Acta Materialia 284 (2025) 120627

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier.com/locate/actamat

Full length article ' )

Check for

Reconstructing dislocation slip evolution by assimilation of elastodynamic Rt
displacement signatures

Junjie Yang ‘Y, Daniel Magagnosc ", Jaafar A. El-Awady *®", Tamer A. Zaki >

a Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
Y DEVCOM Army Research Laboratory, Army Research Directorate, Aberdeen Proving Ground, MD, 21005, USA
¢ Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA

ARTICLE INFO ABSTRACT

Keywords:
Dislocation slip
Data assimilation
Inverse problem
Reconstruction

The transient nature of dislocation slip during plastic deformation makes it challenging to track their spatio-
temporal evolution from classical measurements. Here, we develop a data assimilation approach to solve the
inverse problem of reconstructing the dislocation slip evolution with high spatio-temporal resolution from their
elastodynamic displacement signatures. The approach utilizes high-frequency displacement measurements that
can be obtained through acoustic-emission sensing or laser interferometry. We employed a total-variation-
regularized algorithm to reconstruct the underlying dislocation activities from the acquired displacements. To
rigorously assess the capability of the reconstruction algorithm, we acquire the elastodynamic displacement
measurements using discrete dislocation elastodynamics simulations as a surrogate for experiment. Our
reconstruction quality demonstrates that this approach can accurately capture the underlying evolution of
dislocation slip at unprecedented spatio-temporal resolutions beyond conventional defect imaging techniques.
The prospective experimental implementation of our reconstruction approach holds promise for providing new
understandings into the plastic deformation of advanced materials.

1. Introduction

The plastic deformation of crystalline materials is characterized by
intermittent dislocation slip activities [1-4]. Imaging the evolution of
these slip activities is crucial for providing new fundamental insights
into plasticity mechanisms. However, existing characterization tech-
niques have limitations in visualizing the evolution of dislocation slip.
Transmission electron microscopy (TEM) is a powerful tool for imaging
dislocations at atomic-level resolutions [5-9], but its applicability is
constrained by its transmission imaging principle. TEM can only ana-
lyze samples up to a maximum thickness of ~100 nm, and the behavior
of dislocations observed in thin foils may not be representative of those
occurring within bulk materials due to the proximity of dislocations
to free surfaces. Furthermore, as a direct imaging method, TEM’s
acquisition time is limited by its charged-couple device camera, which
can only achieve a recording rate of around 0.1s [9].

Time-resolved X-ray diffraction techniques at synchrotron facilities
are also commonly used to image dislocation slip evolution, but their
temporal resolutions, ranging from microseconds to milliseconds, limit
their ability to capture transient dislocation movements. X-ray diffrac-
tion produces two-dimensional diffraction spots of a three-dimensional
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(3D) object, and reconstructing the source 3D object in real time
requires a sequence of tilted projections at each frame, prolonging the
acquisition time. Several limitations further impact the efficacy of X-
ray diffraction techniques for imaging dislocation structures, such as
the requirement for samples with low dislocation densities, sensitiv-
ity to the crystallographic orientation of the sample, and the need
for specialized equipment and instrumentation at synchrotron facili-
ties. Currently, X-ray diffraction topography’s applications are confined
to isolated nanoparticles (~0.5 pm in size) [10-13], which may not
faithfully represent dislocation behaviors in bulk materials, and the
implementation of in-situ mechanical loading remains challenging.

To address the limitations of existing characterization techniques,
there is a need to develop a new approach that can efficiently and ef-
fectively image the evolution of dislocation plasticity. In this work, we
introduce a data assimilation approach to reconstruct dislocation slip
evolution with high spatio-temporal resolution. Unlike direct imaging
methods that rely on capturing photons or particles with a camera,
and are thus limited by the camera speed, our approach interprets,
or assimilates, high-frequency displacement measurements during the
deformation of samples. These measurements can be acquired through
acoustic emission (AE) measurements [14] or laser interferometry [15],
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enabling the resolution of transient dislocation dynamics events. By
utilizing the abundance of the information contained in these high-
frequency measurements, we solve the data-assimilation inverse prob-
lem to reconstruct the underlying dislocation slip evolution. Using the
elastodynamic solution of dislocations [16-18], we formulate the data
assimilation problem as a linear inverse problem, which has been a
subject of extensive research across various disciplines, such as X-ray
computed tomography [19,20], restoration of degraded images [21,
22], inference of remote scalar sources from downstream measurements
in turbulent environments [23], and applications to nonlinear prob-
lems in fluid dynamics [e.g.24-28]. In the following, we introduce a
total-variation (TV)-regularized algorithm to reconstruct the underly-
ing dislocation activities from surface measurements and verify the
feasibility of our reconstruction approach through discrete dislocation
elastodynamics (DDE) simulations.

2. Simulations of dislocation slip evolution and elastodynamic
displacement measurements

DDE simulations are conducted to model dislocation slip evolution
in face centered cubic (FCC) single crystal Al oriented for single slip.
Our simulations are conducted using the open-source code ParaDiS [29]
that has been substantially revised in-house [16,30]. In DDE, the elas-
todynamic displacements induced by dislocation activities, which we
intend to detect by high-frequency surface displacement sensors, are
modeled using the 3D elastodynamics solution we have previously
implemented in ParaDis [16]. It is critical to note that, for the pur-
pose of reconstructing dislocation slip evolution from displacement
signals, the latter cannot be approximated by the quasi-static solu-
tion of dislocations commonly used in classical discrete dislocation
dynamics (DDD) simulations. The identifiability of events happening
at different locations and times relies on the dynamic characteristics
of waves (e.g., arrival time, amplitude, and wavelength). In classical
DDD simulations, the evolution of dislocation networks in FCC metals
is less sensitive to the elastodynamic effects under low and intermediate
strain rates, or for low/intermediate externally applied stresses [29,31-
34]. Therefore, the interactions between dislocations are accounted for
using the quasi-static solution [35] as an approximation. All dislocation
reactions are planar, and cross-slip mechanisms are not considered
in this work for simplicity. The DDE simulation setup is shown in
Fig. 1(a). The simulation domain is an Al cube with edges parallel to
the x = [110], y = [112], and z = [111] crystallographic directions. The
edge length of the simulation cell is 12.8 pm. Free surfaces boundary
conditions are imposed on all surfaces. Thirty Frank-Read (FR) dislo-
cation sources are randomly distributed on a plane parallel to the (111)
crystallographic plane that is 2.29 nm above the bottom free surface
of the simulation cell. Note that the location of the slip plane relative
to the bottom surface does not affect the calculations, as there are
no elastodynamic displacements calculated on the bottom surface and
no dislocations interact with it. All FR sources have a [110] Burgers
vector and are generated with random orientations lengths ranging
from 1.15 pm to 2.86 pm. A constant shear stress 6, = 100 MPa is
then applied to the top and bottom surface, such that the [110](111)
slip system will have the highest Schmid factor. All dislocations have
the same Burgers vector [110]. The mechanical properties of Al used in
the DDE simulations are listed in Table 1. The simulation time-span
is T = 50 ns. Unless otherwise specified, twenty-four displacement
sensors (N, = 24) evenly surround the plane z = 6.4 ym and z =
12.8 pm as shown in Fig. 1(a). Although applying multiple sensors to
a microscale sample is challenging for AE measurements, it is feasible
through surface measurement techniques such as laser interferometry.
The data acquisition of these sensors was assumed to be at a time
interval 4r,, = 0.1 ns (10 GHz), over a time horizon 7,, = 57.5 ns.
Note the difference between the simulation time-span 7, which is
the duration of the deformation process during which dislocations
are actively evolving in the DDE simulations, and the measurement
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Table 1

Material properties used in the 3D DDE simulations.
Poisson’s ratio v Shear modulus 4 Burgers vector magnitude »  Density
0.35 26.2 GPa 0.2864 nm 2700 kg/m’

time-span 7,,. The measurement time-span extends 7.5 ns beyond the
simulation time, totaling 57.5 ns. The additional 7.5 ns ensures that the
slowest (transverse) waves can traverse the body diagonal, the longest
possible path within the simulation cell. The effect of the acquisition
rate is discussed in Section 4.2. The acquisition rate used here is the
lowest that still ensures reasonable reconstruction accuracy under the
current sensors placement and the strain rate.

The elastodynamic displacement measurements at the 24 sensors
are straightforward to calculate by integrating over the surface that has
been swept by the dislocations [16]:
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Here, u is the elastodynamic displacement field, S, (#) is the cumulative
surface that has been swept by the dislocation by time #, ¢y and ¢; are
the transverse and longitudinal wave speeds in the isotropic material,
v is the Poisson’s ratio, r = x — x’ is the vector pointing from the inte-
gration point x’ to the field point x at which the displacement vector
u is to be calculated, r is the magnitude of r, and ¢ is the time when
the integration point x’ is swept by a dislocation. The surface integral
in Eq. (1) represents the integration over all the swept areas for which
their associated elastic waves have reached the observer. Fig. 1(b)
reports the v,, v,, and v, components of the surface velocity, obtained
by taking the numerical derivatives of the displacements measured by
a representative sensor marked in red in Fig. 1(a). Notably, The v,
component is stronger than the other two because x is the slip direction.
The localization of the displacement signal reflects the heterogeneity of
the underlying dislocation plasticity. In the next section, we will discuss
the spatio-temporal reconstruction of the slip evolution that decodes
the wealth of information contained in these measurements.

3. Reconstructing slip evolution from surface measurements

Dislocations are typically represented by tangled networks, as shown
on the slip plane in Fig. 1(a), but in this work, to characterize the
slip evolution we generated a—*“swept-times map”. This map pixelizes
the slip plane and counts the number of times each area on the slip
plane has been swept, as shown in Fig. 1(c). Unless stated otherwise, a
56 x 56 mesh is used to discretize the slip plane into pixels measuring
Ax = 0.23 pm each. These pixels are used to record how many times
they have been traversed by dislocations every 4t = 0.2 ns. The swept-
times map is a three dimensional tensor that describes the evolution
of the footprints of dislocations and, in vectorized form, is denoted s.
There are two forms of the swept-times map that we use throughout
the paper. The first is the instantaneous swept-times map s;,, which
records the swept-times of each pixel since the previous time-step and
up to the current time-step. The second is the cumulative swept-times

map s, which records the cumulative swept times of each pixel since
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Fig. 1. Schematic showing the reconstruction process of dislocation slip evolution. (a) The DDE simulation configuration. Dislocations are confined to a single slip plane within
a free-surface cubic simulation cell. All dislocations are on a plane that is z = 2.29 nm above the simulation cell bottom surface. The simulation cell is equipped with 24 high
frequency displacement sensors evenly placed on all sides of the simulation cell at two heights z = 6.4 ym and z = 12.8 pm. (b) The x, y, and z components of the surface velocity
obtained by taking the time derivative of the displacements at the sensor marked in red in (a). (¢) Cumulative swept-times map on the slip plane at the end of the simulation
(t=50 ns). (d) Reconstructed cumulative swept-times map from the surface measurements showing an MSE = 0.34, and SSIM = 0.64. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

the initial time and up to the current time. The two maps, s, and s,,,,
are related as follows:

Scu = Ltsin’ (2)

where L, is the integral operator in the time dimension. Due to the
invertibility of L,, the mapping between s;, and s, is one-to-one. It
is important to emphasize that they are not two different entities but
rather two different representations of the same swept-times map. A
positive count is registered for a pixel when a [110](111) dislocation
sweeps across the entire area of the pixel by moving in the direction
n x & where n and £ are the slip-plane normal and the line direction
of the dislocation, respectively. Conversely, if the dislocation passes
through the pixel by moving in the opposite direction, we record a
negative count for that pixel. In cases where dislocations only cover a
portion of the pixel area, fractional counts are recorded. Fig. 1(c) shows
the cumulative swept-times map, and an example in Fig. 2 illustrates
the differences and connections between the instantaneous and the
cumulative maps.

Swept-times maps are more suitable for characterizing dislocation
slip localization as compared to the conventional network represen-
tation for two reasons. Firstly, each frame of the swept-times map

provides more information than the dislocation networks. The former
not only reflects the current position of dislocation as the contour
lines, but also captures the trajectory of dislocations. Furthermore,
the swept-times map portrays the localization of plastic deformation,
which is difficult to infer directly from a static snapshot of the dis-
location microstructure. Secondly, the utilization of the swept-times
map naturally arises from the perspective of the elastodynamic solution
of dislocations. The elastodynamic field exhibits a complex nonlinear
relationship with the evolution of the underlying dislocation network.
However, in contrast, the elastodynamic displacement field induced by
dislocation motions is linearly related to the swept-time map [16,18],
as the swept-times map serves as the integration domain in the sur-
face integral used to calculate the elastodynamic displacement field,
as demonstrated in Eq. (1). The linearity significantly simplifies the
inverse process of reconstructing slip evolution from elastodynamic
field measurements.

As illustrated in Fig. 1, our goal is to reconstruct the swept-times
map (Fig. 1(c)) from measurement data (Fig. 1(b)). The swept-times
map can be vectorized and denoted s. The dimension of the swept-times
map s is dim(s) = N, x N, x N, = 784 x 103, where N, = T /At = 250



J. Yang et al

(a) Dislocation microstructure (b ) Sin
12.8 12.8
,_\.J = =

y [um]
()]
»

12.8 0 6.4

X [um]

Acta Materialia 284 (2025) 120627

4
0.3
02 % S
: = s
01 4§ 2%
Q > [0}
00 £ £
= 1|—
-0.1
0
12.8 0 6.4 12.8

X [um]

Fig. 2. An example illustrating the two aspects of a swept-times map. (a) Underlying dislocation microstructure that generates the swept-times map in this figure. (b) Instantaneous

swept-times map s,
times of each pixel from the start to the current state of the dislocation slip evolution.

is the total number of the time-steps, and N, = N, = Lx/Ax = 56 are
the numbers of grid points along the x and y directions. The surface
velocity at all sensors can be derived from the measured displacements
and then aggregated into a single vector v. The dimension of v is
dim(v) = 3 X Nyx N, = 41.4 x 10°, where N, = 24 is the number
of sensors, N,, = T,/4t, = 575 is the number of measurements
in time, and the factor of three accounts for each sensor measuring
all three components of the displacement. As shown in Eq. (1), the
elastodynamic displacement u is a surface integral over the cumulative
swept-times map s,,, so they are linearly related: u « s,,. With the other
two obvious linear relationships v « u and s,, « s;,, a linear mapping
A can be defined between the surface velocity v and the instantaneous
swept-times map s,

As;, =v. 3

This linearity originates from the assumption of linear elasticity in
the wave medium. The system matrix A has dimensions dim(A) =
(dim(v),dim(s;,)) = (41.4,784) x 103, and is constructed using the
elastodynamic solution of dislocations in Eq. (1). Each column of A
is the aggregated measurements by the 24 sensors resulting from the
activation of a single pixel on the slip plane at one of the time-steps.
A noteworthy property of A is its translational invariance in time:
the measurements from the activation of a pixel at a later time are
simply the translation of measurements from the activation of the same
pixel at an earlier time. This property allows for substantial savings in
computational memory and time. In practice, only NL! of A must be
stored, and the remaining portions can be inferred through translations.

Solving for s;, given A and v is inherently an ill-posed problem. The
system is heavily under-determined, with only ~ 5% of the total number
of measurements compared to the number of unknown variables, not
to mention the insufficiency of independent measurements. While the
underlying physical processes differ, the mathematical formulation of
this reconstruction problem resembles the X-ray computed tomography
(CT) reconstruction. In the context of X-ray CT, the source s represents
the tomographic image of the object to be reconstructed, the measure-
ment v is the X-ray projections of the object obtained from a series of
angles, and the linear mapping relating them is the Radon transform
describing how X-rays are attenuated by the object under examina-
tion. Given these parallels to X-ray CT reconstructions, we adapt an
algorithm that has been widely used in tomographic reconstructions
to address the reconstructions of dislocation slip evolution, namely the
TV-regularized algorithm [36-38].

We formulate a cost function within the Bayesian inference frame-
work and employ the TV minimization as the regularizer. Specifically,
we define the cost as:

T(si)=Jdp+ 0, + Iy “@
A, - vl

=
2llo|l2

)

> Which records the swept-times between the previous and the current time-step. (c) Cumulative swept-times map s,

which records the cumulative swept
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|sin|
Jp=4—, 6
L "dim(s;,) ©)
o AxIDseyl + A, Dyse,l -
w= dim(s,,)

Here, Jp, J;; and Jpy, are the data fidelity term, L1 regularization and
TV regularization term, respectively; || - ||, is the Euclidean/L2 norm,
| -| is the L1 norm, and D; represents the backward finite difference
operator in i direction for every column except the first in i direction;
D, zeros the first column in i direction because the backward operator
cannot act on the first step. The coefficients A’s are the weighting
factors used to balance the different contributions to the total cost
function. A good choice of A’s depends on the characteristics of the
swept-times map, which depends on the magnitude of the applied
stress and the dislocation density. In practice, the values of A’s are
empirically determined from a coarse grid search on another set of DDE
simulations with the same applied stress and similar initial dislocation
densities as the set to be reconstructed. To empirically determine a
reasonable value for A’s without revealing the hidden DDE data to be
reconstructed, we conducted an additional set of 50 DDE simulations
with the same applied stress and initial dislocation densities as the
set to be reconstructed. These 50 DDE simulations served as a testbed
for selecting the most effective order of magnitude for A’s. The J,
data fidelity term in Eq. (4) is normalized by the L2 norm of the
velocity measurement ||v||,, and the J;, and J;, regularization terms
are normalized by the total number of unknowns, dim(s;,) = dim(s,,) =
N;xN,xN,. The Jj, term in the cost function enforces data fidelity, by
penalizing the discrepancies between the reconstructed displacements
As;, and the actual measurements v. The remaining terms in the cost
function are motivated by knowledge of the characteristics of the
solution, and attempt to guide the minimization along a favorable
path. In particular, J;, promotes sparsity in the instantaneous swept-
times map s;,. Given that dislocations are sparsely distributed on the
plane, this term enforces the regularization that the area swept by
dislocations within a time-step 4¢ should only occupy a small portion of
the entire slip plane. Additionally, J;,, promotes a piece-wise constant
representation of the reconstructed cumulative swept-times map. The
underlying rationale is that dislocation movements on the plane should
exhibit continuity. The elementary areas swept by the dislocation net-
work at each time frame should seamlessly connect and accumulate in a
piece-wise constant maps, with only a few exceptions at junctions or for
tiny dislocation segments. This characteristic of the cumulative swept-
times map bears similarity to the reconstruction images of X-ray CT,
where most objects under examination (e.g. human chest) exhibit piece-
wise constant characteristics with clear boundaries. By promoting the
sparsity of total variations in the reconstructed images, we effectively
remove most abrupt noise pixels that disturb a piece-wise constant
representation of the cumulative map, while preserving edges.
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With the definition of J in Eq. (4), the reconstruction problem is
transformed into the optimization:

s;, = argmin J(s;,). 8

sl’l

The gradient of the cost function is:

dJ, dJ, dJ
ﬂ = D + L1 + v (9)
ds;,, ds;, ds;, ds;,

dl, A'(As, -v)

- (10
dsip llvll3
dJp, _ A,s‘ign(s,»,,) an
ds;, dim(s;,)
dJry ; L;FDIsign(stw) . L;rD;sign(Dyscu) a2
= +
dsiy * dim(s;,) ’ dim(s,,)

where D,.T is the transpose operator of D, L,T is the transpose operator
of L,, and sign(s) is an element-wise cut-off sign function:
1, s; > €,

sign(s); =4 -1, s; < —¢, 13)

0, otherwise.

The tolerance ¢ = 107° is introduced to prevent excessive compu-
tational iterations due to oscillations around zero. The LBFGS algo-
rithm [39,40] is used to minimize the cost function. The optimization
terminates when the gradient of the cost function is smaller than 107,
The most computationally expensive operations in each iteration are
the multiplications involving the system matrix A or its transpose A',
and GPUs are used to accelerate these operations. To alleviate storage
cost, the translational invariance of A is exploited. Only 1/N, of A is
stored, and the remaining portions are inferred through translations
during computations.

The reconstruction process typically requires on the order of one to
four hours on a single GPU, depending on the case being considered.
The reconstruction of the cumulative swept-times map is presented in
Fig. 1(d). In the cost function, 4, = 10~ and A, = 4, = 10~, which were
empirically determined as described above. TV regularization is crucial
in mitigating the starvation of information in surface measurements
as evidenced by the cost curve in Fig. 3(a). Though TV regularization
introduces blocky artifacts and an excessive degree of smoothness in
certain regions of the swept-times map as can be seen by comparing
Fig. 1(c) and (d), it plays a vital role in preventing overfitting to
the measurements and steering the optimization process away from
spurious solutions within the infinite solution space. Qualitatively, the
reconstruction faithfully captures the location and the approximate
shape of the active and inactive plastic regions. However, there are
some aspects where the reconstruction is less accurate, for instance,
the sharpness of the boundaries across different swept times and the
smoothness within the same swept times. In addition, the reconstruc-
tion of some regions is slightly shifted compared to the truth. One
familiar measure to quantify the fidelity of the prediction is the mean
square error (MSE) between the truth and the reconstruction:

N
MSEGy = + Y% - P, a4
i=1

where N is the total number of pixels in the image. However, MSE
can be inadequate for evaluating perceived image quality because it
is calculated pixel-wise and does not consider structural information
beyond the pixel of interest [41]. For this reason, we use the structural
similarity index (SSIM) [42] to evaluate the reconstruction quality.
SSIM is defined as the product of three terms:

xy +C3 > as

2pepy +C 20,0, +C| c

SSIM(x’y)=( 24 2 2. .2 < C
yx+/4y+C1 ”x""’y"'cl 0,0, +C3

where p,, p,, oy, 0, and oy, are the local means, standard deviations

and the cross correlation for swept-times maps x and y. In the language
of image processing, these three terms evaluate the similarity of the
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two maps in luminance, contrast, and structure. These statistics are
calculated locally within a sliding Gaussian weighting window that
moves pixel-by-pixel across the image, resulting in an SSIM map. The
standard deviation of the Gaussian window is chosen to be 4.5 pixel
length which is ~ 10% of the image length. SSIM values range from —1
to 1. A value closer to 1 indicates better reconstruction quality. The
SSIM score of the entire image is the arithmetic average of the SSIM
map. The constants C;, C, and C; are small positive values that prevent
the singularity of each term, and the default values are used from the
built-in MATLAB function ssim. The SSIM we report hereafter always
refer to cumulative swept-times map unless otherwise stated.

To assess the reconstruction quality not only at the final state but
throughout the entire dynamic process of dislocation slip, Fig. 3(b)
presents the SSIM score for the in-situ reconstructions of the instan-
taneous and cumulative swept-times maps, throughout the loading
time. The low-quality and variability of the former suggest that the
available measurements do not allow precise reconstruction of the exact
occurrence time of dislocation activities. However, the reconstruction
of the cumulative swept-times map, which has lower requirements on
the temporal accuracy, improves in quality during the later stage. The
lower accuracy in the early stage of deformation is attributed to the
lack of temporal resolution in the measurements and can potentially
be improved by increasing the acquisition rate, as will be discussed in
later sections. Indeed, considering the severely ill-posed nature of this
inverse problem, the quality of the reconstructions achieved thus far is
quite remarkable.

The local similarities between the hidden true swept-times map in
Fig. 1(c) and its reconstruction in Fig. 1(d) are assessed in the SSIM map
shown in Fig. 3(c). The SSIM score for the reconstruction at the last
loading time-step is 0.64. As seen in the comparison between Figs. 1(c)
and (d), this level of similarity is sufficient to localize major plastic
deformation and to identify its intensity, which supports the use of
our algorithm as a potential non-destructive imaging and evaluation
technique for crystal plasticity. Overall, the present results demonstrate
the potential of the proposed approach to reconstruct dislocation slip
evolution with high spatio-temporal resolution, and to offer valuable
insights into crystal plasticity.

4. Discussion
4.1. The effect of the number of sensors

In this section, we discuss the influence of the number of sensors
on the reconstruction accuracy. Four different cases are considered,
N, = {24,16,8,4}. In order to statistically examine the reconstruction
accuracy, fifty DDE simulations are randomly initialized. In this case,
the cubic simulation cell is shown in Fig. 4(a), and it has an edge length
of 4.6 pm. Free surfaces boundary conditions are imposed. Twenty
[110](111) Frank-Reed (FR) sources are randomly distributed on the
slip plane that is 2.29 nm above the bottom surfaces of the simulation
cell, with randomly generated orientations and lengths ranging from
0.86 pm to 1.72 pm. A constant shear stress o,, = 50 MPa is then applied
to activate the slip system. The simulation duration is T = 50 ns. Sensors
are positioned at two different planes parallel to the dislocations slip
plane at heights: z = 2.3 pym and z = 4.6 pm, as shown in Fig. 4(b)-
(e). These sensors operate at an acquisition rate of 1 GHz (an order of
magnitude lower than the example in Section 2), and the measurements
spans a duration of 7,, = 55 ns, which is sufficiently long for all
displacement waves from the final simulation time-step to reach the
farthest sensor. The reconstruction algorithm does not rely on specific
assumptions about the relative position between the slip plane and
the sensor plane. If sensor placement changes from parallel planes to
inclined planes, the reconstruction process remains the same except
that the system matrix A needs to be re-evaluated for the inclined
sensor plane. A 20 x 20 mesh with the same resolution Ax = 0.23 pm
as discussed in Section 3 is used to record the swept-times. For these
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Fig. 4. Effect of the number of sensors on the reconstructions accuracy. (a) Schematic illustration of the configuration of DDE simulations and the position of the two sensor
planes used in the study. (b)-(e) Sensor placements on the two planes for 24, 16, 8, and 4 sensors, respectively. (f) A representative cumulative swept-times map at the end of
the simulation, whose reconstructions from varying number of sensors are shown in (g)—(j). The SSIM scores for each reconstruction is 0.64, 0.59, 0.55 and 0.29, respectively. (1)
Statistical plot of the SSIM for the cumulative swept-times map over 50 randomly initialized DDE simulations for each number of sensors. The dots represent the mean SSIM, and
the error bars indicate the standard deviation. (m) Statistical plot for the frame-by-frame reconstruction SSIM of the cumulative swept-times map versus the simulation time. The
curves are the mean SSIM at each time-step, and the bands indicate the standard deviation.
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reconstructions, the weights in the cost function were 4, = 10~ and
Ay = 4, = 1075, All other simulation parameters remain the same as
those discussed in Section 3 unless noted.

Fig. 4(f) illustrates the swept-times map for one of the fifty cases,
while Figs. 4(g)-(j) showcase the corresponding reconstructions with
different number of sensors. As the number of sensors is decreased, the
available information becomes progressively less to accurately assess
the slip intensity, resulting in blurry edges. Nevertheless, the approx-
imate localization of slip events is still discernible, as observed in
the cases with 16 and 8 sensors. However, when only 4 sensors are
employed, the potential solution space expands to such an extent that
it becomes nearly impossible to confidently infer any features of the
dislocation slip evolution from the measurements. As a result, the
reconstructions become highly erroneous as observed in Fig. 4(j).

The average SSIM and its standard deviation over the fifty test cases
are reported in Fig. 4(1), which reveals that employing a greater number
of sensors enhances the average reconstruction quality (the mean of
SSIM) while also diminishing the uncertainty (the standard deviation
of SSIM) in the reconstruction. This improvement is attributed to the
extra independent information provided by the additional sensors that
assist in capturing the elastodynamic signatures. Fig. 4(m) shows the
statistical reconstruction SSIM as a function of the loading time. This
figure demonstrates that increasing the number of sensors improves
the reconstruction accuracy across the entire loading time. Consistent
with earlier results in Section 3, later processes are reconstructed
more accurately than earlier ones. The inaccuracy in reconstructing the
earlier stages can be improved not only by increasing the number of
sensors, but also by increasing the sensor acquisition rate as we will
discuss in the following section.

4.2. Acquisition rate of sensors

In this analysis, we examine the impact of the sensors acquisition
rate on the reconstruction accuracy of slip evolution in the same fifty
DDE simulations described in Section 4.1. Specifically, eight sensors are
used, and their locations are schematically indicated in Fig. 5(a). We
compare the reconstruction of the slip evolution when the acquisition
rates of the sensors are 10, 5, and 1 GHz. In all the reconstruction tests,
the coefficients for the terms in the cost function are 4, = 10~ and
Ay =4, =105,

For one of the fifty DDE simulations, we showcase the true cumula-
tive swept-times map at the end of the loading process in Fig. 5(b). In
this map, the dislocation activities are localized at the top-right corner,
while the lower-left corner remains slip-free. The resulting surface
velocities derived from the displacements measured by one of the
sensors at different rates are displayed in Fig. 5(c)-(e). The differences
in measurement acquisition rates reflect the density of information
contained in the signals. It is worth noting that the difference in the
magnitude of the surface velocity in the sensor signals is because the
sensors register the average velocity between two acquisitions, instead
of the instantaneous values.

The reconstructed cumulative swept-times maps are presented in
Fig. 5(f)—(h). Both visual observation and SSIM scores clearly demon-
strate that higher-frequency sensor signals yield reconstructions with
finer details. Despite the scarcity of information in the 1 GHz measure-
ments, it is noteworthy that the positions and intensities of dislocation
slip are still accurately reconstructed. This level of accuracy is not
possible if not for the design of the cost function, which seeks to
identify contiguous regions of cumulative swept-times maps, using
the TV regularization. Without these terms in the cost function, the
predictions at the low acquisition rate are otherwise very poor.

We also verified that the improvement in reconstruction accuracy
with increased acquisition rate persists in a statistical sense. Fig. 5(i)
reports the reconstruction SSIM score of the cumulative swept-times
map at the final state as a function of the sensor sampling rate. Both
the average score and the standard deviation over the fifty cases are

Acta Materialia 284 (2025) 120627

reported. Increasing the acquisition rate by an order of magnitude leads
to an increase in the average SSIM score from 0.54 to 0.64. We also re-
port statistical results for in-situ reconstructions of the cumulative maps
as a function of the loading time in Fig. 5(j). The overall trend remains
while the accuracies are improved at higher sampling rates, across the
entire time horizon. At 1 GHz, the earlier states are not reconstructed as
faithfully as the later ones due to the reduced order of information from
the measurements. At the higher acquisition rates, the reconstruction
accuracy of the intermediate states can be brought to a level similar to
that of the final one. Because the wave propagation is a spatio-temporal
phenomenon, if sensors could be placed arbitrarily in space, similar
improvement should be possible by increasing the sampling density
in time. Naturally, due to physical constraints, displacement sensors
are generally placed on the surface of the sample, which impedes the
potential improvement by increasing sensor density.

In this work, all sensors register their measurements simultane-
ously. In practice, however, they can operate asynchronously and at
different rates, reducing the inter-dependency in the measurements and
potentially further enhancing the reconstructions. While acquisition
rates lower than 1 GHz have not been explored by the current study,
primarily due to the computational demands of 3D-DDE simulations,
the reconstruction approach holds promise for applications in lower
frequency measurements such as AE. In the simulations presented here,
dislocation motions are described in high spatial-temporal resolutions.
In larger-scale problems with longer time horizons, a coarser-grain
representation may suffice, reducing the need for fast measurements.
Moreover, other physics-based or data-driven regularization techniques
could further alleviate the ill-posedness of the reconstruction problem,
making the reconstruction more feasible for lower acquisition rates.

In the current work, the location of sensor placement was based on
maximizing the independence of the signals measured by each sensor.
According to Eq. (1), sensors placed symmetrically around the dislo-
cation slip location measure identical displacement signals, differing
only in sign. In light of this fact, we removed sensors in an asymmetric
way when reducing the number of sensors from 24 to 4, as shown in
Fig. 4(b). Note that the current sensor placement was not specifically
optimized for the single slip problem addressed in this work. While this
placement should function similarly for different slip plane positions
or even in cases with multiple slip planes, reconstruction accuracy
may decrease if the acquisition rate and number of sensors remain
unchanged, as the number of variables to be determined increases with
multiple active slip planes. Alternative sensor configurations may offer
improved performance, and investigating their impact is a promising
direction for future research. If some sensors are placed significantly
farther away from the dislocation slip plane than others, it will be
important to consider that displacement magnitude decreases at a rate
of 1/r2, where r is the distance from the dislocation slip position to the
sensor. A large disparity will cause the current cost function (Eq. (4))
to over-emphasize the misfit in the stronger signals while neglecting
the misfit in weaker ones. The accuracy of the reconstruction can be
improved by optimally weighting the signals from different sensors in
the definition of the cost function to reduce the uncertainty of the
interpretation, or by optimizing the placement of the sensors, both
being promising avenues for future study.

4.3. Effects of noise

The measurements adopted in the present reconstruction were sam-
pled from a numerical simulation. As such, the only source of errors
in the acquired measurements thus far has been the numerical dis-
cretization of the slip plane. This choice enables us to examine the
performance of our algorithm absent uncertainties that are associated
with experimental measurements, for example, to the sensor character-
istics or environmental factors. It is nonetheless important to assess the
robustness of the algorithm in presence of uncertainties. While there
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are various noise filtering techniques available including principal com-
ponent analysis, wavelet filtering and auto-encoders, noise-corrupted
signals are used in the present reconstruction algorithm without any
pre-processing. In this manner, we can direct the focus solely on the
robustness of the algorithm.

The same fifty cases of DDE simulations described in Sections 4.1
and 4.2 and their corresponding elastodynamic measurements are used
to examine the statistical influence of noise. Twenty four (N, = 24)
sensors operating at 1 GHz are used. The sensor configuration is the
same as previously shown in Fig. 4(b). The noise level can be quantified
by the signal-to-noise ratio (SNR) in decibel:

) 2
where A is the root mean square amplitude. In this discussion, additive

Gaussian white noises with a SNR of 30 is introduced to corrupt the
measurements. The signal corruption process is illustrated in Fig. 6(a)

A
SNRyp = 10 log,, (ASL“"' (16)

noise

for one of the sensors. Since the noise effectively reduces the confidence
in the measurement data, the associated relative weighting in the cost
function in Eq. (4) must be reduced. The order of magnitude for A’s
are estimated empirically, using a grid search over an independent set
of DDE simulations, thus, avoiding disclosing any information about
the fifty cases that are used to assess the impact of the noise on our
algorithm. The adopted weights in the cost function are 4, = 1072 and
Ay =4, =107%

As an example, one of the underlying cumulative swept-times maps
is displayed in Fig. 6(c), as well as the reconstruction from uncontam-
inated sensor data in Fig. 6(d). The prediction from the noisy signal
is shown in Fig. 6(e). It is evident that the reconstruction is degraded,
with edges blurred and mis-positioned due to the combined effects of
noise and the strong TV minimization. However, useful information
about the approximate locations and intensity is still preserved. For a
statistical assessment, we compare the distribution of the reconstruction
SSIM scores between the scenarios without and with signal noise in
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Fig. 6(b). Though the SSIM score is reduced from 0.67 + 0.05 to
0.50 + 0.07, it is evident that the algorithm remains predictive, and
can endure some extent of noise. In practice, pre-processing the noisy
signals and leveraging prior knowledge about the source of noise would
be adopted in order to minimize the impact of these uncertainties.

5. Conclusion

Dislocation slip is fundamental to crystal plasticity, but its localized
and transient nature makes it challenging to fully resolve their evolu-
tion using conventional characterization techniques. In this work, we
developed a reconstruction algorithm of dislocation slip evolution with
high spatio-temporal resolution based on limited elastodynamic dis-
placement measurements. This was achieved using the total-variation-
regularized algorithm, which successfully compensates for the limited
information in the measurements, as demonstrated using synthetic
measurements from discrete dislocations elastodynamics simulations.
We showed that increasing the number of sensors and their acquisition
rate improves reconstruction accuracy, and the algorithm is robust to
measurement noise.

Future research should focus on three key areas: (1) extending
the algorithm to more complex deformation mechanisms involving
multiple slip systems, (2) reducing the required number of sensors and
acquisition rates to facilitate experimental adoption, and (3) examining
additional factors such as boundary reflections.

Our data assimilation approach opens new avenues for character-
izing and understanding the complex dynamics of crystal plasticity
and designing advanced materials. With further development, it has
the potential to revolutionize the study of intermittent plasticity and
slip localization, as well as inspire new research at the intersection of
experiments, simulations, and data-driven methods.
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