2024 Design, Automation & Test in Europe Conference (DATE 2024)

SpecScope: Automating Discovery of Exploitable
Spectre Gadgets on Black-box Microarchitectures

Najmeh Nazari*¥, Behnam Omidi'+, Chongzhou Fang*, Hosein Mohammadi Makrani*,
Setareh Rafatirad*, Avesta Sasan*, Houman Homayoun*, and Khaled N. Khasawneh’
* University of California, Davis, Emails: {nnazari,czfang,hmakrani,srafatirad,asasan,,hhomayoun} @ucdavis.edu
T George Mason University, Emails: {bomidi,kkhasawn}@gmu.edu

Co-authors contributed to the manuscript equally

Abstract—Transient execution attacks pose information leakage
risks in current systems. Disabling speculative execution, though
mitigating the issue, results in significant performance loss.
Accurate identification of vulnerable gadgets is essential for
balancing security and performance. However, uncovering all
covert channels is challenging due to complex microarchitectural
analysis. This paper introduces SpecScope, a framework for
automating the detection of Spectre gadgets in code using a
black-box microarchitecture approach. SpecScope focuses on
contention between transient and non-transient instructions
to precisely identify and reduce false-positive Spectre gadgets,
minimizing mitigation overhead. Tested on public libraries,
SpecScope outperforms existing methods, reducing False-Positive
rates by 8.9% and increasing True-Positive rates by 10.4%.

I. INTRODUCTION

CPUs implement the Instruction Set Architecture (ISA)
through their microarchitecture, varying in unit count and
types, invisible to programmers. This variance can cause delays
and contention in instruction execution, risking data leaks [1].
Microarchitectural resources are divided into stateless, like
functional units, and stateful, such as caches and Translation
Lookaside Buffers. Stateless resources don’t retain state, unaf-
fected by previous instructions. In contrast, stateful resources
maintain a state affected by instruction execution. Resources
altering states during transient execution are susceptible to
transient execution attacks, a severe form of microarchitectural
attacks [2], [3].

Transient execution, occurring in instances like branch
misprediction, executes instructions that are later removed
from the CPU pipeline. While ensuring execution correctness,
it can leave microarchitectural traces, such as data in the
cache, which transient execution attacks exploit. Spectre is a
prominent example, using control-flow misprediction to trigger
such execution [4].

To counter these attacks, hardware defenses are being
developed [5], [6], [7], with CPU vendors addressing Spectre
variants in future CPUs. Nonetheless, some microarchitectures
remain vulnerable, necessitating software-level defenses. Com-
pletely halting speculative execution is effective but costly
in performance. A more efficient method involves using
serialization instructions to target and patch only vulnerable
code segments (’gadgets’) [8]. However, this approach primarily

detects gadgets in known attack variants, leaving those from
unknown causes, like frequency throttling effects [9], at risk.

To identify all contention-based Spectre attacks, it’s crucial to
find all related covert channels. This requires deep knowledge
of the microarchitecture, often not available, and involves
identifying shared resources and reverse-engineering their
functions [4]. This process is time-consuming and ineffective
for unknown resources.

SpecScope, our introduced framework, automates the discov-
ery of contention-based Spectre gadgets. These gadgets exploit
stateless resources in speculative execution. SpecScope’s main
aim is to minimize false positives by focusing on the contention
between transient and non-transient instructions. It consists of
two phases: generating contention maps showing interaction
levels between instruction pairs, and using these maps in a
static code analysis tool to find Spectre gadgets in code. This
approach bypasses the need for complex reverse-engineering.
Unlike SMoTherSpectre [1], SpecScope doesn’t limit itself to
port contention and, unlike SMoTherSpectre and ABSynthe
[4], it reduces false positives by using transient instruction
contention.

We can summarize our contributions to this work as follows:

o« We present a framework for generating complete con-
tention maps between transient and non-transient execu-
tions given a black-box microarchitecture.

« We describe a methodology and developed a static analysis
tool that uses the contention maps to find exploitable
contention-based Spectre gadgets in a given program.

e Our analysis shows that our framework can find con-
tentions beyond execution ports (provides more coverage
compared to SMoTherSpectre) as well as filtering con-
tentions that cannot be used in Spectre attacks (avoids
false positive gadgets).

¢ Our results show patching programs against Spectre can
be microarchitecture-dependent to reduce the defense
overhead while providing the same security level.

« Last but not least, our tool is open-sourced and publicly
available to the community.

II. RELATED WORK

The research community has put forth various efforts to
enhance the automation of Spectre gadget discovery. We have

979-8-3503-4859-0/DATE24/© 2024 EDAA

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 17,2025 at 23:02:30 UTC from IEEE Xplore. Restrictions apply.

summarized the recent works in Table I and compared them
from different points of view. Efforts have been made by
SpecTaint [10] and SpecFuzz [11] to automate the discovery of
Spectre gadgets through dynamic analysis techniques. However,
their capabilities are confined to identifying Spectre variants
reliant on stateful microarchitectural resources for covert
channel execution. On a different front, SMoTherSpectre [1] in-
troduced an automated tool designed to uncover Spectre gadgets
exploiting contention within the execution port. Nevertheless,
this tool operates under the assumption that instructions using
the same port will consistently exhibit contention, which is not
always the case. Furthermore, it may overlook gadgets that do
not rely on port contention. Building upon these advancements,
ABSynthe [4] has expanded the capabilities of SMoTherSpectre
to automatically identify instructions contending for the same
execution port.

Osiris [12] is a microarchitectural side channel discovery
tool that does not specifically target transmit gadgets and
tends to have a higher false-negative rate when identifying
Spectre gadgets. In contrast, Kasper [13] utilizes taint analysis
policies to simulate an attacker’s behavior on a transient
path in the Linux kernel and system calls, not the user
program. Moreover, its port contention vulnerability scanner
lacks empirical knowledge, resulting in higher True-Negative
gadgets. SPECTECTOR [14] automatically detects speculative
non-interference through symbolic execution. SPECTECTOR
is constrained by the limitations of symbolic execution and
may sacrifice the soundness and completeness of analysis when
dealing with large programs.

III. SPECSCOPE

A. Overview

Transient execution attacks are possible when covert channels
are combined with transient execution. In such attacks, the
secret data is only available for the duration of the speculation
window. During transient execution, the secret data can be
accessed and encoded into a covert channel, which can then
be decoded by the attacker later. We can divide the transient
execution attacks into three phases [15]:

Setup Phase: This phase consists of two parts. First, the
attacker prepares the microarchitecture to allow entering
transient execution so that secret data can be accessed. Second,
the attacker should prepare the microarchitectural transmission
channel for recovering the data later.

Transient Execution Phase: Transient execution of the leak
gadget occurs in this phase due to the training received during
the setup phase. First, the attacker should trigger transient
execution. Then, the transient instructions will be executed
either in the victim or the attacker domain and the attacker
prepares the data for transmission.

Decoding Phase: In this phase, the attacker can extract the
encoded data. Traditionally, the data would be encoded in the
cache, and the attacker can deploy cache-based side channels
for retrieving data. However, the attacker can retrieve the data
by activating a transmitting gadget and observing the behavior.

TABLE I: Comparison of state-of-the-art works

Technique Analysis Spectre Exploitable Platform
q ¥ Gadget Finder Resources Knowledge
. State-less .
SMoTherSpectre Static Yes . White Box
(execution port)
. State-less
ABSynthe Dynamic No . Black Box
(contention)
Osiris Dynamic Yes Stateful/less White Box
Kasper Dynamic Yes Stateful/less White Box
Dynamic State-less
SpecScope . Yes Black Box
P P + static (on/cross-core)
loiti Spectre exploiting state-
Time Spectfre"exp oiting less resources (i.e.,
state-full resources contention-based Spectre
Setup Setup
Transient Transient X
execution: <« =Trigger execution: A =Trigger
B _Er;:o_de_to-) B _Er;:u_de_to_ 1 Decode from
covert chan._| covert chan._{ | covert chan.
Decode from
covert chan.
Sender Receiver Sender Receiver

Fig. 1: Tllustrating how the covert channels are used in stateless
and stateful resources and how they can be running transiently

A novel aspect of our work involves exploring the capability
of a transient transmit gadget to function as a covert channel,
an idea that has not been investigated in previous works. Figure
1 illustrates the novelty of our gadget finder when the covert
channel is transiently running and it uses a stateless resource
to transmit the secret data. After the end of the speculation
window, there is no way for the receiver in the attacker app
to communicate with its sender. On the other hand, the other
approaches are not able to detect such gadgets as they are not
aware of the transient covert channel and do not generate a
transient contention map. This distinguishs our work from the
rest of the techniques that are finding Spectre gadgets.

To achieve this goal, SpecScope has two main phases, as
shown in Figure 2. Phase 1, contention maps generation,
automatically finds all possible contention-based channels that
can be used in a Spectre attack for a given black-box target mi-
croarchitecture. This phase depends on observing the contention
between transiently executed instructions and non-transiently
executed instructions.Phase 2, contention-based Spectre gadget
finding, is a static code analysis tool that depends on the
contention maps to find contention-based Spectre gadgets that
are specific to the target microarchitecture in a given code,
e.g., public library. More importantly, SpecScope does not
require the knowledge of the target microarchitecture resources
to exploit the microarchitectural vulnerabilities.

B. Threat Model

In this work, we assume that the targeted platform has
hyperthreading capability and it is enabled. The microarchitec-
ture is vulnerable to known (such as Spectre and Meltdown)
or even unknown (futuristic — not yet discovered) transient
execution attacks. The user has black-box access to the targeted
microarchitecture while can run programs on the microarchi-
tecture and the ISA instructions are known to the user. In

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 17,2025 at 23:02:30 UTC from IEEE Xplore. Restrictions apply.

Phase 1: Dynamic Phase 2: Static

/ ISA Contention
i instructions Maps Generator

AN
A @
PY
code to be &
analyzed, e.g., a ==
public library UK" !

g Gadget Finder

Contention Maps

static code
analyzer

v (O Listof
exploitable
i Spectre

gadgets

addition, the user is not required to perform the measurements
in isolation (without having other processes running on the
system, for example, if the targeted microarchitecture is in
a shared cloud environment) to create the contention map;
the impact of other factors would be diminished when the
measurements are repeated hundreds of times and the averaging
would remove the outliers’ impact.

C. Contention Maps Generation

To generate contention maps for a microarchitecture, we
analyze the execution time of parallel instructions to detect
resource contention. When two instructions, A and B, execute
on a hyperthreading-enabled core, their execution time reflects
their shared resource usage. If A and B use the same mi-
croarchitectural resource, like a functional unit, their combined
execution time increases. This method identifies execution time
interference between parallel instructions.

SpecScope, unlike ABSynthe, focuses on interference be-
tween transiently executed and non-transiently executed instruc-
tions. In transient execution attacks, such as Spectre, sensitive
data is accessed during transient execution and transmitted
through a covert channel, with the receiving end being a
non-transient instruction. Therefore, SpecScope examines all
possible interference scenarios within a microarchitecture’s
ISA, considering transient execution of one instruction and
non-transient execution of others.

Our framework measures contention by running a transient
execution instruction in a ’sender’ thread and a non-transient
instruction in a ’receiver’ thread, observing potential contention.
We measure the receiver thread’s execution time for a test
instruction, both with and without the sender’s concurrent
execution. For example, to assess interference between two
instructions S (transient) and R (non-transient), we compare
their execution times when run together versus separately.

Exe. time of R while S running simultaneously

Interference = - ;
f Executiontime of R

If Interference is bigger than a threshold then contention
is observed, and the instructions can be used in transient
execution attacks. In section IV-B, we explain how we calculate
the threshold. The interference threshold is the minimum
contention value that can be used to construct a reliable covert
channel, i.e., selects which contentions should be used to find
gadgets in the second phase of our proposed framework.

The sender process includes an [fence instruction after
poisoning. [/ fence Performs a serializing operation on all load-

from-memory instructions issued before the /fence instruction
that helps to reduce the interference noise from the branch
poisoning instructions. Subsequently, the sender signals the
receiver process (Synchronization/Handshake phase) to start
execution (using shared memory), and triggers the transient
execution. For completeness, we describe the steps taken in
each running thread (sender and receiver) for a single iteration
separability:

On the sender thread: for each instruction k in the ISA, sender
perform the following sequence N; times:

« First, the sender poisons the Branch History Table.

o Then, the sender sends a ReadyToSendSig by writing 1
to shared memory.

o Next, it waits on the ReadyToReceiveSig to ensure the
receiver is also ready.

« Subsequently, it triggers transient execution using mali-
cious input to the conditional jump and poisoned BHT to
speculatively execute the fall through instructions if the
conditional jump.

« Finally, execute instruction £ multiple times (N).

Correspondingly, on the receiver thread: for each instruction j
in the ISA:

o The receiver waits for the sender to get ready (polling
shared memory).

o When it ensures that the receiver is ready, then it sends
the ReadyToReceive signal. In this way, synchronization
is done between the sender and receiver.

o Receiver reads the current time using rdtscp instruction.

« Receiver executes instruction j multiple times (N).

« Eventually, the receiver reads the time to calculate the
delay and writes it to a file.

The final product of this step is a contention map for the
given micro-architecture that we ran our framework on. A
contention map is a 2D array that each row and column of the
array is an instruction from ISA. Each element of the array e;;
is Inter ference value, described above, that shows the amount
of delay imposed on the instruction i while instruction j was
simultaneously executed.

D. Gadget Finder

To identify contention-based Spectre gadgets, our method-
ology utilizes contention maps, which indicate the level of
interference between each transiently executed instruction and
all non-transiently executed instructions. By statically analyzing
code and examining each conditional branch, we determine
if it can potentially leak its input data. A gadget is deemed
vulnerable if it meets two conditions: (1) it shows no contention
with instructions on the alternate path of the branch, and
(2) it exhibits contention with any ISA instruction. The first
condition ensures the gadget can leak data from the branch
since it’s unique to one path and uncontentious with the other.
The second condition identifies instructions an attacker could
use to leak data. These conditions are verified by examining
the contention map entries for the tested transient instruction
against instructions in both branch paths.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 17,2025 at 23:02:30 UTC from IEEE Xplore. Restrictions apply.

Implementation details: Distorm3 disassembler has been used
to analyze the target program for finding gadgets.

For finding a contention-based Spectre gadget, our tool has
two inputs, which are: (i) code: the code that tool will analyze,
e.g., a public library, and (ii) contention_map: contention map
generated for a specific micro-architecture. The tool will first
identify all conditional branches in the given code (code). Then
for each conditional branch in the code, the tool will take two
main steps:

o (Step 1) Branch blocks identification: in this step, the tool

identifies the fall-through path and the branch target path.

« (Step 2) Contention analysis: in this step, the tool identifies

if the branch is a contention-based Spectre gadget or not,
based on the instructions in the branch fall-through and
target paths as well as the contention map. Specifically, the
contention map will be used to analyze the instructions in
both paths of the branch. In particular, for each instruction,
we check the aforementioned two conditions. If both
conditions are satisfied, then we consider the branch as a
vulnerable gadget. However, if these two conditions are
not satisfied by any instruction in both paths of the branch,
then we consider the branch as non-vulnerable.

It should be mentioned that both SMoTherSpectre and
SpecScope use a static analysis tool to find conditional jumps
and decide whether this should be labeled as a Spectre gadget.
The difference is in how they decide. SMoTherSpectre uses
Intel Architecture Code Analyzer to determine the execution
port for each instruction and assumes if two instructions use
the same port then they can be used to create contention.
However, SpecScope uses the contention maps to determine
the instruction that can be used to create contention. This
resulted in two main differences: 1) SMoTherSpectre finds
gadgets that use ports contention as a covert channel, while
our work generalizes to find gadgets that use ports or cross-
port contentions. 2) SMoTherSpectre, has more false positives
since they assume if two instructions use the same port then
they have a contention. However, not all instructions can run
speculatively which leads to finding false positive gadgets since
gadgets based on these instructions cannot be used to construct
a Spectre attack.

1V. EVALUATION
A. Experimental Setup

We run our experiments on three different Intel architectures,
which are SkyLake, KabyLake, and Nehalem. All CPUs are
running Ubuntu 18.04 LTS, kernel version 4.15.0. To reduce
the setup noise, the CPU frequency is set to a maximum clock.
The power state of the processor and NUMA feature are always
disabled. Apart from these changes, all other settings are kept
to their defaults.

B. Characterization of Contention Maps Generation

SpecScope primarily focuses on determining whether two
instructions, one executed transiently while the other is executed
non-transiently, can have observable contention when they are
executed simultaneously. To accomplish this, we evaluated the

Skylake
Sender instructions
Sender instructions

Contention level

Receiver instructions Receiver instructions

Nehalem
Sender instructions
Contention level

Sender instructions
Contention level

Receiver instructions

(a) Transiently executed sender (b) Non-transiently executed sender

Fig. 3: Contention of ISA instructions on the same core

methodology discussed in Section III-C. Figure 3-(a) shows
the contention maps for both Nehalem and Skylake CPU archi-
tectures. In particular, this figure shows that there is observable
contention between transiently executed instructions and non-
transiently executed instructions. We generated contention maps
for the same CPU architectures when both sender and receiver
execute instructions non-transiently. The results are shown in 3-
(b) and demonstrate that there are more observable contentions
when the sender uses non-transient instructions. Our analysis
shows that the reason is that not all instructions can execute
transiently, e.g., store instructions only execute at the commit
stage. In addition, this result verifies that the contention maps
generated using SpecScope only show the channels that can be
used by Spectre attacks rather than all possible covert channels
on that microarchitecture.

C. Quality of Contention

We conducted experiments to assess the interference ob-
served within our contention maps. To ensure a fair comparison
of all instructions, we computed the execution times of
receiver (R) instructions when they ran either with a NOP or
concurrently with the sender (S) transiently executed instruction.
These calculated times were then normalized to fall within
the range of 0 to 1 for each instruction. Our findings revealed
that instructions running without contention exhibited lower
standard deviation in their execution times compared to those
experiencing contention. For instance, on a Skylake CPU
running at its highest frequency, instructions with contention
had an average standard deviation almost 2.8 times higher.

Based on this observation, we can identify whether two
instructions (S and R) contend solely by examining the
standard deviation. This approach enhances the accuracy of the
contention channel without the need to consider the absolute
value of the instruction’s execution time. In comparison to
threshold-based methods [4], [1], standard deviation-based
detection yields very low False Positive and False Negative
rates, standing at 1.66% and 0.11%, respectively. However, in
scenarios where conducting multiple experiment runs is not
feasible, the threshold-based approach remains valuable.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 17,2025 at 23:02:30 UTC from IEEE Xplore. Restrictions apply.

c -

5 o 1.87x

g 10 |

=

2 8 !

> 1

k] 1

g 6 i

% 1

S 4 1

B |

5 2 .

g 1

o0

a O~ MO MN~NMOMNMORNMmOoONSNmOo
OO 000000000 oo o

Normalized execution time
——No-Contention ——Contention

Fig. 4: Normalized exe. time of instructions while running
w/wo contention

—-o—Muiltiple sample —m-Single sample
110%

100%

90%

80%

70%

60%

Acuracy of secret detection

50%

40%

1 1.2 1.5 1.8 2.1 3
Contention

Fig. 5: Acc. of secret bit detection based on the contention.

One noteworthy finding is that, on a Skylake CPU running
at its highest frequency, instructions ran on average 1.87 times
faster when not contending. The results of our analysis are
depicted in Figure 4. It’s important to note that values such as
1.87X are specific to the Skylake CPU and should be determined
through the same experiment for other CPUs, making it a one-
time task per microarchitecture.

To assess the threshold, we conducted another experiment,
where we assigned a bit value of 1 to contention and a bit value
of 0 to no contention. Subsequently, we transmitted 10,000
randomly generated bits and decoded them at the receiver side.
This experiment was conducted in two scenarios: 1) In the first
scenario, we transferred only one sample for each bit. 2) In the
second scenario, we transferred multiple samples (specifically, 5
in our experiment) for each bit. Figure 5 illustrates the accuracy
of bit detection when mapped to contention. We observed that
when the threshold exceeds 1.8 (as observed with Skylake
running at its maximum frequency), the accuracy for multiple
samples approaches the ideal 99.97%.

We conducted an analysis of the impact of CPU frequency
on the interference threshold needed to attain 95% accuracy in
secret bit detection, and the findings are depicted in Figure 6.
This figure illustrates that when the CPU operates at a higher
frequency, a correspondingly higher interference threshold is
necessary to achieve the same attack success rate as when
the CPU is running at a lower frequency, as a sign of a
clear correlation between CPU frequency and the required
threshold. Additionally, we observed that the SkyLake-AVX512
microarchitecture demands a higher threshold compared to
KabyLake and Nehalem since it has a larger number of cores
and computational units, which can introduce more noise into
the system.

——Nehalem —a—KabylLake -=—SkylLake-AVX512

/

©

9

Interference Threshold
[

i

w

o
o

1 1.5 2 25 3 3.5 4
Normalized CPU frequency to base frequency

Fig. 6: Relation of inter. threshold with the freq.

D. Proof of Concept

In this section, we evaluate the performance of SpecScope
in finding exploitable gadgets and compare it with the recent
tools. We analyzed public libraries existing in regular Ubuntu
installation. Table II illustrates the number of gadgets found by
SpecScope on Intel Nehalem, KabyLake, and Skylake-AVXS512
microarchitectures and compares them with state-of-the-art. The
libraries that we used are based on what has been used in recent
related works. SpecFuzz and SpecTaint are not focusing on
finding contention-based gadgets, thus listing the number of
gadgets using them is not relevant. As they find orthogonal
gadgets, they could be used along with our tool to be able to
find all possible gadgets.

In comparison with other tools, our results show additional
gadgets due to existing contention in other shared resources
rather than ports and our tool can find even transient transmit
gadgets. For example, in our Skylake experimental platform,
out of 8,673,025 instruction couples, only 2.8% of them
had observable contention, and by simply investigating the
utilization of these instruction pairs within the public library,
we uncovered several previously unrecognized potential gadgets.
Our results highlight that a single program may exhibit
different vulnerable gadgets on each microarchitecture. Notably,
SpecScope identified varying numbers of gadgets for each
library on the Kabylake and Skylake architectures.

It’s worth noting that not all of these gadgets are capable of
leaking sensitive data. Therefore, further analysis is required to
determine which of them constitute vulnerable gadgets. To rank
the gadgets detected by SpecScope for assigning a priority for
the patching, we considered two parameters: the length of the
gadget and contention intensity. We can divide both the length
and intensity into two groups (short/long) and (low/high). We
consider the intensity high if the contention delay is 1.8 x more
than normal execution. The length also is considered long if it
is longer than 80% of the speculative execution’s window. It is
evident that the definitions provided above can vary depending
on the specific level of security requirements.

According to this classification, we group the gadgets into
four categories: critical, important, trivial, and incidental. A
gadget falls into the critical category if it has a lengthy
code sequence and exhibits high contention intensity between
its target and fall-through paths. Gadgets are categorized as
important when they demonstrate high contention intensity but
have a shorter length. Similarly, gadgets are classified as trivial

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 17,2025 at 23:02:30 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Number of gadgets in popular public libraries.

Library \ Total jumps \ SpecScope (Kabylake) \ SpecScope (Skylake) \ SpecScope (Nehalem) \ SMoTherSpectre
glibc 2.23 65039 28581 25390 19701 15382
stdc++ 6.0 36668 9809 10503 10675 3747

1d 2.23 6523 2120 1455 1996 1316

ssl 1.1 11086 3377 3209 3499 1826
crypto 1.1 67689 22802 19231 19343 8774

testg RDX, OxFO4

JG 0x50668

ADD [RAX], AL
MOV EDX, 0x196
MOV ESI, 0x50
MOV RDI, RBP
XOR EBX, EBX
CALL 0x1db60

DB 0x1f
MOV EDX, 0x1
MOV ESI, 0x81
MOV RDI, R14
CALL Oxffffffffffff18d6

Fig. 7: A new gadget discovered only by SpecScope on
Nehalem platform in ssl 1.1 library.

if their contention intensity is low, but they possess a lengthy
code sequence. Lastly, incidental gadgets are characterized
by both low intensity and a short code length. Following
our defined criteria, it was found that only 6% of the gadgets

identified by SpecScope could be considered critical, on average.

Approximately 23% of the gadgets fall into the important
category, while 34% are categorized as trivial. The remaining
gadgets belong to the incidental category.

For a fair comparison, we employed SMoTherSpecter’s
proof of concept to attack its reference implementation of
the test program that utilizes OpenSSL for data encryption.
To leverage our discovered gadgets (identified by SpecScope
and categorized as critical), we linked both the attack and
victim to the libcrypto library. Subsequently, we injected our
selected gadgets (one presented in Figure 7) into the victim,
and the attacker’s timing sequence was injected into the same
memory address within its binary. It’s important to clarify
that introducing the gadget into the victim’s binary primarily
served the purpose of establishing its static address. In our
setup, synchronization between the attacker and victim occurred
solely prior to the encryption function call, with the attacker’s
timing sequence commencing after a specified delay. With an
equal number of encryption runs (100K), the attacker achieved
a success rate of up to 98% in detecting the victim’s secret
bit using our gadgets, compared to SMoTherSpectre’s success
rate of 80% on the Nehalem platform.

We also conducted a comparison of the gadgets identified by
SpecScope on Skylake with those found by SMoTherSpectre,
using confusion metrics, presented in Table III.True Positive
(TP) column indicates the rate of gadgets found by the other
tool that match with those found by SpecScope. False Negative
(FN) represents the rate of SpecScope’s gadgets that do not
match with gadgets found by the other tool. False Positive (FP)
reflects the rate of the other tool’s gadgets that do not match
with those identified by SpecScope.

TABLE III: Rates of TP, FP, and FN in
SpecScope on the Skylake microarchitecture.

comparison to

. SMoTherSpectre
Library TP P N
glibc 2.23 | 0.51 | 0.11 | 0.38
stde++ 6.0 | 0.29 | 0.13 | 0.58
1d 2.23 0.77 | 0.09 | 0.14
ssl 1.1 048 | 0.13 | 0.39
crypto 1.1 | 0.41 | 0.14 | 0.45

V. CONCLUSION

Spectre attacks are an enormous security threat since they
can read arbitrary data from other security domains. This
work presents SpecScope, a system designed for automatic
identification of Spectre gadgets in software running on a black-
box microarchitecture. SpecScope focuses on the interaction
between transient and non-transient instructions to accurately
find Spectre gadgets and reduce the false-positives. Through an
experimental evaluation, we demonstrated that SpecScope can
automatically discover practical Spectre gadgets in a variety
of public libraries.

VI. ACKNOWLEDGMENT

The work in this paper is partially supported by National
Science Foundation grants CNS-2155002 and CNS-2155029.

REFERENCES

[1] A. Bhattacharyya et al., “Smotherspectre: exploiting speculative execution
through port contention,” in ACM SIGSAC CCS, 2019.

[2] N. Nazari et al., “Adversarial attacks against machine learning-based
resource provisioning systems,” IEEE Micro, 2023.

[3] H. M. Makrani et al., “Cloak & co-locate: Adversarial railroading of
resource sharing-based attacks on the cloud,” in SEED, 2021.

[4] B. Gras et al., “Absynthe: Automatic blackbox side-channel synthesis
on commodity microarchitectures.” in NDSS, 2020.

[5] K. N. Khasawneh et al., “Safespec: Banishing the spectre of a meltdown
with leakage-free speculation,” in ACM/IEEE DAC, 2019.

[6] S. Ainsworth et al., “Muontrap: Preventing cross-domain spectre-like
attacks by capturing speculative state,” in ACM/IEEE ISCA, 2020.

[71 M. S. Islam et al., “Nd-hmds: Non-differentiable hardware malware
detectors against evasive transient execution attacks,” in /CCD, 2020.

[8] A. Pardoe, “Spectre mitigations in msve,” 2018.

[9] C. Liu et al., “Frequency throttling side-channel attack,” in CCS, 2022.
[10] Z. Qi et al., “Spectaint: Speculative taint analysis for discovering spectre
gadgets,” 2021.

O. Oleksenko et al., “Specfuzz: Bringing spectre-type vulnerabilities to
the surface,” in USENIX Security, 2020.

D. Weber et al., “Osiris: Automated discovery of microarchitectural side
channels,” in USENIX Security, 2021.

B. Johannesmeyer et al., “Kasper: scanning for generalized transient
execution gadgets in the linux kernel,” in NDSS, 2022.

M. Guarnieri et al., “Spectector: Principled detection of speculative
information flows,” in IEEE Security and Privacy, 2020.

C. Canella et al., “The evolution of transient-execution attacks,” in
Proceedings GLSVLSI, 2020.

(11]
[12]
[13]
[14]

[15]

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 17,2025 at 23:02:30 UTC from IEEE Xplore. Restrictions apply.

