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This paper presents a framework for training a Gaussian process (GP) to estimate a steady

urban wind field from a sparse set of wind measurements by leveraging training data collected

from computational fluid dynamics (CFD) simulations. Gaussian process models for spatial

estimation often use measurement locations as the input space with proximity-based covariance

functions. This work investigates including building morphology features into the GP model

that are defined by the signed distance field (SDF) and its gradient evaluated at a pattern of

points around each sample location. Augmenting the measurement locations with different

subsets of building morphology features leads to unique feature spaces. Several different GP

models are trained using various feature spaces and covariance functions, including with a

coregion covariance function that allows simultaneous training over multiple CFD datasets for

different urban geometries. A framework is developed to generate CFD wind field data for a

set of randomized geometries, build various feature spaces, and perform the estimation with

the proposed GP models. The framework is evaluated with a simple environment that consists

of two buildings with randomized position and geometry in a wind field with constant inflow

magnitude and direction. Results are presented comparing the estimation performance across

different GP models with an increasing number of optimization iterations. The computation

versus accuracy trade-off of using hyperparameters trained over multiple similar prior CFD

datasets, rather than hyperparameters that are optimized on-the-fly, over a single dataset is

also demonstrated.

I. Nomenclature

5 (·) = random scalar function

x = vector of = features

� = feature space over which x is defined

`(x) = mean function of a Gaussian process

E [·] = expected value operator

^(x, x′) = covariance/kernel function of a Gaussian process

h = vector of spatial lag terms for the squared exponential kernel

R = vector of length scales associated with respective elements in x

)sq = vector of hyperparameters for the squared exponential kernel ; f , R

f2 = variance of Gaussian process

Y = zero-mean Gaussian measurement noise with variance f2
n

y = noisy wind vector measurement

X = vector of " points where data is collected

_ = vector of " observations collected at X

^ = vector of " feature vectors at which observations _ are collected

M = grid of � prediction points

_̂ (M; ^,_) = estimate of process at locations M given data ^ and _

V
_̂
(M; ^,_) = covariance matrix of the estimate _̂

Q (·, ·) = matrix of covariance values relating observation and/or grid points
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O = identity matrix of given size

& = number of datasets

` = inducing points for sparse variational Gaussian process model

r = point in 3D space

d(r) = signed distance field (SDF)

∇d(r) = signed distance field (SDF) gradient

I = inertial reference frame with origin % and orthonormal unit vectors {i1, i2, i3}

� = urban environment with length/width ;env and height ℎenv

[ℎmin, ℎmax] = range of possible heights for randomized buildings

�8 = base footprint of building 8

$ = volume of space occupied by a set of #$ obstacles in �

w(r) = [D(r), E(r)] wind field component vector at r

Ides = desired constant altitude for estimation
˜(·) = noisy measurement of (·)

ED,EE = RMSE error for the estimated components of w(r)

ME = mapping error across prediction points

A = radius of mesh refinement zone

II. Introduction

U
ncrewed aerial systems (UAS) and urban air mobility (UAM) vehicles operating within urban environments

can experience adverse wind conditions and turbulence that affects flight stability and control [1, 2]. Estimating

real-time wind conditions in an urban space can inform path planning to reduce risk; however, urban wind fields are

spatially complex and difficult to model or estimate. Computational fluid dynamics (CFD) simulations can provide urban

wind flow models for flight simulation [1–10]. However, due to the computational complexity, CFD-based solutions are

not well suited for rapid estimation. Machine learning (ML) techniques have been suggested to estimate wind fields

using measurements taken by either a vehicle operating in that environment [11, 12], or aided by pre-installed wind

sensing infrastructure [13, 14]. Among ML techniques, Gaussian process (GP) based spatial interpolation has been

used for UAS in windy urban environments [12, 15–19].

This paper presents preliminary work towards the development of an urban wind field mapping framework that

leverages the realism of CFD simulations with the efficiency of GP spatial interpolation. A simplified urban wind field

environment that consists of randomly generated buildings in a steady flow-field is studied. For each building geometry,

the signed distance function (SDF) is computed to encode the distance to the nearest building. The gradient of the SDF

provides information concerning the overall geometry of nearby buildings. The building geometry is then used for CFD

simulation using OpenFOAM [20] with a constant inflow velocity, to build a database of training data. Two independent

GP models are trained to predict the components of the flow velocity in the plane. Typically, spatial positions of

measurements are used to define the input feature space of a GP. This work evaluates whether incorporating SDF data

into the feature vector can yield improvements in estimation performance. This evaluation is motivated by the intuition

that measurements with similar relative position to nearby buildings (i.e., similar SDF and SDF gradient values) may be

more highly correlated than pairs of points with dissimilar SDF values. The GPflow [21] python library is used to train

a standard GP regression (GPR) and a variational GP regression (VGP) model by optimizing the hyperparameters of the

models to best predict the wind field given the feature input vectors. The models are optimized for an increasing number

of training iterations. Various combinations of the standard squared exponential kernel and a coregion kernel are used for

comparison. The approach could potentially be used to assimilate measurements from urban wind sensing infrastructure

and airborne platforms to produce approximate urban wind field maps for flight path planning and re-routing.

A. Contributions

The contributions of this paper are (1) an efficient framework to train GP models with CFD generated wind field

data using open-source tools, and (2) the evaluation of novel kernel formulations that incorporate building morphology

data into GP models for prediction of urban wind fields.
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B. Paper Organization

The remainder of the paper is organized as follows. Section III presents related work. Section IV presents

preliminaries related to GP estimation and the SDF. Section V formulates the problem of sampling an uncertain wind

field, sampling building morphology, and describes the optimization of the GP and VGP models and their respective

kernels. Section VI presents the training framework. Section VII provides results for training the GP models with

various feature spaces. The paper is concluded in Section VIII.

III. Related Work
This section highlights prior work on CFD modeling of urban wind fields and the use of machine learning for wind

estimation, focusing on work that supports UAS flight simulation, path planning, or control.

A. CFD for Modeling Building Flows and UAS Simulation

Computational fluid dynamics (CFD) techniques have been widely used for modeling urban flow fields, including

individual tall buildings [3–5], non-convex building geometries [6] and dense urban centers, with [1, 7, 8] and without

[2, 9, 10] detailed terrain models. Some studies have investigated the effects of winds in the atmospheric boundary layer

(ABL) on UAS flight [22–25]. In simulating urban wind fields, many prior works use large eddy simulations (LES) for

atmospheric boundary layer studies [22], single building studies [3–6, 26], and for dense urban center studies [1, 8], to

examine the high-level effects of wind flow around urban geometries. The effects of building geometry on turbulence in

an urban environment was explored in [2], showing that building height and surface roughness can affect the generation

of turbulent updrafts and downdrafts. Other work has used Reynolds-Averaged-Navier-Stokes (RANS) models for

single building [5, 27] and dense urban center studies [2, 7, 9, 27–29]. In [5] the effects of both LES and RANS

methods on the flight of a simulated quadrotor are compared. In [9] RANS results are validated against real-world wind

measurements. Reference [30] provides a critical review of wind flow estimation and forecasting techniques used in the

UAM community, comparing commonly applied wind flow models from wind engineering and atmospheric science,

and offers an overview of urban wind flow conditions. RANS and LES methods are highlighted for wind data validation,

with RANS models identified as well suited for synthetic wind database generation. In [31], urban wind field data was

generated experimentally using a model of a city in a wind tunnel. The work in [26, 27, 29] shows that : − n turbulence

modeling is an acceptable choice in CFD studies of urban geometries, however, there are counterarguments as well.

Some studies [32] have shown that the : − l − SST turbulence model developed in [33–35], with calibrated model

closure coefficients, performs better in predicting wind flow around isolated and urban buildings. Nevertheless, the

: − l model’s sensitivity to free-stream conditions can affect its accuracy in certain scenarios. While the : − n model

has deficiencies in resolving separated and near-wall flows, it was generally more robust, less sensitive to free-stream

conditions, and well suited for predicting free-shear flows. The choice between these two approaches remains subjective

and dependent on user preferences and specific application requirements.

B. Machine Learning Methods for Wind Interpolation

Machine learning (ML) methods such as Gaussian process (GP) regression have been used for predicting wind

flows using various kernels such as the standard squared exponential [15, 17, 19, 36], and radial basis kernel functions

[18]. Long-short-term-memory (LSTM) neural networks have also been proposed to predict the time evolution of a

CFD wind field [37] and then train a recurrent neural network (RNN) to predict the flow [4]. In [38], convolutional

neural networks (CNNs) were studied to model both large and small scale flows through an urban environment using a

cascaded approach of two models tuned for the different spatial scales; the results were comparable to CFD while being

over thirty times faster to compute. In [16], two GP regression based models were presented that provide uncertainty

predictions for flow fields with low and high variability. GP regression has also been shown to aid in real-time on-board

wind estimates in [19], while using an anemometer to sample the wind. A neural-network model was trained on CFD

generated models of wind flow over realistic terrains in [23] and generated comparable results in a fraction of the

required computational time.

Prior work has used GP regression to provide wind estimates in urban environments [17, 19] and in the atmospheric

boundary layer [15, 23] where the spatial regression uses relative distance to correlate samples. In [39], a GP regression

model estimated wind magnitude around buildings in a realistic urban environment by training the hyperparameters of a

squared exponential kernel using an evolutionary optimization algorithm. In [17], a GP regression model was trained to

estimate a wind field based on probe measurements taken by a UAV using a custom kernel that was parameterized
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by spatial distance and wind drift. In [19], two GP regression models were used to estimate the wind magnitude and

direction respectively, by training the models on 35 sets of CFD data with varied inlet conditions. Reference [19]

generated CFD training data using the open-source CFD software OpenFOAM with a : − n turbulence model. A

coregion kernel was used with a GP regression model in [40] to train a model on the correlation between commonly

monitored parameters at 58 different pollutant monitoring stations, which was then applied to estimate the pollutant

levels at 5 unseen locations on the same day. In [16], a GP regression model was paired with a squared exponential

kernel to estimate ocean currents. The hyperparameters used in the model presented in [16] were trained on subsets of

training data, then they were averaged together for use in an estimate, making training on a large set of data for a given

day more efficient. Reference [39] generated accurate high-fidelity CFD based training data using a : − n turbulence

model for generalized wind conditions in winter and summer seasons for a particular set of buildings. In [41], an

estimate of the pedestrian scale wind flow around a single building was generated using a GP regression model with a

squared exponential kernel. The hyperparameters of the GP regression model in [41] were optimized using a genetic

algorithm for 150 CFD simulations of the building with varied dimensions and orientations.

C. Relation to Prior Work

This work explores using GP regression and variational GP regression models paired with the squared exponential

kernel and a coregion kernel to estimate an urban wind field using sparse observations. A novel aspect of our approach

is the inclusion of building morphology information via the SDF, in addition to sample location, to define the feature

space of the GP regression. Additionally, we demonstrate the use of a coregion kernel to simultaneously train GP

models on multiple sets of urban CFD datasets. Without the use of such a kernel the training of a model on multiple

different CFD datasets would be more difficult.

IV. Preliminaries
This section describes mathematical preliminaries of standard GP regression (GPR) and variational GP (VGP)

models, which are used later in the urban wind estimation framework. The concept of a signed distance function to

characterize building morphology is also introduced.

A. Gaussian Process (GP) Models

1. Gaussian Process Regression (GP)

A GP is a random scalar function 5 (x) defined over a feature space � ⊆ R= that is characterized by a mean

`(x) = E[ 5 (x)] and covariance function ^(x, x′) = E[( 5 (x) − `(x)) ( 5 (x′) − `(x′))], where E[·] is the expected

value operator, and x, x′ ∈ � are two feature vectors [42]. The covariance function ^(x, x′) describes the correlation

between two feature vectors. In shorthand, a GP is often denoted as

5 (x) ∼ GP(`(x), ^(x, x′)) . (1)

In many spatial estimation contexts, the feature space (sometimes called the input space) � is the 2D or 3D Euclidean

space in which measurements are obtained. This work investigates alternative feature spaces that augment the traditional

Euclidean input space with additional variables representing the geometry of an urban environment around each sample.

Different feature elements may have different correlations, thus a unique set of hyperparameters is associated with each

dimension. The standard squared exponential kernel

^sq (h, )sq) = f2exp

(

−
1

2

=∑

8=1

(
ℎ8

!8

)2
)

, (2)

is adopted here, where h = [ℎ1, . . . , ℎ=] is a vector of spatial lag terms, i.e., ℎ8 = | |G8 − G′
8
| | where G8 and G′

8
are the

components of x, x′ ∈ �, R = [!1, !2, . . . , !=] ∈ R
= is a vector describing the approximate length scale of correlation

for each feature vector dimension, and f2 is an overall variance of the random process. The hyperparameter vector is

)sq = [f, R]. A sensor measures the value of the random function at points x as

H = 5 (x) + Y , (3)
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where Y ∼ N(0, f2
n ) is zero-mean Gaussian measurement noise with variance f2

n . Collecting measurements at multiple

different locations in the feature space allows for GP regression to interpolate and extrapolate the measurements to

unsampled regions. Let _ = [H1, . . . , H" ] ∈ R3×" be a vector of " observations (3) collected at feature points

^ = [x1, . . . , x" ] ∈ R=×" (collectively called the training data). Let M = [g1, . . . , g�] ∈ R
=×� be a collection of

prediction points over which the process is to be estimated. Then, the GP regression of the function at the prediction

points consists of a mean estimate, _̂ , and a covariance, V
_̂

, describing the uncertainty:

_̂ (M; ^,_) = Q (M, ^) (Q (^, ^) + f2
n O)

−1_ (4)

V
_̂
(M; ^,_) = Q (M,M) − Q (M, ^) (Q (^, ^) + f2

n O)
−1Q (^,M) (5)

where Q (^, ^) ∈ R"×" is a matrix relating the covariance of observation points to each other, Q (M,M) ∈ R�×� is a

matrix relating the covariance between grid points, Q (M, ^) ∈ R�×" is a matrix relating the covariance of grid points

to samples, Q (^,M) = Q (M, ^)T, and O ∈ R"×" is the identity matrix. Each covariance matrix takes the form of

Q (s, s) =



^(B1, B1) · · · ^(B1, B" )
...

. . .
...

^(B" , B1) · · · ^(B" , B" )



, (6)

where s is an input matrix of given size (equal to either ^ or M), and where each entry contains a scalar covariance

value from (2) evaluated with the respective 8th and 9 th input elements from the input matrix. The above discussion

describes GP regression to predict a scalar function defined over a feature space. If the spatial quantity of interest

is instead a vector field then methods for multi-output GP modeling can be used. A simpler approach is to develop

multiple independent GP models, one for each component of the vector quantity, and perform the estimation in parallel.

2. Variational Gaussian Process (VGP) Regression

A shortcoming of GP regression is its O(=3) computational complexity due to the matrix inverse operation. Sparse

GP regression (SGP) can reduce the computational cost to O(=<2) through the use of < inducing points for estimation

(rather than using all available data). The inducing points ` = [I1, I2, . . . , I<] ∈ R
< are the result of an optimization

that invokes the :-means algorithm [21], and the resulting regression is [43]:

_̂ (M; _) = Q (^,M)TW−1
" Q (`, ^) (� + f2

= O)
−1_ (7)

V
_̂
(M; _) = Q (M,M) − Q (^,M)T (Q (`, `)−1 − W−1

" )Q (^,M) + f2
= O , (8)

where W" = Q (`, `) + Q (`, ^) (� + f2
= O)

−1Q (^, `), � = diag(,), , = Q (^, ^) − Q (`, ^)TQ (`, `)−1Q (`, ^).

See [43] for further details on the SGP model.

Sparse variational GPs (SVGPs) were introduced in [44] and are similar to SGPs in that they both use inducing

points as a method of reducing computational complexity of GP regression. However, SVGP selects the inducing points

using variational Bayesian learning by minimizing the Kullback-Leibler (KL) divergence between a variational GP and

the true GP posterior [44]. Variational GP regression is equivalent to SVGP regression, with ` = ^ as the input for

inducing points, while minimizing the KL divergence between the approximation and the posterior [45], altering the

form of (7)-(8).

Training a GP model involves optimizing the hyperparameters of the kernel to minimize a loss function between the

predictions and true values of the process of interest (i.e., the training data). However, when the training data consists of

multiple processes or realizations over the same input space, then the GP is viewed as multi-output model. In this paper,

multiple training datasets are generated using CFD simulations over the same input space, and training is conducted

to find a common set of hyperparameters that best describe all training data. To consider all the training datasets

simultaneously, the input space can be annotated with an index (by augmenting the feature vector) and a coregion kernel

is used to relate the covariance between two training datasets. Refer to [46, 47] for further details.

B. Signed Distance Function (SDF)

The SDF has been widely used in many robotics applications, especially for motion planning to express the distance

to the nearest obstacle. Let $ ∈ R3 represent the volume of three-dimensional space occupied by a set of obstacles in
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the environment (buildings, etc.), including the ground plane. Let r ∈ R3 represent the position of a robot in space. The

signed distance function is a mapping d : R3 → R that represents distance to the nearest obstacle, i.e.,

d(r) = inf ∥r − p∥ ∀ p ∈ $ . (9)

The gradient of the SDF is denoted ∇d(r) ∈ R3 and indicates how the building morphology is changing at a particular

location. Many algorithms exist for computing the SDF. In this work an approach is used that accommodates the

description of obstacles $ as a mesh consisting of vertices and edges.

V. Problem Formulation
This section defines the environment, wind model, and states the problem to be investigated.

A. Urban Environment

Let I = {%, i1, i2, i3} be an inertial reference frame with an origin at point %, and with orthonormal unit vectors

oriented along the east-north-up directions, respectively. Consider a network of UAS vehicles and wind sensing

infrastructure in an urban environment � described by a rectangular prism of height ℎenv and length/width ;env, with an

origin % at the center:

� =

{
(G, H, I) ⊂ R3 | 0 ≤ I ≤ ℎenv, |G | ≤

;env

2
, |H | ≤

;env

2

}
. (10)

The environment contains #$ extruded polygons representing buildings or other structures. The volume occupied by

each obstacle is denoted $8 ⊂ � and is defined by a base footprint �8 ⊂ R
2 and a height ℎ8 ∈ [ℎmin, ℎmax]:

$8 = {(G, H, I) ⊂ � | 0 ≤ I ≤ ℎ8 , (G, H) ∈ �8} . (11)

Each area �8 has length 3min ≤ ;8 ≤ 3max and width 3min ≤ F8 ≤ 3max that is constrained by the parameters 3min and

3max. The union of all obstacles is $ = ∪
#$

8=1
$8 . As a simplifying assumption, the vehicles and sensing infrastructure

are assumed to be at a constant altitude, Ides. The estimation algorithm to be discussed later assumes knowledge of the

operating region � and the location and geometry of all obstacles $.

B. Urban Wind Model and Wind Measurements

A two-dimensional steady wind vector field is defined for each point r = [G, H]T ∈ � \$, all at a constant altitude

Ides:

w(r) =

[
D(G, H)

E(G, H)

]

. (12)

Suppose that " locations

X = [r1, . . . , r" ] (13)

are sampled in the environment. A corresponding set of " measurements are obtained

_̃ = [w̃1, . . . , w̃" ] , (14)

where w̃8 = w(r8). The sensor noise variance f2
n is uniform in all three directions. While the proposed approach is

developed with real-world applications in mind, this paper evaluates the approach in simulation where the wind vector

field w(r) is represented by a CFD simulation. The CFD solution outputs the wind vector field at a series of discrete

mesh node locations. To apply the approach in simulation this CFD vector-field is linearly interpolated. Similarly,

while the notation in Sec. V.A describes an idealized environment, the estimation algorithm will operate over a mesh

representation of this urban space.

C. Problem Statement

Let M ∈ R2×� represent a set of planar prediction points in the environment corresponding to an altitude Ides. An

estimate of of the wind vector-field at locations in M given the data _̃ , X is generically denoted as _ (M; _̃ , X). Different
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efficiently, a Paraview macro is used to clip the data to the desired dimensions and then extract a slice at the desired

altitude. The dimensions used for the extraction of the data for all geometries in this work were 50 m centered at the

origin in the G and H directions, and Ides = 3min = 3. A total of & = 50 geometries were generated and processed.

C. Augmenting Feature Vector with Building Morphology Data

Feature vectors augment position data at each measurement location with information extracted from the SDF for the

environment. Consider a measurement location r = [G, H]T. The corresponding standard feature space can be defined as

Feature space �1 corresponding to feature vector x = r ∈ R2 . (18)

To augment this feature space with data representing building morphology, let � = [b1, . . . , b'] denote a set of '

relative position vectors with b8 ∈ R
3 for 8 = 1, . . . , '. Then d(r + b8,...,�) ∈ R

' and ∇d(r + b8,...,�) ∈ R
3' are the

SDF and SDF gradient samples at these additional ' sample points. Table 1 describes the various combinations of these

features that are tested.

Table 1 Feature spaces that are investigated in this work

No. r d(r) ∇d(r) d(r + b8,...,�) ∇d(r + b8,...,�) R
= for r = [G, H]T

�1 ✓ R
2

�2 ✓ ✓ ✓ R
5

�3 ✓ ✓ ✓ ✓ ✓ R
29

�4 ✓ ✓ ✓ ✓ R
13

�5 ✓ ✓ ✓ R
11

�6 ✓ ✓ R
3

�7 ✓ ✓ ✓ ✓ R
21

�8 ✓ ✓ ✓ R
20

In practice, the building geometry is provided as a mesh and the SDF function and SDF gradient must be computed

numerically to define the above feature vectors. The current framework is limited to two-dimensions, and the SDF and

related data are adjusted accordingly, leading to feature spaces of sizes corresponding to the final column in Table 1. To

numerically compute the SDF and gradient, the building geometry mesh is sliced at Ides to obtain polygonal data for

each obstacle using [51]. The operating area is discretized into a uniform grid and the polygon data is used to generate a

binary occupancy map over this grid. From the binary occupancy map, the SDF is calculated by using the distance

function of the scikit-fmm python extension module [52], with a spacing input of 1 m. The resultant SDF data is then

interpolated back to a desired resolution compatible with the GP regression and the gradient is calculated using [53].

The SDF and its gradient are shown for geometry 1 in Fig. 4, with a sample location r and a corresponding set of ' = 8

additional sample points relative to r. The relative sample locations can be set to any pattern, but in this work a star

pattern was chosen, where for � = [b1, . . . , b8], the relative position is offset from r by 5 m and 10 m at equally spaced

radial locations. For each set of CFD data, a set of randomly sampled measurement locations were chosen, where

X = [r1, . . . , r" ] ∉ $. At each sample point in X, the D and E components of the wind field are taken by interpolating

from the .CSV of extracted CFD data,to define the respective sets of observations _ .

D. Kernel Selection and Hyperparameter Optimization

Once the CFD data is generated and sampled, it is formatted for a particular choice of feature vector to be amenable

with GPflow [54] for GP training and regression. GPflow is a flexible software package that allows assigning a particular

feature its own hyperparameters. Three kernel formulations are tested with varying combinations of the squared

exponential and coregion kernels. The hyperparameters associated with each kernel are optimized using the TensorFlow

Adam optimizer [55], to minimize the negative log-likelihood, as is standard practice in GP training architectures. Up to

25k iterations of optimization are performed for each individual kernel.
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