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Fig. 1: (a) An envisioned usage scenario where a Protanope (individual with a kind of red-green color blindness) views a
colored painting in amuseum using ourmobile App by swiping her �nger on the screen. The swipingmotion, causes di�erent
temporal perceptual shifts in initially confusing colors (e.g., green vs. red here). These shifts augment the user’s perception
allowing her to recognize/name the colors in the painting, based on prior learning of the associations. (b) The scienti�c basis
of our work: controlled by the user’s swiping, we computationally induce a temporal shift in the colors that produces distinct
perceptual changes in colors that are initially confusing to a dichromat. Users learn to associate the name of a color with
the initial appearance and the discriminative shift, and later can use these to resolve names of otherwise confusing colors.
The CIE 1931 xy chromaticity diagram [20] is annotated with Protan “confusion lines”: colors on the same confusion line are
indistinguishable for a Protanope, e.g., the green and red indicated by the hollow circle markers in the diagram. Upon swiping,
the two confusing colors undergo di�erent color shifts: the green shifts toward yellow and the red shifts toward blue.

ABSTRACT
We propose an assistive technology that helps individuals with
Color Vision De�ciencies (CVD) to recognize/name colors. A dichro-
mat’s color perception is a reduced two-dimensional (2D) subset
of a normal trichromat’s three dimensional color (3D) perception,
leading to confusion when visual stimuli that appear identical to
the dichromat are referred to by di�erent color names. Using our
proposed system, CVD individuals can interactively induce distinct
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perceptual changes to originally confusing colors via a computa-
tional color space transformation. By combining their original 2D
precepts for colors with the discriminative changes, a three dimen-
sional color space is reconstructed, where the dichromat can learn
to resolve color name confusions and accurately recognize colors.
Our system is implemented as an Augmented Reality (AR) inter-
face on smartphones, where users interactively control the rotation
through swipe gestures and observe the induced color shifts in
the camera view or in a displayed image. Through psychophysical
experiments and a longitudinal user study, we demonstrate that
such rotational color shifts have discriminative power (initially con-
fusing colors become distinct under rotation) and exhibit structured
perceptual shifts dichromats can learn with modest training. The
AR App is also evaluated in two real-world scenarios (building with
lego blocks and interpreting artistic works); users all report positive
experience in using the App to recognize object colors that they
otherwise could not.
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1 INTRODUCTION
Approximately 13 million individuals in the U.S. and 350 million
worldwide have some form of color vision de�ciency (CVD) [12].
Individuals with CVD have restricted career options, limited driving
rights in certain countries, and are less con�dent in social interac-
tions. In a 2020 survey, one third of the students with CVD indicated
that color blindness a�ected their con�dence in school and, before
they learned of their color vision de�cit, 30% felt they might be
“slow learners” [65]. CVD is rising in geographic areas that have
been settled by incoming migrants where people are more likely to
have mixed race genes in their genetic history [12].

Many assistive technologies for CVD exist. The vast majority fo-
cus on color discrimination, i.e., being able to distinguish confusing
colors for a CVD individual, by applying a transformation (“color
�lter”) such that initially confusing colors become di�erent [55].
Color discrimination alone, however, is insu�cient in many real-
world scenarios where we have to recognize (name) an object’s color
(“pass me that pink block” or “look at the person in red shirt”).

Color names are developed in the context of trichromatic vision,
where colors are encoded in a 3D space. Dichromats miss the func-
tion of a retinal photoreceptor type and, thus, have a reduced color
vision where colors are encoded in a 2D space for them. Therefore,
there are colors that appear distinct to a trichromat (and, thus, have
di�erent assigned names) but appear identical to a dichromat. This
creates signi�cant confusions for dichromats to name colors.

To assist CVD individuals in color recognition, we develop a
smartphone-based Augmented Reality (AR) application. The idea
is illustrated in Figure 1 and detailed in Section 4. The key is to
augment the 2D color percept of a dichromat with an additional
dimension of information such that colors are, once again, encoded
in a 3D space for dichromats. The additional dimension is induced
via the temporal modulation of colors: as a user swipes the �nger in
the App, we apply a color-space transformation such that originally
confusing colors undergo distinct color shifts. The combination
of the initial 2D color precept with the induced temporal shifts
reconstructs a new 3D space for the user.

Critically, this new 3D space empowers users to learn to recog-
nize colors. By spending time interacting with our system, users

build an intuition of how originally confusing colors undergo dis-
tinct temporal color shifts. Users then learn to associate di�erent
color names with di�erent shifts, thereby recognizing colors.

We conduct two studies to demonstrate the e�ectiveness of tem-
poral color shifts. We �rst perform extensive psychophysics (on 16
CVD individuals with almost 100 total hours of study) to show that
rotational color shifts have discriminative power, i.e., initially con-
fusing colors become distinct upon rotation. Leveraging the color
shifts, participants’ color discrimination improves across di�erent
CVD types, and the results are statistically signi�cant (Section 5).

We then conduct a nine-day longitudinal study on eight CVD
individuals (Section 6). Participants �rst trained themselves to rec-
ognize four pairs of confusing colors by associating the color shift
patterns with color names. Over the next few days participants are
asked to recognize new colors that they have not seen during train-
ing. The recall performance is signi�cantly above the chance level,
indicating that the shift patterns are easy to learn and that users
can generalize what they have learned from training to recognize
new colors over an extended period of time.

We evaluate the e�ectiveness of our method and the AR inter-
face on two real-world scenarios, building with Lego blocks and
observing artistic images, both requiring identifying objects by
color (Section 7). We provide an empirical, experiential report on
the two real-world studies. Overall, all participants report positive
experience, where by using our AR App they are able to recognize
colors that they otherwise could not accurately name.

To inform our design choices and objectives for this project, we
closely engaged with two CVD individuals (distinct from the 16
study participants), who participated in our weekly meetings and
provided feedback/suggestions via open-ended dialogues. This is
in line with the best practices suggested by a recent study on CVD
individuals’ experience with assistive technologies [26]. The proto-
cols for our experiments involving human subjects were approved
by our Internal Review Board (IRB).

In summary, the paper makes the following contributions:

• We propose a framework for reconstructing trichromatic
color perception for CVD individuals. The idea is to aug-
ment their native (unaided) 2D color precept with a third
dimension. The third dimension is interactively-induced by
users to shift originally confusing colors in a color space.
The perceptual shifts are distinct for confusing colors and,
through learning, enable users to resolve confusions and
accurately recognize colors.

• We develop a practical realization of our framework using
rotational color shifts about the gray-axis in RGB space,
which allows computationally e�cient implementation and
enable real-time interactivity.

• Through psychophysical experiments, we demonstrate that
the rotational shifts have discriminative power and that users
can indeed learn the patterns of induced shifts to resolve
color confusions and accurately recognize colors.

• We implement our proposed system as smartphone AR App.
Through user studies, we show the feasibility of our AR App
in assisting CVD individuals to recognize object colors using
two real-world tasks.

https://doi.org/10.1145/3654777.3676415
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2 PRELIMINARIES
Color Vision Basics. Human color perception is trichromatic
because humans have three types of cone photoreceptors, referred
to as the long (L), medium (M), and short (S) wavelength sensitive
cones. Retinal sensations that (eventually) encode colors can be
geometrically represented as points in the 3D LMS space where
the three L, M, and S, axes correspond to the responses of the
respective cones. For instance, the two colors P and Q in Figure 2
are represented as [L, Mp , S] and [L, Mq , S], respectively, in the
LMS space. These two colors are distinct for normal trichromats,
as they excite di�erent combinations of the cone responses. To a
fair degree of accuracy, commonly used RGB color spaces can be
obtained by applying a 3⇥3 linear transformation to the LMS space,
followed by an channel-wise R, G, B nonlinearity [57].

CVD. Dichromatic individuals see colors only in a 2D space,
because they lack (the functionality of) one cone type. For instance,
Deuteranopes lack the M cones and, thus, any color is encoded
only in the L and S cone excitations, resulting in a 2D color space.
Therefore, any colors that di�er only in the M dimension are seen as
the same color by a Deuteranope. For instance, P and Q in Figure 2,
distinct to trichromats, are seen as the same color by a Deuteranope.

A line parallel to the M dimension in the LMS space is called a
Deuteran “confusion line”, as all colors on that line look the same
to a Deuteranope; we call such colors “confusion colors”. Figure 2
plots only one such line that connects P and Q, although it is easy
to see that there are in�nitely many confusion lines.

The confusion lines are more commonly visualized in the CIE
1931 xy-chromaticity diagram [57, 67], as illustrated in Figure 2b.
The xy space is a perspective projection from the LMS space that
provides a useful 2D representation of colors by discarding the
luminance dimension that is indicative of brightness/lightness. We
will primarily rely on the xy diagram for the rest of the paper.

There are three forms of dichromatic vision, based on the missing
cone type. While Deuteranopes lack M cones, Protanopes and Tri-
tanopes lack L cones and S cones, respectively. As a result, Deuteran,
Protan, and Tritan confusion lines are parallel to the M, L and S
axis in the LMS space, respectively.

In addition to strict dichromatic vision, another important form
of CVD is anomalous trichromatic vision, where individuals have
all three cone types, but the sensitivity of a cone type deviates
from normal. Protanomaly, Deuteranomaly, and Tritanomaly are
the names given to the three types of anomalous trichromatic vi-
sion. The ability to discriminate colors is stronger for anomalous
trichromats than their dichromatic counterparts. For instance, it
is shown that, from a modeling perspective, not all colors on a
Deuteranopia confusion line are confusing to Deuteranomalous
individuals; only colors within a small segment are [23].

Color Discrimination vs. Recognition. Color discrimination
refers to the ability to tell the di�erence between two colors, whereas
color recognition requires a stronger capability: to assign a name
to a color. Recognition requires uniquely associating a given color
percept to its name in a common vocabulary. Normal trichromats,
during their early cognitive development, are told names of the
colors of objects. They then implicitly build a mapping between
their 3D precept for a color and the corresponding color name.
Conceptually, a trichromat’s visual memory stores such a mapping

from 3D color precepts to color names, which they can later retrieve
to name colors they encounter.

Such recognition tasks are harder for CVD individuals, because
of their reduced 2D perception. For instance in Figure 2, lights that
produce the distinct responses P and Q a trichromat are assigned
di�erent color names (e.g., red and green), but they have the same
[L, S] cone responses in a Deuteranope’s vision and, thus, cannot
be named accurately by a Deuteranope.

Color Names. Assigning names to colors is a research area in
its own right [34]. Many color name dictionaries exist, such as the
Unix X11 Colors in /usr/lib/X11/rgb.txt (752 names), HTML
4.01 Basic Colors (16 names) [2], CSS Colors (140 names) [7], and
NTC Colors (1566 names) [4]. To balance the trade-o� between
coarse color naming (with too small of a dictionary) and using
obscure names that are uncommon in everyday vocabulary (with
too big of a dictionary), we use the color dictionary from the IEEE
PWG 5101.1 standard [31], which has 20 names, each with two
additional dark and light variants (except black which has only one
variant and white which has no variant), totaling 57 names.

Any given color is named based on its closest color in our dictio-
nary according to the CIELAB �E (1976) metric, a commonly used
color di�erent metric that emphasizes perceptual uniformity [57].

3 RELATEDWORK
A wide range of assistive technologies have been proposed for
CVD. We discuss relevant related work in four groups: (1) computa-
tional approaches that aid in color discrimination (Section 3.1), (2)
methods that assist with color recognition (Section 3.2), (3) optical
assistive technologies (Section 3.3), and (4) sensory substitution
techniques (Section 3.4).

3.1 Computational Color Discrimination
Most existing technologies aim to help individuals with CVD to
discriminate confusing colors by using computational “re-coloring”
algorithms. The idea is to apply a transformation to colors in an im-
age (colloquially referred to as color �lters) so that initially confus-
ing others become distinct. We discuss a few of the key approaches
below, referring interested readers to Ribeiro and Gomes [55] and
Geddes et al. [26] for two comprehensive surveys of the techniques
and their e�ectiveness in the wild. A recent technical report [35]
from the International Commission on Illumination (CIE) also cate-
gorizes and summarizes some key approaches.

Considerable research e�ort has been devoted to recoloring al-
gorithms optimized for particular metrics of interest, such as en-
hancing contrast [22, 24, 38, 39, 46, 49, 50, 53, 64], maintaining color
consistency [16, 39, 43, 49, 50], and preserving naturalness of the
image [10, 22, 24, 49, 50]. For the optical see-through augmented
reality setting, ChromaGlasses [42] and the subsequent work [60]
have proposed selective modi�cation of identi�ed critical colors in
the scene by using a semi-transparent display aligned with pixel
precision to the scene content. Hasana et al. [32] uses temporal
modulation, similar to our system, but demonstrates the feasibility
only for discrimination.

Many re-coloring tools have been built into widely used plat-
forms, such as the Color Enhancer Chrome extension provided by
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(a) Colors P andQ appear distinct for trichromats and are assigned di�erent names but are perceived as identical by a Deuter-
anope, leading to naming confusion. This is because the Deuteranope’s color perception is 2D, missing the M cones. Using
our system, the user can induce a color-space transformation, �p and �q , to P and Q, respectively. Critically, Deuteranope
perceives �p and �q as distinct perceptual changes. The changes provide a new dimension that, when combined with the
initial 2D percept of a color, positions the color in a new 3D space for a Deuteranope, eliminating naming confusion. The
shift pattern is regular (cycling a color through di�erent hues) and, thus, can be learned and generalizes locally.

P

Q

Deuteranopia 
confusion lines

(b) Deuteranopia confusion
lines in the CIE 1931 xy-
chromaticity diagram [20]. P
and Q lie on a confusion line.

Fig. 2: Illustration demonstrating color naming confusion for CVD individuals and how our system resolves such confusion.
The xy-chromaticity space in (b) can be obtained by a 3 ⇥ 3 linear transformation of the 3D LMS space in (a) followed by
a perspective projection. The xy diagram is commonly used in color science, because it conveniently allows us to visualize
colors in a 2D representation [57, 67]. Note that the Deuteranopia confusion lines, which are parallel to the M-axis in the LMS
space, are now converging in the xy space.

Google [59], the CVD �lters built into iOS [11] and Android [30],
and the color �lters in Windows [19].

Distinctions. Recoloring methods pose several limitations that
are summarized in a recent user study [26]. First, they present a
modi�ed rendering that is often completely divorced from the native
perception of the user, which can be unnatural and disorienting.
A consistent �nding in surveys is that users favor “on-demand”
interfaces that they can access as required, instead of the “always-
on” mindset that many recoloring methods adopt. In contrast, in
our proposed approach, the default presentation is the unaltered
natural view that users are already accustomed to. By swiping, users
introduce perceptual changes in confusing colors “on-demand.”

Second, recoloring methods do not help color recognition, which
is a common user complaint found in the user study [26]. This is
fundamentally because recoloring algorithms are still constrained
by the dichromat’s two-dimensional color perception. In contrast,
our methods uses temporal color modulation as a proxy for the
missing dimension in the trichromatic color perception (induced
by the swiping gesture), which we show is critical for naming
confusing colors. Critically, learning the temporal modulationis
enabled by our “on-demand” interface, where users get to decide
how to swipe and devise their own learning strategy to couple
temporal changes with color names.

3.2 Computational Color Recognition
Another class of assistive technologies helps CVD individuals rec-
ognize/identify colors. This is typically accomplished by introduc-
ing an overlay or local variation in viewed imagery. They enable
color recognition by using di�erent patterns for confusing colors.
A variety of di�erent overlays have been used including (a) dif-
ferent patterns for confusing colors, such as symbols, shapes and
arrows [23, 27, 36, 56], (b) actual color names in image regions tiled
based on color [23], and (c) highlighting user speci�ed colors to

make them more salient [23, 61], which has also been used in the
AR setting with Google Glass [61].

Distinctions. A main limitation of overlaying patterns over
colors is that it introduces visual occlusion or distraction, which
we avoid in our proposed approach.

The overlaying methods also apply a one-o� augmentation to the
visual �eld, leaving users little control. Thus, the number of colors
that can be recognized is limited by the discrete set of patterns
supplied by the system. Our philosophy, in contrast, is to give
the control back to the users: users voluntarily induce continuous
perceptual changes to confusing colors in the visual �eld and learn
to associated shift patterns with color names. While there are tools
with interfaces that allow users to point to a particular location in
the imagery and identify the color at that location, these are also
suitable only in the limited setting where the goal is to recognize
the color of a speci�c object or a small number of objects [23].

3.3 Optical Assistive Technologies
Optical assistive technologies use physical �lters, typically provided
as eyeglasses, to alter the spectral distribution of light in order to
help discriminate otherwise confusing colors in the visual �eld.

Many commercially available glasses for CVD individuals, such
as those from EnChroma [1] and VINO [6], use identical spectral
notch �lters for both eyes. The �lter eliminates light from a narrow
spectral band, where the human L and M cone sensitivities overlap
the most, with the objective of amplifying the di�erence between L
cone and M cone excitations. Therefore, in principle, the method
can enhance color discrimination for anomalous trichromats, but
provides no bene�t for strict dichromats. In comparative tests, the
functional e�ectiveness of such glasses for anomalous trichromats
is also not de�nitive [29, 52].

Another class of optical technologies introduces binocular color
disparity, where the stimulti are di�erentially altered for the two
eyes. The idea was originated by James Maxwell [47] in the very
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early phase of the scienti�c study of color perception, and then later
revived by Cornsweet [18]. Maxwell conjectured that the disparity
across the two eyes would essentially introduce a new dimension
of perception, which would augment the existing 2D percept of a
dichromat providing 3D color sensation and perception. Operating
on the same principle, ColorBless [33] introduces binocular luster
e�ect for color discrimination and X-Chrome uses optical �lters
that are meant to be worn monocularly [58].

Distinctions. Our approach shares philosophical similarity
with Maxwell’s conjecture in that we also introduce a new dimen-
sion to augment a dichromat’s 2D percept of color and seek to
restore 3D color perception. However, our approach starts with
a user’s normal 1 perception of the world, whereas optical �lters
physically alter the incident lights and, thus, always present to
users an altered color perception of the world. E�ectively, users
have to �rst re-learn what colors look like with the �lters and then
learn the e�ect of the additional dimension (binucular disparity),
adding cognitive load.

For instance, when presented with a green object, a Protanope
based on experience would know it is either green or red but would
hesitate to name it, since the two colors are confusing. In our
method, the temporal modulation eliminates that confusion. Using
the optical �lter, however, the initial percept of the object changes
so that the user would not even be sure if the color is green or red,
increasing the learning di�culty.

3.4 Sensory Substitution
Another class of CVD assistive technologies operate based on the
idea of sensory substitution, where an intact modality, such as
haptics or audition, is used to represent information in an im-
paired/absent sensory modality, e.g., color. For instance, Amedi
et al. [9] demonstrate physiological evidences for using auditory
signals to deliver object shape information to blind people.

In the realm of CVD, both the haptic [15, 48, 66] and auditory
modalities have been explored. On the haptics side, Hapticolor [15]
encodes color information into spatiotemporal vibrations on a
wristband for color recognition and comparison; Nguyen and Ged-
des [48] explored delivering vibration to a person’s wrist and back.
On the auditory side, Soundview [63] maps the three dimensions
of the HSV color space to the frequency, pitch, and gain attributes
of an acoustic wave. EyeMusic [8] uses musical notes generated by
natural instruments to convey shape and color information.

Distinctions. Conceptually, our proposed method is also a form
of sensory substitution, where the missing dimension in trichro-
matic vision is replaced by the temporal modulation. Our approach,
however, operates entirely within the visual modality, since the
induced temporal changes are in the perceived colors. Operating
within the visual modality is advantageous for learning, because we
start with and make use of the unaltered perception that the user
is already familiar with (and where extensive experience grounds
their color perception and terminology) without requiring users to
learn a di�erent modality.

1 To characterize the color vision of individuals, we use the terms “normal” and “CVD”
that are established in the literature and also used by authors who themselves have
CVD [23, 26, 41]. We, however, acknowledge the need for more inclusive terminology.

Fig. 3: User swipes the �nger to shifts colors of objects in
the physical world. Initially confusing colors have di�erent
shift patterns (bottom blow-ups), which the user learns over
time and uses to name/recognize colors. The slider at the top
indicates the amount of shift applied, which our users re-
port very useful for learning color naming. The button at
the bottom right resets the shift to the initial colors.

Of course, sensory substitution could be used for extreme im-
pairments, such as for blind individuals or monochromats, where
the proposed approach would not be viable.

4 MAIN IDEA AND INTUITION
Section 4.1 introduces the main idea behind our AR system and
what it looks like from a user’s perspective. Section 4.2 describes
the technical details behind the system, followed, in Section 4.3, by
intuitive explanation why our idea works .

4.1 User Interface and Main Idea
Our goal is to assist CVD individuals to recognize common col-
ors (by correctly naming them). The challenge with color naming
for dichromats, as shown in Figure 2, is that many distinct colors
share the same 2D color percept. Our key idea is to augment the
2D percept of a dichromat with an additional dimension of infor-
mation such that each color is now represented in a new 3D space,
eliminating naming confusion.

Figure 3 illustrates our AR application. The CVD user is viewing
a scene through the smartphone camera. As the user swipes her
�nger on the phone display, a computational color transform is
applied to the image that results in distinct perceptual shifts in
colors that are originally confusing to the user. The temporal color
shifts caused by the swiping introduce a new perceptual dimension
that discriminates confusing colors. The blow-ups show how the
colors shift as a Deuteranope sees it (simulated). Critically, origi-
nal confusing colors, such as red �owers and green leaves, have
di�erent shift patterns.

The last table column in Figure 2 explains our idea more formally.
While the inherent color percept of P andQ for a Deuteranope is 2D
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(conceptually equivalent to the L and S cone excitation), by swiping
the �nger the user introduces a color transformation that shifts the
points P and Q in the trichromatic LMS space as depicted, which
map into distinct perceived shifts �p and �q in the LS perceptual
space for the Deuteranope user. The shift combined with the initial
2D percept results in a new 3D space, in which P and Q are distinct,
as they are represented by two di�erent points in that space: [L,
�p , S] and [L, �q , S].

Our hypothesis is that as a user spends more time with our sys-
tem they can gradually build the intuition of how a set of originally
confusing colors undergo di�erent temporal color shifts, thereby
resolving naming confusions. For instance, with enough training
a Deuteranope could learn to associate [L, �p , S] with green-ish
color and [L, �q , S] with a red-ish color. Such mappings can be later
retrieved from the visual memory to name similar colors, much as
trichromats associate color names with their 3D color precepts.

While the discussion above uses dichromats as an example, our
approach applies to both dichromats and anomalous trichromats.
Unaided, anomalous trichromats have elongated discrimination
thresholds along the confusion lines. As in the case of dichromats,
the unique temporal shifts of otherwise confusing colors can be used
by anomalous trichromats to reduce the discrimination threshold
and can be learned to resolve name confusion.

4.2 Temporal Shift via Color-Space Rotation
How exactly should a color shift? There are three requirements.
First, the shift must have discriminative power : initially confusing
colors should become distinguishable at some point during the shift.
Second, the shift pattern must also be relatively easy for to CVD
individuals to learn, e.g., it should exhibit regular patterns. Finally,
underlying color transformation that produces the color shift must
be computationally e�cient for real-time rendering.

With the three requirements in mind, we propose to induce the
color shifts by rotating colors about the gray-axis in the linear
sRGB space. For each camera frame encoded in the conventional
nonlinear sRGB space [37], we �rst convert all the pixels to the
linear sRGB space through a computationally simple, channel-wise,
1D look-up table (a.k.a., gamma decoding). We then perform the
rotation operation. Speci�cally, given a color [r ,�,b] expressed in
the linear sRGB space, if we want to rotate it an angle � (in radian)
about the gray axis, the rotated color [r 0,�0,b 0] is [17, 51]:

266664
r 0

�0

b 0

377775
=

266664
c + u2(1 � c) u2(1 � c) � us u2(1 � c) + us
u2(1 � c) + us c + u2(1 � c) u2(1 � c) � us
u2(1 � c) � us u2(1 � c) + us c + u2(1 � c)

377775
⇥
266664
r
�
b

377775
where u = 1/

p
3, c = cos� , s = sin�

Such a rotation is very computationally e�cient, as it requires
the same matrix multiplication for all the pixels, which can be e�-
ciently executed on Graphics Processing Units (GPUs) on modern
smartphones. As a result, we achieve real-time (60 FPS) rendering
on an iPhone 11 device. While we did not restrict the device that
our participants use, they did not encounter sluggish rendering. We
have also considered rotating in other color spaces, such as the CIE
XYZ, CIELAB, CIELUV, and HSV space, which, however, would
have required much more complicated transformations beyond a

simply linear transformation, especially for the latter three, as they
all involve non-linear transformations from the linear sRGB space.

It is worth noting that there are other methods of inducing color
shifts. The goal of the paper is to introduce color shift as a new
idea for color recognition and show that rotational shifts, while
simple at �rst glance, are su�cient for color recognition. We discuss
the design space of color shifts in Section 8 and leave a thorough
exploration to future work.

Intuitively, such a rotation in the RGB color space shifts a color
along the color wheel, changing its hue over time. Figure 4a and
Figure 4b illustrate how the rotation looks in the RGB space and in
the xy diagram, respectively, using eight colors that initially lie on
a Deuteranopia confusion line. A rotation in the RGB space leads
to an elliptical trajectory in the xy-chromaticity diagram2.

Note that a color during rotation might go beyond the gamut of
the sRGB color space (or for that matter, the gamut of human visual
system). In this case, we simply clip the dimension at which the
color value extends beyond the gamut. This is evident in Figure 4b
where the trajectories of more saturated colors (which are closer to
the gamut boundary pre-rotation) are clipped by the sRGB gamut.
Empirically, we �nd that this clipping has little impact in practice
because: 1) many colors are desaturated and do not go beyond the
gamut boundary under rotation, 2) even in cases where colors go
beyond the gamut boundary under rotation, users usually do not
notice, because the general shift direction remains the same.

4.3 Why Do Rotational Shifts Work?
We now analyze the e�ect of our rotational color shifts. The anal-
ysis will provide the intuition as to why rotational shifts meet
the two requirements established above: rotational shifts 1) have
discriminative power and 2) can be learned by CVDs.

Primer: Iso-chrome Lines. To establish the intuition, we must
�rst understand a key question: for a set of confusion colors, what
is the color that a dichromat actually sees?

Psychophysical studies [14, 40] suggest that all the colors that
a dichromat can see lie on the so-called “iso-chrome” lines, which
contains all the colors that a dichromat can correctly perceive.
Figure 4c plots the iso-chrome line for Deuteranopia3. Naturally, the
intersection of a confusion line and the iso-chrome line represents
the color that a dichromat actually perceives when presented with
all other colors on the confusion line. For instance in Figure 4c, a
Deuteranope sees color � when presented with colors A, B, C. To
make the ensuing discussion easier to follow, we use established
trichromatic terminology for describing color shifts and visualize
them in the 2D chromaticity diagram even though the perceived
colors for a dichromat move only along the isochrome line.

Intuition. Consider two cases. First, two confusing colors are
on the opposite side of the iso-chrome line, e.g., color A (green)
and color B (magenta) in Figure 4c. They are initially seen by a
Deuteranope as the same color � (a saturated yellow). As the two

2A circle in linear RGB becomes an ellipse after a perspective projection from the
linear sRGB space to the xy space.
3The line connects the spectral colors at the 475 nm and 575 nm in the xy-diagram.
More rigorously, these are actually two iso-chrome line segments that connect at [1/3,
1/3] in the xy-diagram. The two line segments are almost parallel, so we treat them as
if they are part of the same line to simplify exposition.
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Grey-axis

(a) We rotate colors in the linear sRGB color space
about the gray axis (connecting [0, 0, 0] and [1, 1, 1]).

sRGB 
gamut

(b) The same rotational shifts shown in the CIE 1931
xy-chromaticity diagram along with the sRGB gamut.

Iso-chrome 
lines

A

B

C
�
β

�
�

(c) How di�erent color shifts are seen by aDeuter-
anope in the xy-diagram [20].

Fig. 4: (a) – (b): Rotating colors about the gray axis cycles the colors through di�erent hues. Notice how the sRGB gamut clips
the trajectories. (c): Under rotational shifts, initially confusing colors are uniquely recognizable: colors on the opposite side
of the iso-chrome lines (e.g., A and B) shift in opposite directions, and colors on the same side of the iso-chrome lines (e.g., B
and C) shift in the same direction but with di�erent amounts. The iso-chrome line contains all the colors a Deuteranope can
see [14, 40] (disregarding luminance variations, which is inherent in the chromaticity representation), so the intersection of a
confusion line and the iso-chrome line represents the color that a dichromat actually sees when presented with all the colors
on the confusion line. For instance, a Deuteranope sees colors A, B, C as the color � .

colors are rotated in the RGB space, they go through the trajectories
in the xy space as annotated by the corresponding dashed arrows.

Critically, from a Deuteranope’s perspective, the green color at A
shifts from � to � , transitioning from a desaturated yellow to a more
saturated yellow; in contrast, the magenta color at B shifts from �
to � , transitioning from the desaturated yellow to a saturated blue.
That is, when the two confusing colors are on the opposite side of
the isochrome lines, they shift in opposite directions.

Second, consider when two confusing colors are on the same
side of the iso-chrome line, e.g., the magenta color B and the orange
color C in Figure 4c They will shift in the same direction but di�er
in the magnitude of shifts. As we rotate B and C in the RGB space,
they both shift toward the blue-ish hue, but it takes C more rotation
to start appearing blue-ish (like color � ) than color B. One can
recognize the two colors by learning the amount of rotation needed
for B and C to start becoming blue-ish or, alternatively, what the
two colors look like after a particular amount of rotation.

Taken together, the rotational shifts in principle give rise to a
unique third dimension: confusing colors on the opposite side of
the iso-chrome lines shift in opposite directions, and confusing
colors on the same side of the iso-chrome lines shift in the same
direction but di�er in the shift magnitude. Critically, the shift of
each color is systematic: each color is cycled through the hue circle
in a regular pattern. We thus hypothesize that CVD individuals,
through training, could learn to build a mapping from a particular
color shift pattern to the color name (e.g., a shift from � to � means
green-ish color), thereby recognizing colors. The rest of the paper
provides empirical evidence to support this hypothesis through
psychophysics and user studies.

4.4 Design Decisions and Implementation
The user interface is implemented as a Web App. The main rotation
logic is implemented using JavaScript, which provides access to
the smartphone camera. No camera data is stored or transmitted
outside the phone for user privacy.

Gesture. Users induce color shift is through the swipe gesture,
which has one degree of freedom that corresponds to the rotation
angle. We have also considered other interfaces such as using the
inherent 3 Degrees-of-Freedom (DoF) pose of the camera (yaw,
pitch, roll), but neither works as well as the swipe gesture, which our
participants suggest are easy to use (see Section 7.2 last paragraph).

Rotation Slider. For colors on the same side of the iso-chrome
lines, recognizing colors relies on learning the amount of shifts
associated with di�erent colors, which might not be intuitive to
learn. To assist learning, we add a slider at the top of the screen
(see the top-left panel in Figure 3) to indicate the amount of shift
being applied (i.e., rotation angle). The slider helps users learn what
a color looks like at di�erent rotation angles, which are used to
recognize colors. We will later show at the end of Section 6.4 that
this is largely the strategy that participants tend to use.

5 PSYCHOPHYSICS: ROTATIONAL SHIFTS
HAVE DISCRIMINATIVE POWER

We perform a psychophysical study to show that rotation has dis-
criminative power: the color discrimination thresholds signi�cantly
reduce when rotational shifts are used. We �rst describe the task
and procedure (Section 5.1), followed by the results (Section 5.2)
and a quantitative explanation of the results (Section 5.3).
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(a) A trial in the discrimination task. (b) An example of the staircase procedure.

Base color

Discrimination thresholds w/o shifts

Discrimination thresholds w/ shifts

(c) Discrimination thresholds of a base color.

Fig. 5: (a) A trial in the discrimination task. There are four patches, three of which have the same base color and a randomly
placed patch has the odd color. The participant is asked to identify the odd color (4AFC). In the �rst half of the study, they
use the left/right arrow keys to induce color shifts, which are not available in the second half of the study. (b) An example of
the 1-up-2-down staircase procedure to narrow down the color-discrimination threshold. As a participant completes a 4AFC
sequence in (a), the staircase procedure automatically adjusts the odd color to make it harder if the participant identi�es the
odd color correctly and vice-versa. The �-axis is a relatively measure of the distance between the current color and the base
color; 0means the base color. (c) For a given base color (left), we experimentally obtain eight discrimination thresholdswithout
using the shifts (top) and eight thresholds while using the shifts (bottom).

5.1 Task and Procedure
Task. The goal of our study is to compare the color discrimination
thresholds with and without using the color shifts. To determine
the discrimination thresholds, participants perform a series of four-
alternative forced choice (4AFC) experiments. Figure 5a illustrates
the task using one trial as an example, where the participant is
presented with four color patches. Three of the patches have the
same “base color”, which does not change throughout a sequence
of trials. The other patch, which is randomly placed, has a di�erent
color, which we call the “odd color”. The participant’s task is to
identify and select the patch with the odd color (using the keyboard).

To familiarize the participants with the user interface and mini-
mize typos, we provide a training phase, in which the base color
and the odd color are immediately distinct for the participants so
that they can focus on getting familiar with the UI. A participant
must successfully identify the odd color six times in a row to pass
the training before entering the tests.

Stimuli. We choose four base colors, which can be generally
described as blue (sRGB [86, 95, 214]), green (sRGB [100, 204, 102]),
red (sRGB [184, 74, 74]), and gray (sRGB [136, 136, 136]). They
cover the primary colors of a RGB space along with the achromatic
color, and are reported by a previous study as colors that CVD
individuals commonly confuse with other colors [23]. Figure 6
shows the locations of the four base colors on the CIE 1931 xy
chromaticity diagram.

To get the discrimination thresholds of each base color, we sam-
ple along four lines that roughly cover a full circle: the three confu-
sion line directions of the Protanopia, Deuteranopia, and Tritanopia,
along with the line orthogonal to the Protanopia confusion line.
Each trial has a randomly chosen base color and a randomly chosen
discrimination direction (from among the two directions per line).

All the color patches are placed at the center of the display with
a neutral gray background (i.e., [0.5, 0.5, 0.5] in the linear sRGB
space) following prior work [21].

Procedure. In each trial, depending on their answer, the odd
patch’s color was made easier or harder to discriminate in the
subsequent trial by adjusting the odd patch along the line to be
closer/farther from the base color. The adjustment follows the clas-
sic 1-up-2-down staircase procedure commonly used in discrimi-
nation tasks in psychophysics [25, 44, 62]. An example sequence
under the staircase procedure is shown in Figure 5b. After 6 rever-
sals of the staircase procedure, the sequence terminates, and the
discrimination threshold (color that is indistinguishable from the
base color) is calculated as the average of the last three reversals.
The stimuli are displayed until an answer is picked.

Each study is split into two sections. In the �rst section, partic-
ipants are asked to use the left/right arrow keys to induce color
shifts (to all four color patches), whereas in the second section the
shift is not available. The base colors are randomized within each
section. That way, we derive color discrimination thresholds both
with and without using color shifts. The di�erence between the
two reveals the discrimination power of our rotational color shifts.
Figure 5c shows the results of one base color, where it can be seen
that the eight discrimination thresholds without using shifts (top)
appear visually more di�erent from the base color that do the eight
thresholds derived when colors shifts are induced (bottom).

In total, each study consists of 64 sequences (4 base colors ⇥ 4
sampling lines ⇥ 2 directions per line ⇥ 2 phases), and takes about
2 hours to �nish. Each participant is asked to complete a study
twice. Participants are encouraged to take breaks in-between se-
quences. Upon returning from a break, participants can go through
the training phase to re-familiarize themselves with the UI.
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Fig. 6: Color discrimination re-
sults averaged across Deutera-
nomaly participants (N=8). We
have four base colors, each of
which has two sets of discrimi-
nation thresholds, one without
using the color shifts and the
other using the shifts. For each
set of thresholds, we regress
an ellipse inspired by the clas-
sic MacAdam’s ellipses [45] for
modeling color discrimination
thresholds. The discrimination
threshold reduction is statisti-
cally signi�cant for green, gray,
and blue base colors.

Participants. We recruit 16 CVD individuals (2 Protanopia,
2 Protanomaly, 3 Deuteranopia, and 8 Deuteranomaly; 3 female).
Each subject is asked to go through the Pilestone color blind test [5]
to classify their CVD type. 50% of the subjects were categorized as
Deuteranomaly, which agrees with the statistic that Deuteranomaly
is the most common type of CVD [12, 13]. All studies in the paper,
including this one, are approved by our Internal Review Board (IRB).
All participants’ data were de-identi�ed.

5.2 Results
Our results show that the rotational shifts have discriminative
power. For simplicity, we use results on Deuteranomaly to elaborate,
and summarize the results for other CVD types in the end.

Recall that, for each base color and each participant, we obtain
two sets of discrimination thresholds, one with and one without
leveraging the color shifts. We average the discrimination thresh-
olds in each case across all Deuteranomalous participants. For each
case, we then regress an ellipse that best �ts the corresponding
thresholds. The elliptical regression is inspired by MacAdam’s clas-
sic psychophysical experiments that model human color discrimi-
nation thresholds as ellipses [45].

Figure 6 shows the results for Deuteranomaly with four blow-
ups, each showing details for a base color. For three base colors,
using the shift signi�cantly reduces the discrimination thresholds.
To test the statistical signi�cance of the e�ect of color shifts, we
regress ellipses for each participant at each base color. We then
compare the areas of the regressed ellipses in the shift and no shift
cases. The elliptical area di�erence is statistically signi�cant for
the blue, green, and gray base colors (p < 0.05; a one-tailed paired
t-test under the null hypothesis that the mean areas of the ellipses
before and after using the slider are not di�erent). The reason why
the result at the red base color is insigni�cant warrants further
investigation (e.g., imperfectly calibrated displays).

The reduction of discrimination thresholds is even more statis-
tically signi�cant for Deuteranopia at the blue, green, and gray
base color, all with p < 0.01. Participants with Protanomaly have
statistically signi�cant decreases in discrimination thresholds for
green and gray (p < 0.05). In general, however, due to a lack of

Fig. 7: Each curve represents how the color di�erence of a
pair of two colors changes with the rotation angle (degree).
The color di�erence is plotted in units of Just Noticeable Dif-
ference (JND), where one JND is about 2.3 CIELAB �E met-
ric. Each pair consists of two colors that are about 2 units
of JND apart on the gray base color’s Protanopia confusion
line. For each pair, there exists an angle at which the di�er-
ence between the two (initially confusing) colors is at least
3 JND, distinguishable for a dichromat.

participants that have Protanopia and Protanomaly, we could not
claim strong statistical signi�cance for the two cases: we have only
2 participants each with Protanopia and Protanomaly; for compari-
son, we have 8 participants with Deuteranomaly and 4 participants
with Deuteranopia.

5.3 Discussion
It is not immediately obvious why the rotation shifts have discrim-
inative power, given that CVD individuals can see only a small
subset of colors, i.e., colors on the iso-chrome lines (see Section 4.3
and Figure 4c). We provide a quantitative explanation. The idea is
to show that, during the rotational shift, there exists an angle at
which the two confusing colors become di�erent enough for CVD
individuals to discriminate.
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Fig. 8: Procedure of the longitudinal color recognition study. See the last paragraph in Section 2 for a discussion of how we
assign a name to a given color using a color naming dictionary familiar to trichromats. Even though each test question is
an eight-alternative-forced-choice, participants indicated that they had no issues recognizing colors across pairs, so the only
confusion is from colors within a pair, leading to an e�ective chance level of 10/20.

We show the gray base color results here as an example, and
con�rm the conclusion holds for others. Along the Protanope confu-
sion line for gray, we �nd a set of 13 colors that are about 5 CIELAB
�E away from each other, which represents about 2 units of Just
Noticeable Di�erence (JND) [28, 44]. We then form 12 pairs of col-
ors, each consisting of two adjacent colors in the initial 13-color
set. As we rotate the colors, the di�erence between the two colors
in each pair changes. Figure 7 plots, for each pair, how the color
di�erence (plotted in units of JND) as seen by a Protanope (�-axis)
changes as the rotation angle (x-axis) changes from 0� to 360�.

During rotation, the maximum color di�erence in any pair is at
least 3 JND and can be up to 6 JND. This means for each pair of
initially confusing colors (recall all the colors are from a confusion
line), a dichromat can �nd an angle at which the di�erence between
the two colors is clearly distinguishable 4.

6 LONGITUDINAL USER STUDY
Having demonstrated that rotational color shifts provide discrimi-
native power, we conduct a longitudinal study to show that users
can learn the colors shift patterns to recognize otherwise confusing
colors. Recall that discriminating two colors just means one can

4While the CIELAB �E color di�erence metric is designed for trichromats, we argue
that it applies well to Protanopes and Deuteranopes, because the confusion lines of
Protanopia and Deuteranopia are almost orthogonal to the iso-chrome lines. This
means a CVD’s ability to discriminate colors on the iso-chrome line (which, recall,
contains all the colors that CVD individuals actually see) is only minimally a�ected by
their color vision de�ciency.

tell that the two colors are di�erent, but our goal is stronger: we
want CVD individuals to correctly name confusing colors.

6.1 Study Overview
Rationale. The goal of the study is to test the hypotheses that 1)
CVD individuals can learn to associate temporal shifts with color
names, 2) the learning is generalizable, even to unseen colors close
to those seen in training, and 3) the learned association lasts days
after the initial learning occurs.

To that end, we conduct a longitudinal study, where participants
�rst train themselves to learn the shift patterns of four pairs of
otherwise confusing colors; the shifts are voluntarily induced by
the participants, who can strategize how to go about learning the
patterns. Over the next few days, the participants then are asked to
use what they have learned from the training phase to name colors
that they have not seen in training.

Participants. We recruit eight participants (1 Protanopia, 1
Protanomaly, 2 Deuteranopia, 4 Deuteranomaly; 3 female) from
among the 16 participants for the color discrimination study men-
tioned in Section 5. The study has a Web interface, and participants
complete the study using their own computers.

6.2 Design
The study spans 9 days and has four phases: color matching (Day
1), training (Day 1 – Day 3), recall (Day 4 – Day 8), and re-training
(Day 9). Figure 8 illustrates the procedure of the study that spans
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(a) Number of attempts during the �rst
three days in the training phase.

(b) Test scores of eight participants and the average during the
longitudinal study. Score at the chance level is 10.

(c) Average time spent on in-
correct vs. correct answers.

Fig. 9: Longitudinal study results. In each �gure, the thick line represents the mean across all eight participants, whose indi-
vidual results are the semi-transparent lines in the background. The error bars indicate Standard Error of the Mean (SEM).

nine days. On the �rst day, participants have to perform both color
matching and training. We now describe the design in detail.

Matching Phase (Day 1). Each participant is asked to �rst �nd
four pairs of distinct colors that are confusing to them. The left
side panels in Figure 8 shows the matching interface. For each pair,
we �x the base color and ask the participant to adjust the other
color for a match. The matching color is initially set to be a color
far away from the base color along the participant’s confusion line.
We allow the participant to �ne-tune the saturation, hue, and value
of the matching color to �nd an identical match. The �ne-tuning is
limited to the confusion line and its nearby region. In the end, we
make sure that the two matching colors are actual confusing colors
rather than trichromatic matches.

Finding exact matches is critical; otherwise participants can rely
on the initial di�erence to name colors. Participants who could not
�nd an identical match for each of the four color pairs discontinued
the study and no data from such participants was considered further.

Since participants have di�erent CVD types, it is entirely ex-
pected that the exact matches will di�er across participants. For
instance, to match a pink color some participants used a turqoise-
ish color and others used a gray-ish color. Roughly speaking, the
four matching color pairs are: dark red vs. dark green, light pink
vs. turqoise/gray, dark violet vs. blue, and light green vs. yellow, as
shown in the middle panel in Figure 8.

Training Phase (Day 1 – Day 3). In the �rst three days, par-
ticipants �rst perform a training task with the goal of memorizing
the associations between shift patterns and color names. The user
interface for the training phase is shown in the middle panel in Fig-
ure 8, where all four pairs of colors (eight colors in total) are shown
together, and colors from the same pair abut. Each participant sees
only four distinct colors, because colors from a pair are visually
identical for the participant. The participant use the left and right
arrow keys on the keyboard to shift all the colors simultaneously,
via the rotational color space transform. Their goal is to learn to
associate the shift patterns with color names.

To make sure participants are actively engaged in the training
task, the participants are asked to take a test after training. In the

test, the participant is asked to name colors while using the shift
voluntarily induced in the same way as in the training. The test has
20 colors in total, repeating each of the 8 training colors (four pairs)
twice, plus one randomly chosen color from each color pair. The
order of the 20 colors is randomized. Participants are encouraged
to spend as much as time they wish in training and take the test
only when they feel comfortable.

In the training phase, the participants have to achieve a perfect
test score, i.e., correctly name all 20 colors; otherwise they will be
prompted to go back to training and re-take the test until they score
perfectly. They can not immediately take another test.

To help participants generalize what they have learned to other
similar colors, the test colors are perturbed from the training colors
such that a test color is 4 units of CIELAB �E away from the cor-
responding training color, which roughly corresponds to about 2
JND [28, 44] for color normal trichromats. The underlying rationale
is that a participant cannot simply memorize the shift pattern of a
particular color during training; instead, they should �nd a strategy
to learn underlying patterns of shifts that allow them to correctly
name a similar color that is about 2 JND away from a training color
and never directly seen during training.

Recall Phase (Day 4 – Day 8). In the next �ve days, partici-
pants are asked to take the test (i.e., name 20 colors) daily without
having to score perfectly. The 20 test colors are di�erent each day,
although they are still perturbed by about 2 JND from the training
colors. Upon completion of the test, they are told the correct answer
to each question and shown their answers.

Re-training Phase (Day 9). On the last day, participants are
asked to re-take the training (for as long as they want) and take the
test again immediately after, without having to score perfectly.

6.3 Results
Training Attempts. On the (three) training days, we recorded the
number of attempts each participant needed to get a perfect score,
and the results are shown in Figure 9a, where the mean across
the participants is also plotted. Recall each attempt requires the
participant to go through the training again before re-taking the
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test, and they are encouraged to take the test only when they are
con�dent after each training (Figure 8).

The average number of attempts required for the perfect score
reduces from 4.375 on the �rst day to 2.25 and 1.625 on the second
and third day, respectively. The di�erence in number of attempts
between the �rst training day and the last training day is statisti-
cally signi�cant (p < 0.05, one-tailed paired T-test under the null
hypothesis that the mean number of attempts across participants
on the �rst day and that on the last day are not di�erent), indicating
that learning (of the association between the patterns of shifts and
the color names) improves with repeated exposure to training.

As a sanity check, we veri�ed that the large number of attempts
in the �rst training day is not because one or two “di�cult” pairs.
The three participants who had the largest number of attempts
on the �rst day (N01, N03, N08) got only 10-12 colors (out of 20)
correct on their �rst attempt and did not spend a majority of their
time “stuck on only one or two colors.”

Recall Performance. Figure 9b shows how the test score changes
over the nine-day study for all eight participants and the average
values. The test scores are, by construction, perfect (20/20) on the
�rst three days, since participants have to repetitively train and
take the test until they get a perfect score (see Figure 8). Over the
next �ve recall days, the average test score across participants is
between 18.25 and 19.125. The average scores on each of the re-
call days are well above the expected chance level (10/20), and the
di�erence is statistically signi�cant (p < 0.01, Z-test with µ0 = 10
under the null hypothesis that the users’ scores would be no better
than the chance level at 10).

The results indicate that the memory of color shift patterns lasts
days after initial training, suggesting that the temporal color shifts
empower CVD individuals to recognize otherwise confusing colors
signi�cantly above chance level.

Re-training Performance. On the last day (Day 9), partici-
pants are asked to go through the training again and re-take the
test. The average test score on Day 9 is 19.125, which is not a sig-
ni�cant improvement over the average score of the recall days (p
= 0.24, one-tailed T-test underthe null hypothesis that the mean
score across participants on the re-training day would be the same
as that on all the recall days.). The result suggests that the color
recognition performance tends to saturate even after re-exposure to
the shift patterns. This indicates that CVD individuals might need
more speci�c learning guidance; see our discussion in Section 8.

6.4 Discussion
Con�dence vs. Accuracy. Figure 9c compares the average time
spent on tests that are incorrectly answered with that on tests
that are correctly answered. The former is statistically signi�cantly
longer than the latter (p < 0.01, one-tailed paired T-test with the
null hypothesis that the the average time spent on incorrect answers
and correct answers is the same). The time spent on a test question
can be seen as a proxy of con�dence: when participants hesitate
more on a test they are more likely to get the answer wrong.

Participants’ Strategies. We conduct post-study interviews
with the participants. We �rst con�rm the validity of the intuition
we establish in Section 4.3: across all the participants, for colors on
the opposite side of iso-chrome line they all report seeing colors

Fig. 10: The distribution of incorrect test answers between
two scenarios: colors that on the same side of the iso-chrome
line and colors that are on the opposite side.

shifting in di�erent directions, and for colors on the same side of
the iso-chrome line they all report seeing colors shifting in the same
direction but with di�erent magnitudes.

To learn colors shifting in opposite directions, they report using
the strategy of observing how a color looks at di�erent rotation
angles with the assistance of the slider indicator. This validates
our design decision of adding a slider, as discussed in Section 4.4.
For instance, participants say “The pink shifts much more than the
turquoise which doesn’t seem to shift much at all.” and “for green vs.
yellow if I moved the slider to the right, the yellow would be a darker
more blue tone and the green would be a lighter more pink color.”

Distribution of Incorrect Recognitions. Could a participant
be more likely to get certain answers wrong? Figure 10 shows, for
each participant over all the �ve recall days, the distribution of
incorrectly answers between two cases: when test color belong
to a pair that is on the same side of the iso-chrome line vs. on
the opposite side. Except N01, all other participants’ incorrect test
answers are heavily biased toward confusing colors that are on the
same side of the confusion line.

The results suggest that confusing colors that are on the same
side of the iso-chromes line are generally much harder to discrimi-
nate and recognize than those on the opposite side of the iso-chrome
line. This makes intuitive sense because, as shown in Figure 4c,
colors on the opposite of the iso-chrome line shift in opposite direc-
tions (e.g., one becomes blue and the other become yellow), which
is more easily learned than when the confusing colors are on the
same side of the iso-chrome line, in which case the two colors shift
in a similar pattern but di�er in shift magnitudes, which even with
the slider indicator could be more nuanced to observe and learn.

Device Color Calibration. Even though di�erent participants
use di�erent smartphones, each participant used their own device
consistently throughout a study, which is representative of the ac-
tual deployment scenarios of our system. As a result, the device
color calibration is controlled within each participant’s experience.
Additionally, modern displays are well calibrated color wise. For
instance, a recent comprehensive benchmarking of modern smart-
phones shows that the color error is generally within 0.02 JND [54].
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Fig. 11: Results of sorting Lego blocks from four participants. All participants initially had trouble correctly naming colors,
but could successfully complete the task after using our App.

7 APPLICATION EXAMPLES
We showcase the versatility of our proposed method with two real-
world applications, where users use the mobile AR App in building
with Lego blocks and observing AI-generated artistic images. We
invited six participants from the longitudinal study (1 female; 1
Protanopia, 1 Protanomaly, 2 Deuteranopia, 2 Deuteranomaly)5 to
perform two essential steps in these tasks, namely recognizing col-
ors of Lego blocks and perceiving colors in images. The participants
have all reported being familiar with the UI before the studies.

Rationale. Both tasks rule out context as a confounding factor.
It is known that CVD individuals sometimes can have a reasonable
guess of an object color based on the context, e.g., an orange likely
has an orange-ish color and the sky is likely blue. In contrast, Lego
blocks can be of any color, and AI-generated artistic images do not
have to follow the actual object colors in the physical world.

It is also worth noting that we do not get to control the exact
colors of the Lego blocks and the colors in the artistic images; these
actual colors are generally not seen during the longitudinal study.
Thus, performance on these two real-world scenarios is indicative
of how users generalize what they have learned from training.

7.1 Building with Lego Blocks
We choose building with Lego blocks as a representative task that
requires users to physically manipulate individual objects with
various colors. In a building project, one necessary step is to identify
a piece of block with the desired shape and color. Our mobile App
can assist users with CVD to accurately pick the intended blocks.
The users simply take a photo of the Lego blocks, as they perform
the swipe gesture on the mobile phone, they can recognize the color
of each Lego block and then select the desired ones to build up.

To verify the usability of our system in this task, we let the
participants group Lego blocks by colors both using or without
our App. For each participant, from the available choices, we pick
Lego blocks whose colors are likely confusing to them based on
the matching results in the longitudinal study. See Figure 11 for
examples 6. We then tell the participant that the mix has multiple
colors, each having di�erent shades, which may or may not be
confusing to them. The participant is then asked to cluster the

5They are N01 – N04, N06, and N08, which are renamed R01 – R06 in this study.
6Speci�cally, the blue-purple pair is used by all participants; the green-brown pair is
used by all but R02; the grey-pink pair is used by R01.

blocks according to their general colors and name each cluster. The
participant is asked to perform the task twice, one without using
the App and the other with the App.

Results. Only four of the six participants had challenges in this
study. With the App, they all completed the task successfully. The
other two were weak anomalous trichromats who could name the
colors without the App. Figure 11 shows the task result before (left)
and after (right) using the App for the four participants.

We discuss the results of R01 as an example to showcase how our
system helps address the color confusions. Participant R01’s mixed
consists of two shades of pink (one lighter and one darker) and
two shades of gray (again, one lighter and one darker). R01 initially
named the darker gray and the lighter pink both as gray-ish colors,
the lighter gray as a cyan-ish color, and the dark pink (magenta) as
a pink-ish color. This is not surprising in that cyan, gray, and pink
are confusing colors for Protanopes like R01, and without contexts
R01 resorted to guessing.

With our AR app, R01 realized that the two gray-ish blocks did
not shift much; this suggested to him that both blocks were gray-ish
colors, since gray colors lie on or close to the rotation axis and,
thus, do not shift much during rotation. In contrast, the other two
blocks shift in patterns similar to what has been observed during
training for pink, which suggests that they are pink-ish colors.

7.2 Interpreting Artistic Works
The second application is interpreting artistic works, which requires
correct perception of the color patterns to fully comprehend an
artwork. To demonstrate the e�ectiveness of our system in assisting
in this task, we show participants a set of images generated by
Midjourney [3]. They are told that these images are AI-generated
so object colors may or may not correspond to how they appear in
the physical world. The participants are �rst asked to describe the
colors they see in the images without using the AR App, and are
then asked to re-describe it using the App.

Results. Figure 12 shows the three artworks shown to partici-
pants. Each artwork is shown to all participants, but, due to their
di�erent types of CVDs, some artworks are more challenging for
certain participants than others. We now report the empirical �nd-
ings from when participants use our App to explore each artwork.

Figure 12a shows an image that R01, R02, and R06 had challenges
with. Both R01 and R02 initially described the image having only
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(a) Secluded entrance to the ocean. (b) Fall color. (c) Painting the ocean under cherry blossom.

Fig. 12: Midjourney-generated images used by participants to recognize colors.

red �owers at the bottom, and R06 described seeing only green
�owers at the bottom. They all quickly recognized green leaves
intermixed with the red �owers at the bottom after using our App.

For the top part of the image they all initially saw only green
leaves. After applying the color shifts in the App, they all started
seeing a di�erent color. R01 was still unsure what that color might
be, R02 guessed that it had a yellow tint, and R06 guessed that it
had a red tint. In reality, the leaves at the top are a mix of green and
orange colors. No participant had seen orange-ish colors in their
training, so the color shift might have appeared unfamiliar to them,
leading to the hesitation.

Interestingly, however, R02 and R06 did correctly infer that the
color had a tint of yellow and red, respectively, suggesting that they
saw similarities between how the new color shifts and how yellow
and red shift during training. Indeed, orange is a mix of yellow
and red; the three colors are close in the xy-chromaticity space and
do have similar shift patterns (see Figure 4b). This suggests that
R02 and R06 were both able to generalize the learned patterns to
qualitatively di�erent colors.

Figure 12b was a challenging case for R03 and R06. Prior to using
the App, R03 described the image as having many red �owers on
the right extending all the way to the left. In reality, the middle
and left parts of the photo have few red �owers but many green
grasses, which R03 correctly recognized after using our App. R03
explained that at �rst glance the image looked full of either green
or red colors, which are confusing for the deuteranomalous vision.
However, the �owers on the right are easily recognized as �owers
due to their shapes, based on which R03 guessed that the �owers
are red since �owers are more likely red than green. Since green
and red appear virtually identical to them, without the App, R03
incorrectly assumed that the rest of the colors are all red-ish, too.

Figure 12c was a representative case for R01, a protanope, who,
after using the AR App to view the image, was visibly surprised to
realize that the colors in the image are very di�erent from what he
originally thought them to be.Without using the App, R01 described
the image as “the ocean is red, the tree is pink, and the beach is gray
if I have to take a guess.” R01 described the ocean as red presumably
because the ocean is a cyan-ish color, which has a tint of green,

which is confused with red for protanopes. After using the App,
R01 said the ocean is cyan and the beach is now de�nitely gray.

Prior to using the App, R04, who has protanomaly, described the
ocean as pink, which makes sense as pink and cyan are confusing
colors for protanomalous vision. After using the App, R04 said the
ocean is “de�nitely not pink, but is most likely cyan or perhaps light
blue.” This hesitation on light blue makes sense, because the ocean’s
cyan color, as a mix of green and blue, does have a tint of blue. In our
rotational shifts, blue and cyan do have similar shift patterns, since
they are on the same side of the iso-chrome lines. This suggests
that R04 relied only on the shift pattern in recognizing colors while
ignoring their di�erent starting positions — blue and cyan have
di�erent initial appearances even under the protanomalous vision.

7.3 Ease of Use
After �nishing both real-world tasks, each participant was asked to,
anonymously, answer the question “The smartphone App interface
is easy to use” using a 5-point Likert scale (1: strongly disagree;
3: neutral; 5: strongly agree). Our question is adapted from the
System Usability Scale (SUS) question “I thought the system was
easy to use.”, which is the most relevant SUS question considering
the relatively simple mobile App interface. The average rating is 4.0
(SD=0.58), indicating that our AR App is easy to use, and the result
is statistically signi�cant (p < 0.01 using a one-tailed one-sample
T-test against µ0=3, with the null hypothesis that the ease to use is
no higher than neutral).

8 DISCUSSION
Design Space of Temporal Modulation. The current work opts
for rotational shifts as a computationally e�cient and empirically
powerful method for inducing temporal modulation. The design
space of temporal modulation, however, is vast. In future work,
we plan to explore the design space more comprehensively and
characterize the pros and cons of alternative options, which we
brie�y describe below.

For instance, instead of rotating colors, which changes the hue,
one could change the saturation and/or lightness of the colors. We
also do not have to apply the same temporal modulation uniformly
to the entire visual �eld. For instance, for a pair of confusing colors
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that are hard to recognize, we could apply a shift that intentionally
ampli�es the di�erences between the two colors during shift. Such
a heterogeneous mechanism can also be used to avoid hitting the
gamut boundary during shifts.

In our current design, the speed of color rotation is proportional
to the user’s speed of swipe. This works well because, in our ob-
servation, the swipe speed is roughly constant for a particular user,
so the user can learn from consistent perceptual experiences. In
the future, we could explore an alternative where the swipe speed
and the rotation speed are decoupled (i.e., a constant rotation speed
regardless of the swipe speed), and understand how this design
a�ects learning. The decouple design could also potentially allow us
to compare the e�ectiveness of learning across participants, since
they all perceive the same rotation speed (for a given color).

Implementation on Headsets. While our AR application is
implemented in a smartphone, an interesting future extension is to
port it to an AR or a Mixed Reality headset, which would enable
hands-free interactions for inducing the color shifts. For instance,
the colors can be rotated based on the virtual camera pose, e.g., as a
user rotate the head or walks around the object in the scene. With
the hands free, users can also more freely use the gesture to control
the shift. For instance, we can design di�erent hand gestures for
di�erent temporal modulation mechanisms, or allow users to freely
draw, in the air, the shift trajectory in the RGB space.

Explicit Learning Guidance. An interesting direction for fu-
ture exploration is to provide speci�c learning guidance to users.

From Figure 10 and the discussion in Section 6.4, we know that
participants generally �nd it much harder to learn colors on the
same side of the iso-chrome line, presumably because those colors
have similar shift patterns and di�er primarily in the speed with
which they shift. It is conceivable that “speed” is more nuanced
to observe and to learn. In the future, we could guide users to
pay attention to the “critical angle” at which a color qualitatively
changes (e.g., shifts to a di�erent name for them). In this way,
instead of the di�erent speeds, users learn to memorize the critical
angles of the confusing colors, which could be more direct to learn.

In addition, we also observe that some participants pay attention
only to the shift pattern but ignore the initial appearance of the
color. The analysis in Section 4.1 shows that the initial appearance
of a color provides the initial 2D percept needed to position the
color in a 3D space and, thus, is critical for color recognition. In the
future, performance could be improved if we prime the participants
with basic knowledge of color vision and CVDs.

Automatically Applying Shifts. We considered the idea of
automatically applying the color shifts without user control, but
found it to be ine�ective — for three reasons.

First, the shift is context-dependent: there are many colors in a
scene, and each user at any given time might care to name a speci�c
color, which requires a speci�c shift. Second, the shift is also user-
dependent: di�erent anomalous trichromats have di�erent degrees
of color de�ciency, which means they need di�erent shifts even
for naming the same color. For instance, the 4 deuteranomalous
users’ rotational angles can di�er by over 30 degrees when naming
Gray. Finally, we also observe, and users’ report, that they often
need manual control of the slider to go back and forth, especially
at the discrimination boundary, which is hard to do automatically.
That said, it would be a very interesting future work to explore

how our system can learn from past interactions to infer the CVD
degree/type, which could guide automatic shifts.

(Lack of) Comparison with Static Filters. We did not com-
pare against approaches using static �lters, which is the most com-
monly assistive technique for CVD individuals, as discussed in
Section 3.1. Fundamentally, a static �lter would allow only color
discrimination rather than color naming, which is the focus of the
paper. Empirically, we also �nd that the way participants interact
with our App indicates that a static �lter does not help them name
colors. Depending on the colors they are asked to name, partici-
pants adjust the slider to di�erent rotation angles, suggesting that
a single �lter is ine�ective.

Our observation corroborates a recent empirical study on static
color �lters by Geddes et al. [26], which points out that static �lters
have limited appreciation from actual color de�cient individuals,
because existing �lters apply an one-o� transformation whereas
users often want to “use information from all states (on/o� and
di�erent recolouring tool modes) to make informed opinions on
how they believed colours were transformed during recolouring.”
The continuous transformation a�orded by our system provides
such rich information.

Larger Geographically Distributed Study. For color assis-
tive technologies to be actually useful and address a real need,
CVD individuals they seek to help should be closely involved in
their development, as emphatically argued by Geddes et al. [26].
In adherence with this philosophy, we closely engaged two CVD
individuals (other than the participants who participated in the
evaluation tasks), who participated in our weekly meetings and
provided feedback/suggestions via open-ended dialogues.

We chose a local cohort of CVD individuals as participants for
our studies. These studies have validated our scienti�c hypothesis
and overall system design. As a follow-up, we plan to signi�cantly
scale-up our study to engage a larger group of CVD individuals
across di�erent geographically regions to assess how our system
can help them in day-to-day tasks involving color recognition. This
is enabled by our Web-based interface, which users can access via
their smartphones/laptops.

9 CONCLUSION
We propose, develop, and demonstrate a method that allow dichro-
matic individuals, whose color vision is ordinarily two-dimensional,
to recognize/name otherwise confusing colors. The key is to induce
a new dimension through temporal color shifts, which, along with
the initial two-dimensional percept of a color, positions colors in a
new 3D space where users can learn to recognize and name colors.
Through psychophysics and a longitudinal study we show that
the temporal color shifts have discriminative power and induce
regular patterns that can be learned by users. We implement an AR
interface on smartphones. The AR application is easy to use and
helps CVD individuals recognize colors in two real-world scenarios
(building with lego blocks and interpreting artistic works).
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