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Abstract The capability of moderate-spatial-resolution satellites to accurately resolve submesoscale
variations in surface tracers remains an open question, one with relevance to observing physical-biological
interactions in the surface ocean. In this study, we address this question by comparing the variance of two
tracers, chlorophyll concentration (Chl) and sea surface temperature (SST), resolved by two satellitess—MODIS
Aqua, with a resolution of 1.5 km, and Landsat 8/9, with a resolution of 30 m. We quantify tracer variance
resolved by both satellites on the submesoscale using spatial variance spectral slopes. We find that MODIS
measures significantly higher variance compared to Landsat, in both Chl and SST. This is because, despite
higher signal-to-noise ratio for MODIS per pixel, Landsat signal-to-noise ratio increases considerably when
aggregating pixels. Furthermore, by comparing Chl to SST variance for each satellite we find Landsat to be
better match to theory for resolving submesoscale physical-biological interactions.

Plain Language Summary The ocean submesoscale, encompassing horizontal features from
hundreds of meters to tens of kilometers in size, is known to contribute to the rapid vertical transport of heat and
carbon dioxide in the surface ocean. The only sensors that can observe the surface of the ocean globally every
day—satellites—have pixels that are the same size as the submesoscale: kilometers to tens of kilometers. Any
noise or error in a satellite pixel will show up as real variations on these scales, leading to potentially erroneous
conclusions about the contributions of ocean heat and carbon dioxide exchange to global climate. In this study,
we test the effect of the spatial resolution of satellite imagery on our understanding of variations in the ocean on
kilometers to tens of kilometer scales. We compare standard, kilometer-resolution satellite imagery to high-
resolution imagery, and find that high-resolution satellite imagery, on the scales of tens of meters, is necessary to
resolve variations in the ocean on scales of kilometers, due to the effect of satellite pixel noise. Our results serve
as a guide for future work that involves understanding vertical transport in the ocean on kilometer scales.

1. Introduction

Photographs taken by astronauts aboard Gemini and Apollo in the mid-1960's first revealed the ubiquity of
submesoscale currents in the ocean—eddies and fronts occurring on scales between hundreds of meters and tens
of kilometers (Munk et al., 2000). Variations on this scale are unique as the velocity is not fully constrained by the
Earth's rotation and vertical transport occurs (Taylor & Thompson, 2023). The submesoscale therefore presents a
unique observational challenge: Submesoscale variations occur on small space and time scales (0O(0.1-10) km
and O(1-10) day), and yet their relation to vertical velocity means that resolving them may be critically important
for understanding global climate (Taylor & Thompson, 2023).

The effects of submesoscale vertical motions have been revealed by high-resolution temporal and spatial mea-
surements of submesoscale variability—from drifters, moorings, autonomous platforms, aircraft, ships, and
satellites (e.g., Petrenko et al., 2017; Shcherbina et al., 2015). This work has shown that submesoscale vertical
motions transport heat and tracers at a much greater magnitude than previously considered or characterized in
global models (Zhu et al., 2024). Submesoscale vertical motions also have a significant effect on ocean primary
productivity, as transport of nutrients and modulation of the mixed layer depth affect phytoplankton. But, given
the observational challenges of conducting high-resolution measurements on large scales, the combined effects of
submesoscale variance on phytoplankton net primary production are still not fully understood (Lévy et al., 2018).

Of the contemporary approaches to observing both physics and biology on the submesoscale, satellites remain the
only means of imaging the entire ocean surface once (or more) per day. Many studies have used satellites with
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spatial resolutions around 1 km or greater to detect submesoscale eddies in ocean color and sea surface tem-
perature (SST; e.g., Buckingham et al., 2017; Gaube et al., 2019; Zhang et al., 2019). For example, variance in Chl
and SST on scales between 1.5 and 10 km, resolved by the Moderate Resolution Imaging Spectroradiometer
(MODIS) Aqua, was shown to account for an average of 38% of variability in the North Pacific Subtropical Gyre,
suggesting that submesoscales may enhance global phytoplankton abundance (Liu & Levine, 2016).

Studies using kilometer-scale satellite products miss variability occurring on the smaller end of the submesoscale
range. Study of sub-satellite-pixel variability has found that significant Chl and SST variability occurs on sub-
1 km scales (Castro et al., 2017; Moses et al., 2016). To complicate things, pixel noise affects satellite imagery at
the smallest resolution of the sensor, increasing uncertainty in the geophysical product (Estrella et al., 2021; Hu
et al., 2000; Qi et al., 2017; Zhang et al., 2022). Despite the importance of satellites as tool for studying the
submesoscale, the degree to which satellite spatial resolution biases understanding of submesoscale variance is
still poorly quantified.

Here, we assess the effect of spatial resolution on submesoscale variance in Chl and SST by comparing matchups
between 1.5 km MODIS and 30 m Landsat imagery. Cross-comparison between satellites has proved a useful
method to improve the spatial or temporal resolution of a satellite record for a specific application (Estrella
etal., 2021; Martin et al., 2024; Tang et al., 2019). Landsat's strength is high spatial resolution, with scenes limited
to coastal regions at 8-day intervals, whereas MODIS provides daily, global coverage, but at lower spatial res-
olution (see Table S1 in Supporting Information S1). We use these two products to quantify the effectiveness of
moderate-spatial-resolution satellite imagery at resolving the submesoscale using spatial variance spectral slope,
which has historically been used for study of physical-biological interactions between Chl and SST
(Abraham, 1998; Denman & Platt, 1976; Lévy & Klein, 2004; Lovejoy et al., 2001). Despite notable caveats in
using spectral slopes to draw conclusions about processes (Armi & Flament, 1985; Franks, 2005), the method
allows for comparison of variance on the specific scales over which Landsat and MODIS images overlap.
Additionally, we assess the feasibility of physical-biological study for both Landsat and MODIS by comparing
Chl and SST spectra. In the following section we elaborate on the sources of satellite pixel noise, followed by data
collection and analysis methods. Our basic finding is that MODIS exaggerates tracer variance on the sub-
mesoscale and that, for submesoscale physical-biological analyses, Landsat tracer variance spectra are more
consistent with existing theory; these results are presented in Section 3. The paper concludes with a brief
discussion.

2. Methods

Methods are described briefly here; detailed methods are available in Supporting Information S1.

2.1. Pixel Noise in Satellite Imagery

Satellite pixel noise poses a critical obstacle to correctly determining Chl and SST variance on the submesoscale.
When spatial variations in the signal leaving the ocean being measured by a satellite are small, for example, in
between adjacent pixels, the relative amount of variation in between pixels due to instrument noise or atmospheric
correction is high. Pixel noise thus causes variance spectra calculated from satellite imagery to flatten at high
wavenumbers. If the pixel size is near the spatial scales of interest, that is, when using moderate-spatial-resolution
satellites like MODIS to study submesoscale processes, the natural signal is obscured. This issue can be alleviated
by spatially aggregating or binning satellite imagery to reduce the effect of pixel noise, increasing signal-to-noise
ratio (SNR) by the square root of the number of pixels averaged (McClain et al., 2014). This method works for
Landsat, because the Landsat pixel scale is much smaller than the submesoscale, such that Landsat pixels can be
aggregated to produce MODIS-scale pixels at a much higher SNR than MODIS, even though MODIS SNR is
higher than Landsat per pixel (Table S1 in Supporting Information S1).

2.2. Satellite Matchups, Data Processing, and Spectral Analysis

We selected four Landsat tiles to create matchup data between Landsat and MODIS (Figure S1; Table S2 in
Supporting Information S1). Tiles were selected over a range of conditions and latitudes where the majority of the
image was oceanic. All Landsat images for each tile with less than 20% cloud cover were acquired, and matchups
were made from MODIS imagery collected within 2 hrs of these Landsat images. The same algorithms were used
to calculate Chl and SST for both images. Zonal 1D spatial variance spectra were calculated using the multi-taper
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Figure 1. Chlorophyll concentration (Chl; mg m~>; a-c, g-i) and sea surface temperature (SST; °C; d—f, j-1) from a Landsat 8
(left col.) and MODIS Aqua (center col.) matchup west of Point Conception, CA on 30/11/2017, with Landsat binned at
MODIS resolution (L@M, right col.). Top two rows show a larger view, with coastline on the east side of the image in solid
black; white areas are masked pixels. The dotted red line indicates the bounding box used for spectral analysis, and dotted
cyan line indicates subregion shown in the lower two rows. For reference, the zonal length of the dotted red line is 136 km.
Identical data plotted with a gray colorscale is shown in Figure S4 of Supporting Information S1.

method from linearly-detrended, horizontal transects across the largest rectangle shared between all four fields.
For each image, a mean spectrum and 95% confidence intervals were calculated (Thomson & Emery, 2024). The
spectral slope of each mean spectrum was calculated between the first peak in the variance-preserving spectrum
(shown for Figure 2 in Figure S3 of Supporting Information S1; generally around 30 km) and 5 km; noise in the
MODIS spectrum prevented using high wavenumbers.

3. Results

Qualitative comparison of a single matchup of Landsat 8 and MODIS Aqua at Point Conception, CA, reveals
consistent mesoscale spatial patterns between both sensors (Figures 1a, 1b, 1d, and 1e). Examining a subregion of
this image more closely, noise is visible on the scale of pixels in the MODIS imagery and is absent on those scales
in the Landsat imagery (Figures 1g, 1h, 1j, and 1k). This observation is quantified by the spatial variance spectra
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Figure 2. Average spatial variance spectra from data in Figure 1. Chl spectra
are plotted in cooler tones, SST spectra are plotted in warmer tones. Thin
lines are for Landsat, with increasing thickness indicating L@M and
MODIS, respectively. The unshaded region between 3 x 107> and

2x 107" m™" (inverse wavenumbers of 33 and 5 km, respectively) indicates
the general range over which spectral slopes were calculated (with the low
wavenumber bound changing based on the variance-preserving peak).
Spectra are calculated from transects with normalized units to allow
comparison between °C and mg m™>, giving Power Spectral Density
arbitrary units of variance divided by wavenumber. 95% confidence
intervals are indicated with transparent shading around each line.

of these scenes: MODIS Chl and SST slopes resemble Landsat Chl and SST
slopes, respectively, on low wavenumbers, but flatten at high wavenumbers
(Figure 2). In this particular example, the magnitude of the image-scale zonal
gradient is greater in the MODIS image than Landsat (Figure S2 in Sup-
porting Information S1) and so it is worth re-emphasizing that we linearly
detrend the data before calculating spectra and the MODIS spectral slopes are
flatter than Landsat despite this potential source of low-wavenumber variance
(Figure 2).

Notably, the MODIS SST spectrum deviates from linearity in the spectral
slope range (orange line in Figure 2). This is visible evidence of the combi-
nation of a red spectrum, forced by spatial variance in water-leaving radiance,
with a white spectrum, caused by instrument noise. The MODIS SST spec-
trum follows the Landsat SST spectrum down to roughly 10 km inverse
wavenumber, then begins to flatten. A linear spectral slope of —2.4 is only a
rough approximation of this pattern.

When comparing all matchups across four regions (Figure 3), the difference
in spatial variance between MODIS and Landsat observed in Figure 1 is
generally consistent: MODIS slopes are significantly flatter than Landsat
slopes for both Chl and SST (blue points in Figures 3a, and 3b; orange squares
in Table 1). These results demonstrate that MODIS is measuring higher
variance in Chl and SST on scales less than ~10 km compared to Landsat.

This raises an important question: What is the source of the difference in
submesoscale variance between Landsat and MODIS? Is it the effect of pixel
noise? Or, is it variance at wavenumbers higher than the MODIS resolution
being aliased at the pixel scale? The latter hypothesis would make it a
fundamental consequence of the resolution. To answer this question, we
separate the effects of spatial resolution from pixel noise by averaging
Landsat observations at MODIS resolution (which we refer to hereafter as
L@M). Returning to the representative example in Figure 1, L@M is visually
similar to Landsat on scales of tens of kilometers. Spectral analysis reveals

that L@M replicates variance in Landsat for both Chl and SST down to scales of roughly 5 km, below which
L@M resolves less variance than Landsat (Figure 2). When comparing L@M to Landsat for all matchups, the
L @M spectral slope was significantly steeper than Landsat on the submesoscale between 5 and 33 km (red points
in Figures 3a, and 3b; orange squares in Table 1). These results indicate that a satellite sensor with 1.5 km spatial

resolution, in the absence of pixel noise, resolves slightly decreased spatial variance in the ocean down to scales of

5 km, compared to a high-resolution (30 m) sensor (see Figure S5 in Supporting Information S1). In other words,
the increased variance at high wavenumbers observed by MODIS is due to pixel noise, rather than aliasing of

higher wavenumber variance.

Furthermore, when comparing L@M to MODIS, we found significantly different slopes between the two data sets
for both Chl and SST (Figures 3c, and 3d, blue squares in Table 1). The functional difference between MODIS
and L@M is the observed pixel noise in MODIS. Aggregating high-resolution imagery into a MODIS-like proxy
confirms the exaggeration of submesoscale variance in Chl and SST by MODIS due to pixel noise.

From a physical-biological perspective, we next compare how each sensor resolves the relationship between Chl
and SST. In the example shown in Figure 1, visually there appears to be more spatial variance within filaments and
eddies in Chl than SST for both Landsat and L@M, while this pattern is slightly obscured in MODIS. This is
confirmed quantitatively in the spectra. For Landsat and L@M, Chl slopes are flatter than SST slopes, indicating
more variance on smaller scales for Chl than SST (Figure 2). For MODIS, the Chl spectrum is flatter than the SST
spectrum from 33 km down to roughly 10 km, at which point the SST spectrum begins flattening, becoming a white

spectrum on kilometer scales. The MODIS Chl spectrum also flattens at kilometer scales, but not to the same extent.

Over the entire data set, Landsat and L @M showed significantly flatter Chl slopes than SST slopes (Figures 4a and

4c, green squares in Table 1), though for some images Chl slopes were steeper than SST slopes. However, we found
no significant difference between MODIS Chl and SST slopes (Figure 4b, gray squares in Table 1). We surmise that
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Figure 3. Intercomparison of spectral slope values from all matchups over all sites, calculated between ~33 and 5 km inverse
wavenumbers. (a, b) Top row compares 30 m Landsat with 1.5 km MODIS (blue) and 1.5 km L@M (red), for Chl (left) and
SST (right) data. (c, d) Bottom row shows comparison of 1.5 km data, MODIS versus L@M for Chl (left) and SST (right).
Error bars indicate standard deviation.

noise in the MODIS Chl and SST spectra obscures the expected physical-biological relationship between Chl and
SST (cf. Lévy & Klein, 2004).

No consistent difference in spectral slopes was found with changing latitude, likely due to size of the imagery
matchup data set collected. Spectra and spectral slopes for each region specifically are shown in Figures S6-S9 of
Supporting Information S1.

4. Discussion

There are two critical findings from our work: (a) The smallest scales of MODIS have more variance than Landsat
at the same scales for both Chl and SST, flattening spectral slopes. Aggregating Landsat pixels to MODIS res-
olution suggests that this is driven by pixel noise in MODIS, not spatial resolution. (b) There is more sub-
mesoscale variance in Chl than SST, but the noise in the MODIS imagery obscures this pattern, suggesting that
Landsat or other satellites that resolve the difference in spatial variance between Chl and SST should be used to
study submesoscale physical-biological interactions.

We found that 1.5 km resolution, without significant instrument noise, is capable of resolving submesoscale
variance in the surface ocean (between 5 and 33 km). In other words, aliasing of variance above the Nyquist
wavenumber to lower wavenumbers is not a significant driver of observed variance in the satellite imagery used
here. Signal-to-noise ratio, as opposed to spatial resolution, limits the utility of 1.5-km satellite data in resolving
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Table 1
Spectral Slope Statistics for Matchups Between Landsat and MODIS, Including Landsat at MODIS Resolution (L@M)

Slope Slope [Landsat MODIS L@M Landsat MODIS L@M
Mean SD [ChI  Chl  Chl SST SST SST
E;?dsat 225 | 0.16 S F
?SDIS 2.14 | 0.99 F
E%M 247 | 0.88
Is‘gl%dsat 270 | 021 | F S F
g/{s(%ms 2.01 | 0.79 N F
cOM | 290 | 078 F

Note. In columns 4-9, the spectral slopes of the row variable (left) are indicated as significantly flatter or steeper than the
column variable (top) with an “F” or an “S”, respectively, or an “N” if there is no significant difference (weighted paired
T-test; 99% confidence; N = 76). We test two hypotheses: (1) Top right: Does pixel noise cause a difference in the same
observable (Chl or SST) across platforms? Orange indicates “Yes,” and blue indicates “No.” (2) Bottom left: Are Chl spectral
slopes significantly flatter than SST spectral slopes for a single sensor? Green indicates “Yes,” and gray indicates “No.”.

the submesoscale. Said a different way, SNR controls the spatial scales to which satellite data has to be aggregated
in order to produce a meaningful product. Even though Landsat has lower SNR per pixel than MODIS (Table S1
in Supporting Information S1), the pixels are much smaller than the scales of interest, and thus can be aggregated
to study the submesoscale at high fidelity.

In terms of understanding physical-biological interactions, our Landsat data set confirms what has been predicted
by early modeling work that flatter spectral slopes should occur for Chl than SST; this may be due to either
internal biological processes (Abraham, 1998; Denman et al., 1977) or purely external physical processes (Lévy
& Klein, 2004). Observational work via in situ transect observations (Denman & Platt, 1976; Lovejoy et al., 2001;
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Figure 4. Comparison of Chl versus SST spectral slopes for all four regions calculated between ~33 and 5 km inverse
wavenumber: (a) Landsat, (b) MODIS, and (c) Landsat at MODIS resolution. —5/3 is indicated with a red square on the 1:1
line. Spectra and spectral slopes for each region individually are shown in Figures S6-S9 of Supporting Information S1.
Error bars indicate standard deviation (Landsat error bars are smaller than the marker).
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A. P. Martin and Srokosz, 2002; van Gennip et al., 2016) and satellite imagery (Denman & Abbott, 1994; Smith
et al., 1988) has generally borne out these predictions. However, previous satellite studies of Chl and SST on the
submesoscale has been conducted with satellites that have O(1) km resolution, for example, MODIS, SeaWIFS,
and CZCS (Denman & Abbott, 1994; Smith et al., 1988). As noted, the submesoscale occurs at the high-
wavenumber limit of those sensors, making the differences in spatial variance between Chl and SST difficult
to distinguish due to pixel noise. Notably, geostatistical analysis of MODIS Chl reveals considerable unresolved
variability on O(100) km scales, due to either noise or submesoscale variability (Doney et al., 2003; Glover
et al., 2018). Our work highlights the importance of either high SNR or high spatial resolution in resolving the
submesoscale.

Passive remote sensing is inherently photon-limited, as there are tradeoffs between spatial resolution, spectral
resolution, SNR, and repeat time. High-spatial-resolution satellites designed primarly for terrestrial remote
sensing—like Landsat and Sentinel-exchange repeat time and SNR for high spatial resolution. Time scales of
variability on land are long, and land targets are bright. With the ocean being a temporally-variable, dark target,
the necessity of rapid repeat times and high SNR must come at the expense of either decreased spatial resolution
or decreased spectral resolution. Constellations of satellites, like Landsat 8/9, have shown the possibility of
making high-SNR, high-spatial-resolution observations at rapid repeat times, albeit at moderate spectral reso-
lution. Similarly, technological and design advancements have enabled hyperspectral resolution for Plankton,
Aerosol, Cloud, ocean Ecosystem (PACE) at a similar spatial resolution, SNR, and repeat time to MODIS
(Werdell et al., 2019). With PACE's hyperspectral resolution, wavelengths can be aggregated to produce excellent
SNRs at a similar spectral resolution to MODIS. Our findings emphasize that the SNR of moderate-spatial-
resolution satellite sensors like PACE is critical in their ability to resolve submesoscale variations in ocean co-
lor and temperature.

Data Availability Statement

Data produced by NASA's MODIS Aqua and Landsat 8 and 9 satellites was used in the creation of this manu-
script. A complete list of matchup images and locations, accompanied by imagery used in Figures 1 and 2, and
calculated variance spectra used in Figures 3 and 4, and Table 1, along with all necessary code is available
(Carberry, 2024).
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