (g¢)¢>¢ to (3.4) such that

0

3.8 — g0,
(3.8) 8t ~o g0
(3.9) lg: —dllx <cllgo—éllcowrm).

and for all k € N, there exists cy(n) > 0 such that, for all t > 0,

-4 CO(R”
(3.10) IIV"(gz—S)IIcO(R">SCk(")—”go tkUz =2,

where || - ||x is given by

Ihllx = sup [B(@O)lloen) + sup sup(r "/2||Vh||Lz(B<x )x(0.r2)

0<t<oo xeR” 0<r

+pta VAl L7 +4(B(x.r)x (5 72)))-

Moreover, if U,V C R"™ are any two open sets with U CC V and g is a continuous
Riemannian metric on V such that ||g — 8||co(v) < &, then there exists a continuous Riemann-
ian metric gg defined on all of R" such that

golu = glu and |lgo —Sllcowr) < llg —Sllcow).

so there exists a smooth solution (g¢)¢>o to (3.4) satisfying (3.8), (3.9), and (3.10) for go.

Proof. The existence of a smooth solution (g;);~0 and estimates (3.9) and (3.10) are
due to [20, Theorem 4.3]. That the solution converges to the initial data as ¢ \ 0 follows in the
same way as in the proof of [7, Corollary 3.7].

Towards the second statement, let y: R” — [0, 1] be a smooth cutoff function with y = 1
on U and Supp(y) C V. Then let gg = yg + (1 — x)é. The (0,2)-tensor go is continuous,
symmetric, and positive definite because g and § are, so it is a C® Riemannian metric on R”.
We also have

180 —8llx = x(x)|g = dllx = llg = bllcoy) <&

The existence of a solution g; satisfying (3.8), (3.9), and (3.10) then follows from the first
statement. ]

Remark 3.3. The result [20, Theorem 4.3] also guarantees a solution g; when g is
only in L*°(R") with ||go — §||pco(rr) < &(n), but we will not address this situation in this

paper.

Observe that if g; is any solution to (3.4) satisfying (3.10), then we have

G.11) R(g) =~

3.2. Heat kernel estimates and evolution of scalar curvature under Ricci-DeTurck
flow. If g; evolves by Ricci-DeTurck flow (3.3), then the scalar curvature of g; satisfies
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(see [7, (2.24)])

2
(3.12) 0:R(g:) = A%'R(g:) — (X.VR(g:)) + ;R(gt)z,

where X is as in (3.2).

For a given solution (g;);>0 to (3.3) with respect to a smooth background Ricci flow
(&:)r>0 on a smooth manifold M, let ®RP(x,; y,s) denote the scalar heat kernel for the
operator 9y — A8" + V)g(’, where X is as in (3.2), i.e. for fixed y € M and 0 < s < 1,

0; PRP(x,1:y,5) = Agt,XCDRD(x, t;y,s) — V)”;’xCDRD(x, t;y,s).
We refer the reader to [9] for a thorough discussion of the heat kernel. We now record an

estimate for ®RP(x,¢; y, s) (cf. [6, Lemma 3.8], [2, Lemma 3], [7, Lemma 2.9]).

Lemma 3.4. Suppose (g:)s>o0 is a solution to (3.4) satisfying ||g: — 8|l cowrr) < b and
(3.10) and let ®RP(x,t; y,s) denote the scalar heat kernel for g; as described above. Then
there exist constants C = C(n,b), D = D(n) > 0 such that, for all t > 0 and all % <s<t,

|X—Y|§)

C
(DRD 9t7 ) =< -
(i) < eXp( D(t —s)

Proof. Since g; is uniformly b-bi-Lipschitz to §, there exists a constant ¢(n, ») > 1 such
that, for all » > 0 and x € R”,

(3.13) c(n,b)" 1" < volg, (Bg, (x,7)) < c(n, b)r".

Let g§; = x7g:, where (x;)s>0 solve the differential equation from (3.5) subject to the condi-
tion y; = id for some 7 > 0. Then g; is a Ricci flow, defined for r > 0, with g; = g7. Let ®RF
be the heat kernel for the operator 0; — A% on the g¢-background. Let 7 > 0. By (3.10), g;
satisfies the hypotheses of [7, Lemma 2.4]. Then, applying [7, Lemma 2.4] to the time interval
[%0, to], there exist C(n), D(n) such that, for s, € [%0, to],

dz (x,)
g(tg/2)
Cexp(—B5=5 )

1/2 — 12 —.
volgi 1oy Bzto/2) (X. /7 7°) VOlZ( 12 B (tos2) (1 fis)
Pushing forward by the y; and arguing as in the proof of [7, Lemma 2.9], we find, by (3.13),

PR (x, 1y, 5) = OF ()1 (). 15 x5 L (D), )

dz (CPRIEI N PRY6)))
Zag/2 X1 s
C CXP(— o D(i—s) )

1/2 _ — 1/2 - =
vol2 - Bauoyn (17 () o/ 52 vOl2  Brrosay (151 (1) /152

a2 (x,y)
g(tg/2)
c eXP(——g [Do(t—_s) )

1/2 — 1/2 —
vol /012y Bg(wo/2) (x. \V =) Vol /2y Be(to/2) (. V %)
C x—y|?
E e — exp (_|—y|8)’
(t —s)n/2 D(t —s)
with C and D adjusted. Since C and D and (3.10) do not depend on choice of #g, the estimate
holds with #¢ replaced by ¢, whence follows the result. |

CIJRF(x,t;y,s) <

IA

IA
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3.3. Preliminary results for the local masses.

Lemma 3.5. Suppose that O:R" — R”" is a rotation. If g is a C° Riemannian metric
on A(0,0.9r, 1.1r) for some r > 0 and ¢: R — RZ% is some smooth function not identically 0

on (0.9, 1.1), then Mco(O*g,¢.r) = Mco(g., ¢.r).

Proof. This is a calculation. Let Ol.j denote the ij-entry of the matrix for O so that
> i—1 0,0/ = 8. Then we have

/14(0,0.9r,1.1r)(n|;| (p(|X|) (|X|))8” (O*glj _511)
+ (ﬁ‘/’(bcl) (IXI)) 0%gij — u)T sz dx
N /A(0,0.Qr,l.lr)(n|):| (p(|’:_|) + %¢,(@>)5U(0fgab0}’|ox —8ij)

+(|)1€|(p(|x|) ;¢(|X|))(Oagab0b|0x lj)%dx
B /;1(0,0.9r,1.1r)(n|;|2(p(|)r;_|) Toe (Iyl)) (8 gaply — 87 87)
(1) 2 L (1) omgp 001, — 8 22"
" (|J’|(p< r ) g ( r ))(0’ 8ab 05 ly = 8ij) BE dy
N /A(O,O.Qr,l.lr)(n|;|2(p(m) + i‘ﬂ (|y|))(8abgab|y - 8”5,])

o) B e s

Similarly,

4 ( i )
v

| r

i

/ (0*gij — z/)
0A4(0,0.9r,1.1r) |
X

—(O*gjj—5jj)m ('f')v dS(x)

x|\ x/x/
= (0*gijlx =)o ()
/8A(o,0.9r,1.1r) v Y |x|2

2
—(0%gjjlx — u)w(|x|)(|x |)2 dS(x)

yl\ 01yt Oy™
- (0% bol? )¢ e mJ
/aA(o,O.Qr,l.lr) reanTy by =8 ( ) lyI?
y[\ (01y9)?
—«v&uﬁu—&md70—fﬁ—daw
I\ Yy
- Y
LA(0,0.Qr,l.Ir)(gem|y Zm) ) |y|2
_(Sabgabbf ]j)(p(|y|) |) ds(y). O
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We now introduce the following notation: if g is a C? Riemannian metric defined on
aregion in R” containing S(r) for some r > 0, then we write

(3.14) me2(g,7) 2=/ (0igij — 9jgii)v’ dS.
S(r)

If g is a C? Riemannian defined on a subset of a smooth manifold M and @ is a coordinate
chart for M such that ®. g is defined on a region in R” containing S(r) for some r > 0, then
we let

me2(g, D, r) := me2(Pug,r).
Here we record a calculation concerning the classical local mass; cf. [4, Proposition 4.1]. We
will make use of this calculation in Section 5.

Lemma 3.6. Suppose g is a C? Riemannian metric on R™ \ B(0, ro) such that

g = dllco®m™\B@.ro)) < b-

Forrg < ri < ra, we have

mc2(g,r2) —me2(g,r1) = / R(g) —c(n,b)|g — 8||V?g| — c(n,b)|Vg|* dVs.
A(0,r1,r2)

Proof. First observe that

R(g) = " @nTyy — 0T, + g*C(T] T, — T8 T

_ gkﬁgmp

[(0mOk gpt + OmOr&pk — OmOp&it) — (0¢Ok &pm + 0tOm&pk — O¢Op&icm)]

gke

+ T[(amgmp)(akgep + 0¢&kp — Op&ke)
— (0¢8™P)(Ok gmp + OmE&kp — Op&km)]

+ & (T T — T Tg)

n

1
= E[amakgmk + OmOk &mk — O &kk — (07 Emm ~+ kOm&Gmk — OkOm&km)]

mk=1 (gkﬂgmp _ Skﬁgmp)

+ 7 [(OmOk gpe + OmOe&pk — OmOp&it)
" — (0¢Ok&pm + 0tOm&pk — 0¢Op&ikm)]
+ S (@ g™ @kgep + dgkp — Ipsie)
- (aﬁgmp)(akgmp + amgkp — Op&ikm)]

Kt
+ & (T Tgm — T Tig)

n
= ) 908 — 9 gii
i,j=1
oyt + eyt — Omdpee)
Kt — (0¢Ok gpm + alfamgpk — 0¢gOp &km)]
+ S [@ng™) @ty + deghp — Ipsie)
- (aegmp)(akgmp + amgkp - apgkm)]

+gktrf,rm, — rd, T
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To summarize, we have

n
R(g)= ) 9digij —07gii + OFlgl,
=1
where
(gkﬁgmp _ 8k58mp
7 [(0mOk &pe + OmOegpk — OmOp&ike)
gkt — (0¢Ok&pm + 0tOm&pk — O¢Op&icm)]
+ 7[(amgmp)(akgfp + 0¢&kp — Op8ke)
—(0¢8"") Ok &mp + Om8kp — Op8km)]

ke
+ & (T Tgm — T Tig)-

0R[g] =

Therefore, if Y is the vector field on R” given by
n ) n
YYo= (@igij — 989
j=1 ij=1
and 71 denotes the outward unit normal to A(0, rq, ), we have

/; Z(algl] ]gll)v dS - / Z(algl, jgii)Uj ds

(r2) ; Z (ro) ;=

- / (Y. ii)s = / divg(Y) d Vs = / R(g) — 0Rlg]
0A4(0,r1,r2) A(0,r1,r2) A(0,r1,r2)

2/ R(g) —c(n.b)|g — 8||V>g| — c(n.b)|Vg|*dVs,
A(0,r1,72)

where V denotes the covariant derivative with respect to 8, as usual. O

3.4. Some elementary analytic facts. We first record the following variant of the Inter-
mediate Value Theorem for integrals.

Lemma 3.7. Suppose that ¢:|a,b] — RZ0 is a nonnegative continuous function such
that f @ # 0, and let f:|a,b] — R be any continuous function. Then there exists ¢ € [a, b]
such that

Ju FOp(®) at

fle) =
12wy ae

Proof.  This follows from the usual Intermediate Value Theorem. We have

S mingera) f($)e@)dl _ [7 f()p(0)dL

sg[l(;nb] f(S) fab (P(ﬁ) dl = ff (p(g) "
< fab maxsefa,b] f(8)@) dl
B 2o ae
= max _f(s),

s€la,b]
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so the Intermediate Value Theorem applied to f implies that there exists ¢ with

Ja SO0 dt

fle) = 17 o) de

We now record the following elementary result, concerning convergence of almost-mono-
tone sequences.

Lemma 3.8.  Suppose that (ax)7—, is a sequence of numbers satisfying
ag = ag—1 — b1,

for some sequence of nonnegative numbers (bi )72, satisfying Z;’io b; < oc. Then either ay,
converges or ay — +00.

Proof.  Define the sequence (Ax)7>, by

k—1
A = ay + Zb,’.
=0

Then (Ag)72, is (weakly) increasing. In particular, if (Ax) is bounded, then it converges to
some finite limit Ao, and if (Aj) is unbounded, then it tends to 4+o0. In the case that (Ag) is
bounded and hence tends to 4o < 00, we have

k—1 oo
lim a = lim A lim b = Aoo—;bi < 0.
1=

k—o00 k—00 “
=0

In the case that (A ) is unbounded, and hence tends to +00, we have
o0
ar = Ay — ) bi,
i=0
S0 ay — +o0 as well. O

3.5. Bi-Lipschitz maps and C° asymptotically flat transition maps. For0 <§ < I,
we say that a map ¢: D — C between open subsets of normed spaces is (1 + §)-bi-Lipschitz
if, for all x, y € D such that x # y, we have

_1p) — ¢ 0le

(1+8)7 ! <
lx —yIp

<1+43.

We will use this condition interchangeably with the condition that

lp(x) —o()lc

1-6<
|x —y[p

<1434

since we typically work with § that are very small, and in this case, the two conditions agree,
up to multiplying § by a constant. In this paper, we will usually take D and C to be subsets
of R", and when we say “bi-Lipschitz”, we mean bi-Lipschitz with respect to the Euclidean
metric.
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If C and D are open subsets of R” and ¢: D — C is C!, then we say that ¢ is locally
(1 + 8)-bi-Lipschitz for some § < 1 if, forall x € D,

(1+8)7" <|dp|lx <1+4386.
As above, we use this condition interchangeably with the condition that
1 -6 <|dpllx = 1+34.

If D and C are open subsets of R” and ¢: D — C is a C! diffeomorphism onto its image
such that, for some § < 1/2,

1-§<|dglcomy =1+3,
then
(3.15) 1-28 < [dp™ oy < 1+ 26.

This is due to the fact that, for all x € D, we have (after rotation by some orthogonal matrix O
depending on x)

dp o) = (ddl) ™ = 1 + (I —ddly) + (I —dg|)> +--- |
SO
|dep™ gy — 11 < 21 — dg|| < 26.

In particular, suppose C, D C R”" are open sets and x, y € D such that D contains the
line from x to y and C contains the line from ¢ (x) to ¢ (y). If : D — C is alocally (1 4 §)-
bi-Lipschitz map for some § < 1/2 and is also a diffeomorphism, then

(3.16) (1+28) 7 x =yl = (1 +28) o™ ($(x) — ¢~ (@)
< (14287 dp™ [ cow)lp(x) — B ()]
= lp(x) =) = (1 +28)[x — yl.
If f: D — C is any map such that, forall x,y € D, || f(x) — f(¥)|c — |x —y|p| <6,

then we say f is a §-isometry. We will compare §-isometries to (1 + §)-bi-Lipschitz maps in
Appendix A.

Lemma 3.9. Let ro > 0. Suppose that (}5: R™\ B(0,r¢9) = R”" is a local diffeomor-
phism such that, for some r > ro,

d(X)|rR"\BO.") = LIR"\BOr),

where L:R"™ — R" is a Euclidean isometry. Then $ |R"\B(0,ro) IS a diffeomorphism onto its
image.

Proof. Letr” € (ro, r). We will show that é IR\ B(0,r) is a degree one covering map
of its image. Fix some y € ¢(R" \ B(0,r")). We first show that there is a neighborhood
of y that is evenly covered. Write L(x) = Ox + v, where O is an orthogonal matrix and
v € R". Now choose ' > r > r”" as follows. Write y = ¢ (x) for some x € R” \ B(0,r").
Take r/ > max{|x|,7}. Then y € ¢(A(0, r”, r')) since x € A(0, 7", r").



Burkhardt-Guim, C® ADM mass and Ricci-DeTurck flow 21

Since (}5 is a local diffeomorphism and A(0, ", r’) is compact, a_l(y) NAQ,r",r')is
finite (otherwise, by compactness, there would exist some point x> € A(0, r”, r’) such that,
on any neighborhood of x4, 5 is not injective). There is at most one point in R” \ B(0, r’) that
maps to y under {5 since $ agrees with L and hence is injective in this region. Therefore, we
write

¢ () = xh a2 xR xR

where x1, x1, ... ,xk € A0, r”,r") and xk‘H e R™"\ B(0,r’). Since 5 is a local diffeomor-
phism, there exist disjoint open neighborhoods U’ of each x’ on which q~5 is a diffeomorphism.
LetV = ﬂff 11 #(U"). Then V is a neighborhood of y that is evenly covered by é |R"\ B(0,r")-

Now note that, since R” \ B(0, ") and hence ¢(R"™ \ B(0, ")) is connected (because
gb is continuous), to show ¢ is a degree one covering map, it is sufficient to show that there
is a point in the image of ¢ that is evenly covered by a single sheet. Note that, by compact-
ness, $(A(0 r”,r")) is bounded, but 5(]1%” \ B(0,r")) is unbounded because $ agrees with L
on R" \ B(0,r), which is unbounded. Therefore, there exists y € H(R" \ B(O r)) such that
y ¢ $(A(0, ", r")). In particular, ¢—1(y) consists of a smgle point in R” \ B(0, r) since ¢
agrees with L and hence is injective in this region. Therefore, ¢ is degree-one.

We have shown that 5 |R7\ B(0,) 18 injective for all r”” > rg. In particular, if

x,y € R"\ B(0,r9) suchthat x #y,

then there exists 7’ > ro such that x,y € R” \ B(0,7”), so ¢(x) # ¢(y). Therefore, ¢ is
injective on R” \ B(0, ro) and hence is a diffeomorphism onto its image. |

Lemma 3.10. Suppose that M™ is a smooth manifold and g is a C° metric on M, and
that E is an end of M. Suppose that ®1 and ®, are C°-asymptotically flat coordinate charts
for E so that there exist c;, > 0, ri > 1 such that, for all |x| > ry, we have

(3.17) |(Pr)&)ijlx — 8ij| < cxlx|~™.
Let ¢ denote the transition map ¢ := P, o <I>1_1. There exist
ro =ro(®1,®2) and r{ = ry(P1, P2) > ro
such that
(1) ¢ is defined on R™ \ B(O,r—o/l()) and is a locally (1 + %)-bi—Lipschitz map in this region,

(i) for all r > ro, ¢ is locally (1 + cr—™™7%2} i Lipschitz on R \ B(0, r/10), where
¢ =c(Py, Py),

(iii) ¢(R™\ B(0,r9/10)) D R"™ \ B(0,7¢) for some 7o = 79(P1, P3), and
(iv) forallr > ryandall x € R" \ B(0,r), B(¢(x),r/4) C ¢(R" \ B(0,r0/10)).

Proof.  As in the discussion preceding Definition 2.8, extend the
o7t (A(0,2,107)) and o;! (A(0,2, 107))

to compact exhaustions (K;)$2, and (K7)$2, respectively, of M. Let (X ’)fil denote the
sequence of connected components of M \ K; that contain

7 H(R™ \ B(0, 107)),
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and let (Y")l?’i1 denote the sequence of connected components of M \ K that contain
®51(R™ \ B(0, 10)).

By the discussion preceding Definition 2.8, we actually have that, for all sufficiently large i,
X' =@ Y (R"\ B(0,107)) and Y’ = ®;1(R™ \ B(0, 10")). Choose some i sufficiently large
so that this holds. Since ®; and ®, are both C-asymptotically flat coordinate charts for E,
(X! )72, and (Y! )72 determine the same end, and hence there exists j > i such that X oY/
and also there exists k > j such that Y/ > X¥ (see the discussion before Definition 2.8). In
particular, ¢ = @5 o @7 is defined on @1 (X*¥) = R” \ B(0, 10%). Now set ro > 10K*1. This
proves the first part of (i); the second part we will address after the proof of (ii). We will increase
ro throughout the proof as needed.

We now show (ii). First, observe that, because of (3.17), there exist ri > r1 and ré > rp
depending on c1, r1, 71 and ¢z, r2, T2 respectively such that, for k = 1,2, we have that

1
[(Px)xg — 8||C0(Rn\m) = 1o

Increase r| if necessary so that r{ > ro and ¢ is defined on R” \ B(0, r{). Note that, by increas-
ing r{ further, we may assume that, forall x € R” \ B(0,r}), ¢(x) € R" \ B(0, r}); otherwise,
we could find a sequence of radii £; — oo and a sequence of points (x;)72, with [x;| > {;
but ¢(x;) € B(0,r5) N ¢p(A(0,79/10,¢;)), which is impossible because otherwise, after pass-
ing to a subsequence, we would find ¢(x;) — y € B(0,r5) N ¢(A(0,r9/10,¢;)) and hence

xi — ¢~ 1(). Then, for any unit vector v € R” and any x € R" \ B(0, r}), we have

09 0.9 1 1
T = T(0.0) £ (@08 (0. v) ]y = (®2)eg(drg. dxg)l g
< 8(dxpv. dypv)
< L1(®2)xg(dxdv. dup) gy = 1.1@1wg (v, )]s
1.1

1.1
=090V =575

Therefore, 1/0.9/1.1 < |dx¢| < /1.1/0.9. In particular, if we increase ¢ so that ro > 10r],
then for all r > rg and all x € R" \ B(0, r/10), we have

(3.18) 16O = 1ddll coa Brorpy) dists (¥, B(O.71)) + lIdllco@po.r)
1.1 . —
< @dlsts(x, B(0,77)) + llgllco@ao,ry = Clx|,

where C depends on ¢ and r| but not x. Also, using (3.15), we have, for all r > ro and all
x € R®\ B(0,r/10),

x| = 16~ (@) < ldp ™" I dists (¢ (x), B(0,75)) + 6" lco@p(o.ry)) = Clo(x)],

where again C depends on ) and ¢ but not on x.
Returning to the proof of (ii), let ¢ = max{cy, ¢z} and T = min{zy, 72}. Now let r > r¢
and x € R" \ B(0, r/10). Condition (3.17) implies

[(@1)xglx = 8ij| <clx|™" and  [(P2)xglpx) —dijl < clp(x)|".
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Then, for any unit vector v € R”, we argue as above to find
(1 +clx| 772 = (14 c|x|7) 728(v, v)

< (1 +clx[T) NP, V) |x
= (1 + c[x|7)7H(@2)xg(dpv, dpv)|gx)
< 8(dpxv, dpxv)
= (L +clp)|T)((P2)+8) g (x) (dPxv. dpxv)
= (14 clp)[T)(P1)xg (. V)|«
< (I +¢clgp(0)[™)?8(v,v)
= (1 +clp(x)| 7%

In particular, for any unit vector v € R”,
1 =2¢|x|7F < |ldov|lcomn\B@.r/10)) < 1 + 2¢c|p(x)]| 7.
By (3.18), this becomes
1 —c|x|7" < [ldgvllcomn\B@,/10)) = 1 + clx|™",

where the constant ¢ is adjusted. This establishes (ii). The second part of (i) follows from (ii)
after possibly increasing ro depending on max{ci, ¢z} and min{zy, 72} so that

. 1
max{cy, cz}r_mm{“’rz} < 5

To see why (iii) is true, choose £ € N such that ro/10 < 10¢. Then
R"\ B(0,70/10) > R" \ B(0,10%)
and, by equivalence of (X') and (Y?), there exists m > £ such that
®7 (R™\ B(0.106) = X! 5 Y™ = o, 1(R" \ B(0, 10™).
Then we have
$(R" \ B(0.70/10)) D ¢(R" \ B(0.10%)) = @5 0 &7 ' (R™ \ B(0.100)) = &(X")
D @ (Y™) =R"\ B(0,10™),

so the result follows from setting 7o = 10™.

We now show (iv). Choose r(’) > ro depending on c1, 71, 71, C2, 72, T2, ¢ so that, for all
r>rg, cr~minTi T2} < 1/100, where ¢ is as in (ii). Then, by (ii), ¢ is locally (1 4 1/100)-bi-
Lipschitz on R” \ B(0, r;/10). We will increase r, further in the course of the proof.

Suppose |x| > ry > ro. By (iii), [¢(x)| > 7o, so we have

|¢(x)| = dists (¢ (x).9B(0.70))

= (1- 1%0) dists (x, ¢~ (B(0, 7))

= (1= 7o ) [l = 1™ oo |
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Increase r{, depending on [|¢ 1 || cO(B(0,7)) so that ry > 10]l¢ ™[ co(B(0.7))- Then, if [x| > r{,

|¢(x)|2< 100)(91%') |;|

If in addition we require that r) > 47, then it follows from the previous estimate that, for
r>rgand |x| >,

inf > |lo(x)|—r/4>r1r/4>T70,
popdE > I /42 /42 Ty

SO
B(¢(x),r/4) CR"\ B(0,70) C ¢(R™ \ B(0,7r0/10)).

This establishes (iv). m)

4. Distortion of the C° local mass along Ricci-DeTurck flow

In this section, we prove Lemma 2.6. We first record some results involving the requisite
evolving test function.

Lemmad.l. Foralln € N,a > 0.9, b < 1.1, there exists 0 = é(n,a,b) > 0 such that
the following is true. Suppose ¢: R — RZ% is a smooth cutoff function with
Supp(p) C (a,b) CC (0.9,1.1).

Forall 0 < 6 < 0, there exists a function pg: R x [O, 0] — R such that

@1 dupp(|x].1) = —Agg(lx].1) + B |2 §00(|X| 1) for(x,1) € R" x(0,0),

po(L.0) = ¢(0).
Moreover, pg(£,t) > 0 forall £ € R andt € [0, 0], and

c(n. llpllcom) d2,
" sup , lpg(|x],1)| < o2 ®) exp(— :9 ),
4.2) (x,1)€04(0,0.9,1.1)x[0,0]

sup lop(Ix].1)] <
(x,t)€0A(0,0.9,1.1)%[0,0]

where d, , = min{a —0.9,1.1 — b} and <p9(€ t) = ae(pg(ﬁ 1).

c(n, llellcr(r)) d3p
g exp(—?).

Proof. Let Flp](£) = foe o(s) ds, and let u solve
oru(x,t) = Au(x,t),
u(x,0) = Fle](|x|).

Since x — F[p](]x]|) is a spherically symmetric function, u(-, ) is spherically symmetric for
all > 0, and we may write u(x,t) = #(|x|,?) for all x € R", where #i:R x R=Z% — R is
smooth. Let ¢g(£,t) = 0,1 (£, 6 — t). Now observe that, because u is spherically symmetric,

Budyxu(x, 1) = By dyu(x, 1) = 3¢ (32 + = . 6|x‘)u(x f)
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n—

1
a|2x| | 2 a|x|)u(x )

= (3% + "|_

x|

= Aa|x|u(x t) — amu(x 1),

||2

where we use d|,| to denote the radial derivative. Therefore,

Orpg(|x|.1) = (=0 0xju)(x,0 — 1) = —AQxu(x,0 —1) + a‘x|u(x 0 —1),

||2

SO

21 (|x.1) = —Agg(lx]. 1) + x |2 <pe(IXI 0,

0o (L,0) = 0t (£,0) = F[o] (£) = p(0).
This proves (4.1). Let ®;(x, y) denote the usual scalar heat kernel on Euclidean space. To show
that pg(£,1) > 0, observe that, for all x € R”,

@o(|x], 1) = Oyu(x,0 —1) = 0x|Pg—; * Fle](]-]]x

1 Ix — y?
o ey (s n)P D ¢

B | x— P2
_[{y:x.yzo} ooy (e )P

1 Ix —y|?
+/{y:x.y§o} (@x(0 — 1)/ exp(~ 46— ) | 0 |

_ 1 Ix —y?
B /{y:x-m} ooy (e )P

" 1 Ix + y|? x-(—y)
e /{y:x-yzo} r@— )P exp<_4(0—r))‘p('y') >l “

1 =yl
R e

| 2

|x
_CXP( 400 — - )] (ly |)|x||y|

z 07
where the last step is due to the fact that if x - y > 0, we have

Ix+yP=xPP+yP+2x-y > xP+ [y —2x-y =[x -y

exp(_Ix + y|2> - exp(_Ix — y|2)
40 —1t)/ — 40 —1)/"
Towards (4.2), observe that, for all x € 04(0,0.9, 1.1), we have

and hence

o0 xl.0] = 18uCe,6 =0l = |50 (@ % Flgl(l-1)

X / CDO_,(x,y)aiF[f/?](WDdy'
R}’l

x|
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n i

x 1 Ix — y|? y'
— ———————exp|— e(ly))—dy
; |x] Jaco.a,p) (470(6 —1))"/2 ( 4(9—1)> M

1 da b
<cn,|ellcom / o n—2 XP\~ dy
( ”(/)” ( )) A(0.a.b) (9 _ t)n—2 p( 4(9 ))

c(n, lllcomy(1.1)") dgp
= O —1)n/? eXp(_4(9 — t))‘

2
Hlmen(-52)] =0

on (0, dib/(Zn)). In particular, if 0 < 0 < 0 < dib/(Zn), then for ¢ € [0, 8], we have

Now observe that

c leleom)d " dap ) < Seleleow) (_da_%b)‘
CEE 40 —1) on/2 40

The argument to show the second estimate is similar since

b (1] 0] = [0 u(x. 6 — 1)

x7 x! 1 Ix —y[? ) ]
—0 — = d
= J[Z T Lyonn gy a0 &
l~ xix/
'Zm (7 ~ )

1 Ix — y|2
X/A(Mb)wexp(—m_ )go(|y|)ﬂ ‘
1

)
(_Ix—ylz)
|x| |x| o) (@ — )2 " P\ 4@ = 1)
y

j i
(go (D757 +<o(|y|)——<p(|y|>y| |3)dy‘

_ 2
5% /A@,a,b) (4n(91,))n/2 exp(_'4(9 —yl>) GO
sewleleom [ o G ! 7 exp(—'4(9_ & S) dy
, 1 —yP?
+ye:(l<l>?a,b)6(n ||T>y|||co(R)) e exp(—|4x(9 _y l))dy
ccnlelow) o divy
arguing as before. O

Lemma 4.2. There exists 0 = 0(n) such that, for all 6 < 0, the following is true.
Suppose go is a C° metric on R™ such that ||go — 8| co®rny < & < 1 and for which there
is a smooth Ricci—-DeTurck flow (g;)¢>0 satisfying (3.8), (3.9), and (3.10). If p:R — R=0
is a smooth cutoff function with Supp(¢) C (a,b) CC (0.9, 1.1) and pg(€,1) is the function
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corresponding to ¢ and 0 given by Lemma 4.1, then

0 d 1.1
\/;O E[Mco(ghwe(t)vl)(/(;’g (pe(g’t)de)] dt
c(n) dﬁb o 2
__4 Vh
( 40 )+c(n,<p)f0 /A(o,0.9,1.1)|

- 9n/2
%]
+c(n,go)/ f ||V
0 A(0,0.9,1.1)

forall 6y € [0,0), where dg ), = min{a — 0.9, 1.1 — b}.

Proof Let 6 be as in Lemma 4.1. Write 9,04 (|x|,1) = —Agg(|x],7) + f(|x|), where
fO) =5 Log(€, 1), and let h;; = gij — 8;;. We write @y (L, 1) for ogpg(L,1) and f’(£) for
o f(0). We use (3.7) to obtain

9 d 1.1
/eo di [MC (g”l"""(f))(/og ‘/’9(£7t)d15)i|dt

6
d/ n—2 ,
= — o(|x|, 1) + x|,t))trg h
/90 dt A(00911)( |x| i #a (1 )

Iy

X X
(| |<00(|x| 1) — wé(lxl,t)) i |2 " dx di

P 0
xl . .
+ [ his g (] 0v7 — hyy (Il ) dS
24(0,09,1.1)  |x| | x| =6
0
n—2
- / [ = Agg(x].1) + £(x])]

0o A(00911) | x|

+ [—Agh(lel.0) + =

/;0 /A(o 0.9,1. 1) (X1 [))

X trg [Ah + Vh % Vh + V(h % Vh)]

6
—[=A
+/90 /A(00911) |x|[ vo(lx].0) + fIxD] |

[ Ag)(lx].0) + = |2 "L xl, t)+f(|x|)]) l,)l‘ 2 " dxdr

P (L0 + 7D ) s

Ff (Lo - g0en)
— @\ |X|, — Q| X],
6o JA(0,0.9,1.1) \|X] ’ ?
x [Ah + Vh % Vh + V(h % Vh)]:

i)

ij x |2 dx dt

xi . xi
+ / hij = pp(x]. 0T — hy; X gg(|x]. )V dS
A(0,0.9,1.1) |X| |x|

0 "2
- /;o /A(o,0.9 1. 1)( | x| [=Agp(lx|.1) + f(IxD]

7 "l + (D] s

t=0y

+[ Ay (). 1) + 2 :
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+ A(Tfpo(lxl 0 + gh(lx].0)) trs h
(| =Agg(xl t)+f(|x|)] N
~ [~ap1x1.0+ T2l + 7D ) u%
(k010 = 61, 0) 55 Yy v

0

+

A
x! x! .
/a lJ| |<p9(|x| v —hjj—gg(|x], )V dS

A(0,0.9,1.1) |X|
/o

/ 206(1x1.0) + g (1x1.0)) Vi x5 Vi
A(0,0.9,1. 1) |x|

[ .]

+ (|x|, ¢ x|, t Vh xg Vh
/O/A(Oom) E |<P9| 0= gyl s Th oy
xiyd
—i—[/ x|, t x|, t hxs Vh
o bisosn ((| o]0 = gy (1xl.0) T )

0
- 2= Agp(ixl )+ £(x))
0o A(00911) |X|
+[=agh el 0+ el + 7D )

t=0

_|_
>

+

’(|x|,t))h %5 Vh

n—2
+ A= ga(xl 1) + gh(x]0) s
x|

+ (L[—Ago9(|x|, 1)+ f(|x|)]

x|
~|[-Agp(xl.0 + %

x'x/

m (a0 + £/ (xD)] ) ar

|x |
((| eelll. 1) = g (1x, f)) |ITZJ)hU dxdt +C

0 . .
::/ [ Atrghdxdt—i—/ / Bx'x’h;jdxdt + C,
8o JA4(0,0.9,1.1) 80 JA4(0,0.9,1.1)

where

01 = D exp(- 252 e tglen [ [ o
on/2 46 0 JA4(0,09,1.1)

0
+ e, ||<P||C2)/ / Ih||VA].
0 JA(0,0.9,1.1)

due to the fact that, by (4.2) and (3.9), ||h|co®~x[0,6]) < c¢(n). Therefore, it is sufficient to
show that A = B = 0.
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Towards this objective, observe that
lxj
((| go(lxl.0) = gh(xl.0) T P Jhis

(| peellxl.n) = 2‘p9(|x| t))x x7 hyj

+2V(#§09(|x|7 t) — 2(09(|x| f))V(x xj)hlj

1 o
e 0) A0y

1 o
W%UXH))XIX%U

o000~ e €.0)(

1
+ (WQDG(MJ)—
1
= A(zea(xl.0) -
|x]

Xk (8 x/ —|—x"8{€.))h”
x| !

T e=|x|(

1
+2(ee(xl.n - Caep(ixl.n)

Therefore,

-2
— (n|x| [—Awe(lxl,t)+f(|x|)]+[ Agy(|x], z)+ x |2 <p9(|x| N+ f (|x|)])

+ A(ﬁ‘pGUXI 1) + gl xl. t)) + 2(

B=(ﬁ[ Aga(Ix].1) + £(xD] = [~Agp(lx].0) + =

1
+ (el -

Term A. We have

1
3(,09(|X|,[)—_2(p0(|X|,t) ’
| x| |x]

r |2 2 xl. z>+f(|x|>])| 2

1 d
el 0) 45 (oot = epen)

A:

— Agh(lx]) + * B §09(|x|) + f/(IxD

+ A(ﬁfpe(lﬂ) + 0p(1xD)) + Wwo(IXI) -

=Tf(| x]) + x |21<pé(IXI)+f’(IXI)

W‘/’/@(M)

-2 -2
+A( o )we(IXI)+2V( ") Vel
| 500D = v (1)
( B ) l 1
— o ¢9(|x|>+f<|x|)
—% o5 — 222 )
x | 2

2 2

n—4)n—1
ZTf(IXIHf(I =" Lol I)—%wo(lﬁcl)'
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If we take
0 =" g0
so that / 2(n D ( 1) ,
) = IE 0o (0) + 9o (0),
then we find
m2 A + 7Gxl = PR D ) — e+ gy
= %weuxb T (lx%wg(un,
so A =0.

Term B. We have

B = (I_I[ Agg (|x], t)+f(|x|)]—[ A(pg)(|x|,,)+’7|x__|21(p/9(|x|’t)+f/(|x|)])#

d
- A(mweuxm - W%(le D)+ l(;3<oe(z,z) E %wé(&r))l;—l

= = D = Tyl = = £ ()
1 1
8 (i )eo el +29(155) - Toslel. )
1 , ,
= M) eatiel0 - N(W) Vep(lx]. 1)

1 1 1
+4( 4<P0(<’z 1)+ 3‘/’9(5 H+2 3%(6 t) — 2(/)9(@ ))’€=|x|m

15—-3n 6 8—2n , 4
+ NE we(lxl,z)—W<p9(|x|,t)—|—|4”go9(|x|,z)+W(pe(m,z)
12 12
_W§09(|XI,Z)+W¢é(|x|,t) x |3g09(| x|, 1)
1 31—
= D = o b+ 2 a0 + Sl

Taking f({) = (" -0 40 (€) as above, we find

#f(lxl) - |2f (1<)

(-1 1 20-1) (-1,
= 1 (e #0D) = 1 (= 9 + = (D)

e I e )

—3(’|1| D o 1)) - (| |4)¢9(| .

so B = 0 as well. O
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Corollary 4.3. There exists ¥ = r(n,n) such that, for all r > r, the following is true.
Suppose gq is a C° metric on R™ such that ||go — Sllcomny < & < 1 for some ¢, and for which
there is a smooth Ricci—-DeTurck flow (g;) >0 satisfying (3.8), (3.9), and (3.10). If p: R — R=0
is a smooth cutoff function with Supp(¢) C (a,b) CC (0.9, 1.1) and ¢—n (£, 1) is the function
corresponding to ¢ and 0 = r~" given by Lemma 4.1, then

/:2—77 jt |:MCO (gt’(pr n(rtz) r) (r /0.19.1 Qr—n (6, :—2) dﬁ)] dt

0

d?
<ce?rm 4 ¢ (n)r””/2+" 1 exp( Zbr")

forall Oy € [0,r>7M), where ¢ = c(n,¢) and dg , = min{a — 0.9, 1.1 — b}.

Proof. Let 6 be as in Lemma 4.2. Let
il\(x,t) = h(rx,r?t) = g(rx,r’t) —§ =: g(x,1) — 6.

First note that
r27n 1.1

[ et B [ orle ) a0)

2—n

[, e s A N YR
= —_— (p _n(_v_) _(p - (_,—)) T x’
6o At Ja,09r1.1r) " |X] " 2 S\

1 x| 1, /lx] t))hij(x,t)xixj
—@pnl—, =) ) ———S——dxdt
+(| |('0r (r r2) P n(r r2 |x|? *
r2=n

+/ df I x! lx| 2\
(L)
6 At Joapooriar = lx|T ror?

x! x| ¢\ ;
— hjj ﬂ(ﬂr—n(T, r—2>Ul ds dt

= (x|, ) + (Jx1].1) trh(x 1)
/00/r2 dt /A(oOQll)( | x| eron(lx] ern(ll )

(| (1310 = gl )t - |2 ~dxdr

pn—1 ~ X
hij—@r—n(|x],t)v’
/;o/ﬂ dt /6A(oo911) U| e

h“| |(pr n(|x|, 0)v! dS dt

n

r— 1.1
:rn—I/ j |:Mc (&1, or—n (1), 1)(/ (pr—n(ﬁ,t)dﬁ)i|dt
6o/ r2 Al 0.9

Therefore, if r is sufficiently large depending on 7 and n so that we may apply Lemma 4.2
with & = r~" and so that =" < 0.25, we have

1.1

e G N )

r—1n d 1.1
< [Mco(gt,gor (1), 1)( / wr—nw,r)dz)] i
0o/r2| dt 0.9
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d2
< pn-l [c(n)r”"/2 exp(——‘;’b r”)
Fn
+eng) [
0

r_rl
+ c(n,go)/ / 1h1Cx, OIVA|(x, 1) dx dz]
0 4(0,0.9,1.1)

f |Vh|2(x,t) dx dt
4(0,0.9,1.1)

d2
=1 |:c(n)r’”’/2 exp(——‘;’br")
r—n
+c(n,<p)/ [ r2|\Vh?(rx, r?t) dx dt
0 A(0,0.9,1.1)
r—n
+c(n,g0)/ / r|h|(rx, r2t)|Vh|(rx, r?t) dx dz]
0 A(0,0.9,1.1)
_ n—1 nn/2 daz,b n
=r c(n)r exp(—Tr )
r2—n
+c(n,<p)/ / r2 21V R |2 (x, 1) dx dt
0 A(0,0.97,1.1r)
r2—n
+c(n,<p)/ / 200 (x, 1) | VR (x, 1) dx dz]
0 A(0,0.97,1.1r)

2
= c(n)r'”’/z’L"_1 exp(——d';’b r")

cn.p) [T
e / / IVhI2(x, 1) dx di
r 0 A(0,0.97,1.1r)

cn.g) [T
+ 2L / / \h|(x, )|V h|(x, 1) dx di
r 0 A(0,0.97,1.17)

nn/24+n—1 dib n
<cn)r exp —Tr

0.25r2
+M/ / \Vh2(x. 1) dx dt
r 0 B(z1,0.5r)

0.25r2
C(n’z(p) / |h|(x,t)|Vh|(x,t)dx dt
r 0 B(z2,0.57)

d2
=: c(n)r"’7/2+”_1 exp(——‘;’br") +A+ B

+

for some zy,z, € A(0,0.9r, 1.1r), where z; and z, are chosen as follows. Let {z; }f.‘zl be a

maximal collection of points in A(0, 0.9, 1.1r) such that the B(z;, 0.25r) are pairwise disjoint.
Observe that {B(z,',O.Sr)}f.‘=1 is a cover of A(0,0.97, 1.1r). Choose z; and z5 from {z; }f.‘=1
so that

0.25r2
/ / |Vh|?(x,t)dx dt
0 B(z1,0.5r)

0.25r2
= max / / |Vh|*(x,t)dx dt,
i=1,..k Jo B(z;,0.51)
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0.25r2
[ [ o
0 B(z>,0.57)

0.25r2
= max / / |A|(x,0)|Vh|(x,t)dx dt.
kJo B(z;,0.57)

i=1,...,

We have k < ¢(n) since

k
kwn (251)" = ZlB(zi,0.25r)| < |A(0,0.65r,1.35r)| < w,(1.35r)",
i=1
o)
1
—/ / |Vh|?(x,1) dx dt
rJo A(0,0.97,1.1r)
1
+—2/ / |A|Cx,0)|Vh|(x,t)dx dt
r=Jo A(0,0.97,1.17)
k 0.25r2
=< —/ / |Vh|?(x,1) dx dt
rJo B(z1,0.57)
k 0.25r2
+ = / |h|(x,)|Vh|(x,t)dx dt.
r 0 B(z5,0.5r)
Note that, by Holder’s inequality,
1 0.25r2
- / |h|(x,t)|Vh|(x,t)dx dt
r=Jo B(z2,0.57)
c(n)
=3 1] 50 (B(2.0.5r)%(0.0.25r2) "™ 2T U | VA L2(B(25.0.51)%(0.0.2572))
so (3.9) implies

A+ B <con,or" (™" ”Vh”%,2(3(21,0.5r)x(0,0.25r)))
+c(n, )" 2 R 0B (2,051 %(0,0.2572)
X |[Vh(L2(B(z2,0.5r)x(0,0.25r2)))
<cmlhlxr"™" <cm.@)er" "

This completes the proof.

Proof of Lemma 2.6. The first statement is due to Lemma 4.1. Towards the second, let
r be as in Corollary 4.3. Now observe, by Lemma 4.1,

d 1.1 1.1 n—1 n_1
‘Efog @r—n(@,t)dﬁ‘ = ‘/09 —rn (L, 1) — T(p;_n(ﬁ,z) + E—Z%_n(g,,)

= '—cp;_,,(l.l,t) + ¢.-n(0.9,1)

n—1 1.1 YWd -1
—[ ot - fw ﬁ[T]wr—n(e,t)de}

1.ln_1
+/ — (L, 1) dl
00 2
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= ‘_(p;'—ﬂ(l'l’ [) + ‘p;—n(o-g, Z)

I A I L
11 o 0.9

11}’1—1 lln_l
_/09 — ¢,n(e,t)de+[09 oLy d

c(n,¢) p(_(da,b)zrn)‘

= 2 ST

-1
(pr 7](0 9 t)

In particular, for ¢ € (0, rz_"), we have

EL (e )] <

4.3)

C(l’l, (/)) nn/z
—F T
72

exp(—D(a, b)r™).
We also have

@4 )MCO(gt, oo, ;—2))‘ < c(n, )"

for all # > 0, by definition and (3.9).
Combining (4.3) and (4.4) with Corollary 4.3, we find

Ji L (erro )

/rz_n %[Mco(glvr’w("r%))( f 0.9 90(6 rz)dE)]
fo r 01.'9190(6’72)0”"Z

/ﬂ_n Mco(ge.ro(-5))(r foo 05 o5 dO) g oy o35 d1] df‘
fo [f 0.0 9L, Z)dg]

1.1

[0 ilesnal- 2D [ oo ) )] o

r2=n 1.1
d t
n—2
+c(n,@)r / o /0.9 (p(ﬁ rz)dﬁ‘dt

6o
<cn,)e?r" 2 4+ c’(n)r””/z"'”_1 exp(—D(a,b)r™)
+c(n, (,0)1*"_2"'””/2_2"'2_’7 exp(—D(a,b)r™)

<cn,9)e?r" 2 + ¢(n, <p)r”_2+”"/2_2+2_" exp(—D(a,b)r™).

:

—+

_ <o)

r

This proves the second statement of the lemma. To prove the third, increase 7 and hence r
depending on n, n,a, b, ¢g, and t so that cor~ ¢ < 1 for all r > 7, and so that

c(n, gD)rn—2+nn/2—2+2—n exp(—D(a,b)r") < c(n,n,a,b, T)r" 2727,

where c(n, @) and D(a, b) are as in the previous estimate. Then the result follows from the
second statement of the lemma. ]

Remark 4.4. Let r be as in the third statement of Lemma 2.6, and let g¢ and g; be as
in the hypotheses of that statement. Arguing in a similar way to the proofs of Corollary 4.3 and
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Lemma 2.6, we also have that, for all o« > 0,

/ ot (- ) an

n—2-2t

<c(n,¢.co,)r

5. Monotonicity results for the C? local mass

We first record the following lemma, which is essentially a special case of [6, Lemma 5.9]
in the case of Ricci—DeTurck flows with a Euclidean background.

Lemma 5.1. There exists 6 = 0(ko,n, B) such that, for all 0 < 0, the following is true.
Suppose that (g¢)¢>0 is some smooth family of Riemannian metrics on R" evolving by (3.4)
and satisfying ||g: — §||comn) < 1 and (3.10). Suppose that, for some ko € R, B € (0,1/2),
x €R", and 0 < 0 < 0, condition (2.3) holds for g: at y with the lower bound kg, for all
y € B(x,28 /(2B —1)08). Then

2 e(n)2i~! 2
i=1

where D = D(n) and R8 (-, 0) denotes the scalar curvature of g; att = 6.
Proof.  'We show the contrapositive. We first prove a claim.

Claim 1. Under the hypotheses of Lemma 5.1, if R8 (x, 0) < K, then there exists a se-
quence of points x* € R such that, for all k,
(i) x* e Bg(xk=1,(0/25)8), and
9 28
(i) R(K,0/2%) <o+ Xi g exp(—peira=r5)
for some constants ¢ and D’ that depend only on n.

Proof of Claim. We apply Lemma 3.4 to (3.12). Set x = x, and suppose that

(n) exp(- (9/2)2ﬂ)
D6
on B(x°,(0/2)#), where ¢ = ¢(n) and D = D(n) will be determined in the course of the
proof.
First let C = C(n) and D = D(n) be the constants from Lemma 3.4. Observe that, by
Lemma 3.4, we have, for all k € N and x’ € R”,

Rg( ,0/2) > ko +

/ ORO(x’, 6/25 1y, 6/2%) dy
R\ B(x",(6/2%)#)
(6/25)8 f C(n) o —yP2
e ) — 7 4 N
= 305729) Jampee oo @207 “25728) @
(6/2%)%F )
D(6/2+T)

where C’ is some constant that depends only on 7.

<C’'(n) exp(—
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Then, by (3.11), we have
ko > R8(x°,0) > / ORP(x0,0:y,0/2)RE(y,0/2) dy
B(x0,(6/2)#)

+/ ®RD(x0,9;y,9/2)Rg(y,9/2) dy
R\ B(x9,(0/2)#)

c(n) (0/2)%F
= (KO*TGXP(— Do ))
x (1 —/ dRP(x0,6:y,60/2) dy)
R”\B(x0,(6/2)5)
)

0 JrRm\B(x9,6/2)8)

dDRD(xO,G;y,G/Z) dy

- (K() + ? exp (— —(9/D2225 ))C "(n) exp (— (ggzw )
¢'(n)C'(n) (6/2)*
-5 (55 )

This is a contradiction if

<) exp(— ©/27% ) - (KO + ) exp<— 0/27% ))C’(n) exp(— ©/2 )

0 D6 Qﬂ DY pe
/ / 2
i.e. if
Doa-U2) > (1= e~
[ P onl -5 e el -]

This can be achieved by choosing ¢(n) > 10¢’(n)C'(n) and 6 sufficiently small depending on
B, n, and k¢ so that, for all 6 < 6,

0/2)%
. c'mexp(—207) <
' 0/2)%F "(n)C’ 0/2)%f
KOC’(n)exp(—( é); ) < ¢ (n)@ ) exp(——( é); )

Thus, by contradiction, there exists some x! € B(x?, (6/ 2)#) such that

0/2)%
Rg(x1,0/2)<xo+$exp(—( /ng )

We now iterate this process as follows: suppose that there exists x¥ € B(x*¥~1, (6/2%)#)
such that

c(n) ( (6/2)* )

k
R(xk, 9/2") < ko + Z 6721 exp _D(Q/Zi_l)
i=1
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but that
k+1

R(-.0/2TY =g+ Y ———

i=1
on B(x¥, (9/2k+1)B). Arguing as above, we then have

c(n) (6/21)%F
O+Z /211 ( D(@/Zi_l))

c(n) (6/2)%F
6/2i—1 p(_D(e/zi—l))

> R(x*,6/2%)

- [ OR0(x,0/2%; 3, 0/2 )RS (3,6/24) dy
B(x,(0/2k+1)B)

+ ORP(x, /2 y.0/25F ) RS (7.0/25") dy
R”\B(x (8/2k+1)8)

c(n) (6/2)%
( o+ Z 9/2i—1° ( D(e/zi—l)))

x (1 —/ ORP(x, 6/2%; y, 9/2k+1)dy)
R7\B(x,(6/2k+1)8)

_ )C'(n) (6/2k+1)26
6/ 2k exp( - D62k )

c(n) (0/21)28 c(n) (0/2k+1)26
>""Jrze/zt i ( D(@/zi—l)) + exP(_ Doj2k )

k+1 c(n) (9/21)2/‘3 , (9/2k+1)2l3
(""*Ze/zl r (- D(e/zf—w))c(”)exp(_ D@ )

c'(n)C'(n) (6/2k+1)26
YT exp( - D62k )

Decrease _0_ further depending on 7, §, and k¢ so that, in addition to (5.1), we also have, for all
0<0 <0,

c(n) exp(_ (9/21'-1-1)2/3

D0/ ) <.

Arguing as in the base case, we produce a contradiction. This proves the claim. |
Now suppose R(x,6) < kg, and let (xk),‘z‘;o be as in the claim. We show that there is

some
® ¢ B(d(x),28 /(28 — 1)6P)

such that x¥ — x° and (2.2) fails at x°°. Towards the first assertion, observe that, for any 2, m

with n < m, we have
m .
1 \!
B(_—
d(x", x™) < E ] (23) ,
I=n

which can be made arbitrarily small for n and m sufficiently large, since Y 7o (2%)" converges.
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In particular, (x*) is Cauchy and hence converges to some x® € M. Moreover, we have

i = i, 7 < 500 ) = (57) (5
i=k i=k
and - ' ,
d(x, x®) < ;}93(2%)’ - (2;—_1)95.
=

Therefore, x> € B(x,28 /(28 —1)0#) and x¥ € B(x,2# /(2P — 1)(8/2%)B). Moreover, we
have

R(x* t/2k) < ko + i cm2™! exp( 2 )
, 0 —F S aAi1=28 )
— 0 D’(0/21)1-28

so g does not have scalar curvature bounded below by

2, c(n)2i~! 2
Ko + Z 2 exp(_D/(Q/zi)l—zﬂ)

i=1

in the B-weak sense. Thus we have shown that if (2.2) holds on B(x, 28 / (28 —1)68 ) for the

lower bound -~ '
c(n)2i—1 2
Ko + Z — eXp(_—D/(G/zi)l_zﬂ ),
i=1

then R(x, 0) > ko. The result now follows from replacing ko by

>, c(n)2i~! 2
Ko — Z T exp(—W) O

i=1
Lemma 5.2. Foralln >0, A>2,n e N, and B € (0,1/2), there exist

c=cn, A B,n) and T =r(n,np)

such that, for all r > 1, the following is true. Suppose that (g¢)¢>o is some smooth family of
Riemannian metrics on R" evolving by (3.4) and satisfying ||g: — §||cowr) < 1 and (3.10),
and that, for some B € (0,1/2) and x € R", condition (2.3) holds for g; at y with the lower
bound 0 for all y € B(x,28 /(28 — 1)r'=B). Then, for all t € (0,277,

R(go)|x = —c(n, A, B,mr—4

Proof. Choose 7 sufficiently large such that 7" < 6(0,n, B), where 0 is as in Lem-
ma5.1.Letr > rand 6 < r~". Consider g(t) := 2g(rzt) which, by Remark 3.1, is a Ricci—
DeTurck flow with respect to the constant background §:=1 —38. By Remark 2.5, g(0) has
nonnegative scalar curvature in the S-weak sense on B3 (x, 28/ (ZB —1)6#), soby Lemma 5.1,
we find

2 2p8 2% c(m2 ! 2
¢ _ 2R8 —r s
R8(x,0r°) =r “R%¥(x,0) > —r ; 0 exp( D(0/2i)1_23)'
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Moreover, if A > 1, then

oo o0

5 ) - S (o n(5) )

i=1 i=1

S n o))

i=1
© 1 \i-l
= c(n. . A)pA Z(zA_l)
i=1

<c(n, B, Ao

Then, for all £ € (0,r%77), t = 0,r? for some 6; € (0,r"), so the previous analysis implies
that, forall A > 1,

RE(x,1) = RE(x,0,1%) > —c(n, B, A)r 20471 > —c(n, B, A)yr ~2(r~"A~ 1,

Replacing A by 2 + nA — n > 2 yields the result. ]

Proposition 5.3. For all co > 0,7 > (n—2)/2, B €(0,1/2), 0 <n<2t—(n—-2),
there exists ¥ = (n, co, T, B, 1) such that, for all r > 7, the following is true. Let g be a C°
metric on A(0,0.8r,12r) such that ||g — 8{|c0(4(0,0.8r,12r)) < cor™". Suppose g has nonneg-
ative scalar curvature in the B-weak sense on A(0,0.8r, 12r), and suppose that there exists
a C° metric go on R™ that agrees with g on A(0,0.95r,11.5r), for which there is a smooth
Ricci-DeTurck flow (g¢)¢>o satisfying (3.8), (3.9), and (3.10). If ' and ¢? are any two smooth
functions with nonzero integral over (0.9, 1.1) that do not change sign on (0.9, 1.1), then for
all v’ € [%r, 10r], we have

Mco(go—n, @', 1) = Mco(g,2-n, 92, 1) = —c(n, co, T, B, n)r" 272710,

Proof. Take r sufficiently large depending on ¢g and 7 so that, forall » > 7, cor=° < 1,
and increase 7 as necessary depending on 8,7, and n so that Lemma 5.2 holds. Increase r
further depending on 1 and B so that, for all » > 7 and all x € A(0,0.97, 11r),

B(x,2P /(28 — 1)r'="8) c 4(0,0.95r,11.5r).

Fix r > 7. Now let r’ € [%r, 10r]. Using Remark 2.2, we find that, by Lemma 3.7, there exist
values €1, £, € [0.9, 1.1] such that, using the notation of (3.14), we have

Mco(gpon.r' ¢") = Mco(g,2n,1,¢)
= f01'~91 me2(gran. r'Op! (O) d _ fol.él me2(gpa—n, r0)@? (L) d{

Jos o1 dt Jos V2O dt
_mea(gpon ') fop 91 (O AL mea(gran.rla) [y 97 (1) d
te ol (0 dl foy 920 de

= mc2(gr2—n,1'1) —me2(gr2-n.1L2).

Recall that r’ > (l)%;r, sol1r’>0.9r" > 1.1r > £pr and A(0, o1, £11") C A(0,0.97,11r). Also,

by Remark 2.4, (2.3) holds for g; atall y € A(0,0.95r, 11.5r). Therefore, we apply Lemma 3.6
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and Lemma 5.2 with A = 2 + 27 —nto g; att = >~ and use (3.9) and (3.10) to find
Mco(gr2—’7v r/’ (pl) - Mco(grz—'h r, (,02)
= mc2(g,2-n. r'ly) — mc2(gy2—n,12)

> f R(gyon) — c(m)g — 8]|V2g| — c(n)| Vg Pdx
A(o,rlr,r't1)

—21
c(n,co)r
Z/ —c(n, T, foq)r 2720 — clnco)r = 20_),7 dx
A(O,rez,r/fl) r
> —c(n,co. 1, B, ) (r'€y)"r—2727 11

n—2—-2t+n

> —c(n,co,t, B, )1 D

Corollary 5.4. Forallco > 0,7 > (n—2)/2,8€(0,1/2),0 <n <2t —(n—2),and
all smooth cutoff functions

¢:R — R=% with Supp(e) CC (0.9,1.1),

there exists ¥ = r(n, co, T, Supp(@), n, B) such that, for all v > r, the following is true. Suppose
g is a continuous metric on A(0,0.8r,12r) C R" such that ||g — 8||c9(4(0,0.8r,12r)) < Cor ™ *.
Suppose also that g has nonnegative scalar curvature in the -weak sense on A(0,0.8r, 12r).
Let or—n (£, t) be a smooth solution to (4.1) corresponding to ¢, given by Lemma 4.1. Then, for

allr’ € [%r, 10r], we have

MCO(g, §0(r/)—”(' ’ 0)? }"/) - MCO(g, (pr_”(' > O)’ r) = _C(n9 €0, 9, T, ﬁv n)r
Moreover, if 7: R — RZ% is another smooth cutoff function with Supp(@) CC (0.9, 1.1),
then there exists ¥ = r(n, co, T, Supp(¢), Supp(®), n, B) such that, for all r > 7, the following
is true. Let g and @,—n be as in the previous statement. Suppose @y—n (£, t) is a smooth solution
of (4.1) corresponding to §, given by Lemma 4.1. For all ' € [%r, 107], we have
n—2—-2t+n

n—2—-2t+n

Mco(gv éﬁ(r’)_”("o)’r‘/) - MCO(gNPr—"("O),’") = —C(”’CO’(P,@ T?:B’ 77)”

Proof. Take ¢ as in Lemma 3.2 and take r sufficiently large depending on cg, 7,7 so
that, for all r > 7, cor~ " < &. Increase 7 as needed to guarantee that 7 is sufficiently large so
that both Proposition 5.3 and the last statement of Lemma 2.6 hold, and so that Lemma 4.1
holds for § = 7. Now fix r > 7 and let go be an extension of g to R” that agrees with g on
A(0,0.85r,11.5r) as given by Lemma 3.2, and let (g;)s>0 be a Ricci-DeTurck flow for g,
whose existence is guaranteed by Lemma 3.2 as well.

Note that

p2-n
oo )
does not change sign on (0.9, 1.1) by Lemma 4.1. Since gg agrees with g on A(0, 0.85r, 11.5r),
we have, by Lemma 2.6 and Proposition 5.3,

Mco(g, ¢qry—n(-.0).r") — Mco(g, or—n(-.,0),r)

p2n
> Mco(g, ¢¢n-n(-,0), 1) — Mco (ng—m P@rry—n ( » W) r’)
p2n

+ MCO (gr2—777 (p(r/)777<' ) W)’ r/) - Mco(grz_"’(p’ r)

+ MCO(grz—n,(P,}") - MCO(g, ‘/’r*”('»o)»”)
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g t
> — —M 0( y n— (',—), /) dt
> /0 ‘dt colge vz ) T
2—n
r /
+ MC0<gr2*”’99(r’)—"<"W)’r ) — Mco(gr2-n,¢,1)
g t
— —Mco(gy, (—) ‘dt
/O ‘dl co(gre\ . 5).7)
> —c(n,co, @, T, B,n)r" 22T,

where in the last step we have applied the last statement of Lemma 2.6 to the first and last terms
r2—n

and made use of the fact that ¢, (-, —~) = ¢(- ), and we have applied Proposition 5.3 with

)
p2n

ol = ‘p(r’)—"(" ) and ¢ =g

to the second term. This proves the first statement.
To prove the second statement, increase 7 so that Lemma 2.6 and Lemma 4.1 also hold
for ¢ with 6 = ¥~". Fix r > r, and argue in the same way to find that

Mco(g, §ry=n(-,0).7") — Mco(g, gr=—n(-.0).7)

- - r2
= Mo (8. Giy-o(0).1') = Mo (g2 By W) )
- AN
+ Mco(grz—n, gO(r/)—n(- s W), r ) - Mco(grz—n, ®.1)
+ Mco(grz—”v @, 7') - MCO(g, (Pr—"(' 70)9 }")
2 _C(n’ CO’ (pa a, T, ﬂs n)rn_z_zr—'_n’
where now we have applied Proposition 5.3 with
2—n
¢! =<'5(r')—n(-,r—) and ¢* = g. O
(r')?

Remark 5.5. A similar argument also implies the following statement: for all co > 0,
T>m—=2)/2,8€(0,1/2), 11,12 € (0,2t — (n — 2)), and all smooth cutoff functions
¢:R - R=% with Supp(p) CC (0.9,1.1),
there exists 7 = 7(n, co, T, Supp(¢), 11, 2, B) such that, for all » > 7, the following is true.
Suppose g is a continuous metric on A(0, 0.8r, 12r) C R” such that

g —8llcoac0,0.8r,12r)) < cor °.

Suppose also that g has nonnegative scalar curvature in the S-weak sense on A(0, 0.8r, 12r).
Let ¢,.—n (£, ) and ¢,—n (£, t) be the smooth solutions to (4.1) corresponding to ¢, given by
Lemma 4.1. Then, for all ' € [%r, 107], we have

Mco(g, @y (+,0),1") = Mco(g, ¢p=n2(+,0),7)
> —C(n,CQ,(p, T, /3, n)rn—2—2t+max{n1,n2}‘
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To see why this is true, let n = max{ny, 12} so that ¢,—n; (£,t) and ¢,—n> (£, t) are both
defined and do not change sign for # € (0,7277). Let 7 be as in Corollary 5.4 for this value
of 1. Then the result is proved by arguing as in the proof of the first statement of Corollary 5.4
but with Proposition 5.3 applied to

2—n 2—n
(ﬂl = Q- (.’ ’('rW) and 902 — @r_"2(', V’rz )

Lemma 5.6. Suppose g is a continuous metric on R"™ \ B(0,ro/10) such that g has
nonnegative scalar curvature in the B-weak sense and ||g — 8||cO®m\B(0,ro/10)) < € < &(n),
where &(n) is as in Lemma 3.2, and also |g — 6|x < co|x|™* for all |x| > ro/10. For all r > 0,
let L":R" — R" denote the map given by L"(x) = x + v for some fixed vector v, where
|v| < br. Then, forall b > 1 and all 0 < n < 2t —n + 2, there exists ¥ = r(b, ro, B, n) such
that, forallr > ¥ and all 1 > (1 + b)r/0.9 and ro > (br + 1.1r1)/0.9, we have

Mco(g’ ‘/’rz—”(' ’ 0)’ r2) > MCO((Lr)*g7 (/)r]—”(' s 0)3 }"1) - C(l’l, o, ¥, T, ﬁ’ n)rn—2—2r+7]‘

Proof. Let go be an extension of g to all of R” that agrees with g on R \ B(0,r¢/5),
such that ||go — §[|comn) < e. Let g; be the Ricci-DeTurck flow starting from gg as in Lem-
ma 3.2. Letr > rg and fix r > 7. We will increase r as needed in the course of the proof. First,
we have a couple of observations.

(i) B(0,r9) C B(v,0.9r1) since r > ry.
(i) B(v,1.1r1) C B(0,0.977).
For all x € B(0, 1.1r3) \ B(v,0.9r1),if y € B(x 2° r1=BM) then (i) implies that

> 281
912 Inl = B 2 o] o] =
- 28 —1 - 28 —1
—bhr — 1-pn _ 10
> +byr—br 2ﬂ_1r >5,

where the last step is true provided that 7 and hence r is big enough depending on 7, 8, and ry.
Therefore, go has nonnegative scalar curvature in the S-weak sense on

B(x i rl_’g")
28 1

since go agrees with g on R” \ B(0, r¢/5). In particular, by Lemma 5.2, if we take 7 > rg
depending on n, 7, 8, n and let r > 7, we have that, for all x € B(0, 1.1r,) \ B(v,0.9r1) and
allt € (0,r%77),

(5.2) R(x,t) > —c(n,t, B, n)r 272711,

Now note that if g is any smooth metric, then we have

meaLEr) =) [ @(LTRy ~ 3L B | dSw)
S(O,r) X
= c(n) (0;8ij —9;8ii)v’ dS(x)
S(Oar) x+v
= c(n) (0 &ij —0;8i)v’ | dS(x).
S(v,r) X
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Moreover, (ii) implies that B(v, £r;) C B(0,£'ry) forall £,£" € (0.9, 1.1), so arguing as in the
proof of Lemma 3.6, we have

(5.3) mec2(8.4'r) —me2((L7)*g, Lry)

>

f R(Z) — c()|g = 8||V?E| — c(n)|VEI* d V3.
B(0,£/r2)\B(v,4ry)

Now observe that (L")*g; is a Ricci-DeTurck flow with respect to (L")*§ = §, satis-
fying (3.8), (3.9), and (3.10) for (L")* g, so arguing as in the proofs of Proposition 5.3 and
Corollary 5.4 and applying (5.2) to (5.3) with ¢ = g,2—», we find, for some £, £, € (0.9,1.1),

Mco(g.¢p-n(+.0).r2) = Mco((L")*g. @0 (-, 0).71)

i d t
== [ [ (ern () )|+

dt 3 /B<o,ezr2>\B(v,e1r1)
— )8, rz-n — 8lIV?&(,ry2-nl — IV g, ry2-nl* d Vs
2—n
" d 7% !
[ LGmer (@ ()0
n—2—2r+n‘

R(g,r)2—n)

> —C(}’l, o, ¢, ‘E’IB’ n)r

6. Comparing masses in different coordinate charts via gluing

Proposition 6.1. There exist § = §(n) < 1 and ¢ = ¢(n) such that, for all § < § and
all r > 0, the following is true. Let ¢: D — C be a diffeomorphism between some domains
C, D C R" such that, for some r >0, R" \ B(0,r/10) C D and, for all x € A(0, r, 10r),
B(¢(x),r/4) C C. Suppose that ¢ is locally (1 + §)-bi-Lipschitz on R"™ \ B(0,r/10). Then
there exist a Euclidean isometry L and a local diffeomorphism g’g defined on D such that
L(x0) = ¢(xo) for some |xo| = 9.5r, and

~ . )ex) for|x|=r
0x) = {L(x) for |x| > 10r,

and
I*8 — 8llcomn\Bio,r/10)) =< c(n)s.
Proof. Letc = c(n) and § = §(n) be as in Lemma B.1. Define p(£) for £ € [1/10,10]
by
0 forf <1,
p(ﬁ) = % exp(—l_é%z) forl < £ <6,
% for £ > 6,

so that p is smooth and p’ is bounded on [1, 10].

We first show the case where r = 1. By construction, p = 1/16 on [6, 10]. Fix some xg
with |xo| = 9.5. Then, for all x € B(xq,2(1 + 8)%p(|x0])), |x| > 19/2 — (1 + §)%/2 > 1/10,
so B(xo,2(1 + 8)%p(|xo0|)) C D. Also, 2(1 + 8)p(|xo|) = (1 + §)/8 < 1/4, so by hypo-
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thesis, B(¢(xg),2(1 + 6)p(Jxo|)) C C. Using the notation of Appendix B, by Lemma B.1,
there exists a Euclidean isometry L such that L(xg) = ¢(x¢) and

16][¢1/16 — Ll cO(B(xo,1/16)) + ldP1/16 — AL CO(B(x0,1/16)) < c(n)8.

Let x € A(0,9,10), and let (x;)*_, be a sequence of points in A(0, 9, 10) such that

i=1
|xo — x1] < 1/16, |xp — x| < 1/16, and for i = 1,...,k — 1, |x; — xj+1| < 1/16. Observe
that, by choosing the x; far enough apart, k can be bounded above by some constant depending
only on n. Arguing as above, we also have

B(xi,2(1 4 8)*p(|xol)) C D and  B(¢(x;),2(1 + 8)p(lxol)) C C,
so by Lemma B.1, there exist isometries L’ such that

16]¢1/16 — L' |cOBxi,1/16)) + 1dd1/16 — AL || cOB(x;.1/16)) < ().
Then we have

(6.1) |dxo®1/16 — dxP1/16] < |dxoP1/16 — dL| + |dL — dx,¢1/16]
k—1
+ [Z|dxi¢l/l6 —dL'|+|dL" — dxi+1¢l/16|j|

i=1
+ |dx b1/16 — dL¥| +|dL¥ - dx 9116l
<2(k 4+ 2)c(n)§ < c(n)s.

Since this analysis holds for any such x, we also have
(62) |p1/16(x) = L(X)[ = |p1/16(x0) — L(x0)|
+ /01 |dy(5)P1/16(¥ (5)) — dL(y(s))| ds
< |¢1/16(x0) — L(x0)|

1
+ /0 (Idsod1 16 (5)) — AL (5))]
+ |dy(s)P1/167 ((5)) — dxoP1/167 ((5))]) ds
<c(n)é,

where y is a path from x to x¢ within A(0, 9, 10), and in the last step, we have applied estimate

(6.1) at y(s).
Let y: R" — R be a smooth cutoff function identically equal to 1 on B(0, 9), with support
contained in B(0, 10), such that ||V y|[co®~) < 10. Now define ¢ on D by

$(x) = x(X)Pp(x) + (1 — x(x))L(x).

Adjust § and ¢(n) so that Corollary B.4 holds, and also so that 0.5(1 — §) > 1/10 for all § < §.
By Corollary B.4, [[¢*6 — 8| c(4(0,1,9)) < c(n)d since ¢ = ¢, in this region, and this estimate
also holds trivially on R” \ B(0, 10) since L is an isometry. Let x € A(0, 9, 10). Then we have

def = (V22) ® ($116(x) = L(0) + dL + 7(x)(dxrjns — dL) = dL + E.
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where | E| < ¢(n)§ by choice of L, and (6.1) and (6.2). In particular,

™8 — 8llcoaco.0,100) < c(n)s.

COO
Now observe that, as £ — 1, p(0) — 0, so if |x| < 1, then by dominated convergence,

lim ¢(y) = lim ¢p(y) = lim / o(y —p(yD2)(2) dz = $(x),
y—Xx y—Xx y=>x JRa
where ¢ is as in Appendix B. Also, for k > 1,
: k7 T k
Jim d"¢(y) = lim d ¢pIEY)

_ T i k—i—=1(7 _ y®z
_yh_r}}c/ni;d Ply—p(y)zd (1 P (yD ] )5(2) dz
= dk¢|x-

Therefore, ¢ agrees with ¢ on D N B(0, 1), and hence ||¢*§ — SllcopnBo,1)) < c(n)d as
well. This proves the result for r = 1.

We now remove the assumption that r = 1. Suppose the hypotheses hold for some r, and
apply the previous analysis to the map ¢’ defined by ¢’(x) = r~1¢(rx) to find some smooth
map ¢’, equal to a Euclidean isometry L’ for |x| > 10, such that L’ (x") = ¢/(x’) for some
[x’| = 9.5 and

18 = 8llcory < cm)s,
where D’ = {r~!x : x € D}.
Let ¢(x) = r¢/(r—1x). Then we have

16*8 — Sllcopy = 166 — Sllcopr) < c(n)s.
Also, if xo = rx’, we have
r L (xo) = r UL (rx’) = L'(x) = ¢/ (X)) = r Lo (rx’) = r 1 (x0),
so L'(xg) = ¢(xp). This proves the result. m]
Theorem 6.2. Suppose that M™ is a smooth manifold and g is a C°® metric on M.

Suppose that E is an end of M and that ®1 and ®, are two C°-asymptotically flat coordinate
charts for E so that, for m = 1,2, there exist ¢, > 0 and rp, > 1 such that

[(@m)«g — Ollx < cmlx|™™

for all |x| = rp, for some t;,; > 0.

Then there exist ro = ro(®1, ®2), 1y = ry(n, @1, P2) > 0, and ¢ = c(n, Py, P2) such
that, for all v > r(, there exists a Euclidean isometry L such that |L" (0)| < 25r and there
exists a map " R™ \ B(0, ro/10) — R™, which is a diffeomorphism onto its image, such that

®, 0 CDl_l(x) for |x| <,

o) = {L’(x) for |x| > 107,

and

(6.3) 1(@")* (@2)+8 — llcO(0,0.0n117y) < cr™mntrrm2l,
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Proof. Let¢p = &y 0 <I>1_1 and T = min{ty, 72 }. We apply Proposition 6.1 to the map ¢.
We first show that, by Lemma 3.10, the hypotheses of Proposition 6.1 hold. Let rg be as in
Lemma 3.10. Let rj > rj > ro, where r( is as in Lemma 3.10. Will we increase r{ through-
out the proof as needed. Lemma 3.10 (i) implies that ¢ is defined on R” \ B(0, r¢/10), and
by Lemma 3.10 (ii), for all r > r{/, ¢ is locally (1 4+ ¢r~7)-bi-Lipschitz on R \ B(0,r/10),
where c¢ is as in Lemma 3.10 (ii).

Moreover, by Lemma 3.10 (iv), for all r > ry, B(¢(x),r/4) C ¢(R" \ B(0,79/10)).
Increase 7 further, depending on ¢, , 7 so that, for all r > r/J, we have cr~% < §(n), where
d(n) is as in Proposition 6.1. Since ¢ is locally (1 4+ c¢r~%)-bi-Lipschitz on R” \ B(0, r/10),
we may apply Proposition 6.1 to see that there exist a Euclidean isometry L” and a local dif-
feomorphism ¢” defined on R” \ B(0, ro/10) such that L (xo) = ¢ (xo) for some |xo| = 9.5r
and

70 {qng) for |x| < r,
L7 (x) for|x| > 10r,

and

(6.4) 1(@")*8 — 8|l comm\Bior/i0y) < cr™".

The latter condition implies that é" is a local diffeomorphism on all of R" \ B(0,ry/10)
since it also agrees with ¢ on B(0,r) \ B(0,r9/10). Therefore, Lemma 3.9 implies that ¢”
is a diffeomorphism onto its image.

To see why (6.3) is true, observe that

1(@")* (@2)xg — 8llcOca(0,0.97,11r))
< @) *(@2)+g = (8") Sl cO©.09r11r))
+11(@")*8 = 8llcoca,0.9r11r)
< ld¢" llcoa,0.0r11) [(P2)xg — 8llCO@ (40,0.97,117)))
+ 1(@")*8 = 8llcoa0,0.9r,11r))
T

<cr v,

where the last step is due to (6.4), and bounding || (®2)+g — 8|/c(@" (4(0,0.97,11r))) by arguing
as in the last step of Lemma 3.10 (ii).

It remains to bound | L” (0)|. Write L"(x) = O"x + ¢(xo) — O" x¢ for some orthogonal
matrix O, where we are using the fact that L" (xg) = ¢(x¢). Then we have, by Lemma 3.10,

IL7(0)] < [¢(x0)| + |O" xol
= __inf  {[@(x0) = ¢(x)| + [p(X)]} + [x0]

x€0B(0,rg)
ldollco®m\B(0,ry)) dist(xo,dB(0,79)) + [[¢llcO@B(0,r0)) + |Xol

IA

1
< (1+3) (%ol = r0) + gl cowB.r0) + ol
= 23.75r + |¢llcoBo,r0)) = 257,
provided r and hence r is increased once more depending on ¢ so that
[¢llcoB©.r) = 1.25r5 < 1.25r.

This completes the proof. O
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We are now ready to prove the main result of the section.

Corollary 6.3. Suppose that M" is a smooth manifold and that g is a C° metric on M.
Suppose that E is an end of M and that ®1 and ®, are two C°-asymptotically flat coordi-
nate charts for E with decay rates t1, 12 > (n —2)/2, decay constants c1, cy > 0, and decay
thresholds ry,ry > 1, respectively. Let T = min{ty, 72}, 0 < <27 — (n —2), ¢: R — R=°
be a smooth cutoff function with Supp(¢) CC (0.9, 1.1), and for r > 0, let ,—n(L,t) be the
smooth solution corresponding to ¢ given by Lemma 4.1. Suppose that, for some 5 € (0,1/2),
g has nonnegative scalar curvature in the B-weak sense on

®TIR™ \ B(0, 1)) U @51 (R™ \ B(0,1)).

Then there exist ¥ (D1, Do, T, n, Supp(¢), n, B) and ¢ = c¢(®1, P2, n, ¢, n, T, B) such that, for
allr > r,

Mco(g, @2, ¢150r)-n(+,0), 150r) — Mco(g, @1, @p—n(-,0),r) > —cr™ 272740,

Proof. Let c and r be as in Corollary 5.4, where we take cg to be the constant “c” from
Theorem 6.2, and increase 7 so that 7 > r(/, where r is as in Theorem 6.2. Increase 7 further
so that 7 is at least as large as the threshold 7 given by Lemma 5.6 with b = 25. For r > r,
let $’ be as in Theorem 6.2. Let ¢ be as in Corollary 5.4 and increase ¢ so that c is at least
as large as the constant ¢ from Theorem 6.2 and the constant ¢ from Lemma 5.6. We apply
Corollary 5.4 to the metric (5’) % (®3)+«g, which is defined on R" \ B(0, r¢/10) for ro as in
Theorem 6.2, to find that, for » > 7 and all ¥’ € [%r, 10r], we have

(6.5) Mco((@")*(@2)x8. prry—n(-.0),7")
— Mco((¢")* (P2)xg. @r—n(-.,0),7) = —cr" 27247,
Replace 7 by 1.17 so that (6.5) also holds for r/1.1, for any r > 7.
By definition of ¢", we have

(P1)«glx for x| <,

(@) (P2)xglx = {(L’)*(‘Dz)*g|x for |x| > 10r,

where L" is some Euclidean isometry such that |L(0)| < 25r. Therefore, we have

Mco((@")*(®2)+8. ¢(10r/0.9)-n( -, 0), 10r/0.9)

= Mco((L")*(®2)+&. ¢(10r/0.9)—n (-, 0),10r/0.9),
Mco((")* (92)x&. ¢(r/1.1)-n(+,0),7/1.1)

= Mco((®1)«&, ¢¢/1.1)-n(+,0),r/1.1).

Therefore, (6.5) implies

Mco((L")*(®2)+&. ¢10r/0.9)—n(-.0),10r/0.9)
—Mco((P1)«g. ¢¢/1.1)—n(+,0), (r/1.1))
= Mco((¢")*(2)+&. 9(10r/0.9)~ (. 0).10r/0.9)
— Mco((¢")* (2)x8. ¢(/1.1)-n(+. 0).7/1.1)
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> Mco((@")*(P2)«8. ¢(10r/0.9)n (-, 0), 10r/0.9)
— Mco((")*(P2)+&, ¢(r/0.9)—n (-, 0),7/0.9)
+ Mco((@)* (92)+8. ¢(/0.9)—n (- 0),7/0.9)

— Mco((§")*(2)+&, 9(r/1.1)-n (-, 0), 7/1.1)
> _Crn—2—2r+17.

Moreover, by Corollary 5.4, we have

Mco((L")*(P2)+&. ¢50r)—n (. 0),50r)
— Mco((L")*(92)+8. ¢(10r/0.9)—n (-, 0), 10r/0.9) > —cr" 272740,

Then, applying Lemma 5.6 with r; = 50r and r, = 1507 /1.1, we find

Mco((92)+8, ¢1s0r/1.1-n( -, 0), 150r/1.1)
> Mco((L")*(®2)«g, ¢(s0r)—n (-, 0), 50r) — cr" 2727470
> Mco((L")*(92)+8. ¢(10r/0.9)- (-, 0), 10r/0.9) — cr" 272747
> Mco((®1)x&. ¢(r/1.1)-n(+.0),7/1.1) — cpTE2TEn

where in the first step we have also used Lemma 3.5. Then replacing /1.1 by r yields the
result. =

7. The C° mass at infinity

7.1. Taking limits at infinity. In this section, we prove Theorem 2.12. We first record
the following.

Lemma7.1. Let M be a smooth manifold and g a continuous Riemannian metric on M.
Suppose that E is an end of M for which there is C°-asymptotically flat coordinate chart
® with decay rate t > (n —2)/2, decay threshold ry, and decay coefficient cy, and suppose
that g has nonnegative scalar curvature in the sense of Ricci flow on ®~1(R" \ B(0, 1)). Let
¢:R — RZ0 be a smooth cutoff function with Supp(¢) CC (0.9,1.1). Fixn € (0,2t — (n —2)).
For all r > 0, let p,—n(£,t) denote the smooth time-dependent function corresponding to ¢
given by Lemma 4.1. Then the limit

lim Mco(g, q:» Pr ’7(' s O)v r)
r—00
exists and is either ﬁl’ll.te or +ox.

Proof. Let B € (0,1/2) be the parameter for which (2.2) holds everywhere for g. Let
r =r(n,co,7,¢,1n, B)beasin Corollary 5.4. Let r > max{ro/0.8, 7}. Applying Corollary 5.4
to D« g|4(0,0.8r,12r), We find that, for all " € [(%r, 10r], we have

(7.1) Mco (g, @.@¢ry-—n(-.0).1") — Mco(g, @, ¢r—n(-,0).7)

> —c(n, @, co.t, B, n)r" 22T,
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As a shorthand, write a(r) := Mco(g, ®, ¢,—n(-,0),r) so that (7.1) means that, for any suffi-
ciently large r > 0 and any r’ € [éj—ér, 10r],

a(r') —a(r) = —c(n, @, co, 7, B, m)r 377,

where § =n —2 — 27 so —§ + 1 < 0. In particular, Lemma 3.8 implies that, for any r > 0,
limy oo a(lOkr) exists and is either finite or equal to 4oc. It remains to show that

lim a(r) = lim a(lOk) =!doo,
r—00 k—o00

say. Towards this objective, let ¢ > 0. Choose k¢ sufficiently large so that, for all k > kg, we
have |a(10F) — aso| < €/4 and c(10K)~0+¢ < £/4, where c is the constant from (7.1).
Let r > 10%0+1 and choose k > k¢ + 1 such that r € [10%, 10¥+1]. First suppose that

1.1 .
re [—10k,0—910k+1].
09 ° 1.1

Then

1.1 1.1
e [—10’<, 10"“] and 10KF1 ¢ [—r, 10r],
0.9 0.9

so Corollary 5.4 implies
oo — /2 < a(lOk) — c(lOk)_SJ”’ <a(r) < a(lOkH) +or T <an + e/2.

Now suppose

1.1 0.9
re [10", —10k) (resp. re (—10k+1, 10k+1]).
0.9 11

r' e (%r, (%)2(10;’)) (resp. = ((%)2([—0), %r))

1.1 0.9

e [ 10k, T 10k,
0.9 1.1

so arguing as above, we have that |aoo — a(r’)| < &/2 and |aeo — a(r’/10)| < &/2. Similarly,

Corollary 5.4 implies

Choose

Then

oo — € < a(r'/10) — c(r'/lO)_‘H"7 <a(r)<a(r) +c(r)" <ag + &
This completes the proof. |

Proof of Remark 2.10. To see why Remark 2.10 is true, apply Lemma 7.1 to Remark 5.5
to find that

lim Mco(g,gr—m(-.0),r) = lim Mco(g, gy (-.0).r).
7 —>00 r—00
Exchanging 11 and 7, yields the result. ]
Remark 7.2. Assume we are in the setting of Lemma 7.1. Let g¢ be an extension of

814(0,0.8r,1.2r) for some large r, and let g; be a Ricci-DeTurck flow for go whose existence is
given by Lemma 3.2. Observe that, by Lemma 2.6, we have

lim Mco(g, ¢r=—n(-,0),r) = lim Mco(gr2-n,¢,7).

r—0o0
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We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12.  Let 7 = 7 (n, co, T, Supp(e!), Supp(¢?), n, B) be as in the sec-
ond statement of Corollary 5.4, with ¢y = max{ci,c2} and T = min{ty, 72}. Increase 7 as
needed so that 7 is greater than the threshold 7 given by Corollary 6.3. Also, let

Cc = C(n,CO,(Plyf/’z’Tqu 77)

be as in Corollary 5.4, and increase ¢ as needed so that ¢ is at least as large as the constants “c”
given by Corollary 6.3 for ¢! and 2. Applying Corollary 5.4 to (P2)«&l4(0,0.8(150)r,12(150)r)
implies that

Mco(g, P2, (p(2200r)_,,(-,0),200r) > Mco(g, ®,, §0(1150r)—n(‘ ,0), 150r) — cpn27204n,
Then, for all » > 7, Corollary 6.3 implies that
Mco(g, P2, 9(,50,)-n(+0),150r) = Mco(g, @1, ¢ (-, 0), ) — cr" 27270,
o)
(7.2) Mco(g, <D2,</J(2200,)_n(',0),200r) > Mco(g. 1,01 (-,0),r) — 2cr" 27240,

This proves the first statement, with ¢ adjusted.
Towards the second, note that, for m = 1, 2, the limits

lim Mco(g, @2, ¢7n(-,0).7),  lim Mco(g, ®1,¢;-n(-,0).7)
r—>00 r—>00
exist by Lemma 7.1, so letting r — oo in (7.2) implies that
lim Mco(g. @2, ¢7-n(+.0).7) = Tim Mco(g, @1.¢;-n(+.0).7).

Exchanging ®, with ®; and ¢! with @2 proves the second statement of the theorem. O

7.2. Finiteness conditions for the C® mass. In this section, we prove Theorem 2.9.
We first establish the finiteness condition for the C© mass at infinity.

Theorem 7.3. Suppose g is a continuous Riemannian metric on R" \ B(0, ro) such
that, for some t > (n —2)/2, co > 0,7 > rg, we have |g — 8||x < colx|™* for all |x| >r.
Suppose g has nonnegative scalar curvature in the sense of Ricci flow. Let ¢: R — RZ9 be
a smooth cutoff function with Supp(¢) CC (0.9, 1.1). Fix n € (0,2t — (n — 2)). Forallr > 0,
let r—n(L,t) denote the smooth time-dependent function corresponding to ¢ given by Lem-
ma 4.1. Then the limit lim,_,oo Mco(g, @r—n(-,0),r) is finite if and only if the following
condition holds.

There exists a sequence of numbers ry — 00 such that ri 1 > 1.1/0.9r, > 0 for all k,
and for which, for all k, there exists an extension glg of g|R"\B(0,0.7r5) to all of R" such that

there is a Ricci—-DeTurck flow g;‘ for glg satisfying (3.8), (3.9), (3.10), and (2.5).

Proof. First note that if |x| is large, then

28 (m>1—nﬂ . x|

—_— > ,
26 —1\0.9 o

x| - :
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so B(x,2P /(28 — 1)(]x]/0.9)1~"8) c R” \ B(0, ), and hence Lemma 5.2 implies that, for
all A > 2, there is a constant c(n, A, B, n) such that, for all ¢ € (0, (|x]/0.9)>77,

R(g)|x = —c(n, A, B.n)|x| 4

or

(7.3) R(ge)—|x < c(n, A, B, mlx|™4,

where f_ denotes the negative part of a function f.
For the sake of simplicity, let a(r) := Mco(g, ¢r—n(-,0),r). We now show that

(7.4) lim a(r) < oo
r—>00
if and only if there exists a sequence r, — o0 such that

(7.5) lim sup  a(1.1/0.97") —a(0.9/1.1r;) = 0.

k—001/>1.1/0.97;

To see why these conditions are equivalent, suppose (7.5) fails. Let rp — oo be a strictly
increasing sequence. By assumption, there exists some g9 > 0 such that, for all k, there exists
Jj >k with

sup  a(1.1/0.97") —a(0.9/1.1r;) > &o.
r'>1.1/0.97;
We construct a new sequence 7 — oo inductively as follows. By assumption, there exists
j1 > 1 for which
sup a(1.1/0.9r") — a(0.9/1.1rj,) > €o.
r’>1.1/0.9r;,

Let 71 = 0.9/1.1r;, and choose | > 1.1/0.9r;, = (1.1/0.9)%7 such that
a(1.1/0.9r7) — a(0.9/1.1rj,) > &o/2.

Setting 7, := 1.1/0.97], this becomes a(72) — a(71) > €o/2. Now, given 7, choose mag 1
sufficiently large so that ry,,  , > (1.1/0.9)37,x. Then there exists jpx41 > Moy such that

sup a(1.1/0.9r")y —a(0.9/1.1rj,, ) > €o.
r’>1.1/0.9rj,,

Let Tog4+1 = 0.9/1.1rj,, . > (1.1/0.9)*75 and set Fog4p = 1.1/0.97}, .| where rj, | is
chosen so that
a(1.1/0.9r5; , ) —a(0.9/1.1r,5, ) > £0/2,

and hence a (72 +2) — a(Fag+1) > €0/2. Then 7 — oo and (a(7x )7~ is not Cauchy, so (7.4)
fails. In particular, (7.4) implies (7.5). Conversely, suppose that (7.5) holds. Pass to a subse-
quence rg; so that, forall j, rg; > (1.1/0.9)2rkj. Let7; = 0.9/1.1rg; . Then (7.5) implies
that

lim sup|a(Fy) —a(7;)| < lim sup la(1.1/0.9r") — a(7))|

J0m>j 7700 115(1.1/0.9)2F;

= lim sup  |a(1.1/0.97") —a(0.9/1.1r,)|

J—>oo r/>1.1/0.9rk ;

=0,
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so (a (7]-));";1 is Cauchy, and hence it converges to some limit doo < 00. By Lemma 7.1, it
follows that (7.4) holds.

We now prove the theorem. First assume that the limit is finite. Let r; — oo be a sequence
of numbers such that ;41 > 1.1/0.9r; > 0 for all k, sufficiently large so that

lg —dllcomm\B(0,0.6r4)) < &,

where ¢ is as in Lemma 3.2. For all k, let glg be the extension of g|r#\B(0,0.7r5) to all of
R” given by Lemma 3.2 so that there exists a Ricci-DeTurck flow gi‘ for glg satisfying (3.8),
(3.9), and (3.10). Now fix k, and fix r’ > 1.1/0.9r%. As in the proof of Proposition 5.3, by
Lemma 3.7, there exist £, £’ € [0.9, 1.1] such that

k (0.9/1.1ry)%>7"
Mco (g(0.9/1.1rk)2_”’ ®(1.1/0.977)=" ((11/0—97'/)2)’ 1. 1/097‘,)

k
= mc2(8(0.0/1.1r0)2-n+ 1 1/0.9¢'r"),

k (0.9/1.17)27"
MCO (g(0_9/1.1rk)2—n’ $0.9/1.1r;)~" ((09/1—11”]()2)’ 0.9/1.1rk>

k
= mCz(g(0.9/1.1rk)2—’7’0'9/1'16’%)'

Then, using (7.3), Lemma 3.6 with (3.10) to bound the quadratic term, Remark 4.4, and
Lemma 2.6, we have

R(gf ) dx
[4(0:0'9rk,1-1r’) (0.9/1.1r;)2—n

n—2—-2t+n

< +ecry

R( ) dx

k
8(0.9/1.1r3)2—n

/A(o,o.9/1.1hk,1.1/0.9%/)

< Imc2(8(y.0/1.1py2-n» 1:1/0.9€7")

—2-2r+
- mcz(‘57?0.9/1.1rk)2—”’0'9/1'16”6)| +erg o

B i (0.9/1.1ry)>7" ,
= M (oo pner easosr (S5 gz ) 11/0:97)

k (0.9/1.1r)2"
— MCO (g(0.9/1.1rk)2—na ©0.9/1.1r5)~" ((09/1—17’k)z) y O.9/1.1rk) ‘

+ CrZ—Z—Zt-H]

< [Mco(g6. 91.1/0.9ry-n(0), 1.1/0.9r")
— Mco(g8. 00.9/1.17)-7(0),0.9/1.1r)| + CVZ_Z_er
= 1a(1.1/0.9r") — a(0.9/1.1rg)| + crp 272740,

Then we have, by (7.5),

lim sup / R(g(0.9/1.175)2—n) dx
k—001751.1/0.9r4 1/ A(0,0.97,1.177)

< lim sup  |a(1.1/0.97") —a(0.9/1.1r;)| = 0,

k—0047>1.1/0.974

so (2.5) holds.
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Conversely, suppose that (2.5) holds. Let ryg, gg , and gf be as given. Fix some k and
some 7’ > 1.1/0.9r,. Arguing as in the previous step, we find that there exist £, ¢’ € [0.9, 1.1]
for which we have

la(r') = a(re)| = ery 272
(O.9/1.1rk)2_'7) )
(1.1/0.97)2 J°

(0.9/1.1rk)2_'7) )
——),r

0.9/1.1r)2 )%

< ‘Mco(gfo,g/l.lrk)z—"’ ‘/’(1'1/0'9”)7”(

- MCO(g(0.9/1.1rk)2—"v $0.9/1.1rg)77" (

k k
= mCz(g(0.9/1.1rk)2—n’E/r/) —mc2(80.0/1.170)2-n LTk

R(g(q ) — ORgk L ldx
/A(O,Zrk,f’r’) (0.9/1.1r)>=" (0.9/1.1ry )27

n—2—-2t+n

k
= R(g(o.9/1.1rk)2—ﬂ)dx +cry ’

[4(0,0.9rk,1.1r’)

where again we have used (7.3) in the last step. Therefore, (2.5) implies that

lim sup  la(r’) —a(rg)| =0,
k=00 1/>1.1/0.974

and hence (7.5) holds. O

We are now ready to prove Theorem 2.9. The proof follows quickly from our previous
results.

Proof of Theorem 2.9. To prove the first statement, observe that if mapm(g, ®) is finite,
then by Remark 2.2, we have

|MC0(g’ qD’ wr—”(o)’ I") - mADM(g’ (D)l
0or 20rn(.0) [ @ 8ij — 0igj)v' dS — mapm(g. ©)] du

fol_'gl @r—n(u,0) du

P~ PR | _
/S(ur)(ajglj zg/J)V ds mADM(g»CD)‘ WO,

< max
u€l0.9,1.1]

SO
11“] M( O(g, @, (pr*n(O), r) — ”lA M (g, @).
r—>o0

If mapm(g, ) = oo, then for all N > 0, there exists 7y such that, for all r > ry,
/ (ajgij—aigjj)vi dS > N.
S(r)
Then, for all r > ry /0.9, we have

Mco(g, @, ¢r—n(0),r) > min / (ajg,’j — al’gjj)vi dS > N,
u€f0.9,1.1] JS(ur)
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SO
lim Mco(g, ®, pr—n(0),r) = oo.
r—>00

The proof to show the result when mapnm(g, ®) = —oo is similar.

We now prove the second statement. By Lemma 7.1, lim, oo Mco(g, ®, ¢r—n(-,0),7)
exists. By Theorem 2.12, the limit is independent of choice of ® and ¢. By Theorem 7.3 applied
to ®. g, the limit is finite if and only if condition (2.5) holds. O

A. A bi-Lipschitz map is C °-close to a Euclidean isometry

Lemma A.1. Forall § < 1, r > 0, the following is true. Suppose that C, D C R" are
some domains and ¢: D — C is a diffeomorphism. If, for some xo € D, B(xo, (1 + §)r) C D,
B(¢(x0),7) C C, and ¢ is locally (1 + 8)-bi-Lipschitz on B(xq, (1 + 8)r), then ¢ is a 48r-
isometry on B(xo,r/(1 +9)), i.e. if

68 — 8l coBxo,1+6)r) =8,

then forall x,y € B(xo,r/(1 4+ §)), we have
|lp(x) =) — |x — y|| < 46r.

Proof. First assume that ¢ (xg) = 0 and x¢ = 0. Note that, for all x € B(0,r/(1 + §)),

we have .

B(x) — 0] < /0 (dsxllx] ds < (1+8)r/(1 +8) =r.

In particular, for all x, y € B(0,r/(1 + §)), we have ¢(x), ¢p(y) € B(0, r), so the shortest path
from ¢ (x) to ¢(y) is contained in the ball B(0,r) C C.
Now fix some x,y € B(0,r/(1 + §)) so that ¢(x),p(y) € B(0,r). By (3.16), we have

(A.T) (I=28)|x =yl = lp(x) =) = (I + 28)|x — y|.

We now address the assumptions that xo = 0 and ¢ (0) = 0. For general x¢ and ¢ (xg), apply
(A.1) to the map ¢(x) := ¢(x + x9) — ¢ (x0). Then, for all x, y € B(xg, /(1 + 3)),

x—x0 € B(O,r/(14+348)), y—x0¢€ B0, r/(1+93)),

and R R
lp(x) —p (V)] = |p(x — x0) — P (y — Xo)]
so by (A.1), we have
(1=28)|x — y| = (1 = 28)|(x — x0) — (y — X0)| < |p(x — x0) — P(y — x0)|
=lp(x) =),
and similarly,
p(x) — ()| = 1$(x — x0) — p(y — x0)| < (1 +28)|x — y|,

as above. In particular,

;
|I¢(X)—¢(y)|—|x—y||528|x—y|§4r1+854r8. O
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We now record the following result, which is a special case of [31, Theorem 1]. See
Section 3.5 for the definition of a §-isometry.

LemmaA.2. There existc = c¢(n) and§ = §(n) < 1 such that, for all § < §, the follow-
ing is true. If ¢ is a continuous §-isometry on some ball B(xg, r), then there exists a Euclidean
isometry L such that L(x¢) = ¢(xo) and

l¢ — LlcoB(xo,r)) < 6.

In particular, for all § <6, if ¢: D — C is a diffeomorphism between some domains
C, D C R" such that B(xg, (1 4+ 8)r) C D, B(¢(xo),r) C C, and ¢ is locally (1 + §)-bi-
Lipschitz on B(xg, (1 + 8)r), then there exists a Euclidean isometry L such that L(xo) = ¢ (xg)
and
¢ — LIlcOB(xo,r/(1+8))) < dcér.

Proof. The second statement follows from the first statement and Lemma A.1. The first
statement is due to [31, Theorem 1]. O

B. Bi-Lipschitz multiplicative loss with varying mollification scale

Here we will fix some conventions involving mollified maps. Let {: R” — R denote the
standard mollifier,

£(2) = et exp(—1— )

where c(n) is a normalization constant chosen so that

{(z)dz = 1.
RH

Observe that ¢ € W1 (R") and that { = 0 outside of B(0, 1).
If D C R” is some domain and F: D — R” is any continuous map, then for any pg > 0,
we use Fj, to denote the map, defined on {x € D : B(x, pp) C D}, which is given by

Fop(x) = /R F(x — poz)t(z) dz = /R F(x— z)g(%)pg” dz

X—z\ _
— [ Feu(* ) a.
n £0
If p: [0, 00) — [0, 00) is any continuous function, then we use F), to denote the map given
by Fp(x) = (Fy(x)))(x), ie.

Foto) = [ PG =p)2)e ) dz,

so F, is defined on {x € D : B(x, p(|x|)) C D}. For x such that p(|x|) # 0, we have

X —2Z

Fo) = [ PS5 ot dz,

We first show the following result, for a constant mollification scale.
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Lemma B.1. There exist ¢ = c(n) and § = §(n) such that, for all § < §, the follow-
ing is true for all py > 0. Suppose ¢: D — C is a diffeomorphism between some domains
C.D C R” such that B(xg,2(1 + 8)%?po) C D, B(¢(xg),2(1 + 8)po) C C. If ¢ is locally
(1 + 8)-bi-Lipschitz on B(xg,2(1 + 8)?po), then there exists a Euclidean isometry L¥0P0 such
that L*0:P0(x¢) = ¢ (x0) and

Po ldoo — L 0N cO(B(xo.00)) + 1dbpy — AL CO(B(x0.00)) < €.

Proof. Let ¢ and § be as in Lemma A.2. We will adjust ¢ throughout the proof. By
Lemma A.2, there exists a Euclidean isometry L such that

L(x0) = ¢(xo) and |l¢ — L|lcOB(x0.200)) = cSpo.

so we have
X—z\ _,
lé00 — LllcO(B(xo,000) =  sup (p(z) — L(z));(_)po dz
x€B(x0,00) 1/ B(x,p0) Po
= ll¢ — LlicoB(xo.200)) = ¢Spo.

with ¢ adjusted. Similarly,

||d¢po —dL|cOB(x0,p0) = sup
x€B(x0,00)

c(n)

< —=|l¢ — LllcOB(x0,2p0)) = €8,
Po

/ (¢(z) — L(2)) ® (V&(| - I))I%,oa”‘1 dz
B(x,p0) o

with ¢ adjusted. O

Lemma B.2. Let L be any Euclidean isometry and let p: [0, 00) — [0, 00) be any C'!
function. Then L, = L.

Proof.  First note that, for any orthogonal matrix O, we have

[ 0z¢(z)dz = 0.
Rn

This follows from the fact that

/ L Vay=o
yeXP(——) y =0,
n 1—[y]?

after performing the change of variables y = Oz. Now write L(x) = Ox + v for some ortho-
gonal matrix O and some fixed vector v. Then we have

Lo = [ LG =p(xhi(e) d=
= [ (©x=p(x)0z + vy d=

= Ox — p(]x]) /R" Ozl(z)dz + v

=Ox+v=L(x). m]
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Lemma B.3. If ¢: D — R” is any C° map defined on a subset D C R", L is any
isometry, and p: [0, 00) — [0, 00) is a C! function, then for any point x such that p(|x|) # 0
and B(x, p(|x|)) C D, we have

1 D
o) ol |

|d¢p —dL||x < c(n)|¢p — L”CO(B(x,p(le))))

Proof.  Since L is invariant under mollification by Lemma B.2, dL |y = dL,|x. There-
fore, we have

|d¢p—dL||x_'/ @) - LE 8 Vo (S |Z>)

! o' (|x])x
) [p(|x|> p(x)2[x]

‘[ 0 - L) 9 8(> )
X (—np(|x|)_”_lm) dz

—(x-2)® Jotx ™ az

IXI
< c(m)llg — Lllco(x, f’('x')))‘ o(|x]) f)((lljlg)
|x —z| -
" d
/,J f'(pqxp)[ I |)] Sl
+ cm)llp — LlcOBex.po(x)) p((||; ||))

x ‘/|z et a:
L 2D

< (w9~ Licoes | .o
WLL(R") (B(x,p(|x[))) p(|x|) o(Ix])
Corollary B.4. There exist ¢ = c¢(n,b) and § = 8(n) < 1 such that, for all § < § and

all r > 0, the following is true. Suppose that ¢: D — C is a diffeomorphism between some
domains C, D C R" such that

A(0,0.5(1 — §)r, (10.5 + 0.58)r) C D

and, forall x € A(0,r,10r), B(¢(x),r/4) C C. Suppose that ¢ is locally (1 4 §)-bi-Lipschitz
on
A(0,0.5(1 = 8)r, (10.5 + 0.55)r).

Let p:[1,00) — (0, ] be a C* function with |p'| < b. If p-(€) = p(£/r)r, then
l¢5,.8 —8llcocaco,r10r) < c6.

Proof. Let§ and ¢ be as in Lemma A.2. We will adjust ¢ throughout the proof. We first
record a pointwise estimate. Fix some x € A(0, r, 10r) so that

B(x, (1 + 8)pr(|x])) C A(0,0.5(1 = §)r, (10.5 + 0.58)r) C D.
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Then Lemma A.2 implies that there is a Euclidean isometry L*°" such that

lp — L¥"lcoBex,or (2 /(1+6))) = Spr(Ix]).
In particular, Lemma B.3 implies that

1 Py (|x])
() pr (D)

ldp, —dL™"||x < C5pr(IXI)( ) = c8(1 + p'(Ix|/r)) = c8(1 + b),

with ¢ adjusted.
Therefore, for all x € A(0, r, 10r), we have

65,8 = 8llx = (Idp, Ilx + |dL™"|)|dp, — dL™"||x < .

with ¢ adjusted again. O
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