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Abstract. Potholes pose significant financial and safety hazards to
motorists worldwide, emphasizing the demand for innovative solutions
for detection and repair. Conventional methods, reliant on manual
inspection and patching, prove to be inefficient and unsustainable,
prompting the need for automated detection systems. However, merely
expediting the patching process does not address the underlying issues
that cause the potholes in the first place. This paper introduces a pot-
hole detection and mapping system over Google Street View, utilizing
highly effective learning models and Google Map’s APIs. Our system
extracts images along specified routes from the Google Street View API,
processes them using a detection model, and plots the results on an inter-
active map. Additionally, it compiles these findings into a video that sim-
ulates a drive along the route. By leveraging deep learning techniques,
we provide users with valuable insights into road conditions, facilitat-
ing proactive maintenance strategies. The evaluation demonstrates high
classification accuracy and sensitivity in pothole detection. Additionally,
the system’s capacity to analyze data over time enables municipalities to
identify and pinpoint persistent pothole-prone areas, paving the way for
targeted interventions to prevent future hazards. Future work includes
expanding the dataset and developing a user-friendly interface to enhance
the system’s capabilities and usability. Our system offers a promising
solution for long-term pothole repair and maintenance, contributing to
safer and more sustainable transportation infrastructure for communities
around the world.

Keywords: Deep learning + Google Street View - Pothole detection -
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Potholes are holes in road surfaces that result from gradual damage caused by
traffic and weather. Asphalt, commonly used in road surfaces for its durability,
flexibility, and low cost, paradoxically becomes a breeding ground for potholes.
Potholes arise in four main steps [6]. Moisture infiltrates the asphalt which allows
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water to drain into it allowing for the moisture to become trapped underneath.
During freezing and thawing, ice expands and causes cracks within the asphalt.
Voids form as hollow spaces accumulate moisture and rapid freeze-thaw cycles.
With the impact of traffic, the pavement begins to collapse, causing potholes to
become larger and larger overtime.

The damage caused by potholes may seem trivial, but the extent of the
damage they cause is significant, both financially and physically. A study inves-
tigating the impact of potholes on motorists across 11 distinct regions in the
UK between 2019 and 2020 revealed that the cumulative damage inflicted on
motorists annually exceeded 1.25 billion dollars [6]. Furthermore, the study [6]
indicated that 32% of drivers who encountered potholes in the past year reported
sustaining damage to their vehicles. These damages encompassed a range of
issues, including but not limited to tire damage, wheel misalignment, and sus-
pension repairs.

Potholes not only pose a financial burden, but also create significant safety
hazards as well, with the potential for serious and fatal consequences. Road
accidents attributed to potholes claimed 5,626 lives between 2018 and 2020 [21].
These accidents highlight the critical need for improved road maintenance and
proactive measures. The intersection between financial burden and loss of life
underscores the urgent need for effective pothole detection and mapping sys-
tems. By prioritizing these systems, we can enhance road safety, facilitate timely
repairs, and reduce the economic and safety impact.

Traditional methods of pothole detection and repair rely on manual inspec-
tion and patching, both of which are inefficient. Patching, a common practice,
involves filling potholes with temporary asphalt, however, this “quick fix” does
not last long and constantly requires refilling especially in areas that receive bad
weather or traffic frequently. Alternatively, methods such as reconstruction and
overlays [9] provide long-term solutions by replacing entire sections of asphalt.
However, the cost associated with these approaches limits their capability of
widespread implementation.

In this paper, we introduce a pothole detection and mapping system lever-
aging well-established deep learning models and Google Maps APIs. Our sys-
tem operates along a route of interest and extracts images from the Google
Street View API, which are then analyzed using a pothole detection model. The
detected potholes are plotted on a map before being converted into video. This
facilitates both visual and statistical assessment of road conditions in a given
area over time. This approach allows us to pinpoint the areas where there is
recurring road damage and implement targeted reinforcement to prevent pot-
holes from forming. By eliminating the need for constant road surveying and
patching, our system aims to mitigate both injury and financial burdens caused
by pothole-related incidents.

The paper is organized as follows. Section 2 introduces the related work to
our approach and potential alternatives, and Sect. 3 discusses and explains the
methodology of our proposed approach. Section4 delves into the implementa-
tion and application, and Sect. 5 summarizes our results. Section 6 explains the
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challenges faced and the resulting output, and Sect.7 summarizes our approach
and discusses future work.

2 Related Work

Advancements in computer vision [20,22,23,27] and intelligent transportation
systems [7,8,15] have led to more sophisticated methods for monitoring roadway
conditions and supporting autonomous decision-making. Numerous studies have
concentrated on refining models for enhanced pothole detection using image-
based approaches [2,3,17,24,28|. At the same time, crowdsourcing has emerged
as an invaluable approach for the real-time collection and dissemination of infor-
mation across various domains [11-14,16]. Research has increasingly focused
on combining these two methods to tackle real-world pothole detection. For
example, several approaches leverage image-based machine learning algorithms
alongside sensor technologies for pothole detection, while utilizing crowdsourcing
mechanisms to disseminate pothole locations [10,19,26]. This dual approach not
only aids in the precise detection of potholes but also allows real-time reporting
and subsequent mitigation, therefore enhancing the practical implementation.

Studies in [10] and [19] have explored the option of using vehicle-mounted
cameras in order to automate the process and improve detection accuracy. In
[19], the You Ounly Look Once version 5 (YOLOv5) deep learning algorithm
was used to detect potholes from dash camera images. These images served as
input to CNN models within the YOLOv5 framework. During training, the CNN
models were fine-tuned using transfer learning techniques. This involved lever-
aging pre-trained weights from models trained on larger datasets like COCO to
expedite the learning process and improve performance. Next, three different
architectures of YOLOv5 (small, medium, large) were evaluated during train-
ing of 500 epochs. The effectiveness of the YOLOv5 approach is demonstrated
through its ability to detect potholes accurately and in real time. By analyzing
the trade-offs between detection accuracy and speed across the different model
sizes, the proposed solution offers flexibility in optimizing its performance based
on the task presented.

YOLOV5 is not the only machine learning approach that has been used for
this task. The study in [18] highlights a range of deep learning techniques suitable
for pothole detection, composed of both object detection and semantic segmenta-
tion algorithms. The object detection methods range from single-shot multi-box
detectors (SSD) to region-based convolutional neural networks (R-CNN) similar
to what we employed in our experiment. In addition, semantic segmentation-
based methods have also gained traction, utilizing networks such as U-Net and
DeepLabv3+ to segment road images at the pixel level, providing us with a
detailed understanding of road anomalies. These techniques leverage attention
mechanisms and data fusion strategies to refine features and improve the accu-
racy of the segmentation.

Additionally, researchers have explored using crowd-sourcing for pothole
detection and accelerometers to collect data on road conditions [18,26]. In [26],
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two groups of experiments were conducted utilizing smartphones in one group
and high-precision devices in the other. In the smartphone group, three phones
were positioned in different locations of the vehicle, with the high-precision device
on the floor. Supervised learning models were then employed to identify the pot-
holes, while the acceleration data was labeled using the ground truth from the
windshield camera. The labeled data were used in the training of these models
to recognize patterns in the acceleration data that indicated the appearance of
road anomalies. The algorithms were fine-tuned using the collected data from
both the experimental and verification groups to ensure their effectiveness in
different driving conditions. This information would be uploaded by the users to
further train the model around different road conditions.

It is important to note that although these approaches are good for detecting
potholes, they lack any real-world application beyond monitoring and detecting.
In addition, crowdsourcing from users is challenging to achieve and creates pri-
vacy and data authenticity concerns. To address these challenges, our system
utilizes deep learning techniques and leverages Google Street View and Google
Maps APIs to obtain real-world street-level road data. Additionally, we imple-
ment a mapping system to make use of the detections as a comprehensive data
tool rather than a plain detection tool.

3 Methodology
3.1 Proposed System

Our proposed pothole detection system aims to provide users with a seamless
and efficient way to not only detect potholes but monitor them as well. By com-
bining powerful machine learning techniques and Google Street View imagery,
the system offers users valuable insights into road conditions in their area and
long-term data to prevent future hazards before they arise.
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Fig. 1. Workflow of the pothole detection and mapping system.



Smart Roadway Monitoring: Pothole Detection and Mapping via GSV 155

3.2 System Implementation

The user flow of the proposed system is depicted in Fig. 1. The program starts
with user input of the route of interest, where users can specify the source and
destination. The system then takes this information and begins processing it
using the Google Maps Directions and Street View APIs followed by a deep
learning model, as seen in Fig. 1. Once the information is processed, an inter-
active map is generated that displays the location of the potholes at the exact
coordinates where they were detected. In addition to the interactive map, the
system compiles the detected potholes into a video simulation of the route for
users to view. Lastly, the user receives the map and video and can store them
in a database to monitor the road conditions over time in their town or area.
Google Street View updates its imagery at varying frequencies, with urban areas
typically updated once every year, while less populated areas may take three or
more years [4]. This is beneficial for our system since we are not trying to sim-
ply gather road data or detect potholes for the current day but to gather data
over time to prevent the potholes from forming in the first place. By leveraging
these images and maps, within a few years, municipalities can discern patterns of
road degradation and prioritize areas for appropriate intervention. For instance,
areas exhibiting frequent and recurring pothole formation may warrant more
extensive measures such as complete reconstruction and recurrence rather than
just patching. As described earlier, reconstruction and reinforcement are expen-
sive procedures and cannot be done everywhere, so utilizing our system, enables
implementation in places where it is needed. Conversely, areas experiencing spo-
radic or isolated potholes will suffice with simpler solutions such as patching.
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Fig. 2. System architecture of the pothole detection and mapping system.
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3.3 System Architecture

Figure 2 illustrates the proposed systems architecture, while Fig. 1 depicts the
user implementation. This highlights the various steps the data must go through
to get the results. The first step in building the system’s architecture was to
collect a large dataset of potholes. A dataset used by a related paper that used
deep learning to detect potholes which consisted of pothole images from various
locations all around the world [5] was utilized. This dataset consisted of thou-
sands of images; however, only the United States data was used as it was the
closest to the type of images desired for detection. Additionally, the dataset was
augmented with our images to enhance its size and diversity. The augmented
images were from routes that were set from different parts of the region such as
Wayne, New Jersey, to Newark, New Jersey, then the images were extracted and
annotated manually using Roboflow [1].

Following data collection, we trained a Detectron2 model using the RCNN
R50 FPN architecture from the model zoo [25]. This model was chosen due to
its efficiency and relatively high accuracy compared to other available methods
and models. The Feature Pyramid Network (FPN) incorporated into the archi-
tecture enables effective feature extraction allowing the model to capture both
fine-grained details and broader contextual information in the training images.
The ResNet-50 backbone provides a balance between the model efficiency and
complexity making it suitable for this application where speed is an important
factor. Overall, the choice of the RCNN R50 FPN architecture was because of
our emphasis on achieving both high accuracy and efficiency in pothole detecting
tasks.

Next, utilizing the Google Maps Directions API and the polyline library in
Python, a polyline representation of the route of interest entered by the user
was extracted. This ensured all the data points along the route were captured.
We then employed the Google Maps Street View API to extract images at each
data point along the route. Additionally, the bearing between each current and
previous point was calculated to ensure the consistent orientation of the captured
images. This step was crucial because without it, all the images would be facing
different directions, making the last step of video compilation impossible but
most importantly, preventing the detection of potholes if the orientation were
not facing the direction of the road in progress. For example, without consistent
bearings, the orientation of the street view image might face a home or the side
of the road instead of the road itself, leading to inaccurate and unusable data.

With the images extracted, they were run through the model as they arrived.
This process allowed for the detection of potholes as they were encountered and
saved the coordinates in a CSV file. Running the images through the model in
this order prevented duplicate images of detected and undetected potholes and
eliminated the need to run the program twice to obtain the coordinates.

Upon saving of all the images and coordinates, the CSV file that stored the
pothole coordinates was used to create the map. We used the folium library to
create an interactive map, as seen in Fig. 6, to visualize the potholes along the
route. Lastly, all the saved images were compiled into a video using OpenCV,
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with the addition of interpolation between the frames to give the illusion of a
seamless driving experience as it progressed through the route.

4 Experiments
4.1 Dataset

The dataset used in our experiment comprises of street-level images obtained
from the Google Street View Static API [5]. These images were captured under
sunny conditions but at different times of the day and with varying sunlight
intensities. The dataset consists of 1,977 images in the training set and 50 images
in the test set, totaling 2,027 images. No separate validation set was used in
this study, as it was not the scope of this research. Image annotations were
provided in COCO format, allowing compatibility with our deep learning frame-
work. Each image was annotated with bounding boxes delineating the location
of the potholes. Prior to model training, images were preprocessed to ensure uni-
formity and compatibility with the model. Images were resized to a resolution
of 640 x 640 pixels. A single class label, “pothole”, was assigned to all annotated
images, indicating the presence of a pothole within a bounding box region. In
this study, data augmentations such as exposure and saturation adjustments
were not applied to the dataset. We hope to test this in the future to enhance
the model’s performance.

4.2 Implementation Details

The training process was conducted using the Detectron2 library, leveraging the
Faster R-CNN architecture with a ResNet-50 backbone pre-trained on the COCO
dataset. The implementation details are as follows: The learning rate was set to
0.0025; the batch size was 256; the model was trained for 3,000 iterations; no
preprocessing was done as this was completed while annotating the images; lastly,
the optimizer that was used during training was stochastic gradient descent
(SGD). The training was conducted in a GPU-enabled environment in Google
Colab to accelerate computation. After training, the model’s performance was
evaluated on the test set using a detection threshold of 0.8.

5 Results

Figure 3 highlights the performance of the model in terms of classification
accuracy, total loss, and false negatives, as expressed through the TensorBoard
library. The classification accuracy peaked at 91% by the end of the training
process. This demonstrates the model’s high capability of predicting the classifi-
cation of potholes correctly. In Fig. 3c, we can see the total loss of the model start-
ing at 0.65 and bottoming out at around 0.15 by the end. This difference between
the beginning and the end indicates that the model was learning throughout the
training process and no errors occurred during training. Lastly, the false neg-
ative rate was initially high but neared zero at the end. This decrease reflects
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Fig. 3. Model performance in terms of accuracy, loss, and false negatives.
the model’s enhanced sensitivity to detecting potholes, which is important for

our task. Overall, these graphs collectively demonstrate the good health of the
model and its effectiveness for the task.
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Fig. 4. Comparison of ground truth and system detection for pothole identification.

We selected a challenging route for a case study to test the effectiveness of the
system. The chosen route was from 42 Maryland Ave, Paterson, New Jersey to
26 19th Ave, Paterson, New Jersey. This route was specifically selected because
it is known to have a dense population of potholes, which is an ideal environment
for evaluating the performance of the system. To establish the ground truth of
this area, we extracted images from the polyline using the Google Maps Street
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View API and Directions API and manually labeled the route. This was done
to ensure the accuracy of our evaluation.

Figure 4 represents a side-by-side comparison between a snapshot from the
ground truth video Fig. 4a and the snapshot obtained from our system’s detec-
tion Fig. 4b. Despite the large population of potholes in the area, the system
only missed two predictions and detected one false positive compared to the
ground truth.

Fig. 5. Pothole detection mapping system. This figure provides a visual representation
of pothole distribution along the route of interest, offering valuable insight into the
road’s condition.

Our proposed system’s mapping layout is illustrated in Fig. 5, which provides
a visual representation of pothole distribution along the route of interest, offering
valuable insight into the road’s condition. When a request is sent to the Direc-
tions API to create a polyline of the route, a JSON file containing the metadata
of the latitude and longitude coordinates is generated. The Google Street View
Static API reads these coordinates and returns street-level road images. When
the image is run through the model to detect a pothole, if a pothole is detected,
the coordinates are saved in a CSV file. However, if nothing is detected, the
metadata is discarded even though the image is still saved. The coordinates in
the CSV file indicate where the potholes are to be marked as pinpoints on the
map, as seen in Fig. 5. Once this process is complete, the CSV file is saved and
loaded into the Folium Python library, which marks the pothole positions on the
map using the saved coordinates and creates an interactive map for the user to
swipe through and analyze. The interactive map allows users to swipe through,
zoom in and out, and click on any pinpoint location to view the actual potholes
to conduct a more thorough investigation of the area of interest.

The map illustrates scattered pothole pinpoints at the beginning and end
of the route, with a higher density concentration observed in the middle. This
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higher density indicates that the middle segment of the route receives a higher
frequency of road deterioration, which could be due to several factors such as
heavy traffic or bad weather. By identifying these segments, authorities can
prepare these areas for additional measures such as reinforced construction or
enhanced road surface materials. This addresses safety concerns for motorists
and the financial burdens associated with frequent patching.

6 Challenges

While the overall accuracy along the case study route was high, there were a few
instances where false positives were detected. For example, in Fig. 6a and 6b we
see two instances where this occurred. In the left image, the system incorrectly
identified the shadow of a light post as a pothole. Similarly, the image on the
right shows a misclassification of a sewer lid as a pothole. This was likely due to
us not augmenting the dataset to account for different exposures, which would
help the model learn the features of potholes at different times of the day. Since
the Google Maps Street View API provides images taken at various times of day
and under different weather conditions, this variability influences the appearance
of potholes, likely leading to these errors.

Pothole 82% Pothole 85%:

(a) Lamp shadow detected as pothole (b) Sewer detected as pothole

Fig. 6. Examples of false positives in pothole detection.
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7 Conclusion and Future Work

In conclusion, our system presents a promising solution for pothole detection
and mapping using deep learning techniques and real-world street-level road data
from Google Street View API. The system’s ability to analyze data over time will
allow municipalities to identify persistent pothole-prone areas, enabling proactive
intervention before the potholes even occur. This will not only reduce repair
frequency and cost but will also increase safety. Through continued innovation,
we hope to create a safer and more sustainable transportation infrastructure for
all communities.

Moving forward, we aim to enhance the system’s capabilities by expanding
and augmenting the pothole dataset to include a wider range of road conditions
and lighting scenarios. We plan to be able to adjust the images to account
for the discrepancies caused by the different times of day when Google Street
View car collected its images. Additionally, we plan to develop a user-friendly
GUI to streamline route and input data retrieval so users of all technological
backgrounds can use it. Furthermore, enabling users to upload their data to a
cloud server will allow municipalities to efficiently input and track their data
over time.
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