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Galloping Bubbles

Jian H. Guan1,3, Saiful I. Tamim1,3, Connor W. Magoon 1,3, Howard A. Stone 2 &
Pedro J. Sáenz 1

Despite centuries of investigation, bubbles continue to unveil intriguing
dynamics relevant to amultitude of practical applications, including industrial,
biological, geophysical, and medical settings. Here we introduce bubbles that
spontaneously start to ‘gallop’ along horizontal surfaces inside a vertically-
vibrated fluid chamber, self-propelled by a resonant interaction between their
shape oscillation modes. These active bubbles exhibit distinct trajectory
regimes, including rectilinear, orbital, and run-and-tumblemotions, which can
be tuned dynamically via the external forcing. Through periodic body defor-
mations, galloping bubbles swim leveraging inertial forces rather than vortex
shedding, enabling them tomaneuver evenwhen viscous traction is not viable.
The galloping symmetry breaking provides a robust self-propulsion mechan-
ism, arising in bubbles whether separated from the wall by a liquid film or
directly attached to it, and is captured by a minimal oscillator model, high-
lighting its universality. Through proof-of-concept demonstrations, we show-
case the technological potential of the galloping locomotion for applications
involving bubble generation and removal, transport and sorting, navigating
complex fluid networks, and surface cleaning. The rich dynamics of galloping
bubbles suggest exciting opportunities in heat transfer,microfluidic transport,
probing and cleaning, bubble-based computing, soft robotics, and active
matter.

Bubbles often appear to have a life of their own. Da Vinci1 was a
pioneer in documenting their capricious behavior, observing how
rising bubbles spontaneously abandon straight paths for mesmer-
izing helices—a paradox that has persisted for centuries2,3. When
exposed to acoustic excitations, bubbles may also transition from
in-place pulsations, opting instead to ‘dance’ along zigzag paths
reminiscent of Brownian motion4,5. Bubbles can exhibit violent
dynamics: under sudden pressure changes, they may swiftly col-
lapse, giving rise to shock waves that pose significant harm to
machinery—a phenomenon known as cavitation6,7, which some
crustaceans even leverage to stun prey8. In some instances, the
implosion may become so intense that the bubbles emit a spark of
light9. Bubbles may also appear to violate Archimedes’ principle10,
e.g., bubbles in vertically oscillating baths may overcome buoyancy
and sink contradicting common intuition11–13. Waves of bubbles
surging downwards may be also observed in carbonated drinks14,

resulting from convection currents in the core of the glass15,16.
Additional examples showcasing the fascinating dynamics of bub-
bles can be found in innumerable settings, spanning soft and bio-
logical matter17, geophysical flows18, and industrial processes19.

Here, we demonstrate that a bubble inside a vertically vibrated
fluid chambermay spontaneously break symmetry and start to ‘gallop’
along the upper wall, self-propelled through a resonant interaction
between its vibration modes (Fig. 1a, Supplementary Movie 1). By
adjusting the vibrational forcing, these galloping bubbles may be
tuned to transition between different domain exploration modes,
including rectilinear, orbital, and run-and-tumble motion (Fig. 1b–d).
Moreover, similar to jellyfish and other marine invertebrates that
deform their bodies to swim without vortex shedding20–22, we show
that galloping bubbles leverage inertial fluid forces to advance, thus
enabling propulsion in inviscid flows where viscous traction is not
possible23.
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Given the multifaceted physics of bubbles, harnessing their
dynamics may be challenging but holds significant potential rewards.
Actuated-bubble technologies have been developed for various pur-
poses across numerous fields. Inmedicine, bubbles have been used for
manipulating and assessing themechanical properties of cells24, aswell
as for drug and gene delivery25. Also, bubbles have been exploited as a
cleaning tool to treat wastewater26, prevent biofouling27, and clear
bacteria from narrow conduits28,29. Manipulating bubble motion is
particularly valuable in boiling-based heat transfer, a commonmethod
for cooling electronic microdevices, where unremoved bubbles near
the heat source can significantly reduce heat transfer efficiency30. This
challenge is exacerbated in micro-gravity settings, such as those
encountered by microchips in satellites and spacecrafts, where the
absence of buoyancy complicates bubble evacuation31–33. To foster
new bubble-based technologies, we present a series of proof-of-
concept experiments that showcase the versatility of the galloping
dynamics and inform new methods for producing bubbles with tun-
able size, sorting and removal of bubbles, navigating fluid networks,
and cleaning surfaces.

Results
Galloping bubbles
In our experiments, we inject an air bubble of volume Vb into a rela-
tively large transparent fluid chamber filled with silicone oil with a
kinematic viscosity of ν = 5 cSt. Buoyancy holds the bubble against the
inner surface of the chamber’s top wall, where it rests on a thin fluid
film due to the perfect wetting of silicone oil, rendering the bubble
highly mobile (Fig. 1a). The bubble is placed far away from the cham-
ber’s vertical walls to ensure that they have no influence on the
dynamics. To facilitate the excitation of vibration modes similar to

those forming the spectrum of a spherical bubble34,35, we choose
volumes that result in bubbles adopting nearly hemispherical equili-
brium shapes (Supplementary Fig. S1). This configuration emerges
when the bubble radius, R, measured with a spherical cap fitted to
the underside, is comparable to the liquid’s capillary length,
lc =

ffiffiffiffiffiffiffiffiffiffiffi
σ=ρg

p
= 1:48mm, where σ is the surface tension, ρ the liquid

density, and g the gravitational acceleration. The dynamics of larger
bubbles, which are flattened by gravity when R ≫ lc, and smaller bub-
bles,whichbecome sphericalwhenR≪ lc, aremore intricate due to the
departure from spherical geometry and influence of the wall,
respectively.

To activate a resonant interaction between the natural vibration
modes of the bubble, we drive it out of equilibrium with an electro-
magnetic shaker that subjects the fluid chamber to a sinusoidal vertical
motion, zðtÞ=A sinðωtÞ, where A is the maximum bath displacement,
f =ω/2π = 40Hz the driving frequency, and t time. In the framemoving
with the chamber, the bubble is thus subject to an effective variable
gravitational field, GðtÞ= �g + γ sinðωtÞð Þẑ with γ =Aω2, that excites
shape oscillations. At low forcing, when the bath displacement is small
relative to the characteristic bubble size, 0 <A/R ≪ 1, the bubble
exhibits symmetric harmonic shape oscillations (Supplementary
Fig. S2). Notably, as the driving amplitude is increasedbeyond a critical
threshold, AG, the bubble undergoes a spontaneous symmetry break-
ing about the vertical axis, and starts to self-propel along the fluid
chamber with harmonic oscillations reminiscent of galloping motion
(Fig. 1a, Supplementary Movie 1).

Galloping bubbles display various domain exploration modes
(Fig. 1b–d, Supplementary Movie 2). By tuning the bubble volume and
driving, the propulsion mode may transition between rectilinear
motion, where bubbles travel in straight paths (Fig. 1b), orbitalmotion,

T

Fig. 1 | Galloping bubbles. a Time sequence illustrating a self-propelling bubble
under the upper boundary of a vertically vibrating fluid chamber (Supplementary
Movie 1), exhibiting shape oscillations reminiscent of galloping motion. The inset
includes a schematic of the setup, and T = 2π/ω is the oscillation period. The
bubbles were backlit through a gradient filter to enhance their aesthetic appeal.
Different bubble sizes and vibrational forcingsproducediverse domain exploration
modes, observed from the top view (b–d), Supplementary Movie 2). A bubble may
gallop in (b) steady rectilinear motion in an infinite bath, with its trajectory
becoming circular here due to the chamber’s boundary (dashed line, see Methods,

Experiments). Time progression is indicated by the green arrow, with increasing
opacity indicating later times, and the image sequence intervals are 20T.
Depending on the bubble volume, increasing the forcing amplitude A may cause
the bubble’s trajectory to curve, leading to orbital states (c), which can develop
anywhere within the chamber, or become jagged with random sharp turns (d)
reminiscent of ‘run-and-tumble’ motion36,37. e A phase map at f = 40 Hz illustrates
the dependence of the bubble’s dynamics on the driving acceleration and bubble
volume, which also includes detachment from the wall for smaller bubbles and
breakup for large amplitudes.
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characterized by closed circular trajectories (Fig. 1c), and run-and-
tumble motion, in which the bubble moves chaotically, mimicking the
search strategy of a variety of organisms36,37 (Fig. 1d). We perform a
systematic series of experiments to identify the parameter regime
where the different propulsion modes emerge (Fig. 1e), which reveals
additional dynamics, including detachment from the wall for smaller
bubbles and breakup at high forcings. Bubble breakup occurs as a
result of large-amplitude shape oscillations, leading either to the
bubble dividing into two similarly sized pieces or to the ejection of
smaller bubbles due to interface pinch-off. Notably, the bubbles may
achieve relatively high steady speeds. Defining the average bath speed
as Vbath = 4A/T, we observe steady galloping speeds in the same order
of magnitude, up to V ~ 0.44Vbath, which highlights the capacity of the
galloping instability to efficiently transform vertical into lateral
motion. Moreover, the galloping bubbles exhibit swimming effi-
ciencies comparable to those achieved through biological evolution.
Using the bubble radius, R, as the characteristic body length and the
driving frequency, f, as the natural beat frequency, we find that gal-
loping bubbles can reach swimming speeds as high as V ~ 0.5Rf, which
falls within the typical range observed in fish and cetaceans38.

Hemispherical bubbles
Owing to the deformation caused by buoyancy and the upper wall, the
detailed geometry of galloping bubbles complicates the analysis of
their spectrum and self-propulsion mechanism. Are these geometric
details crucial, or may the galloping locomotion arise in other bubble
configurations? To answer this question, we complement our experi-
ments with simulations of the Navier-Stokes equations, (see Methods,
Simulations). Our simulations capture the galloping dynamics of

bubbles similar to those investigated in experiments, showing nearly
identical shape oscillations (Fig. 2a, b). Moreover, bubbles of various
sizes exhibit galloping speeds consistent with experimental observa-
tions, as shown in Fig. 2e, where comparisons aremade in terms of the
normalized driving acceleration, γ/g, and the dimensionless Weber
number, We = ρω2R3/σ. Notably, we then leverage simulations to
demonstrate that the same symmetry breaking arises in hemispherical
bubbles with freely moving contact lines (Fig. 2c, d, Supplementary
Movie 3) across the same range of bubble volumes and driving
amplitudes (Fig. 2f) indicating that, effectively, the same vibration
modes are responsible for motion in both configurations.

Vibration spectrum
Demonstrating that the galloping instability extends to nearly hemi-
spherical bubbles not only highlights the universality of this symmetry
breaking but also facilitates the rationalization of the propulsion
mechanism through a spectral analysis, where the bubble shape can
nowbedecomposed into aminimal number ofmodes.We thus project
the bubble interface r(θ,φ, t) =R +∑k,lakl(t)Ykl(θ,φ) onto an orthogonal
basis of spherical harmonics, Ykl, each with temporal amplitude akl(t),
and k + l = even to satisfy the 90∘ contact-angle condition (Fig. 2g). In
the idealized case of a bubble in an inviscid flow34,35, the resonant
frequency of each mode in the linear regime is given in dimensionless
form by the Rayleigh equation,Wek = (k2 − 1)(k + 2) (Methods, Theory).

The spectral analysis of hemispherical galloping bubbles reveals
that their shape is dominated by two axisymmetricmodes, (k, l) = (2,0)
and (4,0) with natural frequencies We = 12 and 90, respectively, along
with an asymmetricmode, (3,1) with natural frequencyWe = 40, whose
amplitudes increase when the driving frequency is in the vicinity of
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Fig. 2 | Hemispherical galloping bubbles and their spectrum. a, b Direct
numerical simulations capture the galloping dynamics (Supplementary Movie 3).
As in the experiments, where a thin fluid layer separates the bubble from the
boundary, no contact line is formed at the top wall in our model. c, d Simulations
demonstrate that the same galloping instability arises for sessile bubbles with a
freely moving contact line and 90∘ contact angle. e A quantitative comparison of
bubble speed between experiments (background) and simulations of full bubbles
(marker colors and sizes reflect the galloping speed) across a range of normalized
driving acceleration, γ/g, anddimensionless frequency givenby theWeber number,

We. Galloping motion is observed near We = 40, corresponding to the natural
frequency of the (3,1) vibration mode (indicated by the vertical dashed line).
fHemispherical bubbles exhibit galloping dynamics in the same regionof thephase
map, and (g) their shape oscillations, which lead to a net displacement Δx per
period, are primarily composed of the (k,l) = (2,0), (3,1), and (4,0) spherical har-
monics, Ykl(θ,φ). h Mode dominance vs We number for fixed driving A/R = 0.08
characterized via the L2 norm of the instantaneous amplitude ∥akl(t)/A∥2. The
emergence of the (3,1) harmonic coincides with the onset of galloping.
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their resonant frequencies (Fig. 2g, h). Small deviations from the nat-
ural frequencies are expected due to nonlinear deformations and the
influenceof viscosity (Methods, Theory). Notably, the asymmetric (3,1)
mode is absent below the galloping threshold, (A <AG), and only
appears in the spectrum when the bubble starts to self-propel when
the driving amplitude exceeds the galloping threshold, (A > AG).
Moreover, unlike Faraday waves39,40, which arise in a stationary fluid
layer (in the moving frame), the galloping motion arises from the
parametric excitation of an asymmetric mode atop an oscillatory base
state. If the asymmetric (3,1) mode was excited in isolation, the bubble
would exhibit symmetry over a period and, consequently, no net
motion. The coupling between the asymmetric mode and the oscilla-
tory base state is thus essential to render the bubble shape temporally
asymmetric, ultimately resulting in net propulsion.

Propulsion mechanism
When a bubble gallops, its asymmetric shape oscillations induce a net
circulation of fluid: liquid is drawn from the front of the bubble when
the interface moves upwards, and later is pushed backwards when the
interface moves downwards (Fig. 3a, b, Supplementary Movie 4). To
demonstrate that the resulting net propulsion is directly correlated to
the emergence of the (3,1) mode, we seek a scaling law for the gal-
loping speed, V = V(ω, R, A −AG,We), in terms of the driving frequency
and bubble size, which define the characteristic flow speed, ωR, the
distance from the galloping threshold, A − AG, which serves as a proxy
for the amplitude of the (3,1) mode, and the Weber number, which
locates resonances through the driving frequency and bubble prop-
erties. Dimensional analysis then indicates a functional relationship

V=ðωRÞ= F A�AG
R ,We

� �
, which we observe can be simplified

to ðV=ωRÞWe= c A�AG
R

� �α
.

Indeed, experimental and simulated bubbles in the rectilinear
regime confirm the suitability of this power-law scaling (Fig. 3c), which
collapses the hemispheres onto α = 0.29 and c = 2.38, with small var-
iations for the full bubbles (1/5 <α < 1/3). Bubbles exhibiting orbital and
run-and-tumble motion at higher driving have been excluded due to

their spectrum encompassing a broader range of shape oscillation
modes coupled together.

Many aquatic organisms20,21,41 and vehicles22,42–45 that utilize peri-
odic oscillations for propulsion rely on vortex shedding, which implies
a dependence on viscosity that other organisms have managed to
circumvent by leveraging inertial forces via body deformations23,46,47.
To demonstrate that galloping bubbles represent aminimal realization
of this distinct type of geometric swimming, we compare the galloping
speed in simulations with that expected from purely inertial forces
within an inviscid flow23, which is given by vðtÞ= �3

πR3

R
Sϕðn̂ � t̂ÞdS. Here,

n̂ and t̂ are the unit vectors normal to the free surface S and tangential
to the bubble trajectory, respectively, and ϕ is a scalar potential
describing the inviscid flow, which may be approximated from the
interface deformations in our simulations (Methods, Theory). The
instantaneous velocity v(t), which results from the balance between
the liquid’s added mass and inertial forces due to the interface
deformations, may be integrated over an oscillation period, T, to
obtain the steady galloping speed, V = 1

T

R T
0 vðtÞdt. We find that the

relative error between the theoretical prediction, Vt, and the actual
bubble speed in our simulations, Vs, decreases with increasing Rey-
nolds number, Re =AωR/ν, becoming 1 −Vt/Vs < 0.1 forRe > 45 (Fig. 3d),
which demonstrates that galloping bubbles exploit inertial forces for
propulsion, eliminating any dependence on viscous effects.

Oscillator model
Is the galloping symmetry breaking exclusive to bubbles, or can this
propulsion mechanism be realized in other systems? To shed light on
this question, wederive a reduced oscillatormodel48 that encapsulates
the fundamental physics underlying galloping bubbles. Inspired by the
classical studies of Rayleigh34 and Lamb35, who demonstrated that the
amplitude of a bubble’s vibration modes Ykl is governed by a mass-
spring-damper model, we conceptualize a galloping bubble as a pen-
dulum of point mass M, representing the displaced liquid, and equili-
brium length L that is parametrically excited via vertical oscillations of
its pivot (Fig. 4a). The pendulum is permitted to deform as a spring
with constant k to account for the restorative influence of surface
tension. Tomimic the hydrodynamic interactions between the bubble
and its enveloping liquid, the mass is subject to fluid-like inertial for-
ces, ∝ u2. After appropriate re-scaling, the dimensionless oscillator
model for the position vector relative to the pivot, r = (r, θ), becomes,

€r +pj _rj _r + ζ _r + 1
κ
ðr � 1Þr̂ � gðtÞ=0, ð1Þ

where gðtÞ= ðδ + ε cos tÞx̂ is the effective gravity, with amplitude
ε = A/L, r̂ and x̂ are the unit radial and vertical vectors, and p, ζ, κ, δ, are
the proportionality coefficients corresponding to liquid inertia, vis-
cous damping, pendulum deformability, and a steady gravitational
force, respectively (Methods, Theory).

The oscillator model (1) in the weakly-deformable limit (0 < κ≪ 1)
reveals the essence of the symmetry-breaking mechanism responsible
for galloping bubbles (Methods, Theory). Similar to the symmetric
base state seen in the bubble dynamics, the mass initially undergoes
stable vertical oscillations at low forcing (Fig. 4b). Beyond a certain
driving threshold AG, which may be predicted using Floquet theory
(Supplementary Fig. S5), a parametric instability develops in the
angular direction, inducing lateral oscillations that are saturatedby the
system’s nonlinearities. Notably, these lateral oscillations couple with
the underlying compression-extension cycles, thus spontaneously
causing the mass motion to acquire angular momentum (Fig. 4c). To
illustrate how this symmetry breaking may lead to self-propulsion, we
consider the pendulum to be attached to a sliding pivot with position
(0, yp(t)), mass Mp, and frictional coefficient D (Fig. 4d, and Methods,
Theory). By solving the resulting coupled system ((25), Methods) in a
regime where the pivot displacement is small relative to that of the
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Fig. 3 | Propulsion mechanism. a, b Experimental visualization of flow fields
around a galloping bubble reveals the interface (a) pushing ambient fluid towards
the bubble’s back when moving downwards, and (b) drawing fluid from its front
when moving upwards (Supplementary Movie 4). c Rectilinear galloping bubbles
obey a power scaling law for the dimensionless galloping speed V/ωR in terms of
the dimensionless driving (A−AG)/R and Weber number We, which collapses the
simulated hemispherical bubbles with a power α =0.29. d The relative deviation
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expected from inviscid theory, Vt, decreases with the Reynolds number, indicating
that galloping bubbles leverage inertial forces for propulsion.
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pendulum (e.g. Mp ≫ M), the motion of the swinging mass remains
largely unaffected by the pivot’smotion andgenerates a net horizontal
force that propels the pendulum forward (Fig. 4d) at a steady speed,
which increases with the distance beyond the instability threshold
(Fig. 4e). No net propulsion is observed if the pendulum is
rigid49(κ = 0), where the motionless base state prevents a symmetry
breaking, or highly deformable (κ ≫ 1), where oscillations become
exceedingly chaotic.

Proof-of-concept applications
Todemonstrate the potential of the galloping instability to unlock new
technological opportunities across various practical settings, we pre-
sent a series of proof-of-concept experiments in Fig. 5 (see Supple-
mentary Movie 5). The galloping mechanism may be leveraged to
evacuate bubbles from a nucleation point, such as those encountered
in boiling processes (Fig. 5a), and selectively produce bubbles of dif-
ferent sizes by tuning the forcing frequency, which determines the
critical size at which bubbles will gallop (Fig. 5b). Galloping bubbles
also exhibit affinity to follow lateral walls, suggesting new possibilities
for size-dependent bubble sorting methodologies (Fig. 5c) and
enabling their navigation through complex flow networks and mazes
(Fig. 5d). This attraction to vertical walls is also captured in simula-
tions, which reveal how sidewalls induce an additional symmetry
breaking in the bubble shape and flows perpendicular to the galloping
direction, holding the bubble against the wall (Supplementary Fig. S6).
Additionally, galloping bubbles offer a non-invasive cleaning method
for removal of microparticles from solid boundaries (Fig. 5e), where
particles are swept downward beneath the bubble by the oscillation-
induced flows (Supplementary Fig. S7). No noticeable particle deple-
tion was observed when the fluid the chamber was vibrated without
the galloping bubble, indicating that bubble-induced flows are the
primary force overcoming particle adhesion.

Discussion
Bubbles remain a hydrodynamic gift that keeps on giving, con-
tinuously drawing increasing interest due to their ubiquity andmyriad
of practical applications. Through experiments, simulations, and the-
ory, we have unveiled a symmetry-breaking instability whereby
vertically-vibrated bubbles spontaneously start to gallop along hor-
izontal solid boundaries. These bubbles exhibit various strategies of
exploring their surroundings, including rectilinear, orbital, and run-
and-tumble motions, easily adjustable through external forcing. The
galloping symmetry breaking constitutes a robust self-propulsion
mechanism, observed in bubbles with and without a thin liquid film
separating them from the wall. By leveraging inertial forces, galloping
bubbles move without relying on shedding vortices for propulsion,
thus expanding their applicability to inviscid flows. Moreover, we
develop a minimal oscillator model that encapsulates the essence of
the bubble self-propulsion, which suggests the feasibility of realizing
the galloping locomotion in other systems. In a broader context, we
present a series of proof-of-concept experiments to showcase the
potential of the galloping instability for practical applications,
including selectable-size generation, sorting and removal of bubbles,
maneuvering through complex fluid networks and mazes, and surface
cleaning tasks. Galloping bubbles thus open new technological ave-
nues in a range of settings, including gas removal in heat transfer
systems31–33, microfluidic50 cleaning28, transport25, delivery25,51 and
mechanical probing24, bubble-based computing52, aquatic soft
robotics22, and fluid-mediated active matter53.

Methods
Experiments
Bubble chamber—The fluid chamber housing the bubble is made out of
5 mm thick clear acrylic to enable the observation of bubbles from all
sides. The topwall, against which the bubbles rest, was 3D-printed using
a high-precision 3D printer (Formlabs, 25μm layer thickness and XY
resolution) to manufacture a flat surface surrounded by a gentle encir-
cling slope which serves to redirect the bubble without influencing its
speed significantly. We performed tests where the top wall was a com-
pletely planar acrylic sheet to confirm the observed galloping dynamics
are the same. The chamber is filled with 5 cSt silicone oil (1 cSt = 1 mm2

s−1) with density ρ = 918 kg m−3 and surface tension σ = 19.7mN m−1.
Owing to the high wettability of silicone oil, the liquid fully wets the top
boundary, ensuring the maintenance of a thin liquid film between the
bubble and the topwall. A small opening between the lid and the vertical
walls ensures that the reference pressure is atmospheric. The size of the
chamber is very large relative to the bubble size, L≫R to ensure that the
bottom and vertical walls play a negligible role in the bubble dynamics.

Bubble injection—We inject bubbles of known volumes, Vb, into
the bubble chamber through a small opening in the top wall using a
calibrated syringe pump (World Precision Instruments, AL-4000). The
volume of the injected bubble is checked by means of two additional
methods. Firstly, we compute the bubble volume from the mass dif-
ference between a fully-filled chamber and one with an injected bub-
ble. Secondly, wemeasure the volume of the injected bubble using an
in-houseMATLAB algorithmwhich computes the bubble volume from
its cross-sectional area measured from side-view images and by
assuming azimuthal symmetry. We find that the three methods yield a
volume within 5% error.

Levelling—The liquid film separating the bubble from the top wall
renders the bubble highlymobile; any departure fromthehorizontal in
the levelling of the top wall may thus cause the bubble to move due to
buoyancy. To ensure that the motion of the galloping bubbles are not
significantly influenced by any surface tilt, our vibrating set-up
undergoes a two-fold levelling process. The bubble chamber is
secured onto a bi-axial goniometer stage (Thorlabs, GNL20) which
allows for easy positioning of the bubble after injection. This ensemble
ismounted onto an aluminiumbase platewhich is in turn attached to a
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k, point massM, and equilibrium length L, subject to vertical oscillations exhibits
a symmetry breaking analogous to that of galloping bubbles. b–d The pendulum’s
trajectory (red) is depicted through the instantaneous x0 − y0 coordinates relative
to the pivot. b At low forcing amplitude, the motion is purely vertical. c Above a
critical threshold, A > AG, the mass acquires angular momentum due to the
coupling between vertical base oscillations and spontaneously emerging
lateral oscillations. d If the pivot is allowed to slide, the mass motion gives
rise to horizontal translation, where (e) the steady propulsion speed V is pro-
portional to A − AG. The model parameters are κ = 0.05, p = 0.3, ζ = 0.02,
δ = 1.1 and (b) ε = 0.2, (c) ε = 0.4, and (d) ε = 0.6, ζp = 0.2, ξ = 100 (Methods,
Theory).
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large circular plate equipped with three high-precision levelling
screws. The levelling of the aluminiumplate was carefully calibrated to
ensure uniform acceleration across the entire base plate, as evidenced
by a difference of less than 0.001 g between the readings of accel-
erations from the two acceleronmeters located in opposite ends of the
plate. Before vibration is applied, the bubble is repositioned to the
centre of the top wall using the goniometer, which is later re-levelled
using precision micrometers.

Vibration – In our experiments, the liquid chamber is vibrated
vertically by an electrodynamic shaker (Modal Shop, 2110E) and a
power amplifier (Modal Shop, 2959E09) that produces a vertical dis-
placement zðtÞ=A sinðωtÞ, where A and f = ω/2π are the maximum
displacement and frequency, respectively. The shaker is connected to
the base plate by a thin steel rod coupled with a linear air bearing (PI
L.P. 4 × 4″ cross section, 6. 5″ long hollow bar) that ensures a spatially
uniform vibration to within 0.1%54. The forcing is monitored using a
data acquisition system (NI, USB-6243) with two piezoelectric accel-
erometers (PCB, 352C65), attached to the base plate on opposite sides
of the drive shaft, and a closed-loop feedback ensures a constant
accelerationamplitude towithin ± 0.002g,where g is the gravitational
acceleration54.

Imaging – We image the shape evolution of vibrating bubbles
from the side with a high-speed camera (Phantom, 410L) using a LED
backlight (PHLOX LEDW BL) to generate high-contrast images of the
bubble interface. For Fig. 1, a colour filter was placed between the

backlight and the chamber to provide the colour gradient. To record
the bubble’s trajectory and galloping velocity, we tracked the bub-
ble’s position with a CCD camera positioned directly above the
bubble chamber. The CCD camera was synchronized with the soft-
ware driving the shaker to ensure that images were captured at the
same point in every oscillation cycle, thus filtering out the bubble’s
oscillation and isolating their horizontal motion. For this configura-
tion, the bubble was illuminated with a LED ring light, which allowed
the bubble to be illuminated from all angles. The translational
motion of the bubble was tracked with an in-house MATLAB algo-
rithm. To visualise the flows generated by the oscillatory motion of
the bubble interface, we use Particle-Image velocitmetry (PIV) by
infusing the liquid with neutrally buoyant glass spheres (Sigma
Aldrich, typical size 9–13 μm). A particle concentration of ≈ 1 g/L was
used. The mixture was shaken for at least 5 minutes to ensure the
particles were sufficiently dispersed in the liquid before proceeding
with the experiments. In the presence of a backlight, the tracer
particles appear black in the video recordings and may thus be
processed using a PIV code55.

Galloping threshold—In experiments, the value of the galloping
threshold, AG, is sensitive to changes in room temperature and
deviations in the levelling of the chamber’s top surface. To minimize
both of these effects, the top surface was re-levelled prior to each
experiment (see ‘Levelling’), and the experimental setup was allowed
to vibrate for at least one hour before data collection. This allowed the

Fig. 5 | Applications of galloping bubbles. a Bubble evacuation: the galloping
instability enables the removal of bubbles from a nucleation point, which hinder
heat transfer in boiling. b Size selection: keeping the injection flow rate constant,
bubble generation with tunable size becomes possible through the driving fre-
quency, which determines when the bubbles start to gallop away from the nozzle.
c Size-dependent sorting: owing to their affinity to follow lateral boundaries,
bubbles of various volumes are autonomously directed into collectors of

decreasing sizes, facilitating their sorting.dNavigation through complex networks:
galloping bubbles have an ability to navigate intricate flow networks and solve
mazes. The colored lines and arrows represent paths taken by different bubbles
from the entrance until they reach the exit (red: f = 50Hz atA =0.39mm,white: 45
Hzat0.37mm, andblue: 40Hz at 0.54mm). e Surface cleaning: particles covering a
surface may be removed through the flows generated by bubbles exploring the
domain randomly (See Supplementary Movie 5).
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bubble chamber and surrounding environment to reach a steady
temperature, which we monitored throughout the experiments.

Simulations
Wemodel galloping bubbles with the Navier-Stokes equations for two-
phase flows in the single fluid formulation, which we solve with the
open-source code Basilisk56. We regard the bubble as incompressible,
since the maximum Mach number in the experiment is small,
Ma ≈ 0.001 ≪ 1. We use the experimental fluid properties for the
simulations; the liquid andgas densities areρl=918kgm

−3,ρg= 1 kgm
−3

and the dynamic viscosities are μl = 4.59 × 10−3 kg m−1 s−1, μg = 1.8 × 10−5

kg m−1 s−1, respectively. The surface tension coefficient is σ = 19.7 mN
m−1. Both the liquid and gas are represented by a single fluid whose
properties are the weighted average of the two phases by the volume
fraction, c(x, t). Using the liquidproperties as the characteristics scales,
the dimensionless density and viscosity become ρ(x, t) = ρrc + (1 − c)
and μ(x, t) = μrc + (1− c), where ρr and μr are the gas-to-liquid density
and viscosity ratios, respectively. We obtain the dimensionless gov-
erning equations by using the characteristic time scale ω−1, flow velo-
city scale Aω, and length scale R, which yield

ρ ∂tu+
A
R
u � ∇u

� �
= � ∇p+

A
R

1
Re

∇ � ð2μDÞ+ R
A

1
We

κδsn+GðtÞ,

∇ � u =0,

∂tc+
A
R
∇ � ðcuÞ=0,

ð2Þ

where u(x, t) and p(x, t) are the dimensionless velocity and pressure
fields, and Re = ρlAωR/μl andWe = ρlω

2R3/σ are the Reynolds andWeber
numbers, respectively. The viscous force is Newtonian with symmetric
rate-of-strain tensor D. The surface tension force acts at the fluid
interface specified by the dimensionless Dirac delta distribution δs and
the normal pointing from liquid to gas n, which together are given by
δsn = ∇ c. The curvature of the interface is κ = ∇ ⋅ n. The external
sinusoidal forcing is incorporated as an effective gravity
GðtÞ=ρð�G+ sin tÞẑ by working in the co-moving frame, where
G = g/(Aω2) is the dimensionless gravity and ẑ the unit vector in the
vertical direction. For the hemispherical bubbles presented in this
study, we choose G = 0 to remove deformations due to gravity in rest
states, thus making them exactly hemispheres. Our simulations
demonstrate that the galloping mechanism arises in microgravity
and that bubbles in normal gravity exhibit similar dynamics.

The bubbles are simulated in a relatively large cubic domain of
length L = 16R to ensure that boundary effects from the bottom and
lateral walls play no significant role. The top wall is modelled as a solid
boundary with no-slip condition u = 0. To simulate bubbles as those
investigated in experiment for which the gas does not directly contact
the wall, we impose a Dirichlet boundary condition on the volume
fraction, c = 0. For the hemispherical bubbles that are attached to the
wall, we use a Neumann boundary condition, ∂zc =0, which renders a
freely moving contact line with 90 degree contact angle. Periodic
boundary conditions are applied along the vertical boundaries, while a
symmetric slip boundary condition is applied at the bottomboundary.
Detached bubbles are initialized near the boundary to minimize tran-
sient effects.

The governing equations with these boundary conditions are
solved on an octree discretization with adaptive mesh refinement
applied at the interface and near large velocity gradients. We use a
maximum resolution of 64 cells/R to ensure the galloping speed is
insensitive to refinement and that volume errors within a period T are
negligible. The bubble centroid is measured once the bubble has
reached steady-state galloping, typically after 50T. For each bubble
volume, the galloping threshold, AG, is defined as the midpoint
between the driving amplitudes of the nearest stationary andgalloping
states. For the velocity collapse, we exclude Weber numbers that have

insufficient points to determine the threshold, near which resolving
the precise value is difficult due to the slow onset of the instability. It is
similarly numerically challenging to resolve galloping at large forcing
amplitudes. Thus, we exclude bubbles that display nonphysical break-
up or that have speeds that do not follow a monotonic increase from
threshold. While the simulations capture the essence of the experi-
mental observations, these numerical challenges andother effects lead
to some differences between them. Owing to the very thin liquid film
separating the bubble and solid wall, resolving the finer details of the
intervening lubrication flow is particularly challenging. Similarly, the
presence of surface roughness in the experimental setup, a factor not
accounted for in simulations, may contribute to the simulated bubbles
not displaying motion over a wider range of We numbers relative to
experiments. For the simulations shown in Supplementary Fig. S7, we
seedmassless tracer particles in the liquid phase and advect themwith
the flow field. We solve for the trajectories using a third-order Runge-
Kutta integrator, with constraints to ensure the particles remainwithin
the liquid phase.

Theory
Bubble spectrum. Over a century ago, Lord Rayleigh34 demonstrated
that the shape oscillations of an incompressible fluid sphere (an
immiscible drop or a gas bubble) immersed in an inviscid fluid are
composed by a spectrum of Legendre polynomials PkðcosθÞ with
mode number k 2 N that depend upon a polar angle θ∈ [0, π]. These
vibrationmodes are axisymmetric about the z-axis, and oscillate with a
natural frequency, ωk, given by the dispersion relation,

ω2
k = ðk2 � 1Þðk +2Þ σ

ρR3 : ð3Þ

In a spherical bubble vibrating with frequency ω, the mode PkðcosθÞ
will thus resonate when ω = ωk. In dimensionless form, this condition
defines a resonance Weber number, Wek =ρω

2
kR

3=σ, that turns the
dimensional dispersion relation (3) into,

Wek = ðk2 � 1Þðk + 2Þ: ð4Þ

Lamb35 generalized Rayleigh’s solution by demonstrating that the
complete spectrum of a bubble includes an additional set of non-
axisymmetric vibration modes with polar mode number, k, and
azimuthal mode number l 2 ½�k, k� 2 Z, defined over an azimuthal
angle φ ∈ [0, 2π]. These asymmetric modes oscillate at the same
frequency (3) as their symmetric counterparts with mode number k.
The complete set of vibration modes of a fluid sphere may thus be
represented by the spherical harmonics, Y l

kðθ,φÞ=NklP
l
kðcosθÞeilφ,

where Nkl is a normalization constant. In the case of a hemispherical
sessile bubble (or drop) with a free contact line, the vibration modes
must satisfy the no-penetration condition at the wall. The spectrum is
thus restricted tomodeswith k + l = even, as themodeswith k + l = odd
are not symmetric about the midplane, z = 0.

We consider a spherical systemof coordinates (r, θ,φ) centered at
the point where the bubble’s centroid is projected onto the surface of
the solid wall (Fig. 2g). At each instance in time, the axes are oriented
such that the origin of the azimuthal angle aligns with the direction of
the bubble motion. Relative to this moving system of coordinates, the
interface position of a hemispherical bubble with static radius R may
thus be represented as r(θ, φ, t) = R + η(θ, φ, t), where η is the instan-
taneous interface deflection from the hemispherical shape. To char-
acterize the deformations caused by the external forcing, we project
the interface deflection onto the basis of spherical harmonics with
k + l = even, specifically ηðθ,φ, tÞ=Pk, lcklðtÞY l

kðθ,φÞ. Using the stan-
dard approach, we leverage the orthogonality of the basis functions to
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derive the instantaneous mode amplitudes, ckl(t), as follows,

cklðtÞ=
η, Y l

k

D E
Y l
k , Y

l
k

D E =2
Z 2π

0
dφ
Z π

2

0
dθðsin θÞηðθ,φ, tÞY l

kðθ,φÞ, ð5Þ

where Y
l
k denotes the complex conjugate of Y l

k . We note that, for the
hemispherical bubble, the vibration modes satisfy the following
orthogonality conditions,

Yn
m, Y

l
k

D E
=

1=2, ifm= k, n = l,

0, otherwise

�
ð6Þ

with the standard normalization, Nkl, for spherical harmonics on the
entire sphere. We then convert the resulting amplitudes ckl(t) for the
complex-valued modes Y l

kðθ,φÞ into the amplitudes akl(t) for the real-
valued modes Ykl(θ, φ), which we report in the main text.

The interface in our simulations is reconstructed numerically
using piecewise linear facets. The facets in each numerical cell are
computed using the volume fraction, c, and the normal, n, which
together determine a unique cut between the phases of the cell. We
use the centroids of the facets as the sampling of the interface posi-
tion, r(θ, φ, t), which is later used to compute the deformation,
η(θ,φ, t). To carry out the integration of (5), a discrete solid anglemust
be associated to each facet centroid.Weobtain these byprojecting the
centroids onto the unit sphere, computing a spherical Voronoi dia-
gram, and taking the Voronoi cell areas to be the solid angles57.

An example of the instantaneous mode amplitudes for the three
dominant modes in a galloping hemispherical bubble is shown in
Supplementary Fig. S4. Since the amplitudes of these modes oscillate
in time and depend on the driving amplitude, we use the L2 norm,

k aklðtÞ=Ak2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
0 aklðtÞ=A
� 	2dtq

, to quantify their significance

(Fig. 2h). In the parameter space explored in this work,We ~30−70, the
first two axisymmetric modes, Y20 and Y40, have the highest ampli-
tudes. When the interface oscillations become asymmetric and the
bubble starts to gallop, the Y31 harmonic is the most dominant non-
axisymmetricmode. The remainingmodes exhibit significantly smaller
amplitudes, with their contribution diminishing as the mode order
increases.

Bubble speed. In this section, we outline a mathematical method for
calculating the steady speed of a galloping bubble expected from
inertial forces to demonstrate that this self-propulsion mechanism
represents a minimal realization of swimming in inviscid flow23. For a
hemispherical bubble with static radius R, the problem is most favor-
ably solved relative to a spherical system of coordinates (r, θ, φ) cen-
tered at the base of the bubble. The deformed liquid-gas interfacemay
thus be defined as r(θ,φ, t) = R + η(θ,φ, t). The flow velocity in the bulk
is related to the interface deformation, η(θ, φ, t), by the kinematic
condition,

∂η
∂t

+u � ∇η=u � r̂, ð7Þ

where, r̂ is the unit vector in the radial direction. The characteristic
Reynolds number of galloping bubbles is Re = AωR/ν = 30−105, which
suggests that viscous effects are weak relative to inertial forces. In the
incompressible, inviscid limit, ν = 0, the flow velocity, u = ∇ ϕ, may be
represented as the gradient of a scalar potential function, ϕ(r, θ, φ, t),
that satisfies Laplace’s equation,

∇2ϕ=0: ð8Þ

The kinematic condition (7) thus relates the bubble deformation with
the velocity potential at the interface, ϕ(R + η, θ, φ, t).

Galloping bubbles demonstrate that interface deflections that are
asymmetric over a period may cause a net translation. To obtain the
bubble speed that the same interfacial motion would generate in a
inviscid flow, we consider the total momentum balance in the hor-
izontal direction ŷ, assuming, without loss of generality, that the
bubble gallops with velocity v(t) in this direction. Since no external
force is applied in any horizontal direction, when starting the system
from rest, the momentum in the the galloping direction must always
remain zero in the inviscid limit. The total horizontal momentum can
be expressed as the sum of contributions from three sources: the
momentumassociatedwith themotion of the gas, the oscillatory flows
relative to the bubble’s center of mass, and the translation of the
bubble58. We note that the momentum of the gas may be safely
neglected compared to that of the liquid since the densities of the two
phases differ by three orders ofmagnitude. Thehorizontalmomentum
generatedbyη in the outer liquid, whichhasdensity ρ and volumeVl, is
given by Pd =ρ

R
Vl
ðu � ŷÞdVl =ρ

R
Sϕðn̂ � ŷÞdS, where n̂ is the unit vector

normal to the interface pointing into the gas. The conversion from an
integral over the outer volume to an integral over the liquid-gas sur-
face S is enabled by the divergence theorem together with the flow
decay in the farfield,ϕ→0 as r→∞. Themomentum Pd corresponds to
the flow produced by the motion of the interface relative to the bub-
ble’s center of mass. Since the bubble’s center of mass is translating,
one must also consider the horizontal momentum associated with the
displacement of the surrounding liquid, which may be expressed
through the ‘addedmass’,M(t).We denoted the instantaneous velocity
of the bubble’s center of mass by v(t), the horizontal momentum due
to the addedmass is thus Pa =M(t)v(t). Therefore, the totalmomentum
in the galloping direction of a bubble in inviscid flow is

Pa + Pd =0, ð9Þ

which must be zero at all times if the system was initially at rest. In
other words, if the integral of the shape-induced oscillatory flows is
non-zero over a period, conservation of momentum (9) dictates that
the body will undergo a net translation58.

Weuse themomentumbalance (9) to compute the steady velocity
that the hemispherical galloping interface would generate in inviscid
flow. To simplify the calculation, we consider the limit where the
interface deformations are small relative to the bubble size, η/R ≪ 1,
which is appropriate near the bottom of the instability tongues where
small forcing amplitudes lead to galloping (A/R ≤0.2, Fig. 2F). For small
deviations from the hemisphere, wemay approximate the addedmass
as M =πρR3/3, corresponding to half of the liquid mass that occupies
the same volume as a rigid hemisphere undergoing translational
motion. In this limit, themomentumbalance (9) for a bubble galloping
in the horizontal direction ŷ with velocity vðtÞ= vðtÞŷ thus reduces to

π
3
R3vðtÞ+

Z
S
ϕn̂ � ŷdS = 0: ð10Þ

The bubble speed expected from inertial forces, v(t), may then be
determined from the instantaneous interface deflection by solving the
system of inviscid flow equations ((7), (8), (10)). To that end, we con-
sider the general solution of (8) in terms of spherical harmonics,
ϕ=

P
k, l ½bklðtÞ=rk + 1�Y l

kðθ,φÞ for r ≥ R, and express the interface
deflection in the same basis, ηðθ,φ, tÞ=Pk, lcklðtÞY l

kðθ,φÞ. Equations
(7) and (10) require a knowledge ofϕ at the interface location, r =R + η,
which may be mapped to the undeformed interface through a Taylor
expansion as ϕ(r = R + η) ≈ ϕ(r = R) + η∂ϕ/∂r(r = R); a suitable
approximation in the small-deformation limit under consideration. For
similar reasons, we may safely approximate n̂ � �r̂ and
dS � ðR +2ηÞ sinθ. Given the interface deflection, η, we may thus use
(7) to determine the potential amplitudes, bkl(t), and then (10) to
determine the instantaneous speed, v(t). By averaging the
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instantaneous speed over an oscillation period, T, we may finally
obtain the steady galloping speed, V = 1

T

R T
0 vðtÞdt due to inertial

forces.
We apply this inviscid theory to determine the galloping speed

expected from inertial forces using the interfacial data from our
simulations of hemispherical bubbles. We facilitate the numerical
computationby truncating thebubble spectrumto the threedominant
harmonics,

η � a20ðtÞY 20ðθ,φÞ+a31ðtÞY 31ðθ,φÞ+a40ðtÞY 40ðθ,φÞ, ð11Þ

where akl are the amplitudes of a real-valued harmonic basis (Section
C1). Supplementary Fig. S4 shows the relative sizes of the amplitudes
for a fixed set of parameters. The amplitudes of harmonics with k > 4
are increasingly smaller, and thus are not reported. The computed
galloping speed, derived from this inviscid flow analysis, aligns well
with the actual speeds observed in simulations (cf. Fig. 3d), indicating
that the galloping self-propulsion can indeed be largely understood as
swimming in an inviscid irrotational flow.

Oscillator model. The classical studies of Rayleigh34 and Lamb35

demonstrate that the amplitude of the vibration modes of a bubble in
an inviscid flow (Section C1) follows the dynamics of a harmonic
oscillator. In real fluids, thesemodes are subject to viscous effects and
coupled by nonlinearities. Inspired by these studies, we present here a
reduced oscillator model (Fig. 4a) that encapsulates the fundamental
mechanism behind the self-propulsion of galloping bubbles. To sim-
plify the problem, we concentrate the fluid mass, M, at a single point,
which is subject to linear friction with damping constant C; an ade-
quate approximation for small viscous effects in the fluid. To leading
order, we approximate the restoring force provided by surface tension
as a linear spring, with spring constant k and equilibrium length L.
Galloping bubbles are surrounded by an external liquid of density ρ
that subjects them to an inertial reaction force per unit volume that
scales as ~ρu2, whereu is the velocityfieldof the liquid.We incorporate
this reaction force in our oscillator model through an external inertia
acting on the point mass, specifically F i =Pj _rj _r. Here, P represents a
coefficient akin to density, and _r denotes the velocity of the pointmass
with r being the position vector relative to the pivot. The pendulum is
subject to vertical vibrations with acceleration aðtÞ= � Aω2 cosðωtÞ,
where A is themaximum vertical displacement of the frame, andω the
vibration frequency. In the moving frame, the equation of motion for
this pendulum thus becomes,

M€r +Pj _rj _r +C _r + kðr � LÞr̂ �MgðtÞx̂ = 0, ð12Þ

where g(t) = g + a(t) is the effective gravity, r = ∣r∣ is the instantaneous
pendulum’s length, and r̂ and x̂ are the unit vectors in the radial and
vertical directions, respectively.

By re-scaling length and time with L and ω−1, respectively, we can
rewrite (12) in terms of dimensionless variables as,

€r +pj _rj _r + ζ _r + 1
κ
ðr � 1Þr̂ � ðδ + ε cos tÞx̂ =0, ð13Þ

where κ = Mω2/k denotes the pendulum’s deformability, ζ = C/Mω
the friction coefficient, p = PL/M the characteristic inertia of the
surrounding medium, δ = g/Lω2 the squared natural frequency, and
ε = A/L the dimensionless driving amplitude. Note that κ tunes the
pendulum stiffness; the spring becomes rigid in the limit when
κ = 0, transforming our oscillator model into the well-known
Kaptiza pendulum49.

Stability—In analogy to the mechanism observed in galloping
bubbles, we can demonstrate that in the deformable Kaptiza pendu-
lum (13), the coupling between an oscillatory base state in the radial

direction and an angular parametric instability results in a sponta-
neous symmetry breaking, ultimately leading the pendulum’s self-
propulsion.Webeginbyperforming a stability analysisof theoscillator
model using Floquet theory in the limit where the external inertia
is weak, p ≪ 1. In polar coordinates relative to the pivot, (r, θ), the
components of (13) in the radial, r̂, and angular, θ̂, directions thus
become,

€r � r _θ
2
+
ðr � 1Þ

κ
+ ζ _r � ðδ + ε cos tÞ cosθ=0, ð14Þ

€θ+
2 _r
r

+ ζ
� �

_θ+
1
r
ðδ + ε cos tÞ sinθ=0: ð15Þ

In the absence of driving, ε = 0, the pendulum’s fixed points are
(r0, θ0) = (1 + δκ, 0) and (1 − δκ, π). When the pendulum is under
vibration, ε > 0, wemay look for a steady oscillatory solution about the
fixed points of the form, (r, θ) = (r0 + R0(t), 0). By substituting in (14),
we find that R0(t) evolves as a forced damped oscillator,

€R0 + ζ _R0 +
1
κ
R0 = ε cos t, ð16Þ

which has a particular solution, R0ðtÞ= εκ½ðκ � 1Þ cos t + ζκ sin t�=
½ð1� κÞ2 + ðζκÞ2�. For a deformable pendulum, κ > 0, this solution cor-
responds to an oscillatory base state where the point mass moves up
and down about the fixed points (Fig. 4c). Focusing on the lower fixed
point, r0 = 1 + δκ, we investigate the stability of the oscillatory base
state by assuming a small perturbation on the steady solution,

rðtÞ= r0 +R0ðtÞ+RðtÞ, ð17Þ

θðtÞ=0+φðtÞ, ð18Þ

where R ≪ 1 and φ ≪ 1. To a first-order approximation, the governing
equations ((14),(15)) become,

€R+ ζ _R+
1
κ
R=0, ð19Þ

€φ+
2 _R0

r0 +R0
+ ζ

 !
_φ+

δ + ε cos t
r0 +R0

� �
φ=0: ð20Þ

Perturbations in the radial direction are thus exponentially suppressed
according to an unforced damped oscillator equation (19). However,
angular perturbations are governed by parametrically forced equation
(20), which includes significantly richer dynamics. We note that in the
rigid-pendulum limit, κ = 0, the angular equation (20) reduces to the
classical damped Mathieu’s equation, whose stability is well-known59.
As the pendulum becomes deformable, κ > 0, angular perturbations
evolve according to a generalized Mathieu’s equation with additional
periodic coefficients due to the stable base state,R0(t), whichoscillates
with the same frequency as the external forcing. To analyze the angular
stability of the deformable pendulum, we thus write (20) as a first-
order system,

_u=
0 1

� δ + ε cos t
r0 +R0

� 2 _R0
r0 +R0

+ ζ
� �" #

u, ð21Þ

whereu = [φ,Ω]T andΩ= _φ. Floquet theory indicates that the solutions
to (21) are of the form uiðtÞ= eμi tpiðtÞ, where μi is the characteristic
Floquet exponent, and pi(t) a periodic function with the same period,
T = 2π, as the coefficient matrix. We define a fundamental solution

Article https://doi.org/10.1038/s41467-025-56611-5

Nature Communications |         (2025) 16:1572 9

www.nature.com/naturecommunications


matrix to this system as,

X ðtÞ= ϕ1ðtÞ ϕ2ðtÞ
Ω1ðtÞ Ω2ðtÞ


 �
, ð22Þ

where the columns are the solutions with the following initial condi-
tions,

X ð0Þ= 1 0

0 1


 �
: ð23Þ

By numerically integrating (21) over one period, T, from the initial
conditions in (23), we may compute the characteristic matrix of the
problem,

B=
ϕ1ðTÞ ϕ2ðTÞ
Ω1ðTÞ Ω2ðTÞ


 �
: ð24Þ

The stability of the system is determined by the eigenvalues, λi, of the
matrix B. If ∣λi∣ > 1 for either of the two eigenvalues, the system is
unstable, exhibiting exponential growth in time. If ∣λi∣ < 1 for the two
eigenvalues, the system is stable and the solutions are quasi-periodic.
This approach may thus be used to determine the neutral stability
curves, or ‘tongues’, that separate the stable and unstable regions in
the frequency-forcing phase map. Supplementary Fig. S5a illustrates
the harmonic and subharmonic tongues in the absence of damping,
ζ = 0, for increasing pendulum deformability. When the spring is rigid,
κ = 0, the neutral curves correspond to those of the classic Mathieu
equation, where the tongues intersect the ε-axis at the resonant
frequencies δ = n2/4, with n a positive integer. Note that n = 1 and n = 2
correspond to the first subharmonic and harmonic instabilities,
respectively. As the spring’s deformability increases, κ > 0, the
resonances shift toward higher frequencies. When the system is
subject to friction, ζ > 0, the tongues no longer intersect the ε-axis; the
drivingmust exceed a critical threshold for the instability to arise at all
frequencies, δ (Supplementary Fig. S5b). This instability condition is
equivalent to the galloping threshold, AG, reported in themain text for
vibrating bubbles.

Thus, when the pendulum (13) is vibrated with an amplitude
A >AG, which depends on the frequency, small lateral perturbations
grow in the angular direction, θ̂, superimposed on a pre-existing
oscillatory base state in the radial direction, r̂, given by (16). These
parametrically-excited azimuthal oscillations exhibit exponential
growth over time and are eventually saturated by the system’s non-
linearities.Once equilibrium is reached, the pendulum’smotion results
from a combination of vertical and lateral oscillations, causing the
mass to follow a curved trajectory and acquire angular momentum
(Fig. 4d). Similar to galloping bubbles, the coupling between a stable
oscillatory base state and a parametric instability is thus the essential
mechanism behind the spontaneous symmetry breaking of our
deformable pendulum.

Galloping pendulum—Owing to the chiral motion of the mass
arising when A >AG, the pivot experiences a force whose horizontal
component is Fh = kðr � LÞ sinθ in dimensional form. If the pivot is
allowed to slide along a horizontal rail (Fig. 4d), this force may gen-
erate a net translation of the pendulum. To demonstrate such self-
propulsion of our vibrating pendulum, we thus consider the general-
ized problem that includes a sliding pivot with point mass Mp, and
position rp = (0, yp) relative to a systemof coordinatesmovingwith the
frame. We assume that the pivot is subject to friction with a linear
damping coefficientD. The position of the hangingmass relative to the
same system of coordinates is rm = rp + r, where r remains the position
of the hanging mass relative to the pivot. The force balance on the
hangingmass is nowcoupledwith the force balance on the pivot. After
non-dimensionalizing the system using the same characteristic scales

as in (13), the equations of motion for the sliding-oscillator system
become,

ξ€yp + ζ p _yp � 1
κ ðr � 1Þ sinθ=0,

€rm +pj _rmj _rm + ζ _rm + 1
κ ðr � 1Þr̂ � ðδ + ε cos tÞx̂ = 0:

ð25Þ

Here, r = ∣r∣, sinθ= ym=r, and the new dimensionless numbers are
ξ = Mp/M and ζp = D/Mω, representing the mass ratio and the pivot
friction coefficient, respectively. Combining the horizontal force bal-
ances in (25) yields the equation of motion for the horizontal position
of the center of mass of the system, denoted by ycm,

ð1 + ξÞ€ycm = � pj _rmj _rm � ŷ� ζ p _yp � ζ _rm � ŷ: ð26Þ

These equations may be solved numerically to obtain the instanta-
neous horizontal speed of the pendulum, _ycmðtÞ, whose average over
an oscillation period, Vcm = ð1=TÞ R T0 _ycmdt, yields the steady self-
propulsion speed. In the absence of the nonlinear term, the forcing
from the friction terms in (26) average to zero. We thus note that the
inertial term, pj _rmj _rm, is a key ingredient for generating steady net
motion, providing a non-zero forcing over the oscillation period that
leads to propulsion.

In Fig. 4d, e, we illustrate the steady self-propulsion predicted by
the oscillator model through numerical solutions of equations (25).
Parameters for the sliding pivotwere chosen as ζp =0.2, ξ = 100, so that
the trajectory of the hangingmass is not significantly influenced by the
comparatively smaller displacement of the pivot. The steady propul-
sive speed of the pivot, Vcm, exhibits a direct dependence on the
driving amplitude beyond the self-propulsion threshold, similar to
what occurs for galloping bubbles (cf. Fig. 3c). The reduced oscillator
modelmay thus be considered as aminimal realization of the galloping
mechanism.

Data availability
The data supporting the findings in this study are available within the
paper and its Supplementary Information. Source data are provided
with this paper.
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