

Incorporating New Datatypes to Enhance Species Delimitation: A Case Study in Rice Paddy Snakes (Homalopsidae: *Hypsiscopus*)

JUSTIN M. BERNSTEIN^{1,2,*}, ROBERT W. MURPHY^{3,4,5}, AMY LATHROP⁵, SANG NGOC NGUYEN⁶, NIKOLAI L. ORLOV⁷ & BRYAN L. STUART⁸

¹*University of Kansas, Center for Genomics, 1345 Jayhawk Blvd, Lawrence, Kansas 66045, United States*

²*Current Affiliation: Department of Biology, University of Texas at Arlington, Arlington, Texas, 76010, United States*

³*Reptilia Zoo and Education Centre, 2501 Rutherford Rd., Vaughn, Ontario, Canada L4K 2N6*

 bob.murphy@utoronto.ca; <https://orcid.org/0000-0001-8555-2338>

⁴*State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China*

⁵*Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada*

 amyl@rom.on.ca; <https://orcid.org/0009-0003-1760-0360>

⁶*Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam*

 ngocsangit@yahoo.com; <https://orcid.org/0000-0003-1955-3329>

⁷*Department of Herpetology, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia*

 nikolai.Orlov@zin.ru; <https://orcid.org/0000-0003-4401-348X>

⁸*Section of Research & Collections, North Carolina Museum of Natural Sciences, North Carolina, 27601, USA*

 bryan.stuart@naturalsciences.org; <https://orcid.org/0000-0003-4719-1951>

*Corresponding author: jmbernst223@gmail.com; justin.bernstein@uta.edu; <https://orcid.org/0000-0002-5249-3340>

Abstract

Homalopsids (Old World Mud Snakes) include 59 semiaquatic species in Asia and Australasia that display an array of morphological adaptations, behaviors, and microhabitat preferences. These attributes make homalopsids an ideal model system for broader questions in evolutionary biology, but the diversity of this understudied group of snakes is still being described. Recognized species diversity in rice paddy snakes (*Hypsiscopus*) has recently doubled after nearly 200 years of taxonomic stability. However, the evolutionary distinctiveness of some populations remains in question. In this study, we compare mainland Southeast Asian populations of *Hypsiscopus* east and west of the Red River Basin in Vietnam, a known biogeographic barrier in Asia, using an iterative approach with molecular phylogenetic reconstruction, machine-learning morphological quantitative statistics, and ecological niche modeling. Our analyses show that populations west of the Red River Basin represent an independent evolutionary lineage that is distinct in genetics, morphospace, and habitat suitability, and so warrants species recognition. The holotype of *H. wettsteini*, a species originally described in error from Costa Rica, grouped morphometrically with the population at the Red River Basin and eastward, and those west of the Red River Basin are referred to the recently described *H. murphyi*. The two species may have diversified due to a variety of geological and environmental factors, and their recognition exemplifies the importance of multifaceted approaches in taxonomy for downstream biogeographic studies on speciation scenarios.

Key words: China, East Asia, mud snakes, phylogenetics, systematics, Red River, Vietnam

Introduction

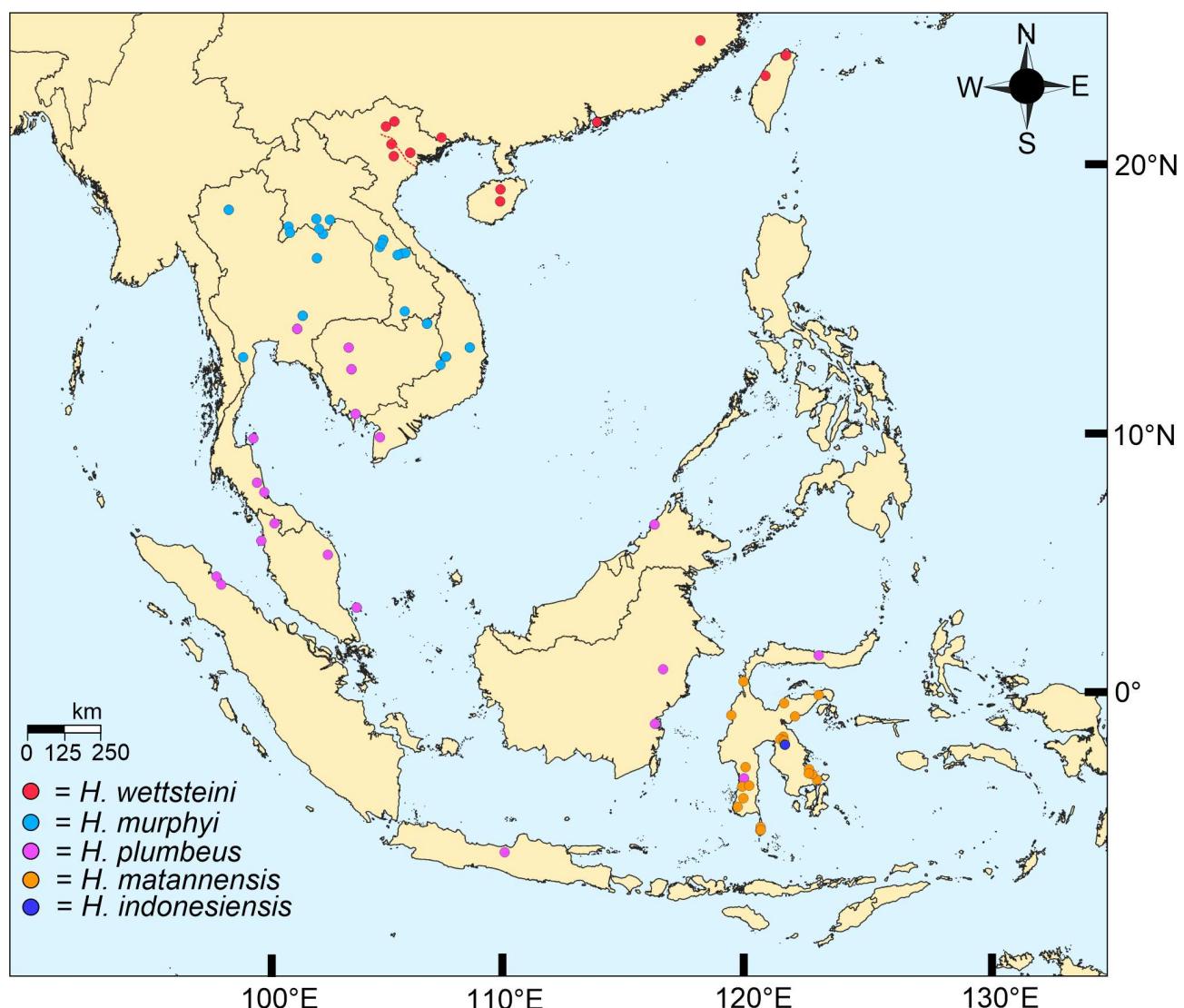
The heterogeneous topography of East and Southeast Asia has been formed by a mosaic of geological events over several millions of years (Hall 1996, 2009; Hutchison 1989; Mulch & Chamberlain 2006). The complex geological histories of these regions have repeatedly been shown as drivers of diversification in several organismal groups (Favre *et al.* 2015; Fu & Wen 2023; Qu *et al.* 2015). Aquatic species were likely influenced by the movement of water ways in Indochina (Breitfeld *et al.* 2020; Salles *et al.* 2021), and terrestrial taxa expanded their ranges via subaerial land bridges between now discontinuous landmasses (Voris 2000), leading to population separation in the Pleistocene. In addition to geological events like tectonic uplifts and changing paleo-river courses, environmental differences

throughout the geographic ranges of widespread taxa also have the potential to further lineage diversification (Bernstein *et al.* 2024). Systematic studies routinely utilize molecular and morphological data to delimit species complexes (Ramos *et al.* 2019; Weijola *et al.* 2019), but in many cases these data types might not reveal clear species boundaries (Bernstein *et al.* 2022). Investigations into habitat suitability and niche differentiation can reveal further evidence of speciation scenarios along the speciation continuum (De Queiroz 2007) in otherwise difficult-to-delimit taxa (Chan *et al.* 2022; Raxworthy *et al.* 2007; Rissler & Apodaca 2007).

Old World Mud Snakes of the Family Homalopsidae are a group of 59 recognized species in 26 genera distributed throughout Asia, New Guinea, and Australia that show extensive variation in morphological (Catania *et al.* 2010; Murphy 2007) and behavioral (Fabre *et al.* 2016; Jayne *et al.* 2018) traits. Homalopsids have had a long history of taxonomic flux, with widespread species being found to be composed of distinct lineages at finer geographic scales (Karns *et al.* 2010; Murphy *et al.* 2012a,b). One of the most widespread groups in this family, rice paddy snakes of the genus *Hypsiscopus*, are found from Sulawesi through insular Southeast Asia and Indochina into East Asia. Recent studies have elevated the species richness in the genus from two to four, with *H. matannensis* (Boulenger, 1897) and *H. indonesiensis* Hamidy, Zakky, Fitriyana, & Endarwin 2023 endemic to Sulawesi, Indonesia, *H. plumbeus* (Boie 1827) found from Sulawesi to southern Indochina, and a fourth species, *H. murphyi* sensu Bernstein *et al.* (2022) distributed from central Indochina northward to Fujian, China (Bernstein *et al.* 2022; Hamidy *et al.* 2023). The latter taxon is the subject of this investigation.

Bernstein *et al.* (2022) demonstrated that the taxon distributed from central Indochina to eastern China was readily diagnosed with mitochondrial DNA, nuclear DNA, and morphology from *H. plumbeus*, and formally named this taxon *H. murphyi* Bernstein, Voris, Stuart, Phimmachak, Seateun, Sivongxay, Neang, Karns, Andrews, Osterhage, Phipps & Ruane, 2022. Bernstein *et al.* (2022) found a deep genetic break (~10% in cytochrome-b) within *H. murphyi* at the Red River Basin, a major biogeographic barrier in northern Vietnam and China, but the only morphological differences between populations east and west of the Red River Basin apparent to them was in coloration of lateral and ventral scales (dorsal-ventral color transition). As a result, Bernstein *et al.* (2022) noted this genetic divergence, but refrained from splitting *H. murphyi* into two taxa pending further study of morphology. Bernstein *et al.* (2022) overlooked the existence of *Helicops wettsteini* Amaral, 1929, a species described from “San Juan de Vinas (1000 ms. alt.), base of Volcano Turrialba, central Costa Rica” (Amaral 1929) that was determined by Rossman and Scott (1968) to be a junior synonym of *H. plumbeus* (as *Enhydris plumbea*), with type specimens bearing egregiously erroneous locality data (Rossman and Scott 1968). David & Vogel (2024) expanded the descriptions of the types of *H. wettsteini*, demonstrated that their morphologies more closely resembled *H. murphyi* than *H. plumbeus*, and therefore transferred *H. murphyi* into the synonymy of *H. wettsteini*.

In this study, we compare molecular and morphological variation in populations of *H. wettsteini* (formerly *H. murphyi*) east and west of the Red River Basin using dense geographic sampling for a molecular dataset consisting of two mitochondrial and six nuclear genes. We use machine-learning quantitative statistics with morphological data to identify distinct groups in morphospace based on *a priori* groupings that reflect the study populations. While previous studies (Bernstein *et al.* 2022, 2024) have investigated the genetic and morphological diversity in this group, we also utilize environmental data to determine if there are differences in habitat suitability and niche space of the two populations, which can be critical for species delimitation (Raxworthy *et al.* 2007). Such use of environmental data, in conjunction with molecular and morphological data, might provide evidence for ecological divergence or differences in niche spaces for populations east and west of the Red River Basin (Richards *et al.* 2007).


Methods

Genetic Data and Taxon Sampling

Hypsiscopus tissues were obtained through field collection efforts and natural history collections for previous studies (Bernstein *et al.* 2022, 2024). Snakes collected in the field by the authors were humanely euthanized by cardiac injection of aqueous sodium pentobarbital or tricaine methanesulfonate (MS-222; Simmons, 2015). Specimens were fixed in 10% buffered formalin after preserving liver or muscle in DMSO/EDTA salt-saturated tissue buffer, RNAlater (Invitrogen), or 95–100% ethanol for molecular analyses. Specimens were later transferred to 70% ethanol for permanent storage and deposited at the Field Museum of Natural History (FMNH), North Carolina Museum of Natural Sciences (NCSM), Department of Biology, Faculty of Natural Sciences, National University of Laos

(NUOL), and Museum of Vertebrate Zoology, University of California, Berkeley (MVZ). Comparative material was examined in the holdings of these institutions and the American Museum of Natural History (AMNH), Florida Museum of Natural History (UF), La Sierra University Herpetology Collection (LSUHC), Museum of Comparative Zoology (MCZ), Royal Ontario Museum (ROM), Sabah State Museum (SSM), and University of Kansas Biodiversity Institute & Natural History Museum (KU; Supplemental Table S1). Morphological measurements were taken from Bernstein *et al.* (2022). Institutional abbreviations follow Sabaj (2016). Experimental methods were approved by and in compliance with Institutional Animal Care and Use Committee (IACUC) protocols of the Field Museum of Natural History (FMNH) 06-4 to Harold K. Voris and North Carolina Museum of Natural Sciences 2011-01 to BLS. We included samples of *H. wettsteini* (formerly *H. murphyi*) from throughout its geographic range, both east and west of the Red River Basin (Fig. 1).

DNA extraction, polymerase chain reaction, and DNA sequencing protocols follow those of Bernstein *et al.* (2022, 2023). Briefly, we extracted whole genomic DNA from liver and muscle tissue using Qiagen DNeasy Blood & Tissue Kits, following the standard tissue protocol. We amplified two mitochondrial genes and six nuclear genes. For the mitochondrial genes, we sequenced ATPase (849–882 base pair [bp] fragment composed of the tRNA-Lys gene, the complete subunit 6 (*ATP6*) and subunit 8 (*ATP8*) genes, and part of the cytochrome oxidase c subunit III gene) and cytochrome-b (*cyt-b*; corresponding to the tRNA-Glu gene, the complete cytochrome *b* gene, and a portion of the tRNA-Thr gene). For the nuclear genes, we amplified the following genes: prolactin receptor (*PRLR*; 553 bp),

FIGURE 1. Distribution map of *Hypsicopus*. Points denote individual samples; records of *H. wettsteini* (=“eastern populations”) and *H. murphyi* (=“western populations”) represent the localities used for ecological niche models in this study. Coordinates for *H. plumbeus*, *H. matannensis*, and *H. indonesiensis* obtained from Bernstein *et al.* (2023) and Hamidy *et al.* (2023). Red dashed line in northern Vietnam represents the Red River.

WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain containing 2 (*WFIKKN2*; ~1,300 bp), vacuolar protein sorting-associated protein 13B (*VPS13B*; 855 bp, ATP/GTP binding protein-like 5 (*AGBL5*; ~627 bp), zinc finger protein basonuclin-1 (*BCNL1*; ~1,949 bp), and a fragment of recombination activating gene 2 (*RAG2*; ~1,100 bp). We followed the standard PCR and primer protocols of Bernstein *et al.* (2021) for *cyt-b* and *PRLR*, and the nested PCR protocols of Shen *et al.* (2013) and Li *et al.* (2017) to amplify *WFIKKN*, *VPS13B*, *AGBL5*, *BCNL1*, and *RAG2*. PCR products were visualized on a 1.5% agarose gel, and amplicons were cleaned with ExoSAP-IT (Applied BioSystems). Purified PCR products were sequenced on a 3730 DNA Analyzer (Applied Biosystems) using Big-Dye Terminator version 3 chemistry and amplifying and sequencing primers. All amplification and sequencing primers were developed from previous studies (Karin *et al.* 2020; Li *et al.* 2017, 2020; Shen *et al.* 2013) and can be found in Supplementary Table S1. We supplemented our sequencing efforts with additional sequences of *cyt-b*, *ATP6*, *ATP8*, *PRLR*, *WFIKKN2*, and *VPS13B* from previous studies on *Hypsiscopus* (Bernstein *et al.* 2021, 2022) through NCBI's GenBank. GenBank Accession IDs for all samples used in this study can be found in Supplementary Table S1. Supplementary information, sampling locations, morphological data, DNA alignment files, and code for all subsequent analyses can be found at <https://github.com/jbernst>.

Phylogenetic Analyses

Raw sequence data were aligned, concatenated, and edited by eye in Geneious R11.1.5 using default parameters of the Geneious alignment algorithm. We manually edited sequencing to check for ambiguous base calls or sequencing errors. We phased nuclear data by using the PHASE function in DnaSP6 (Rozas *et al.* 2017) under default parameters to obtain better resolution of allele placement amongst our populations. We used PartitionFinder2 (Lanfear *et al.* 2017) to identify the best model of evolution for our partitions, which were separated by gene and codon position (mitochondrial genes were considered one locus). Following previous phylogenetic studies on homalopsids, sequences of *Homalopsis buccata* and *E. chanardi* (Bernstein *et al.* 2021, 2022) were used as outgroups. For complete sampling of the genus *Hypsiscopus*, we included sequences of *H. plumbeus*, *H. matannensis*, and *H. indonesiensis*, the latter of which was recently described based only on morphological data (Hamidy *et al.* 2023) but was placed in a molecular phylogeny prior to many recent molecular works (Alfaro *et al.* 2008). Phylogenetic reconstruction was performed using IQ-TREE v1.6.1 (Nguyen *et al.* 2015). Maximum likelihood trees were run with 1,000 ultrafast bootstrap (UFB) iterations (Minh *et al.* 2013). Additionally, we computed 1,000 bootstrap replicates of the SH-like approximate likelihood-ratio test (SH-aLRT; Guindon *et al.* 2010) in our IQ-TREE analysis. We considered tree nodes as strongly supported if UFB ≥ 95 and SH-aLRT values ≥ 80 . In addition to the maximum likelihood tree, we also ran Bayesian Inference (BI) on the same dataset using MrBayes v3.2.7a (Ronquist *et al.* 2012), partitioning the data by gene and codon position (mitochondrial genes as one locus), and model selection using PartitionFinder2. We ran the analysis for 20 million generations (25% burn-in) and considered the runs converged as the average standard deviation in split frequencies had dropped below 0.01. All effective sample sizes (ESS) were greater than 400, suggesting a sufficient sampling of tree space (ESS values > 200 ; Ronquist *et al.* 2012). We considered Bayesian Posterior Probabilities > 0.95 to be strong relationship support in the tree. Phylogenies were visualized using FigTree v1.3.1 (Rambaut 2014). To compute genetic (uncorrected pairwise) distances, we used the *genetic distance* function in Geneious for *cyt-b* because it was the gene with the most complete taxonomic sampling in our dataset.

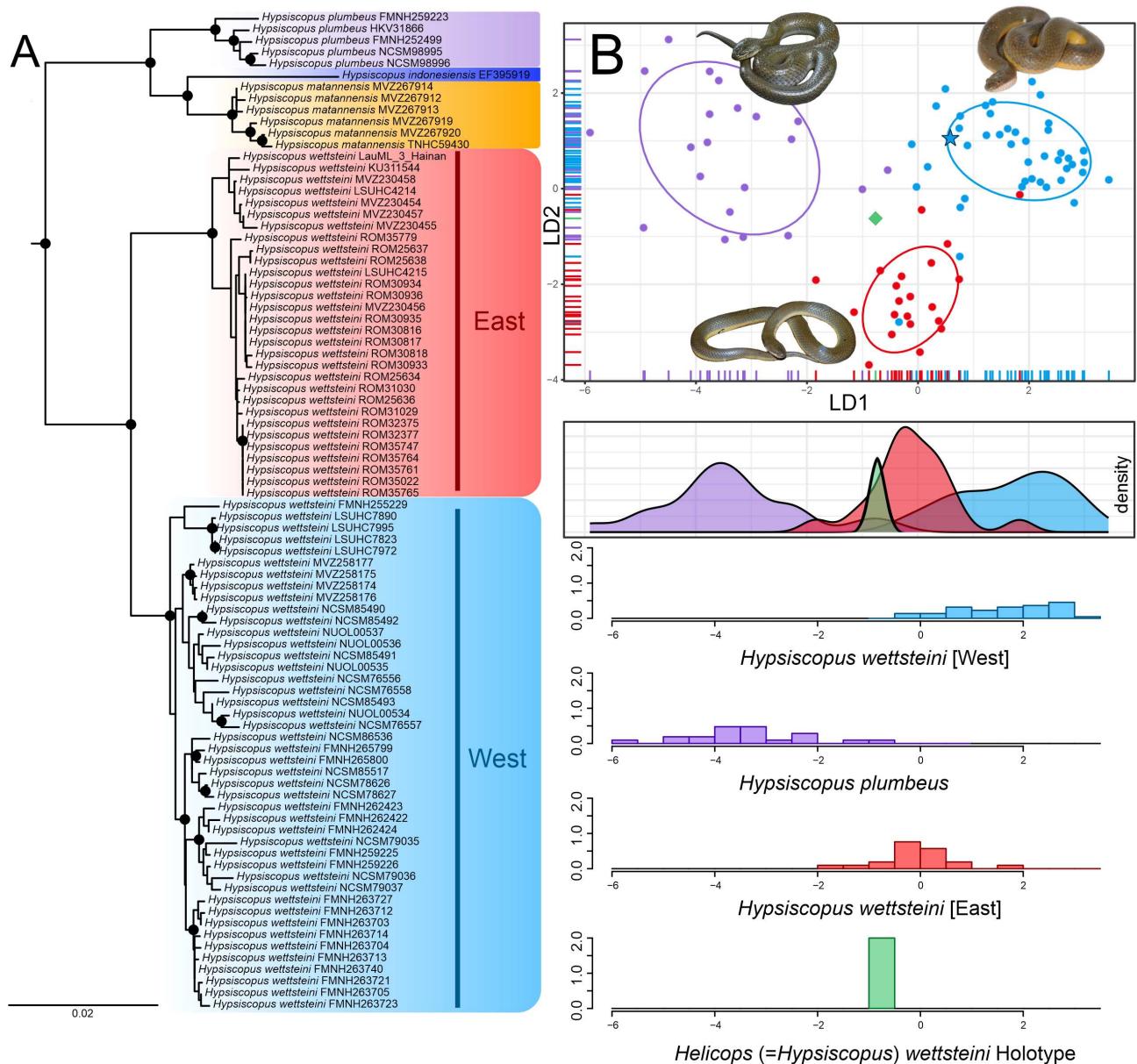
Quantitative Statistics of Morphology

Bernstein *et al.* (2022) failed to identify morphological characters that diagnosed eastern and western populations of *H. wettsteini* (as *H. murphyi*) other than color pattern (Bernstein *et al.* 2022). We used a morphological dataset of 86 individuals to run a linear discriminant analysis (LDA). The LDA uses a machine-learning algorithm on *a priori* groups to create a confusion matrix, determining if the morphological data training set was able to accurately identify the input groups. We used three *a priori* groupings: *H. wettsteini* east of the Red River Basin (“eastern population”), *H. wettsteini* at and west of the Red River Basin (“western population”), and *H. plumbeus*. Our morphological data were based on meristic and mensural characters from Bernstein *et al.* (2022), totaling 31 continuous or discrete variables in nature. Discrete characters were converted to numerical values representing

the discrete states, and the entire dataset was log-transformed and non-normal variables were removed. Only adult individuals were used for the LDA; snakes with snout-vent-lengths < 250 mm were considered juveniles (Murphy *et al.* 1999) and excluded from the analysis. Our final morphological dataset consisted of 21 individuals of the eastern population, 44 individuals of the western population, and 21 individuals of *H. plumbeus*. To incorporate data for the adult holotype of *H. wettsteini* from the expanded description by David & Vogel (2024; the paratype was deemed a juvenile), we also reran this analysis with a reduced dataset of 13 characters that overlapped between our dataset and that of David & Vogel (2024): number of ventrals, color transition from dorsum to venter, ventral color pattern, dorsal scale row count at midbody (SVL / 2), dorsal scale row count posteriorly, number of left subcaudals, number of right subcaudals, head length, head width, total length, snout-vent-length, tail length, and total length/tail length ratio. In total, two analyses were performed: an analysis with 31 characters (full dataset, without the *H. wettsteini* holotype), and an analysis with 13 characters (containing the *H. wettsteini* holotype). Morphological data were placed in Supplementary Table S1 and all code and input files at <https://github.com/jbernst>.

Ecological Niche Modeling

To determine and compare the habitat suitability and niche space of eastern and western populations, we constructed ecological niche models using Maxent v. 3.4.3 (Phillips *et al.* 2004, 2006). We used custom R code (Soto-Centeno 2022) that uses the R packages *rJava* (Urbanek 2021), *dismo* (Hijmans *et al.* 2021), *dplyr* (Wickham *et al.* 2020), *ecospat* (Di Cola *et al.* 2017), *ENMeval* (Kass *et al.* 2021), *ggplot2* (Wickham 2011), *maptools* (Bivand & Lewin-Koh 2021), *maps* (Becker *et al.* 2018), *raster* (Hijmans *et al.* 2022), *rasterVis* (Lamigueiro & Hijmans 2022), *RColorBrewer* (Neuwirth 2022), *rgdal* (Bivand *et al.* 2021), *sf* (Pebesma 2018), *spThin* (Aiello-Lammens *et al.* 2015), *tidyverse* (Wickham *et al.* 2019), and *viridis* (Garnier *et al.* 2021). We obtained the geographic coordinates of specimens of 70 western and 47 eastern *H. wettsteini* and rarefied these sets to remove duplicate values; our final rarefied datasets for niche modeling consisted of unique coordinates for 23 western and 12 eastern *H. wettsteini*. We used the 19 bioclimatic variables from WorldClim2 (Fick & Hijmans 2017) at a 2.5 minute resolution as predictor variables; we choose a 2.5 minute resolution to maximize model fit for our data and to make our study's results comparable to those of Bernstein *et al.* (2024). We explored species-specific parameter tuning in ENMeval v2.0 (Kass *et al.* 2021) using five different feature class combinations: L, LQ, H, LQH, and LQHP (L=linear, Q=quadratic, H=hinge, P=product), and used regularization multiplier values of 1 through 5. The best combination of feature classes was chosen based on the model with the lowest ΔAIC_c value (*H. wettsteini* western: LQH, rm = 2; *H. wettsteini* eastern: LQ, rm = 5). Models of climate and habitat suitability were projected using the present uncorrelated bioclimatic variables. Layers were tested for correlation using a Pearson correlation with a threshold value of 0.80. In addition to our niche models, we plotted the range of climatic conditions where eastern and western populations are geographically distributed (“climate envelopes;” Hijmans and Graham 2006). We constructed climate envelopes using all 19 bioclimatic variables to understand differences in environmental niche space between the eastern and western populations.


Results

Phylogenetic Reconstruction and Genetic Distances

Our maximum likelihood and Bayesian phylogenies of *Hypsiscopus* included 86 *Hypsiscopus* from a concatenated dataset of 7,152 bp. Our BI tree was congruent in topology and support with the ML tree (Supplementary Fig. 1), and thus we focus the rest of our results and discussion on the ML tree. All specimens assigned to *Hypsiscopus* formed a monophyletic group with strong support. All species-level and interspecific nodes were strongly supported, with *H. plumbeus* recovered as sister to *H. indonesiensis* and *H. matannensis*, and this group recovered as sister to *H. wettsteini* (Fig. 2A). *Hypsiscopus wettsteini* was strongly recovered as two clades representing the eastern and western populations. Uncorrected pairwise distances between the eastern and western populations were greater (5.6–7.1%) than interspecific distances of sister taxa in *Hypsiscopus* (4.5–5.2% for *H. matannensis* and *H. indonesiensis*; Table 1). No geographic substructure of eastern *H. wettsteini* was observed, as individuals from Hainan Island were found in the same clades as individuals from the mainland.

TABLE 1. Uncorrected pairwise distances of *cytochrome-b* for species of *Hypsiscopus* and populations in this study. A “-” represents no value for intraspecific distances due to only one specimen. All values represented in percent difference (%).

	<i>H. plumbeus</i>	<i>H. matannensis</i>	<i>H. indonesiensis</i>	<i>H. wettsteini</i> (='eastern')	<i>H. murphyi</i> (= 'western')
<i>H. plumbeus</i>	0–3.2				
<i>H. matannensis</i>	5–7.4	0–2			
<i>H. indonesiensis</i>	6–7.3	4.5–5.2	-		
<i>H. wettsteini</i> ('eastern')	9.8–10.9	9.9–11.1	10.2–10.8	0–1.8	
<i>H. wettsteini</i> ('western')	9.3–11.6	8.3–10.9	9.5–10.4	5.6–7.1	0–3

FIGURE 2. A) Maximum likelihood concatenated phylogeny of *Hypsiscopus* (A). Black dots represent strongly supported nodes; scale bar in substitutions per site. B) Linear discriminant analysis of *H. wettsteini* (western population; blue), *H. wettsteini* (eastern population; red), and *H. plumbeus* (purple). Axes represent linear discriminants 1 and 2 (LD1 and LD2), with respective density rugs and density plots on the margins of the plot corresponding to the points in within morphospace. Green diamond and blue star in the LDA represents the holotype of *Helicops (=Hypsiscopus) wettsteini* (NMW 18726-1) and *H. murphyi* sensu Bernstein *et al.* 2022 (NCSM 85490), respectively.

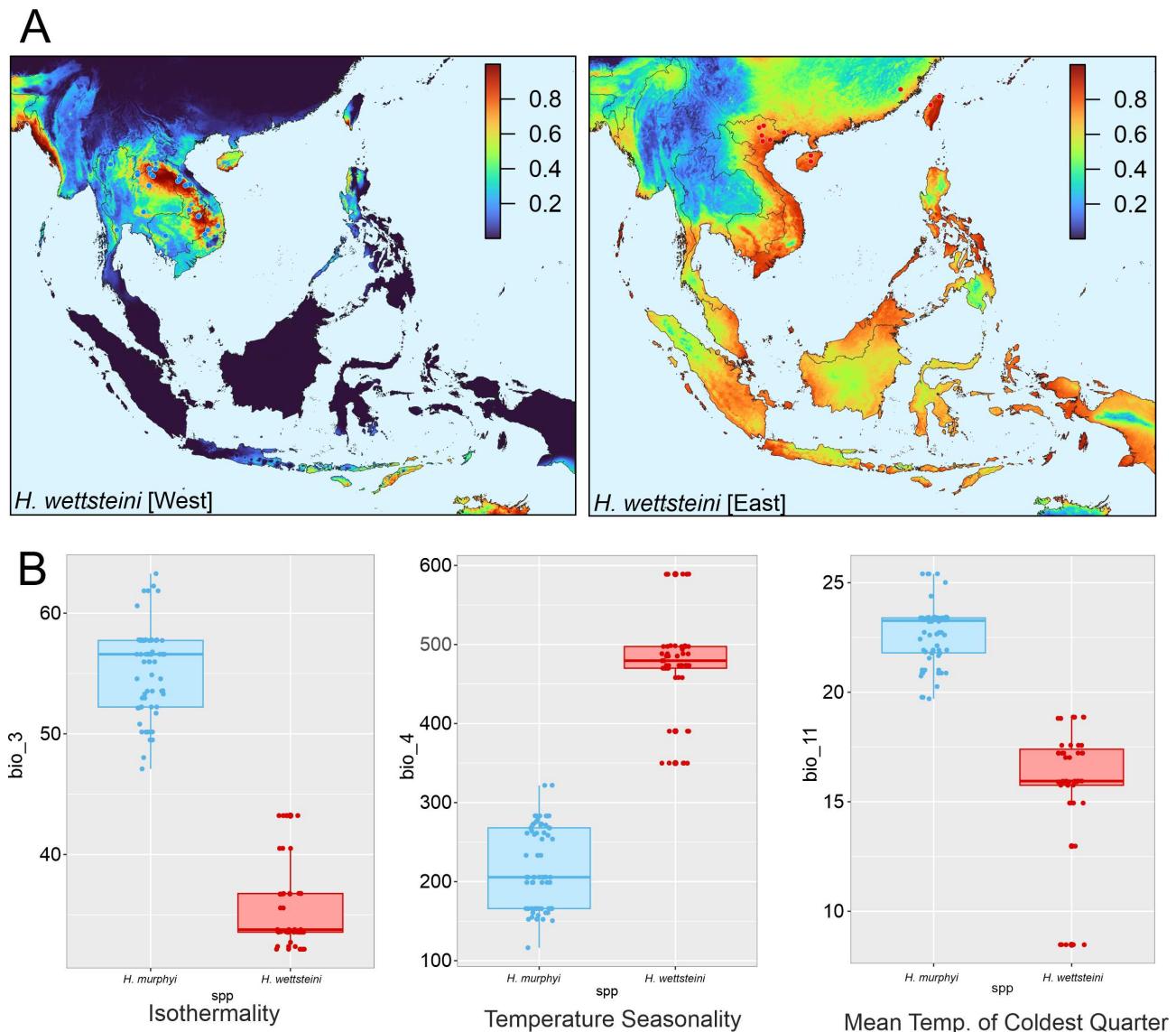
Linear Discriminant Analysis

Our LDA was performed on a dataset of 27 variables after removing non-normal and invariable characters. These 27 characters were ventral scale count, color pattern transition, ventral color pattern, ventral tail color, number of left subcaudals, number of right subcaudals, head length, head width, left anterior chin shield length, right anterior chin shield length, left anterior chin shield width, right anterior chin shield width, left posterior chin shield length, right posterior chin shield length, left posterior chin shield width, right posterior chin shield width, left intergenital scale length, left intergenital scale width, right intergenital scale length, right intergenital scale width, infralabials contacting the posterior chin shields, total length, snout-vent-length, tail length, body width average at mid-body, and circumference at mid-body.

Our analysis had a classification accuracy of 97.7% (95% CI 91.85–99.72%; $p = <2.2 \times 10^{-16}$). Only two individuals were misclassified, with one specimen of *H. plumbeus* being identified as western *H. wettsteini*, and one specimen of western *H. wettsteini* being classified as *H. plumbeus*. The first linear discriminant axis (LD1) showed 58.6% group separation, with specimens of eastern *H. wettsteini* sharing a similar region of morphospace with *H. plumbeus*, and western *H. wettsteini* occupying their own region in morphospace (Fig. 2B). The second discriminant axis (LD2) showed 41.4% group separation, where *H. plumbeus*, eastern *H. wettsteini*, and western *H. wettsteini* occupied their own regions in morphospace (Fig. 2B). Running our analysis to include the holotype of *H. wettsteini* showed similar results to when we did not include the specimen. The holotype of *H. wettsteini* was recovered within the morphospace of the eastern population of *H. wettsteini* along LD1 (69.59% group separate) and with some overlap in morphospace with eastern *H. wettsteini* and *H. plumbeus* along LD2 (26.13% group separation). The confusion matrix, which included the three previously defined groups, plus the holotype of *H. wettsteini* as a fourth group, only misidentified one *H. plumbeus* as a western *H. wettsteini* and two eastern *H. wettsteini* as a western *H. wettsteini*. The classification accuracy of this second analysis was 93.1% (95% CI 85.59–97.43%; $p = <2.2 \times 10^{-16}$).

Ecological Niche Models

Our ecological niche models revealed differing habitat suitability between eastern and western populations of *H. wettsteini* (Fig. 3A). Western *H. wettsteini* had suitable habitat restricted to Indochina and the southern edge of East Asia (and the Philippines, Lesser Sunda Islands, and northern Australia, all of which they have never been recorded from), which reflected its known present-day distribution (average area under the curve [AUC] = 0.897; Boyce index [BI] = 0.839). Within Indochina, western *H. wettsteini* had its highest suitability in moderate to high elevations near mountains, with lower suitability at coastlines. Bioclimatic variables 18 (~10%; Precipitation of Warmest Quarter), 4 (~14%; Temperature Seasonality [standard deviation $\times 100$]), 8 (~16%; Mean Temperature of Wettest Quarter), 6 (~20%; Minimum Temperature of Coldest Month), and 9 (~27%; Mean Temperature of Driest Quarter) had the highest contributions (with all other variables \leq ~5%).


In contrast to western *H. wettsteini*, the eastern population had primarily moderate to high suitability throughout all East and Southeast Asia (and the Philippines, New Guinea, and northern Australia), with highest suitability found at the lower elevation coastlines on mainland and insular Southeast Asia (AUC = 0.825; BI = 0.716). The only bioclimatic variables that contributed to the niche model were 7 (~24%; Temperature Annual Range [Maximum Temperature of Warmest Month—Min Temperature of Coldest Month]) and 2 (~75%; Mean Diurnal Range (Mean of monthly [maximum temperature—minimum temperature])); all other variables had no contribution.

Climate envelopes that had no overlap in values or error were considered significantly different. The climate envelopes between eastern and western populations showed significant differences for bioclimatic variables 3 (Isothermality [Mean Diurnal Range/Temperature Annual Range]), 4 (Temperature Seasonality), and 11 (Mean Temperature of Coldest Quarter) (Fig. 3B).

Taxonomy

Owing to corroborated lines of evidence in genetics (including *cyt-b* divergences similar to those of interspecific values in *Hypsiscopus*), distinctiveness in qualitative morphological characters and especially morphospace, and

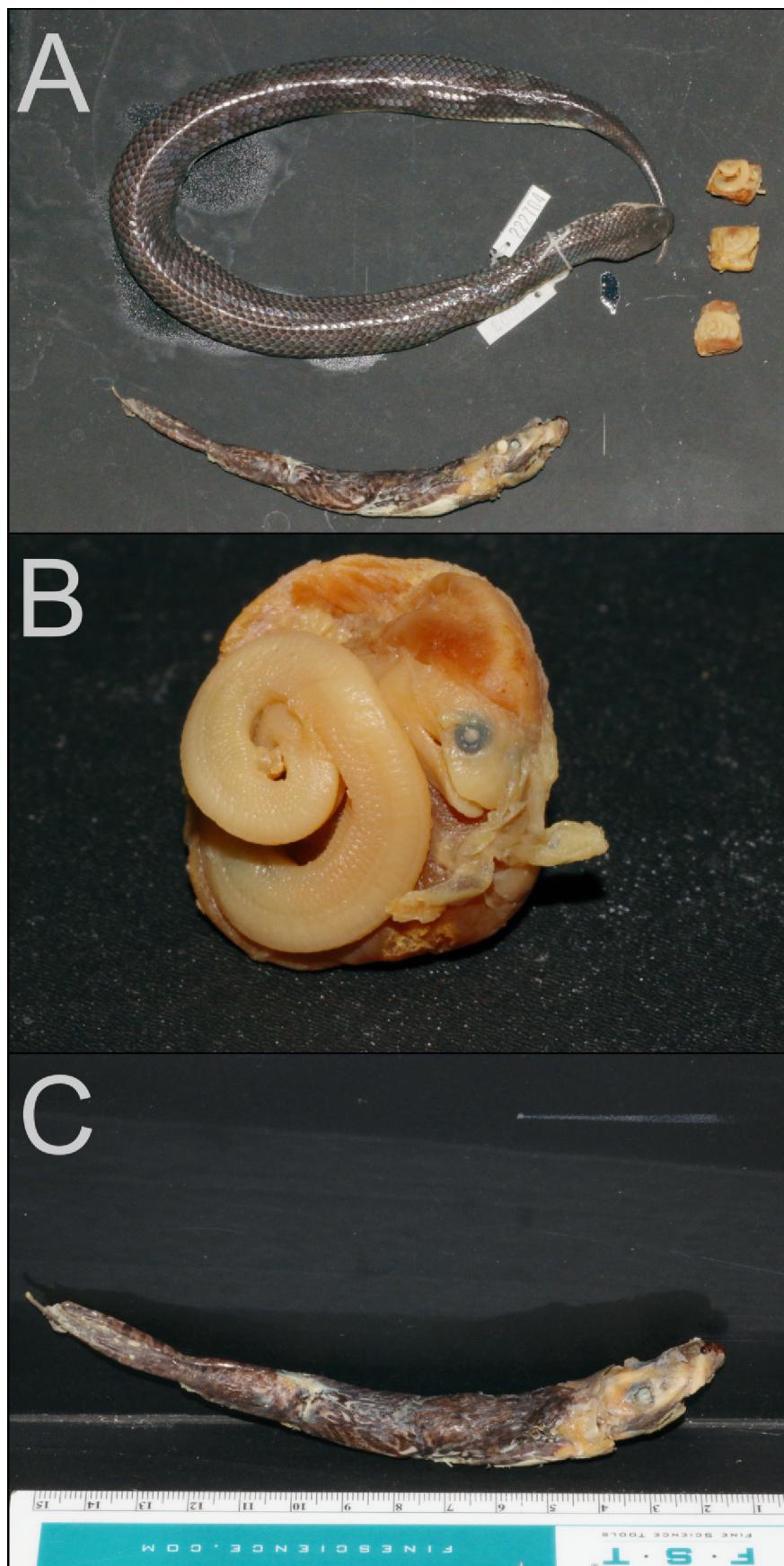
differences in environmental suitability, we hypothesize that the eastern and western populations of *H. wettsteini* represent separate species. The holotype of *H. wettsteini* lacks provenance but in morphospace it clusters with the eastern population (Fig. 2B). While our analysis shows a point in morphospace that only slightly overlaps along LD2, this point has complete overlap along LD1 which explains a majority of the variation in the dataset. The holotype of *H. murphyi* from Khammouan Province, Laos, clusters morphologically with the eastern populations (Fig. 2). *Hypsiscopus wettsteini* can be distinguished from its congeners by having a higher range (123–129) of ventral scales than *H. plumbeus* (113–123); a lower range (123–129) of ventrals than *H. indonesiensis* (152–159) and *H. murphyi* (122–136); a lower range (28–42) of subcaudal scales than *H. plumbeus* (30–44), *H. indonesiensis* (36–41), and *H. matannensis* (43–48); a lower number of scales at mid-body (19) than *H. matannensis* (21) and *H. indonesiensis* (25–27); a gradual color change from dark dorsal scales to light lateral/ventral scales (vs. distinct, sharp change in color in *H. murphyi*); and a halfmoon-shaped marking on anterior edge of some or most ventral scales (ventrals immaculate in *H. murphyi*) (Table 2).

FIGURE 3. A) Ecological niche models using the 19 bioclimatic variables from WorldClim2. Warmer and colder colors represent higher and lower habitat suitability, respectively. Points on map are identical to those in Figure 1. B) Climatic envelopes of the environmental variables that had no overlap between *H. wettsteini* (= “western populations”) and *H. wettsteini* (= “eastern populations”).

TABLE 2. Morphological diagnostic characters for species of *Hypsiscopus*: Dorsal scale rows (DSR) at midbody, number of ventrals and subcaudals, presence or absence of halfmoon-shaped pigmentation at anterior edge of ventral scales, and color change from dorsum to venter.

	DSR Midbody	Ventrals	Subcaudals	Mid-Ventral Halfmoon	Color Pattern
<i>H. wettsteini</i>	19	123–129	28–42	Present	Gradual
<i>H. murphyi</i>	19	122–136	22–41	Absent	Sharp
<i>H. plumbeus</i>	19	113–123	30–44	Present	Gradual
<i>H. matannensis</i>	21	137	43–48	Present	Gradual
<i>H. indonesiensis</i>	25–27	152–159	36–41	Present	Gradual

Natural History


Like *H. murphyi*, *H. wettsteini* is usually found in sluggish streams, ponds, marshlands, and rice and other cultivated fields (Mell 1922, Pope 1929, Karsen *et al.* 1986, Murphy 2007), but may wander overland on rainy nights in search of food (Karsen *et al.* 1986). Our elevational records spanned from sea level to 813 m elevation. Field data from some specimens used in this study shed additional light on natural history. The specimen KU 311544 was found at night (21:00–24:00) in a recently ploughed, wet field. The species is nocturnal or cathemeral (Karsen *et al.* 1986, Murphy 2007) and feeds on fish, frogs, and sometimes crustaceans (Schmidt 1927, Pope 1929, Gressitt 1941, Kuntz 1963, Karsen *et al.* 1986). Specimen KU 222704 contained a barely digested frog (Fig. 4). The venom toxicity of this species is likely not dangerous to humans given the lack of concern from bites of other *Hypsiscopus* species, which usually only causes localized effects (if any) such as local swelling and burning sensations (Karsen *et al.* 1986). Like *H. murphyi*, *H. wettsteini* is ovoviparous and gives birth to live young (Schmidt 1927, Pope 1929, Karsen *et al.* 1986). Specimen KU 222704 contained nine developing embryos (Fig. 4), which is the average litter size reported by Cox (1991).

Discussion

We recognize five species of *Hypsiscopus*, with *H. wettsteini* and *H. murphyi* recognized as two distinct species; this marks the fourth named species of rice paddy snake in less than a year. This demonstrates that the diversity of this group is still in need of investigating with various datasets and datatypes, and dense sampling schemes. Our knowledge of the evolutionary histories of homalopsids snakes has increased drastically in recent years (Bernstein *et al.* 2021, 2022, 2023, 2024; Hamidy *et al.* 2023; Murphy & Voris 2021; Quah *et al.* 2017, 2018), and this study marks the 59th species of the family Homalopsidae. Our integrative data approach has shown that while traditional morphological examinations may not always lead to the delimitation of closely related species (Bernstein *et al.* 2022), more rigorous analyses like LDA and analyses of environmental data can reveal additional lines of evidence for delimiting species.

Our phylogeny (Fig. 2A) represents the most comprehensive evolutionary history of *Hypsiscopus* to date. We note that the phylogenetic structure of *H. wettsteini* reflects Pleistocene land bridges between the mainland and Hainan Island, in which individuals from Hainan are in the same clades as those from mainland China and Vietnam. Future studies that include genetic data from Taiwan specimens will likely reveal similar structure due to land bridges that also connected the mainland to Taiwan during the Pleistocene (Voris 2000).

The most notable biogeographic pattern in our data is the split between *H. murphyi* and *H. wettsteini* at the Red River Basin in northern Vietnam. The region where this river exists represents a major strike-slip fault zone between the South China and Indochina tectonic plates (Hall 1998; Leloup *et al.* 1995). The Red River has been found to be a major biogeographic barrier for several organismal groups, especially in reptiles and amphibians, some of which are restricted to aquatic habitats (Zhang *et al.* 2010a,b; Bain & Hurley 2011; Yuan *et al.* 2016). However, while the Red River Basin seems to be a geological feature that delineates the distribution of these two species, our study lacks sampling west of the Red River Basin and near other significant geological features (e.g., the Black River, the Hoang Lien Son Mountains) to determine what drove the speciation of these lineages. Our records show occurrences on both sides of the river (maximum distance west of the Red River = ~3.5 km), and while this geological feature may

FIGURE 4. Specimen of *H. wettsteini* (KU 222704) from Lantau Island, Hong Kong, China. A) Dorsal view, with embryos and stomach contents shown. B) Close up dorso-lateral view of embryo. C) Partially digested frog from stomach contents. Photo credits: JMB.

limit gene flow between *H. murphyi* and *H. wettsteini*, we confine the conclusions of this study to the recognition of two distinct lineages that were, prior to this study, considered *H. wettsteini*.

Interestingly, the color pattern of *H. wettsteini* is essentially identical to that of *H. plumbeus* despite *H. wettsteini* being more closely related to *H. murphyi*. Our LDA sufficiently separates *H. murphyi*, *H. wettsteini*, and *H. plumbeus* and accurately identifies them (Fig. 2B), clearly demonstrating the morphological distinctiveness of these taxa. Indeed, we can only use a limited number of characters and compare our specimens to a single *H. wettsteini*, the name-bearing type (NMW 18726), in our LDA. However, our results support that there is a greater morphological similarity of the *H. wettsteini* holotype to the populations of *H. wettsteini* sensu David & Vogel (2024) at or east of the Red River Basin, ultimately making the western *H. wettsteini* populations distinct (here resurrected as *H. murphyi*). *Hypsiscopus murphyi* is the only species of rice paddy snake to have a sharp transition of dark to light coloration from dorsum to venter, and it is possible that this is a novel mutation in gene(s) coding to color pattern for this taxon. However, there is a possibility that similar environmental conditions between *H. wettsteini* and *H. plumbeus* have led to similar coloration (Wiens 2004; Wiens & Graham 2005). Our niche models reveal that *H. wettsteini* has a similar habitat suitability (broadly throughout Southeast Asia, highest in low elevation coastal areas) to *H. plumbeus* (not shown; Bernstein *et al.* 2024) and it is possible that similar niche space has led to a convergence in color pattern in these snakes. Contrarily, a lack of niche conservatism has the potential to lead to niche divergence (Ahmadzadeh *et al.* 2013; Enriquez-Urzelai *et al.* 2022). *Hypsiscopus murphyi* shows a more limited distribution than *H. wettsteini* and suitability towards higher elevations. Divergent climatic niches have previously been found in closely related species of reptiles and amphibians (Burbrink *et al.* 2021; Hua & Wiens 2010; Knouft *et al.* 2006; Pyron & Burbrink 2009), and even populations within the same species (Muñoz *et al.* 2013; Ogden & Thorpe 2002; Schneider *et al.* 1999). Homalopsids are primarily considered low-elevation species, but *H. murphyi* has adapted to higher elevations compared to its congeners. We find it likely that while the Red River may have been a significant factor in the diversification of the lineage ancestral to *H. murphyi* and *H. wettsteini*, environmental factors likely contributed to differentiation between these two species, especially temperature variables as seen in our climate envelopes (see *Results: Ecological Niche Models*). This is a likely scenario given that the Red River also demarcates a transition zone between subtropical and tropical climates (Chen & Chen 2013; Peel *et al.* 2007), and temperature and precipitation vary between these regions.

It remains uncertain how the type specimens of *H. wettsteini* became erroneously associated with a collection of specimens from Costa Rica housed in the Museum of Natural History in Vienna, Austria (David & Vogel 2024), and their actual provenance remains unknown. However, our data strongly posit that they originated from somewhere in northeastern Vietnam, southeastern China, or Taiwan. With greater success rates in obtaining molecular data from voucher and type specimens (Bernstein *et al.* 2023; Bernstein & Ruane 2022; O'Connell *et al.* 2021; Ruane & Austin 2017), future studies might be able to obtain a finer-scale geographic resolution of the type specimens. In addition to determining more accurate locality information for type specimens, filling in geographic sampling gaps, such as those between the ranges of *H. murphyi* and *H. wettsteini*, will likely provide more information on how these lineages differ from each other and what factors have led to their diversification.

Widespread species such as *H. plumbeus* sensu Murphy and Voris (2014) and *H. murphyi* sensu Bernstein *et al.* (2022) represent opportunistic systems to identify hidden diversity and investigate the drivers of diversification amongst lineages. While future studies should focus on obtaining samples from understudied regions, such as Taiwan or other regions of mainland East Asia, we find evidence that vicariant and environmental influences led to the extant diversity of *Hypsiscopus*. Our study shows that integrative datasets are necessary for systematics and taxonomy, and the incorporation of multiple data types may be crucial for identifying additional lines of evidence for taxonomy-based decisions.

Acknowledgements

Data generated by Bernstein *et al.* (2022) that was utilized in this study were made possible from fieldwork in Laos under cooperative agreements between the Wildlife Conservation Society Laos Program and the Division of Forest Resource Conservation, and between the Wildlife Conservation Society Laos Program and the National University of Laos, with specimen export permits provided by the Ministry of Agriculture and Forestry, the Ministry of Natural Resources and Environment, and the CITES Management Authority, Vientiane. Fieldwork in Cambodia was made

possible by cooperative agreements between the Wildlife Conservation Society Cambodia Program, the Ministry of Agriculture, Forestry and Fisheries, and the Ministry of Environment, Phnom Penh, with specimen export permits provided by the Ministry of Environment. Fieldwork in Thailand was made possible by the National Research Council of Thailand, the Thailand Natural History Museum, and the head of Phu Wua Wildlife Sanctuary. We also thank the following curatorial staff and institutions for loaning tissues for previous works that contributed to this study: Gregory Watkins-Colwell (Yale Peabody Museum of Natural History), Lee Grismer (La Sierra University Herpetology Collection), Alan Resetar and Joshua Mata (Field Museum of Natural History), Jim McGuire and Carol Spencer (Museum of Vertebrate Zoology), and Somphouthone Phimmachak, Sengvilay Seateun, and Niane Sivongxay (National University of Laos). We thank Chan Kin Onn, Evan Quah, and Patrick David for their helpful reviews of the manuscript.

The data generated by Bernstein *et al.* (2022) that were used in this study were made possible from support of fieldwork by the National Geographic Society (grants 6247-98, WW-R016-17 to BLS); John D. and Catherine T. MacArthur Foundation (grants 03-75621, 92482-0 to BLS and Harold K. Voris); the Marshall Field Fund of the Field Museum (to Harold K. Voris); the Hanover College Faculty Research and Development Fund (to Daryl R. Karns); funds supported from the National Science Foundation (DEB 2224119 granted to Sara Ruane); and the following to BLS: U.S. National Science Foundation (DEB-1145922); Wildlife Conservation Society; Conservation International; Annie Alexander Endowment of the Museum of Vertebrate Zoology (University of California, Berkeley); Partnerships for Enhanced Engagement in Research (PEER) Science program (grant PGA-20000003545); and consulting agreements from Lane Xang Minerals Ltd. (Sepon) and MMG Ltd. (Sepon) to the Wildlife Conservation Society Laos Program. This research was also partially funded by a grant of Russian Science Foundation No. RSF –VAST 24-44-04004, (<https://rscf.ru/project/24-44-04004/>) = to NLO. This project was supported by funding to JMB by the National Science Foundation Postdoctoral Research Fellowships in Biology Program under Grant No. 2208959.

References

Ahmazadeh, F., Flecks, M., Carretero, M.A., Böhme, W., Ilgaz, C., Engler, J.O., James Harris, D., Üzüm, N. & Rödder, D. (2013) Rapid lizard radiation lacking niche conservatism: ecological diversification within a complex landscape. *Journal of Biogeography*, 40, 1807–1818.
<https://doi.org/10.1111/jbi.12121>

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P. (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. *Ecography*, 38, 541–545.
<https://doi.org/10.1111/ecog.01132>

Bain, R.H. & Hurley, M.M. (2011) A biogeographic synthesis of the amphibians and reptiles of Indochina. *Bulletin of the American Museum of Natural History*, 2011, 1–138.
<https://doi.org/10.1206/360.1>

Becker, R.A., Wilks, A.R., Brownrigg, R., Minka, T.P. & Deckmyn, A. (2018) Maps: Draw Geographical Maps. Available from: <https://cran.r-project.org/web/packages/maps/maps.pdf> (accessed 29 February 2024)

Bernstein, J.M., Murphy, J.C., Voris, H.K., Brown, R.M. & Ruane, S. (2021) Phylogenetics of mud snakes (Squamata: Serpentes: Homalopsidae): A paradox of both undescribed diversity and taxonomic inflation. *Molecular Phylogenetics and Evolution*, 160, 107109.
<https://doi.org/10.1016/j.ympev.2021.107109>

Bernstein, J.M. & Ruane, S. (2022) Maximizing molecular data from low-quality fluid-preserved specimens in natural history collections. *Frontiers in Ecology and Evolution*, 10, 893088.
<https://doi.org/10.3389/fevo.2022.893088>

Bernstein, J.M., de Souza, H.F., Murphy, J.C., Voris, H.K., Brown, R.M., Myers, E.A., Harrington, S., Shanker, K. & Ruane, S. (2023) Phylogenomics using fresh and formalin specimens resolves the systematics of Old World Mud Snakes (Serpentes: Homalopsidae) and expands biogeographic inference. *Bulletin of the Society of Systematic Biologists*, 2 (1), 1–24.
<https://doi.org/10.18061/bssb.v2i1.9393>

Bernstein, J.M., Voris, H.K., Stuart, B.L., Karns, D.R., McGuire, J.A., Iskandar, D.T., Riyanto, A., Calderón-Acevedo, C.A., Brown, R.M., Gehara, M., Soto-Centeno, J.A. & Ruane, S. (2024) Integrative methods reveal multiple drivers of diversification in rice paddy snakes. *Scientific Reports*, 14, 4727.
<https://doi.org/10.1038/s41598-024-54744-z>

Bernstein, J.M., Voris, H.K., Stuart, B.L., Phimmachak, S., Seateun, S., Sivongxay, N., Neang, T., Karns, D.R., Andrews, H.L., Osterhage, J., Phipps, E.A. & Ruane, S. (2022) Undescribed diversity in a widespread, common group of Asian mud snakes (Serpentes: Homalopsidae: *Hypsiscopus*). *Ichthyology & Herpetology*, 110 (3), 561–574.

https://doi.org/10.1643/h2022015

Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., Hijmans, R., Baston, D., Rouault, E., Warmerdam, F., Ooms, J. & Rundel, C. (2021) rgdal: Bindings for the “Geospatial” Data Abstraction Library. Available from: <https://rgdal.r-forge.r-project.org/> (accessed 29 February 2024)

Bivand, R. & Lewin-Koh, N. (2021) maptools: Tools for Handling Spatial Objects. Available from: <https://maptools.r-forge.r-project.org/> (accessed 29 February 2024)

Breitfeld, H.T., Hennig-Breitfeld, J., BouDagher-Fadel, M.K., Hall, R. & Galin, T. (2020) Oligocene-Miocene drainage evolution of NW Borneo: Stratigraphy, sedimentology and provenance of Tatau-Nyalau province sediments. *Journal of Asian Earth Sciences*, 195, 104331.
<https://doi.org/10.1016/j.jseaes.2020.104331>

Burbrink, F.T., Bernstein, J.M., Kuhn, A., Gehara, M. & Ruane, S. (2021) Ecological divergence and the history of gene flow in the Nearctic milksnakes (*Lampropeltis triangulum* complex). *Systematic Biology*, 71 (4), 839–858.
<https://doi.org/10.1093/sysbio/syab093>

Catania, K.C., Leitch, D.B. & Gauthier, D. (2010) Function of the appendages in tentacled snakes (*Erpeton tentaculatus*). *Journal of Experimental Biology*, 213, 359–367.
<https://doi.org/10.1242/jeb.039685>

Chan, K.O., Sind, L.I., Thong, L.I., Ananthanarayanan, S., Rasu, S., Aowphol, A., Rujirawan, A., Anuar, S., Mulcahy, D., Grismer, J.L. & Grismer, L.L. (2022) Phylogeography of mangrove pit vipers (Viperidae, *Trimeresurus erythrus-purpureomaculatus* complex). *Zoologica Scripta*, 51, 664–675.
<https://doi.org/10.1111/zsc.12562>

Chen, D. & Chen, H.W. (2013) Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. *Environmental Development*, 6, 69–79.
<https://doi.org/10.1016/j.envdev.2013.03.007>

Cox, M.J. (1991) *Snakes of Thailand and their husbandry*. Krieger Pub Co, Malabar, Florida, 526 pp.

David, P. & Vogel, G. (2024) On the status of *Helicops wettsteini* Amaral, 1929, a senior synonym of *Hypsiscopus murphyi* (SERPENTES: Homalopsidae). *Zootaxa*, 5415 (2), 300–308.
<https://doi.org/10.11646/zootaxa.5415.2.4>

De Bruyn, M., Rüber, L., Nylander, S., Stelbrink, B., Lovejoy, N.R., Lavoué, S., Tan, H.H., Nugroho, E., Wowor, D., Ng, P.K.L., Azizah, M.N.S., von Rintelen, T., Hall, R. & Carvalho, G. R. (2013) Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots. *Systematic Biology*, 62 (3), 398–410.

De Queiroz, K. (2007) Species concepts and species delimitation. *Systematic Biology*, 56, 879–886.
<https://doi.org/10.1080/10635150701701083>

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N. & Guisan, A. (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. *Ecography*, 40, 774–787.
<https://doi.org/10.1111/ecog.02671>

Enriquez-Urzelai, U., Martínez-Freiría, F., Freitas, I., Perera, A., Martínez-Solano, I., Salvi, D., Velo-Antón, G. & Kaliontzopoulou, A. (2022) Allopatric speciation, niche conservatism and gradual phenotypic change in the evolution of European green lizards. *Journal of Biogeography*, 49, 2193–2205.
<https://doi.org/10.1111/jbi.14497>

Fabre, A.-C., Bickford, D., Segall, M. & Herrel, A. (2016) The impact of diet, habitat use, and behaviour on head shape evolution in homalopsid snakes. *Biological Journal of the Linnean Society*, 118, 634–647.
<https://doi.org/10.1111/bij.12753>

Favre, A., Päckert, M., Pauls, S.U., Jähnig, S.C., Uhl, D., Michalak, I. & Muellner-Riehl, A.N. (2015) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. *Biological Reviews*, 90, 236–253.
<https://doi.org/10.1111/brv.12107>

Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology*, 37, 4302–4315.
<https://doi.org/10.1002/joc.5086>

Fu, J. & Wen, L. (2023) Impacts of Quaternary glaciation, geological history and geography on animal species history in continental East Asia: A phylogeographic review. *Molecular Ecology*, 32, 4497–4514.
<https://doi.org/10.1111/mec.17053>

Garnier, S., Ross, N., Rudis, R., Camargo, A.P., Sciaiani, M. & Scherer, C. (2021) Rvision - Colorblind-Friendly Color Maps for R. R package version 0.6.2. Available from: <https://sjmgarnier.github.io/viridis/authors.html> (accessed 29 February 2024)

Gressitt, J.L. (1941) Amphibians and reptiles from southeastern China. *Philippine Journal of Science*, 75, 1–58.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Systematic Biology*, 59, 307–321.
<https://doi.org/10.1093/sysbio/syq010>

Hall, R. (1996) Reconstructing Cenozoic SE Asia. In: Hall, R. & Blundell, D. (Eds.), *Tectonic Evolution of Southeast Asia*. Geological Society of London, London, pp. 153–184.

Hall, R. (1998) The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In: Hall, R. & Holloway, J.D. (Eds.),

Biogeography and geological Evolution of SE Asia. Backbuys Publishers, Leiden, pp. 99–131.

Hall, R. (2009) Southeast Asia's changing palaeogeography. *Blumea - Biodiversity, Evolution and Biogeography of Plants*, 54, 148–161.
<https://doi.org/10.3767/000651909X475941>

Hamidy, A., Zakky, Q., Fitriyana, N. & Endarwin, W. (2023) A new species of water snake genus *Hypsiscopus* (Serpentes: Homalopsidae) from Sulawesi, Indonesia. *TREUBIA*, 50, 21–38.
<https://doi.org/10.14203/treubia.v50i1.4511>

Hijmans, R.J., Etten, J. van, Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh, A., Golicher, D., Gray, J., Greenberg, J.A., Hiemstra, P., Hingee, K., Illich, A., Geosciences, I. for M.A., Karney, C., Mattiuzzi, M., Mosher, S., Naimi, B., Nowosad, J., Pebesma, E., Lamigueiro, O.P., Racine, E.B., Rowlingson, B., Shortridge, A., Venables, B. & Wueest, R. (2022) raster: Geographic Data Analysis and Modeling. Available from: <https://cran.r-project.org/web/packages/raster/index.html> (accessed 29 February 2024)

Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions: comparing climate envelope and mechanistic models. *Global Change Biology*, 12, 2272–2281.
<https://doi.org/10.1111/j.1365-2486.2006.01256.x>

Hijmans, R.J., Phillips, S. & Elith, J.L.J. (2021) dismo: Species Distribution Modeling. Available from: <https://cran.r-project.org/web/packages/dismo/index.html> (accessed 29 February 2024)

Hua, X. & Wiens, J.J. (2010) Latitudinal variation in speciation mechanisms in frogs. *Evolution*, 64, 429–443.
<https://doi.org/10.1111/j.1558-5646.2009.00836.x>

Hutchison, C.S. (1989) *Geological Evolution of South-east Asia. 2nd Edition*. Clarendon Press, Oxford, 406 pp.

Jayne, B.C., Voris, H.K. & Ng, P.K.L. (2018) How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. *Biological Journal of the Linnean Society*, 123, 636–650.
<https://doi.org/10.1093/biolinнейn/bly007>

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature Methods*, 14, 587–589.
<https://doi.org/10.1038/nmeth.4285>

Karin, B.R., Gamble, T. & Jackman, T.R. (2020) Optimizing phylogenomics with rapidly evolving long exons: comparison with anchored hybrid enrichment and ultraconserved elements. *Molecular Biology and Evolution*, 37, 904–922.
<https://doi.org/10.1093/molbev/msz263>

Karns, D.R., Lukoschek, V., Osterhage, J., Murphy, J.C. & Voris, H.K. (2010) Phylogeny and biogeography of the *Enhydris* clade (Serpentes: Homalopsidae). *Zootaxa*, 2452 (1), 18–30.
<https://doi.org/10.11646/zootaxa.2452.1.2>

Karsen, S.J., Wai-neng Lau, M. & Bogadek, A. (1986) *Hong Kong Amphibians and Reptiles*. Provisional Urban Council Publication, Hong Kong, 136 pp.

Kass, J.M., Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla-Buitrago, G.E., Boria, R.A., Soley-Guardia, M. & Anderson, R.P. (2021) ENMeval 2.0: Redesigned for customizable and reproducible modeling of species' niches and distributions. *Methods in Ecology and Evolution*, 12, 1602–1608.
<https://doi.org/10.1111/2041-210X.13628>

Knouft, J.H., Losos, J.B., Glor, R.E. & Kolbe, J.J. (2006) Phylogenetic analysis of the evolution of the niche in lizards of the *Anolis sagrei* group. *Ecology*, 87, S29–S38.
[https://doi.org/10.1890/0012-9658\(2006\)87\[29:PAOTEO\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2006)87[29:PAOTEO]2.0.CO;2)

Kunts, R.E. (1983) *Snakes of Taiwan*. United States Navy Medical Research Unit No. 2, Taipei, 44 pp.

Lamigueiro, O.P. & Hijmans, R. (2022) rasterVis: Visualization Methods for Raster Data. Available from: <https://cran.r-project.org/web/packages/rasterVis/index.html> (accessed 29 February 2024)

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Molecular biology and evolution*, 34 (3), 772–773.

Leloup, P.H., Lacassin, R., Tapponnier, P., Schärer, U., Zhong, D., Liu, X., Zhang, L., Ji, S. & Trinh, P.T. (1995) The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. *Tectonophysics*, 251, 3–84.
[https://doi.org/10.1016/0040-1951\(95\)00070-4](https://doi.org/10.1016/0040-1951(95)00070-4)

Li, J.-N., He, C., Guo, P., Zhang, P. & Liang, D. (2017) A workflow of massive identification and application of intron markers using snakes as a model. *Ecology and Evolution*, 7, 10042–10055.
<https://doi.org/10.1002/ece3.3525>

Li, J.-N., Liang, D., Wang, Y.-Y., Guo, P., Huang, S. & Zhang, P. (2020) A large-scale systematic framework of Chinese snakes based on a unified multilocus marker system. *Molecular Phylogenetics and Evolution*, 148, 106807.
<https://doi.org/10.1016/j.ympev.2020.106807>

Mell, R. (1922) *Beiträge zur Fauna sinica. Die Vertebraten Südchinas: Feldlisten und Feldnoten der Säuger, Vögel, Reptilien, Batrachier*, 122 pp.

Minh, B.Q., Nguyen, M.A.T. & von Haeseler, A. (2013) Ultrafast Approximation for phylogenetic bootstrap. *Molecular Biology and Evolution*, 30, 1188–1195.

https://doi.org/10.1093/molbev/mst024

Mulch, A. & Chamberlain, C.P. (2006) The rise and growth of Tibet. *Nature*, 439, 670–671.
<https://doi.org/10.1038/439670a>

Muñoz, M.M., Crawford, N.G., McGreevy, T.J., Messana, N.J., Tarvin, R.D., Revell, L.J., Zandvliet, R.M., Hopwood, J.M., Mock, E., Schneider, A.L. & Schneider, C.J. (2013) Divergence in coloration and ecological speciation in the *Anolis marmoratus* species complex. *Molecular Ecology*, 22, 2668–2682.
<https://doi.org/10.1111/mec.12295>

Murphy, J.C. (2007) *Homalopsid Snakes: Evolution in the Mud*. Krieger Publishing Company, Malabar, 260 pp.

Murphy, J.C. & Voris, H.K. (2014) A checklist and key to the homalopsid snakes (Reptilia, Squamata, Serpentes), with the description of new genera. *Fieldiana Life and Earth Sciences*, 2014, 1–43.
<https://doi.org/10.3158/2158-5520-14.8.1>

Murphy, J.C. & Voris, H.K. (2021) A new species of *Brachyorrhos* from Seram, Indonesia and notes on fangless homalopsids (Squamata, Serpentes). *Philippine Journal of Systematic Biology*, 14 (2), 1–8 + i–ii.
<https://doi.org/10.26757/pjsb2020b14015>

Murphy, J.C., Voris, H.K. & Karns, D.R. (2012a) The dog-faced water snakes, a revision of the genus *Cerberus* Cuvier, (Squamata, Serpentes, Homalopsidae), with the description of a new species. *Zootaxa*, 3484 (1), 1–34.
<https://doi.org/10.11646/zootaxa.3484.1.1>

Murphy, J.C., Voris, H.K., Karns, D.R., Chan-ard, T. & Suvunrat, K. (1999) The ecology of the water snakes of Ban Tha Hin, Songkhla Province, Thailand. *Natural History Bulletin of the Siam Society*, 47, 129–147.

Murphy, J.C., Voris, H.K., Murthy, B.H.C.K., Traub, J. & Cumberbatch, C. (2012b) The masked water snakes of the genus *Homalopsis* Kuhl & van Hasselt, 1822 (Squamata, Serpentes, Homalopsidae), with the description of a new species. *Zootaxa*, 3208 (1), 1–26.
<https://doi.org/10.11646/zootaxa.3208.1.1>

Neuwirth, E. (2022) RColorBrewer: ColorBrewer Palettes. Available from: <https://r-graph-gallery.com/38-rcolorbrewers-palettes.html> (accessed 29 February 2024)

Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution*, 32, 268–274.
<https://doi.org/10.1093/molbev/msu300>

O'Connell, K.A., Mulder, K.P., Wynn, A., Queiroz, K. & Bell, R.C. (2021) Genomic library preparation and hybridization capture of formalin-fixed tissues and allozyme supernatant for population genomics and considerations for combining capture- and RADseq-based single nucleotide polymorphism data sets. *Molecular Ecology Resources*, 22 (2), 487–502.
<https://doi.org/10.1111/1755-0998.13481>

Ogden, R. & Thorpe, R.S. (2002) Molecular evidence for ecological speciation in tropical habitats. *Proceedings of the National Academy of Sciences*, 99, 13612–13615.
<https://doi.org/10.1073/pnas.212248499>

Pebesma, E. (2018) Simple Features for R: Standardized Support for Spatial Vector Data. *The R Journal*, 10, 439.
<https://doi.org/10.32614/RJ-2018-009>

Peel, M.C., Finlayson, B.L. & McMahon, T.A. (2007) Updated world map of the Köppen-Geiger climate classification. *Hydrology and Earth System Sciences*, 11, 1633–1644.
<https://doi.org/10.5194/hess-11-1633-2007>

Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190, 231–259.
<https://doi.org/10.1016/j.ecolmodel.2005.03.026>

Phillips, S.J., Dudík, M. & Schapire, R.E. (2004) A maximum entropy approach to species distribution modeling. In: *Proceedings of the twenty-first international conference on Machine learning*. ICML '04. Association for Computing Machinery, New York, New York, pp. 83.
<https://doi.org/10.1145/1015330.1015412>

Pope, C.H. (1929) A list of reptiles known to occur in Fukien Province, China. *Proceedings of the Natural History Society of Fukien*, 2, 20–22.

Pyron, A.R. & Burbrink, F.T. (2009) Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, *Lampropeltis getula*. *Molecular Ecology*, 18, 3443–3457.
<https://doi.org/10.1111/j.1365-294X.2009.04292.x>

Qu, Y., Song, G., Gao, B., Quan, Q., Ericson, P.G.P. & Lei, F. (2015) The influence of geological events on the endemism of East Asian birds studied through comparative phylogeography B. Riddle (Ed). *Journal of Biogeography*, 42, 179–192.
<https://doi.org/10.1111/jbi.12407>

Quah, E.S.H., Grismer, L.L., Wood, P.L., Jr., Thura, M.K., Zin, T., Kyaw, H., Lwin, N., Grismer, M.S. & Murdoch, M.L. (2017) A new species of Mud Snake (Serpentes, Homalopsidae, *Gyiophis* Murphy & Voris, 2014) from Myanmar with a first molecular phylogenetic assessment of the genus. *Zootaxa*, 4238 (4), 571–582.
<https://doi.org/10.11646/zootaxa.4238.4.5>

Quah, E.S.H., Wood, P.L.Jr., Grismer, L.L. & Sah, S.A.M. (2018) On the taxonomy and phylogeny of the rare Selangor Mud Snake (*Raclitia indica*) Gray (Serpentes, Homalopsidae) from Peninsular Malaysia. *Zootaxa*, 4514 (1), 53.

https://doi.org/10.11646/zootaxa.4514.1.4

Rambaut, A. (2014) FigTree v1.4.2. Available from: <http://tree.bio.ed.ac.uk/software/figtree/> (accessed 29 February 2024)

Ramos, E.K.S., Magalhães, R.F. de, Marques, N.C.S., Baêta, D., Garcia, P.C.A. & Santos, F.R. (2019) Cryptic diversity in Brazilian endemic monkey frogs (Hylidae, Phyllomedusinae, *Pithecopus*) revealed by multispecies coalescent and integrative approaches. *Molecular Phylogenetics and Evolution*, 132, 105–116.
<https://doi.org/10.1016/j.ympev.2018.11.022>

Raxworthy, C.J., Ingram, C.M., Rabibisoa, N. & Pearson, R.G. (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (*Phelsuma*) from Madagascar. *Systematic Biology*, 56, 907–923.
<https://doi.org/10.1080/10635150701775111>

Richards, C.L., Carstens, B.C. & Lacey Knowles, L. (2007) Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. *Journal of Biogeography*, 34, 1833–1845.
<https://doi.org/10.1111/j.1365-2699.2007.01814.x>

Rissler, L.J. & Apodaca, J.J. (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black Salamander (*Aneides flavipunctatus*). *Systematic Biology*, 56, 924–942.
<https://doi.org/10.1080/10635150701703063>

Ronquist, F.M., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61 (3), 539–542.
<https://doi.org/10.1093/sysbio/sys029>

Rossmann, D.A. & Scott, N. J. (1968) Identity of *Helicops wettsteini* Amaral (Serpentes: Colubridae). *Herpetologica*, 24 (3), 262–263.

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. & Sánchez-Gracia, A. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. *Molecular Biology and Evolution*, 34, 3299–3302.
<https://doi.org/10.1093/molbev/msx248>

Ruane, S. & Austin, C.C. (2017) Phylogenomics using formalin-fixed and 100+ year-old intractable natural history specimens. *Molecular Ecology Resources*, 17, 1003–1008.
<https://doi.org/10.1111/1755-0998.12655>

Sabaj, M.H. (2016) Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference. Version 6.5. *American Society of Ichthyologists and Herpetologists*, 108, 593–669.
<https://doi.org/10.1643/ASIHCODONS2020>

Salles, T., Mallard, C., Husson, L., Zahirovic, S., Sarr, A.-C. & Sepulchre, P. (2021) Quaternary landscape dynamics boosted species dispersal across Southeast Asia. *Communications Earth & Environment*, 2, 240.
<https://doi.org/10.1038/s43247-021-00311-7>

Schmidt, K.P. (1927) The reptiles of Hainan. *Bulletin of the American Museum of Natural History*, 54, 395–465.

Schneider, C.J., Smith, T.B., Larison, B. & Moritz, C. (1999) A test of alternative models of diversification in tropical rainforests: Ecological gradients vs. rainforest refugia. *Proceedings of the National Academy of Sciences*, 96, 13869–13873.
<https://doi.org/10.1073/pnas.96.24.13869>

Shen, X.X., Liang, D., Feng, Y.J., Chen, M.Y. & Zhang, P. (2013) A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the Caudata. *Molecular Biology and Evolution*, 30, 2235–2248.
<https://doi.org/10.1093/molbev/mst122>

Simmons, J.E. (2015) Herpetological collecting and collections management. *Society for the Study of Amphibians and Reptiles Herpetological Circular*, 42, 1–191.

Soto-Centeno, J.A. (2022) ENMpipe: a tutorial pipeline for building and testing ecological niche models. Available from: <https://github.com/mormoops/ENMpipe> (accessed 29 February 2024)

Urbanek, S. (2021) rJava: Low-Level R to Java Interface. Available from: <https://cran.r-project.org/web/packages/rJava/index.html> (accessed 29 February 2024)

Voris, H.K. (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. *Journal of Biogeography*, 27, 1153–1167.
<https://doi.org/10.1046/j.1365-2699.2000.00489.x>

Weijola, V., Vahtera, V., Lindqvist, C. & Kraus, F. (2019) A molecular phylogeny for the Pacific monitor lizards (*Varanus* subgenus *Euprepiosaurus*) reveals a recent and rapid radiation with high levels of cryptic diversity. *Zoological Journal of the Linnean Society*, 186, 1053–1066.
<https://doi.org/10.1093/zoolinnean/zlz002>

Wickham, H. (2011) ggplot2: ggplot2. *Wiley Interdisciplinary Reviews: Computational Statistics*, 3, 180–185.
<https://doi.org/10.1002/wics.147>

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Golem, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K. & Yutani, H. (2019) Welcome to the Tidyverse. *Journal of Open Source Software*, 4,

1686.

<https://doi.org/10.21105/joss.01686>

Wickham, H., François, R., Henry, K. & Müller, K. (2020) dplyr: a grammar of data manipulation. Available from: <https://dplyr.tidyverse.org/> (accessed 29 February 2024)

Wiens, J.J. (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. *Evolution*, 58, 193–197.

<https://doi.org/10.1111/j.0014-3820.2004.tb01586.x>

Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. *Annual Review of Ecology, Evolution, and Systematics*, 36, 519–539.

<https://doi.org/10.1146/annurev.ecolsys.36.102803.095431>

Yuan, Z.-Y., Suwannapoom, C., Yan, F., Poyarkov, N.A., Nguyen, S.N., Chen, H., Chomdej, S., Murphy, R.W. & Che, J. (2016) Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of *Microhyla fissipes* complex (Anura: Microhylidae) in southern China and Indochina. *Current Zoology*, 62, 531–543.

<https://doi.org/10.1093/cz/zow042>

Zhang, D.-R., Chen, M.-Y., Murphy, R.W., Che, J., Pang, J.-F., Hu, J.-S., Luo, J., Wu, S.-J., Ye, H. & Zhang, Y.-P. (2010a) Genealogy and palaeodrainage basins in Yunnan Province: Phylogeography of the Yunnan spiny frog, *Nanorana yunnanensis* (Dicoglossidae). *Molecular Ecology*, 19, 3406–3420.

<https://doi.org/10.1111/j.1365-294X.2010.04747.x>

Zhang, M., Rao, D., Yang, J., Yu, G. & Wilkinson, J.A. (2010b) Molecular phylogeography and population structure of a mid-elevation montane frog *Leptobrachium ailaonicum* in a fragmented habitat of southwest China. *Molecular Phylogenetics and Evolution*, 54, 47–58.

<https://doi.org/10.1016/j.ympev.2009.10.019>

Supplementary Materials. The following supporting information can be downloaded at the DOI landing page of this paper:

Supplementary Fig. 1: Concatenated Bayesian Inference tree of *Hypsiscopus*. Numbers at nodes represent Bayesian Posterior Probabilities (black circles at nodes indicate strongly supported relationships, ≥ 0.95). Scale bar in substitutions per site.

Supplementary Table S1: Metadata for all samples used in this study. GenBank accession numbers, locality data, morphological data for linear discriminant analysis, and primer information for DNA amplification are provided.