
Computational and Structural Biotechnology Journal 23 (2024) 4027–4035

Av
20
ar

Contents lists available at ScienceDirect

Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

Mini-Review

A mini-review of single-cell Hi-C embedding methods

Rui Ma a, Jingong Huang b, Tao Jiang b,c,∗, Wenxiu Ma a,c,∗

a Department of Statistics, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
b Department of Computer Science and Engineering, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
c Institute of Integrative Genome Biology, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Single-cell Hi-C
Genome architecture
Embedding

Dimensionality reduction

Single-cell Hi-C (scHi-C) techniques have significantly advanced our understanding of the 3D genome organization, 
providing crucial insights into the spatial genome architecture within individual nuclei. Numerous computational 
and statistical methods have been developed to analyze scHi-C data, with embedding methods playing a key role. 
Embedding reduces the dimensionality of complex scHi-C contact maps, making it easier to extract biologically 
meaningful patterns. These methods not only enhance cell clustering based on chromatin structures but also 
facilitate visualization and other downstream analyses. Most scHi-C embedding methods incorporate strategies 
such as normalization and imputation to address the inherent sparsity of scHi-C data, thereby further improving 
data quality and interpretability. In this review, we systematically examine the existing methods designed for 
scHi-C embedding, outlining their methodologies and discussing their capabilities in handling normalization 
and imputation. Additionally, we present a comprehensive benchmarking analysis to compare both embedding 
techniques and their clustering performances. This review serves as a practical guide for researchers seeking to 
select suitable scHi-C embedding tools, ultimately contributing to the understanding of the 3D organization of 
the genome.
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 Introduction

Over the past two decades, researchers have extensively investigated 
e three-dimensional (3D) organization of the genome [1–5]. Within 
e confined 3D space of the cell nucleus, DNA—the genetic material of 
e cell—is intricately compacted and organized [5]. The development 
 chromatin conformation capture (3C) technology [6] marked a signif-
ant breakthrough, enabling the inference of spatial proximity between 
nomic loci based on the frequencies of chromatin contacts within the 
clei. This innovation paved the way for various 3C-based techniques, 
ch as 4C [7], 5C [8], Hi-C [9,10], Micro-C [11,12], ChIA-PET [13,14], 
d Hi-ChIP [15]. These techniques were developed to profile chromatin 
ntacts in a higher-throughput manner and have been instrumental in 
vealing the multi-scale organization of the 3D genome, offering pro-
und insights into nuclear architecture and gene expression regulation 
6,17].

Among the various 3C-based techniques, Hi-C has been widely em-
oyed to study the 3D genome architecture. However, the variability 
 chromatin contacts across cells, even within a functionally homoge-
ous population, arises from the stochastic nature of chromatin con-
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formation and spatial genome organization [18]. Consequently, while 
Hi-C effectively captures the spatial arrangements of complex chro-
matin structures, relying solely on Hi-C data is considered insufficient 
for depicting the diversity of higher-order chromosome structures at 
the single-cell level. To address this limitation, several single-cell Hi-C 
(scHi-C) techniques [19–28] have been developed. These advancements 
have enabled the investigation of multi-scale spatial genome organiza-
tion at the single-cell level, yielding invaluable insights into the dynam-
ics and variability of the 3D genome [17,18,29].

Single-cell 3D mapping techniques, developed to study the 3D 
genome architecture at the single-cell level, can be broadly catego-
rized into the following three groups [16,17]: imaging-based protocols 
[18,30,31], proximity ligation-based protocols [19–25], and ligation-
free protocols [32]. The imaging-based methods visualize chromatin 
targets within cells as fluorescently labeled spots, thereby detecting 
chromatin contacts based on the spatial positions of imaged loci. The 
proximity ligation-based techniques, including the aforementioned 3C-
based methods, measure the frequencies of chromatin contacts between 
genomic loci by digesting crosslinked DNA with enzymes, ligating 
restriction fragments, and quantifying the sheared and purified frag-
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Fig. 1. Single-cell Hi-C analysis workflow. (A) A simplified workflow of scHi-C data analysis; (B) Typical scHi-C embedding workflow: scHi-C contact maps serve as 
input and often undergo normalization and/or imputation prior to dimensionality reduction. This process extracts important features and outputs latent embeddings 
for further analysis, such as clustering.
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ents through high-throughput paired-end sequencing. In contrast, the 
ation-free approaches, such as the “single-cell split-pool recognition 
 interactions by tag extension” (scSPRITE), provide novel insights into 
 genome topology. Additionally, single-cell simultaneous profiling 
chniques have been developed to investigate the correlation between 
romatin contact frequencies and functional characteristics, such as 
NA methylation [26–28] and gene expression [33,34]. Among these 
ngle-cell 3D mapping approaches, scHi-C, a proximity ligation-based 
chnique, has been extensively employed to explore the heterogeneity 
d dynamics of 3D genome organization.
Recently, several embedding methods [35–43] have been developed 

 improve the analysis and interpretation of scHi-C data. Embedding, 
nonymous with dimensionality reduction, extracts lower-dimensional 
atures from the original 2D chromatin contact maps, which represent 
nomic interaction. This process seeks to capture essential patterns 
hile eliminating redundant or noisy information, thereby enhancing 
mputational efficiency and the effectiveness of subsequent analyses, 
ch as clustering, visualization, and differential analysis. ScHi-C em-
dding methods are particularly useful for distinguishing different cell 
ub)types, identifying clusters of cells of the same (sub)type, and vi-
alizing cell separation and clustering. By revealing cell-type-specific 
atures, these methods help uncover underlying patterns in complex, 
rge-scale single-cell datasets.
In contrast to one-dimensional genomic sequencing data, such as 

ngle-cell RNA-seq (scRNA-seq) or single-cell ATAC-seq (scATAC-seq), 
Hi-C data presents complex, hierarchical information within a 2D con-
ct map, adding complexity to the embedding task. Additionally, scHi-C 
ntact maps exhibit significantly higher sparsity compared to those of 
e traditional Hi-C or other single-cell genomic datasets. While assays 
e scRNA-seq and scATAC-seq typically reflect approximately 70% of 
e genome, scHi-C is often limited to less than 5% of all possible con-
cts [44]. To address the challenges posed by this sparsity, as well as 
 mitigate systematic biases and reduce experimental noise, various 
rategies have been developed, including normalization and imputation 
6,38,39,42,43,45]. When applied prior to embedding, these strategies 
n significantly enhance the performance of scHi-C embedding, clus-
ring, and other downstream analyses.
In this review article, we summarize ten recently developed com-
tational methods designed to improve the embedding of scHi-C con-
ct maps. We outline their methodologies and discuss their capabil-
es in normalization, imputation, and batch effect correction by fo-
sing on their strengths and limitations. Additionally, we present a 
mprehensive benchmarking analysis that evaluates and compares the 
4028

rformances of these embedding techniques and their impact on the t-D
bsequent clustering results. This review aims to guide researchers in 
lecting the most appropriate methods for their studies.

 ScHi-C embedding methods

Starting with the sequencing reads generated by scHi-C experiments, 
veral pre-processing steps are required to create the 2D scHi-C contact 
aps. First, the paired-end reads are mapped to the reference genome to 
entify the loci of interacting chromatin fragments. Next, a quality con-
ol assessment is performed on the mapped reads to remove duplicates 
d erroneous pairs. In addition to this read filtering, cell filtering can 
 performed by excluding low-quality cells based on sequencing depth 
d the ratio of intra-chromosomal contacts to inter-chromosomal con-
cts. Following both read- and cell-level filtering, the remaining read 
irs are used to construct the matrices of scHi-C contact frequencies by 
nning contacts with a fixed bin size (referred to as “resolution”) for 
ch cell. These scHi-C contact matrices serve as the foundation for vari-
s analytical tasks, including embedding, clustering, and investigating 
 genome features, such as A/B compartment identification, TAD-like 
undary detection, and loop calling (Fig. 1A).
Recently, embedding methods have been developed for scHi-C con-
ct maps to facilitate cell clustering and other downstream analyses. 
ese methods take scHi-C contact matrices as input, extract important 
atures, and output a latent embedding matrix with cell-by-feature di-
ensions, thereby reducing the complexity of the scHi-C data (Fig. 1B). 
e resulting embeddings can then be further reduced and projected 
to a lower-dimensional subspace, typically visualized in a 2D scat-
r plot, where each dot symbolizes an individual cell. Similar to other 
ngle-cell genomics data, such as scRNA-seq and scATAC-seq, this 2D 
ojection helps researchers differentiate and cluster cells for subse-
ent cell-type-specific and differential analyses.
To date, ten published computational methods have been specifi-
lly designed for the embedding of scHi-C data, including HiCRep/MDS 
5], scHiCluster [36], Topic Modeling [37], scHiCTools [38], Higashi 
9], scHiCExplorer [40], scHiCEmbed [41], BandNorm [42], scVI-3D 
2], and Fast-Higashi [43]. These methods can be broadly categorized 
to two main groups: (1) deep learning-based methods, such as Hi-
shi, scHiCEmbed, and scVI-3D, and (2) statistical methods, which in-
ude the remaining seven methods. These embedding methods employ 
rious approaches by using either statistical techniques or neural net-
orks, to generate latent embeddings from scHi-C datasets. Researchers 
n then apply conventional dimensionality reduction techniques, such 
 Uniform Manifold Approximation and Projection (UMAP) [46] and 

istributed Stochastic Neighbor Embedding (t-SNE) [47], to project 



Computational and Structural Biotechnology Journal 23 (2024) 4027–4035R. Ma, J. Huang, T. Jiang et al.

Table 1

Summary of scHi-C embedding tools. This table outlines the core methodologies of each scHi-C embedding tool and summarizes their 
capabilities, including features such as contact matrix normalization, imputation, and batch effect removal.
Tools Embedding strategies Normalization Imputation Batch effect removal

BandNorm [42] PCA on Combined Bin-pairs ✓ ✓
Fast-Higashi [43] Tensor Decomposition ✓ ✓ ✓
Higashi [39] Hyper-SAGNN ✓ ✓ ✓
scHiCExplorer [40] MinHash-kNN graph followed by PCA ✓
scHiCluster [36] Two-step PCA ✓
scHiCEmbed [41] Two-step PCA ✓
HiCRep/MDS [35] Pairwise Similarity followed by MDS ✓
scHiCTools [38] Pairwise Similarity followed by One Dimensional Reduction Method ✓ ✓
scHi-C Topics [37] Latent Dirichlet Allocation followed by PCA

scVI-3D [42] Non-linear Latent Factor Model ✓ ✓ ✓
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ese embeddings onto a lower-dimensional subspace for visualization 
 further analysis.
To address the challenges in scHi-C data analysis, various embedding 
ols incorporate normalization and/or imputation into their pipelines 
 improve feature extraction. Normalization adjusts technical variabil-
, such as differences in sequencing depth and library size across 
lls, ensuring that chromatin contacts are comparable throughout the 
taset. Imputation helps recover missing or low-frequency chromatin 
ntacts to address the inherent sparsity of scHi-C data. Additionally, 
me tools integrate batch effect removal to account for non-biological 
riations, such as differences in laboratory conditions, ensuring that 
e clustering results reflect true biological differences rather than tech-
cal artifacts. Below, we briefly discuss the scHi-C embedding tools and 
mmarize their functions and strategies provided in Table 1.

1. HiCRep/MDS

Liu et al. [35] were the first to investigate the feasibility of em-
dding scHi-C data using methods originally developed for bulk Hi-
analysis. The authors evaluated one custom-designed Hi-C distance 
easure and three existing Hi-C similarity measures (HiCRep [48], 
enomeDISCO [49], and HiC-Spector [50]) by combining each with the 
ultidimensional Scaling (MDS) [51] embedding method. Combining 
iCRep with MDS was shown to effectively embedd scHi-C data into 
low-dimensional space, revealing biological variations of 3D chro-
atin organization, even in datasets with low sequencing depth. While 
is similarity-based embedding approach effectively captures cell cy-
e dynamics, it struggles with forming distinct clusters of cell types 
d differentiating between chromatin structures [36]. Additionally, the 
ethod is computationally demanding due to the need for smoothing 
d pairwise comparisons among individual cells [37].

2. scHiCluster

scHiCluster, introduced by Zhou et al. [36], is one of the initial tools 
ecifically designed for clustering scHi-C data. Its imputation approach 
mbines linear convolution with random walk, thereby effectively ad-
essing the inherent sparsity of scHi-C data and enabling accurate clus-
ring of single cells and the identification of cell-type-specific features 
 3D genome organization, such as TAD-like structures. The method 
st utilizes linear convolution to smooth each bin-pair with its neigh-
rs and then employs a random walk with restart (RWR) algorithm 
2] to effectively capture both the local and global information of the 
Hi-C contact maps. To mitigate coverage bias, scHiCluster selects only 
e top 20% of contacts before applying Principal Component Anal-
is (PCA) to project the data into a low-dimensional subspace. This 
proach preserves essential features while reducing data complexity, 
ereby facilitating the differentiation of various cell types even within 
e same cell cycle stage. Although scHiCluster does not include a built-
 batch effect removal feature, the use of Harmony [53], a tool widely 
4029

ed for integrating scRNA-seq data, has been suggested to manage in
tch effects. Furthermore, although scHiCluster did not explicitly detail 
eir downstream feature calling functions in the paper, their GitHub 
pository offers users commands for calling compartments, domains, 
d loops using, which are derived from other published methods.

3. scHi-C topics

scHi-C Topics, introduced by Kim et al. [37], leverages Latent Dirich-
t Allocation (LDA) topic modeling, by providing a novel approach for 
Hi-C data embedding. Topic modeling has been widely used in natural 
nguage processing to uncover latent structures in large-scale, sparse, 
d discrete datasets. The application of LDA to scHi-C data builds on 
 successful use in scATAC-seq data for learning latent-space repre-
ntations [54]. This method treats individual cells as “documents” and 
cus-pair contacts as “words” to generate two relationship matrices: 
) topics and cells; (2) topics and locus pairs. This is to identify topics 
at represent the distinctive features of different cell types. Specifically, 
m et al. successfully applied LDA to decompose the cell-by-locus pair 
atrix—derived from locus pairs within a 10 Mb genomic distance for 
ch cell—into a cell-by-topic matrix and a topic-by-locus pair matrix. 
ese topics facilitate the discovery of crucial locus pairs responsible 
r functional and structural differences across various cell types. By 
alyzing these cell-type-specific topics, the authors demonstrated the 
ility to reveal significant compartmental patterns, enrichment, and 
e finer dynamics of 3D genome topology. Furthermore, this scHi-C 
pics method was shown to effectively cluster cells by type and sepa-
tes cell cycle effects from 3D chromatin organization in scHi-C data.

4. scHiCTools

Among various methods, scHiCTools [38] stands out as a highly 
rsatile toolkit that offers a variety of imputation and embedding ap-
oaches specifically tailored for scHi-C data. The core concept of scHiC-
ols is to effectively derive latent embeddings by leveraging pairwise 
ll similarity. This software supports a wide range of input formats 
r scHi-C contact maps, such as pre-processed matrices, edge lists, hic 
es, and cool files, as well as tools to summarize the quality of data. To 
dress the inherent sparsity of scHi-C data, scHiCTools offers several 
er-selectable normalization strategies such as observed/expected (OE) 
rmalization [9], Knight-Ruiz (KR) normalization [55], and Vanilla 
verage (VC) normalization [9]. It also offers several imputation op-
ns, including linear convolution, random walk, network enhancing. 
near convolution smooths chromatin contacts over neighboring ele-
ents, while random walk captures both local and global signals across 
e genome. Network enhancing is a special type of random walk that 
as initially developed for bulk Hi-C data to enhance the contact map 
d improve the detection of TAD boundaries [56].
Following imputation, scHiCTools computes the cell-to-cell similar-
 matrix using Hi-C similarity measures, such as InnerProduct, fastHi-
ep (a faster version of HiCRep [48]), and Selfish [57], to generate 
e latent embeddings. The software also incorporates multiple cluster-

g approaches for comprehensive analysis. By projecting cells onto a 
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Table 2

Software tools of scHi-C embedding methods and their computational efficiency. This table summarizes the computational performance of various 
embedding tools, including CPU and GPU utilization, and the approximate runtime for analyzing two scHi-C datasets at the 500kb-resolution with 
different numbers of cells and sequencing depths for method comparison. The programming languages and software websites used for implementing 
these tools are also listed.
Tools CPU GPU Runtime (Nagano et al.) Runtime (Tan et al.) Programming languages Software URLs

BandNorm [42] ✓ ∼ 15 min ∼ 25 min R github.com/keleslab/BandNorm

Fast-Higashi [43] ✓ ✓ ∼ 6 min (on GPU) ∼ 10 min (on GPU) Python github.com/ma-compbio/Fast-Higashi

Higashi [39] ✓ ✓ ∼ 8.5 hrs (on GPU) ∼ 8 hrs (on GPU) Python github.com/ma-compbio/Higashi

scHiCExplorer [40] ✓ ∼ 12 min ∼ 25 min Python github.com/joachimwolff/scHiCExplorer

scHiCluster [36] ✓ ∼ 1.5 hrs ∼ 2 hrs Python github.com/zhoujt1994/scHiCluster

scHiCEmbed [41] ✓ ✓ R & Python dna.cs.miami.edu/scHiCEmbed

scHiCTools [38] ✓ ∼ 45 min ∼ 2 hrs Python github.com/liu-bioinfo-lab/scHiCTools

scHi-C Topics [37] ✓ ∼ 4.5 hrs ∼ 7 hrs R github.com/khj3017/schic-topic-model

scVI-3D [42] ✓ ✓ ∼ 2.5 hrs (on GPU) ∼ 6 hrs (on GPU) Python github.com/yezhengSTAT/scVI-3D
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wer-dimensional subspace, scHiCTools facilitates the investigation of 
ructural heterogeneity across scHi-C contact maps. Linear convolution 
s been demonstrated to effectively handle dropout events in sparse 
atrices better than other imputation approaches. Comparative analy-
s have shown that InnerProduct, combined with effectively computes 
irwise similarities, accurately projects the Nagano et al. dataset, pre-
rving global pairwise distances.

5. Higashi

Diverging from traditional linear convolution and random walk 
ethods, Higashi [39] integrates embedding and imputation into a deep 
arning-based framework. For this appraoach, a novel hypergraph rep-
sentation of scHi-C data was introduced, where nodes correspond 
 genomic loci and cells, while hyperedges represent interactions be-
een a cell node and two corresponding genomic bin nodes. Higashi 
as built on Hyper-SAGNN [58], a generic hypergraph neural network 
amework, to capture the higher-order topological properties of the 
ta, learning node embeddings and predicting hyperedges. Further-
ore, in Higashi, global structural information is shared among cells 
 close proximity in the embedding space, as determined by their k-
arest neighbors. This approach leverages latent correlations between 
ll embeddings to improve the accuracy of imputation. For imputa-
n, Higashi constructs a cell-dependent graph that integrates the Hi-C 
ntact maps of the target cell and its k-nearest neighbors. The graph, 
ong with the attributes of the genomic bin nodes, serves as inputs for 
e trained hypergraph neural network, which imputes missing edges 
hile maintaining the unique features of each cell. Additionally, Hi-
shi developed analysis methods for computing compartment scores 
d detecting TAD-like domain boundaries of imputed single-cell con-
ct maps, enhancing the analysis of 3D genome structures at single-cell 
solution.

6. scHiCExplorer

While scHiCluster provides tools for smoothing and clustering scHi-C 
ta, it lacks a comprehensive toolbox for the entire analysis work-
w, from raw data processing to cell clustering, matrix construction, 
d quality control. Additionally, previous methods’ requirements to 
ore contact matrices in text files can be space-consuming and com-
icate data sharing. In contrast, scHiCExplorer [40] addresses these 
allenges by offering a comprehensive software suite that supports the 
alysis of scHi-C data from raw FASTQ files to the final results desired 
 researchers. Specifically, scHiCExplorer includes functionalities for 
multiplexing sequencing data by barcodes and mapping sequencing 
ads for individual cells. Similar to scHiCTools, scHiCExplorer also pro-
des an option to generate quality control reports.
For embedding purposes, scHiCExplorer converts each single-cell 
ntact matrix into a vector format and concatenates these vectors into 
cell-by-bin-pair contact matrix. To overcome the curse of dimension-
4030

ity, it computes similarity using a k-nearest neighbors (kNNs) graph ba
sed on the Jaccard index approximated by MinHash [59] before ap-
ying PCA to derive the latent embeddings. It has been claimed that the 
ccard index is particularly suitable for distinguishing contacts from 
n-contacts, compared to typical Euclidean distance, as it focuses on 
e features shared by cells. In this approach, scHiCExplorer calculates 
e similarity between two cells by tallying collisions across all MinHash 
nctions, where each non-zero interaction is assigned a hash value. 
lls that share more common features are considered more similar, 
hile those with fewer shared features are considered less similar. Addi-
nally, scHiCExplorer offers an option to apply KR normalization [55]
 account for coverage bias. By employing the kNNs graph, scHiCEx-
orer achieves efficient runtime and memory utilization, making it a 
bust tool for scHi-C data analysis.

7. scHiCEmbed

Previous methods have demonstrated their effectiveness in smooth-
g scHi-C matrices, leading to improved cell type clustering compared 
 raw scHi-C matrices. ScHiCEmbed [41] further improves this aspect 
 employing an unsupervised approach to enhance contacts in scHi-C 
atrices, using bin-specific embedding on graph-structured data. Specif-
ally, scHiCEmbed can take either raw or imputed scHi-C contact maps 
.g., imputed maps from scHiCluster) as an adjacency matrix and re-
nstruct the contact maps by performing bin-specific embedding using 
graph auto-encoder. In this process, the encoder is designed to embed 
ch bin into a higher-dimensional space while the decoder reconstructs 
e input scHi-C matrix using the bin-specific embeddings. After obtain-
g reconstructed contact maps, scHiCEmbed concatenates the reduced 
ntact maps of all chromosomes and performs an additional round of 
mensionality reduction via PCA.
Notably, the bin-specific embedding matrix learned by the encoder 
r each scHi-C map can be further used to reconstruct 3D genome 
ructures and detect TADs. The optimal bin-by-3 embedding matrix 
arned by scHiCEmbed represents the 3D coordinates of the recon-
ructed single-cell structures. It has been demonstrated that chromatin 
n continue to expand in 3D space during the interphase state by us-
g these reconstructed 3D structures from scHiCEmbed. Furthermore, 
is bin-specific embedding matrix can be used to generate a dissimi-
rity matrix, enabling the identification of TADs through constrained 
erarchical clustering.

8. BandNorm

Zheng et al. [42] introduced BandNorm to tackle key challenges in 
Hi-C analysis, such as genomic distance bias, batch effect, and variabil-
 in sequencing depth. BandNorm specifically addresses the genomic 
stance bias associated with band effects [6] and normalizes sequencing 
pth between cells to enhance data quality for downstream analyses.
In Hi-C matrices, diagonals and off-diagonals are referred to as 

nds. The contact frequencies on the same band are expected to be 

https://github.com/keleslab/BandNorm
https://github.com/ma-compbio/Fast-Higashi
https://github.com/ma-compbio/Higashi
https://github.com/joachimwolff/scHiCExplorer
https://github.com/zhoujt1994/scHiCluster
http://dna.cs.miami.edu/scHiCEmbed
https://github.com/liu-bioinfo-lab/scHiCTools
https://github.com/khj3017/schic-topic-model
https://github.com/yezhengSTAT/scVI-3D
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Ma, J. Huang, T. Jiang et al.

iform across the dataset, as these contacts involve loci with similar ge-
mic distances. The band effect indicates that with closer proximity to 
e diagonal of the Hi-C matrix, locus pairs generally display higher con-
ct frequencies. BandNorm normalizes scHi-C matrices based on these 
inciples. Given the symmetry of scHi-C matrices, BandNorm processes 
ly the upper triangular part of given matrices. It constructs a band ma-
ix by aggregating the bands from all cells and then normalizes contact 
equencies of each band by dividing them by the band mean of the cor-
sponding cell. Each band is then scaled by the average band mean 
ross all cells.
BandNorm provides a fast and effective normalization approach that 
dresses band effects and sequencing depth variability. It also incor-
rates Harmony to remove batch effects in the latent embeddings, 
ereby improving the ability to distinguish between various cell sub-
pes and facilitating subsequent cell-subtype-specific analysis. Com-
red to methods like Higashi, scHiCluster, and scVI-3D, BandNorm 
cels in detecting TAD-like structures, showing the highest accuracy 
ong these methods [42]. However, it does not address the issue of 
arsity in scHi-C data.

9. scVI-3D

Alongside BandNorm, Zheng et al. [42] introduced scVI-3D, a deep 
nerative model designed to effectively handle sparse band matrices. 
VI-3D uses a zero-inflated negative binomial distribution to model 
e input band matrices and utilizes a denoising variational autoen-
der (VAE) framework to address issues related to library sizes and 
tch effects. The software leverages the VAE implementation from 
e scvi-tools library [60]. Notably, scVI-3D explores various pooling 
rategies that concatenate several band matrices from different chro-
osomes. This pooling approach aims to enhance the robustness of cell 
beddings and improve clustering performance, although results can 
ry depending on the pooling strategy used.
scVI-3D is robust and excels in clustering and preserving chromatin 

ructures, such as TADs and A/B compartments. It demonstrates high 
covery rates for TAD-like boundaries and maintains high consistency 
 bulk data. Additionally, the processed contact maps from scVI-3D can 
cilitate the recovery of cell-type relationships and the identification of 
gnificant interactions. However, similar to Higashi, scVI-3D is compu-
tionally demanding. A distinct VAE is trained for each band matrix and 
ch chromosome, resulting in a large number of deep neural network 
odels to train. Furthermore, scVI-3D assumes spatial independence be-
een neighboring locus pairs, even though they are often correlated in 
ality.

10. Fast-Higashi

To improve scalability and model interpretability, the authors of 
igashi introduced Fast-Higashi [43]. Unlike the deep learning ap-
oach used in Higashi, Fast-Higashi employs a tensor decomposition-
sed method to accelerate computations. Inspired by the concept 
 metagenes in scRNA-seq analysis, Fast-Higashi introduces “meta-
teractions” to enhance interoperability in single-cell 3D genome anal-
es.

Fast-Higashi implements a random walk-based strategy to address 
ta sparsity, similar to scHiCluster, but with increased efficiency. 
ther than performing RWR on the entire matrix before tensor decom-
sition, it integrates these steps and conducts RWR in batches. The 
odel applies the core-PARAFAC2 tensor decomposition model [61] to 
compose the tensor representation of scHi-C data into four compo-
nts: meta-interactions, a weight matrix, a cell embedding matrix, and 
transformation matrix.
It has been demonstrated that meta-interactions can effectively cap-
re cell-type-specific 3D chromatin features in both simulated datasets 
d complex tissues. By integrating meta-interactions with cell em-
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ddings, Fast-Higashi offers a novel approach to studying differential pe
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 chromatin structures across various cell types. Additionally, meta-
teractions are promising for multi-omics data integration. Fast-Higashi 
 significantly faster than scVI-3D and Higashi, respectively, while also 
hieving state-of-the-art cell clustering results.

 Performance evaluation of scHi-C embedding methods

In this section, we compared the performances of the aforementioned 
Hi-C embedding methods, with a primary focus on their effectiveness 
 supporting downstream clustering analysis. We evaluated the fol-
wing eight methods: BandNorm, Fast-Higashi, Higashi, scHiCExplorer, 
HiCluster, scHiCTools, scHi-C Topics, and scVI-3D. scHiCEmbed was 
cluded from this analysis due to its focus on 3D structure reconstruc-
n rather than clustering.
For this analysis, we used two scHi-C datasets, both at a 500-kb res-
ution: (1) a mouse cell-cycle dataset from Nagano et al. [20], compris-
g 1171 cells with approximately 350 million total sequencing reads, 
cluding 320 million intra-chromosomal reads; and (2) a developing 
ouse brain dataset from Tan et al. [25], comprising 1954 cells with 
proximately 780 million total sequencing reads, including 620 mil-
n intra-chromosomal reads. The performance of each method was 
aluated using the Adjusted Rand Index (ARI) and Normalized Mutual 
formation (NMI) scores, which were computed based on the clustering 
sults obtained from the Kmeans++ algorithm applied to the final 2D 
beddings produced by each method. ARI measures the similarity be-
een the predicted clustering and the ground truth, where a score of 1 
dicates perfect clustering and a score of 0 indicates random clustering. 
MI assesses clustering quality by measuring the mutual information be-
een the predicted clusters and the ground truth, normalized to yield 
score between 0 and 1, with 1 indicating perfect alignment.
For the Nagano et al. dataset, we were particularly interested in as-
ssing whether a low-dimensional embedding could capture the circu-
r dynamics of the cell cycle. Fig. 2 shows that BandNorm, FastHigashi, 
igashi, and scHiCTools clearly presented the circular cell-cycle pattern. 
 contrast, scHiCluster, scVI-3D, and scHi-C Topics depicted the cell-
cle trajectory, but without the distinct circular structure. However, 
HiCExplorer failed to exhibit a discernible cell-cycle manifold.
Next, we evaluated whether the embeddings can effectively differ-
tiate the four cell-cycle stages. Using both ARI and NMI scores, we 
sessed the clustering performance for these stages. Fig. 4 demonstrates 
at scHiCExplorer performed poorly in terms of ARI and NMI scores, 
hile the remaining eight methods performed well and yielded compa-
ble results. Notably, scVI-3D and scHiCluster emerge as the top two 
ethods in terms of clustering the Nagano et al. dataset, followed by 
stHigashi, scHiCTools, and Higashi.
In addition to using the Nagano et al. dataset, which featured a 
onounced cell-cycle pattern, we also analyzed the Tan et al. dataset, 
nsisting of 13 cell types from the developing mouse brain. Due to the 
esence of numerous neuron subtypes, this dataset presented greater 
allenges for clustering, resulting in generally lower scores than those 
served with the Nagano et al. dataset. Fig. 3 shows that all meth-
s, except for scHiCExplorer, achieved effective cell-type separation. 
is important to note that some cells lacking cell-type annotations and 
e labeled as “Unknown,” and these cells were excluded from the clus-
ring performance evaluation. Among the tested methods, BandNorm, 
stHigashi, Higashi, scHiCTools, and scVI-3D delivered particularly 
mpetitive clustering results (Fig. 4).
Lastly, we recorded the runtime for each method to assess and 
mpare their computational efficiency (Table 2). Three methods—
ndNorm, FastHigashi, and scHiCExplorer—demonstrated signifi-
ntly faster runtime than the other methods across both datasets. 
mong these, FastHigashi delivered the fastest performance when as-
sted with GPUs, while BandNorm and scHiCExplorer provided com-

titive performance with only CPUs used.
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g. 2. Visualization and clustering of Nagano et al. dataset. This set of scatterplots provides 2D visualizations of the embeddings from the Nagano et al. dataset, 
tained using UMAP with two components. Each dot represents an individual cell, with different colors indicating four cell-cycle stages.

g. 3. Visualization and clustering of Tan et al. dataset. This set of scatterplots provides 2D visualizations of the embeddings from the Tan et al. dataset, obtained 
ing UMAP with two components. Each dot represents an individual cell, with different colors indicating 13 cell subtypes.

g. 4. Clustering performances of scHi-C embedding methods. The clustering scores were derived from the 2D UMAP embeddings of (A) the mouse cell-cycle 
taset (Nagano et al.) and (B) the mouse developmental brain dataset (Tan et al.). The x-axis represents NMI scores and the y-axis represents ARI scores. Each point 
4032

presents the results of a scHi-C embedding method, with different colors and labels indicating the specific method used.
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Fig. 5. Clustering performances with and without normalization/imputation. (A) Comparison of the clustering results with and without normalization. (B) Comparison 
of the clustering results with and without imputation. Each panel includes two barplots (left: ARI; right: NMI), displaying clustering scores based on 2D embeddings 
derived from the following methods: BandNorm, scHiCluster, and scHiCTools. Note that scHiCTools offers three normalization options: observed/expected (OE), 
Vanilla coverage (VC), and Knight-Ruiz (KR), as well as three imputation options: linear convolution (CN), random walk (RW), and network enhancing (NE). For 
each method, scores for non-normalized/imputed and normalized/imputed data are shown side-by-side. Rounded scores are annotated above each bar for clarity.
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 Effects of normalization and imputation on scHi-C embedding 
d clustering

Normalization and imputation play crucial roles in improving the 
ality and interpretability of scHi-C data. Due to the inherent spar-
ty of scHi-C contact matrices and heterogeneous sequencing depths 
ross different cells, these pre-processing steps are essential for accu-
te downstream analyses. Normalization techniques aim to account for 
verage biases and variability in library sizes across cells and experi-
ents, resulting in more balanced contact matrices. This process helps 
sure that contact frequencies are comparable within and across differ-
t datasets. In Section 2, we reviewed various embedding methods that 
corporate different normalization techniques during pre-processing. 
me methods use standard normalization techniques. For example, 
VI-3D normalizes scHi-C contacts per million within each cell, fol-
wed by log transformation, while Higashi and FastHigashi normalize 
ntacts by the total read count (i.e., coverage). Other methods adapt 
rmalization techniques from bulk Hi-C analysis. For example, scHiC-
ols provides three normalization options—OE normalization, VC nor-
alization, and KR normalization—while scHiCExplorer only uses KR 
rmalization. Notably, BandNorm employs a scHi-C-specific band nor-
alization approach to address unique challenges in scHi-C data.
Imputation methods, on the other hand, are designed to address 
arsity in scHi-C data by recovering low-frequency or missed con-
cts in scHi-C matrices. The aforementioned scHi-C embedding meth-
s employ various imputation strategies, including linear convolution 
sed by scHiCluster and scHiCTools), random walk (used by scHi-
uster, scHiCTools, and Fast-Higashi), network enhancing (used by 
HiCTools), and scHi-C-specific neural networks (used by Higashi and 
VI-3D). While these imputation methods can significantly enhance 
4033

wnstream embedding and clustering performance, over-imputation th
ay result in over-smoothed contact matrices, potentially obscuring im-
rtant structural features, such as chromatin loops.
Our evaluation results in Section 3 showed that the embedding meth-
s incorporating normalization and/or imputation, such as BandNorm, 
stHigashi, and Higashi, demonstrated improved clustering perfor-
ance and more robust embeddings compared to the methods that do 
t include these pre-processing steps (e.g., scHi-C Topics). However, 
e extent of this improvement depends on the dataset, the specific char-
teristics of the embedding method, and the choice of normalization 
d imputation techniques.
Among these scHi-C embedding tools, three allow users to choose 

hether to include normalization or imputation in pre-processing. Band-
orm offers a band normalization option; scHiCluster incorporates both 
ear convolution and random work imputation; and scHiCTools pro-
des a comprehensive list of normalization options (OE, VC, VC SQRT) 
d imputation options (linear convolution, random work, and network 
hancing).

To further illustrate the effects of normalization and imputation, 
e applied these three methods, BandNorm, scHiCluster, and scHiC-
ols, to the Nagano et al. dataset and compared their clustering perfor-
ances with and without the normalization/imputation steps. As shown 
 Fig. 5A, the band normalization strategy in BandNorm significantly 
proved clustering performance. On the other hand, in scHiCTools, 
ly the OE-normalized data produced competitive results compared to 
e raw data. The other bulk Hi-C normalization techniques (VC and VC 
RT) surprisingly yield worse performances.
As for imputation, the strategies used in scHiCluster (linear convo-
tion and random work) notably enhanced the clustering performance. 
owever, the three imputation approaches integrated into scHiCTools 
elded only marginal improvements. This can be attributed to the qual-
 of the Nagano et al. dataset, which was already being sufficient for 

e “innerproduct” similarity approach in scHiCTools. This observation 
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igns with the findings in the scHiCTools paper, where the authors 
ted that the “innerproduct” approach is robust across various down-
mpling and dropout levels [38].

 Discussion

ScHi-C techniques have been widely utilized to study 3D genome or-
nization, uncovering the spatial and dynamic patterns within the cell 
clei. Embedding methods have emerged as powerful tools for biolo-
sts to cluster and annotate scHi-C data, promoting the investigation of 
ll-type-specific characteristics. However, due to the technical limita-
ns of scHi-C techniques, the data are often extremely sparse, posing 
allenges in revealing genome architecture. Additionally, unlike 1D ge-
mics data, scHi-C data are in a 2D format with a complex, hierarchical 
ructure presented in contact maps, which further complicates the data 
alyses and requires substantial computational resources and time. To 
cilitate cell clustering and other downstream analyses, various meth-
s have been developed to handle the embedding of scHi-C data and 
dress these challenges. These methods employ diverse strategies to 
duce the high dimensionality of scHi-C data, including transforma-
n, decomposition, neural networks, and graph-based approaches. In 
dition, they often incorporate pre-processing techniques such as con-
ct matrix normalization, contact imputation, and batch effect removal, 
hich greatly help extract important and meaningful features from the 
Hi-C data.
Given the large-scale nature of scHi-C datasets, many methods prior-
ze computational efficiency and memory usage over previously pub-
hed methods. For researchers seeking fast embedding results, Fast-
igashi and BandNorm are particularly recommended. Our comprehen-
ve benchmarking demonstrated that BandNorm and FastHigashi excel 
 time efficiency while achieving competitive clustering performance. 
th methods complete their tasks within half an hour for the two se-
cted datasets (Table 2). Moreover, Fast-Higashi was notably faster than 
her deep learning-based methods on GPU implementation [43], and 
r runtime analysis has shown its impressive time efficiency, achiev-
g results for approximately 2000 cells at 500-kb resolution in just 10 
inutes. For CPU implementations, BandNorm can process a large-scale 
taset of over 4000 cells at 1-Mb resolution in under 15 minutes on a 
ngle-core CPU [42]. Furthermore, our evaluation further demonstrated 
at BandNorm completes a dataset of 2000 cells at 500-kb resolution 
 less than half an hour; in contrast, scHiCluster requires at least 2 
urs on a 23-core CPU, and scHi-C Topics needs at least 7 hours on a 
ngle-core CPU.
Despite the advancements, current scHi-C embedding methods still 
ve limitations. Normalization strategies, although effective in ad-
essing coverage discrepancies, may introduce additional biases. Impu-
tion techniques may lead to over-smoothing that affects the extraction 
 structural features due to inaccurate estimation of chromatin interac-
ns [17]. For example, Zheng et al. [42] demonstrated that Higashi 
d scHiCluster face issues of over-smoothing and blurriness, which 
scure chromatin structures, compared to scVI-3D and BandNorm. Fur-
ermore, while current models excel at distinguishing between cell 
btypes, they fall short of differentiating rare cell populations at a finer 
ale. Therefore, the development of more advanced tools for processing 
d analyzing scHi-C data is critical to address these limitations.
By summarizing current embedding methods for scHi-C data, we aim 

 make this review a valuable resource for researchers studying the 
 genome architecture as well as those developing new embedding 
chniques. Our review provides a comprehensive overview of exist-
g embedding methods, detailing their underlying strategies, strengths, 
d limitations, as well as their ability to address challenges such as 
ta sparsity, high dimensionality, and the complex hierarchical struc-
res inherent in scHi-C contact maps. We hope to assist researchers in 
lecting the most suitable techniques for their specific needs, thereby 
stering further advancements in the study of 3D genome architec-
4034
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