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Anisotropic potential immersed in a dipolar Bose-Einstein condensate
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We study a three-dimensional Gross-Pitaevskii equation that describes a static impurity in a dipolar Bose-
Einstein condensate. Our focus is on the interplay between the shape of the impurity and the anisotropy of the
medium manifested in the energy and the density of the system. Without external confinement, properties of the
system are derived with basic analytical approaches. For a system in a harmonic trap, the model is investigated
numerically, using the split-step Crank-Nicolson method. Our results demonstrate that the impurity self-energy
is minimized when its shape more closely aligns with the anisotropic character of the bath; in particular a prolate
deformed impurity aligned with the direction of the dipoles has the smallest self-energy for a repulsive impurity.
Our work complements studies of impurities in Bose gases with zero-range interactions and paves the way for
studies of dipolar polarons with a Gross-Pitaevskii equation.
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I. INTRODUCTION

The question of how a system responds to perturbation
(stress) is of general importance in physics, in particular, in
cold-atom physics. Naturally, isotropic media are the most
explored in this context. However, progress in realizing ul-
tracold dipolar gases brings the perfect playground for going
beyond isotropicity [1]. It becomes possible to investigate the
effect of perturbations on quantum degenerate gases that are
intrinsically anisotropic.

In this work we explore the effect of a static perturbation
on an anisotropic medium by placing an impurity at the center
of the dipolar Bose gas. The impurity can be an optically
generated potential, which in principle can be of arbitrary
shape in modern cold-atom experiments [2]. By calculating
the ensuing properties, we gain insight into the differences
between dipolar and nondipolar systems.

First, we study the Bose gas without external confinement.
In this case the character of the system can be analyzed an-
alytically at least within the local density approximation. We
show that even an isotropic impurity leads to an anisotropic
response, which reveals the nature of the Bose gas. Further,
for an anisotropic impurity, the energy of the system depends
strongly on the interplay between the direction of the dipoles
and the shape and orientation of the impurity. The dipolar
nature of the Bose gas is the most pronounced in the vicinity
of the collapse, where the number of bosons displaced by the
impurity becomes large. Second, we analyze an experimen-
tally relevant system in a harmonic trap. We show that the
results derived in the homogeneous setting still hold, advocat-
ing for an exploration of static impurities with dipolar gases
in a laboratory.

Before proceeding further, we note a connection of our
work to a field of mobile impurities in cold gases that has
seen a number of advances recently [3–7]. The interactions
between the impurity and the medium effectively alter the

impurity’s properties from its vacuum properties as it is
dressed by particles of the medium, turning it into a polaron.
Though these are mobile particles, studies of heavy impurities
typically lay the ground for understanding the corresponding
energy spectra.

This paper is structured as follows: Sec. II describes the
system and the modified Gross-Pitaevskii equation (GPE)
used in the study. Section III presents analytical analysis of
a Bose gas without external confinement. Section IV contains
numerical simulations of the GPE, along with their discussion.
Additionally, we include a study of the time dynamics that
follow a sudden immersion of the impurity. This allows us to
estimate timescales relevant for the experiment. A brief sum-
mary of the results and an outlook are given in Sec. V. Finally,
we include two Appendixes with additional information.

II. FORMALISM

Hamiltonian. The Hamiltonian that describes the system of
interest—a Bose gas with a static “impurity” potential—reads

H =
N∑

k=1

[
− h̄2

2m

∂2

∂r2i
+Vtrap(ri)

]
+

N∑
i< j

Vc(ri − r j )

+
N∑
i< j

Vd (ri − r j ) +
N∑
i=1

Vi(ri ), (1)

where m is the mass of a boson, and ri is the coordinate of the
ith boson. The bosons are confined by the harmonic-oscillator
trapping potential Vtrap. They interact via the contact, Vc,
and the dipole-dipole interactions, Vd , discussed below; the
function Vi is the impurity-boson potential energy. To differ-
entiate betweenVtrap andVi, we note that the latter vanishes at
infinity, Vi(|r| → ∞) → 0.

To analyze the system, we shall rely on a mean-field ap-
proximation. Therefore, we can write the contact interaction
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as Vc(r) = 4π h̄2aδ(r)/m, where a is the scattering
length [8,9]. The functional form of the dipole-dipole
potential is

Vd (r) = μ0

4π

d2 − 3(d · r̂)(d · r̂)
|r|3 , (2)

where d is the dipole moment of the bosons, μ0 is the vacuum
permeability, and r̂ is the unit vector along the direction of
r. We shall use a system of coordinates in which the z axis
is along d, and write the dipole-dipole interaction in a more
convenient form

Vd = Cdd

4π

1 − 3cos2θd
r3

, (3)

where θd is the angle between r and d. We have adopted
the standard notation, Cdd = μ0d2, which helps us to intro-
duce a relevant length scale (the “dipolar length”) as add =
Cddm/(12π h̄2) [10]. The Hamiltonian in Eq. (1) without Vi is
well studied [10,11] theoretically. The focus of our paper is
on the effect of the impurity.

Gross-Pitaevskii equation. To analyze the system, we rely
on a mean-field ansatz, i.e., we assume that the ground state
of the Hamiltonian can be approximated by a product state
ψ (r1)ψ (r2) · · · ψ (rN ) well. To find the function ψ , we solve
the GPE

− h̄2

2m

∂2ψ (r)
∂r2

+Vtrap(r)ψ (r) + gN |ψ (r)|2ψ (r)

+ N
∫

dxVd (r − x)|ψ (x)|2ψ (r) = [μ −Vi(r)]ψ (r),

(4)

where g = 4π h̄2a/m reflects the strength of the contact
interaction and μ is the chemical potential. Any solution
to the GPE is subject to the normalization condition∫
dr|ψ (r)|2 = 1.
In the next section, we present various approximations

for analytical analysis of Eq. (4) in a homogeneous case. In
Sec. IV we calculate the energies and densities in a trapped
case. To this end, we solve the GPE using the split-step Crank-
Nicolson method. Our numerical code is a modification of an
open-source software described in Ref. [12].

III. HOMOGENEOUS SYSTEM

The Thomas-Fermi limit. We start by considering an in-
finite medium with Vtrap = 0. We assume that the potential
Vi changes “weakly and slowly” (see the discussion below
for a weak impurity potential) so that we can employ the
Thomas-Fermi approximation and solve the equation

Vi(r) + gδn(r) = −
∫

dxVd (r − x)δn(x), (5)

where δn(x) = N |ψ (x)|2 − n0 determines the density of the
Bose gas in the presence of the impurity and n0 = N/V is
the average density, n0 = N

∫
dr|ψ (r)|2/V with V being the

volume of the system. n0 is also the density far from the
impurity because δn(r → ∞) → 0 as we will demonstrate
below. This implies that n0 fixes the chemical potential, i.e.,
μ = gn0 (it is independent of dipole-dipole interactions in a

homogeneous setting) [13]. In this section, we shall use n−1/3
0

as the unit of length and μ as the unit of energy for presenting
our findings in a dimensionless form.

Equation (5) has a nonlocal character, i.e., the density
at any given position is determined in part by the density
of its surrounding neighborhood. This makes it hard, if not
impossible, to solve the equation in real space explicitly for
a general form of the impurity potential (though see [14] for
solutions in some special cases). At the same time, linearity
of Eq. (5) with respect to δn allows us to find its Fourier
transform δñ(k) = ∫

drδn(r)e−ik·r easily:

δñ(k) = − Ṽi(k)

g+ Ṽd (k)
, (6)

where Ṽi and Ṽd are Fourier transforms of the impurity and
dipole-dipole potentials, respectively. In the case of the dipole
potential, Ṽd (k) = Cdd (cos2 α − 1/3) [10,15] with α being
the angle between d and k. This expression can be con-
veniently rewritten using the second Legendre polynomial,
Ṽd (k) = 2CddP2(cosα)/3.

The density in real space can be written in integral form as

δn(r) = − 1

g(2π )3

∫
dk

Ṽi(k)
1 + 2εddP2(cosα)

eik·r, (7)

where εdd = add/a is a dimensionless ratio that determines
the relative importance of dipolar physics. In particular, the
system is unstable against a collapse if εdd is larger or equal
to one [10]. Notice that the density is anisotropic even if the
impurity potential is isotropic.

To illustrate this, let us consider εdd → 0 (weak dipole-
dipole interactions). Using the plane-wave expansion [eik·r =
4π

∑
l,m il jl (kr)Ym

l (k̂)[Ym
l (r̂)]∗ with Ym

l being the spherical
harmonics], we derive

δn(r) � −Vi(r)
g

− εddP2(cos θ )

gπ2

∫
dkk2Ṽi(k) j2(kr), (8)

where jl is a spherical Bessel function, and θ is the polar
angle of r. The first term here is the Thomas-Fermi profile
for a nondipolar gas [8]. The second part is due to the dipolar
character of the medium; we have used the isotropicity of Vi
to simplify it.

The uncomplicated form of Eq. (8) will be modified for
larger values of εdd . In particular, the density will include
higher order harmonics, P2n(cos θ ). We clarify this in Fig. 1
by comparing Eqs. (8) and (7) for a strong spherical Gaussian
impurity,Vi(r) = μ exp(−n2/30 r2), and different values of εdd .
At small values of εdd , Eqs. (7) and (8) agree with each
other, while becoming more different as the dipolar interaction
becomes stronger. It is seen clearly that the Thomas-Fermi
approach approximation has broken down in Fig. 1(b) as it
produces a nonphysical density at small (θ � π/6) and large
(θ � 5π/6) angles. This is discussed in more detail at the end
of this section. These two equations do, however, retain sim-
ilar angular dependence at all values of εdd . From Fig. 1(a),
where the results agree also quantitatively, we conclude that
the density increases in comparison to the nondipolar solu-
tion, εdd = 0, in the direction perpendicular to z, i.e., in the
xy plane. Indeed, it is easier to deform the system in this
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FIG. 1. Comparison of the results obtained from Eqs. (7) and (8)
at different values of εdd , plotted with respect to the polar angle (θ ),
r = |r|(sin(θ ), 0, cos(θ )). The value of the impurity potential is
shown with a horizontal dotted line. Note that panel (b) makes it
clear that Eq. (7) is not valid for large values of εdd as δn/n0 + 1
must be non-negative (recall that δn + n0 = N |ψ |2).

direction because the corresponding phononic excitations are
softer [10].

To further highlight the anisotropic character of Eq. (8),
let us study the gradient of the density. In the contact case,
we have ∇n = F/g, where the “force” is given by F = −∇Vi.
This simple law follows from conservation of chemical po-
tential throughout the sample and the fact that the medium is
isotropic, so that we cannot assign any tensor to it. For the
dipolar medium the situation is different, and the gradient is
given not only by the external force, but also by properties of
the medium (e.g., internal strain), which are anisotropic and
nonlocal.

Self-energy of the impurity. It is worth noting that Eq. (4)
with the reduced mass instead of m can describe also a mobile
impurity just as in a nondipolar case [16–21]. Therefore, even
though our work focuses on the effect of static impurities,
our results could also be useful for mobile impurities. Below

we use the densities in the Thomas-Fermi limit to calcu-
late two paradigmatic properties typically studied for mobile
impurities. First, we compute the self-energy of the impurity
defined as the difference of the energies of the system with
and without the impurity assuming a fixed chemical potential:

Eself = E [Vi] − E [Vi = 0], (9)

where E [Vi] is the energy of the system with the impurity
potential Vi. This energy is one of the key characteristics for
systems with impurities. The self-energy can be thought of as
the chemical potential of the impurity or the change in energy
of the bath due to the presence of the impurity [22]. Within
our approach, Eself has the form (see Appendix A)

Eself = − gN2

2

∫
ψ (x)4 dx + gVn20

2

− N2

2

∫
ψ (x)2Vd (r − x)ψ (r)2 dr dx, (10)

where V is the volume of the system. After straightforward
calculations, we write this expression as

Eself = E0
self − 1

2g

∫
δn(r)Vd (x − r)Vi(x) dr dx, (11)

where E0
self = n0

∫
Vi(r) dr − 1

2g

∫
V 2
i (r) dr is the contribu-

tion to the energy that is independent of the dipolar nature of
the Bose gas. Let us assume that the dipole-dipole interactions
are weak (i.e., εdd → 0), then we can estimate the dipolar
contribution to the self-energy as

Eself − E0
self � 1

2g2

∫
Vi(r)Vd (x − r)Vi(x) dr dx. (12)

This equation clearly shows that the self-energy depends not
only on the anisotropy of the dipole-dipole interactions, but
also on the anisotropy of the impurity potential. Indeed, if
the potential Vi is elongated along the z direction, then the
right-hand side of Eq. (12) is negative. The opposite is true
for the impurity potentials elongated along the x axis. We shall
illustrate this dependence numerically in the next section for
a trapped system.

Number of bosons in a “dressing” cloud. The number of
bosons directly affected by the presence of the impurity can
be estimated as follows [δN = ∫

drδn(r); see Appendix A]:

δN = −
∫
drVi(r)

g
√
3εdd (1 − εdd )

tan−1

⎡
⎣

√
3εdd

1 − εdd

⎤
⎦. (13)

This expression shows that |δN | is an increasing function of
εdd , implying that the dipolar medium leads to a “more heavy”
dress of the impurity. This can be most easily visualized by
considering limiting cases. For weak dipole-dipole interac-
tions, εdd → 0, we derive

δN � −1

g

∫
drVi(r)

(
1 + 4ε2dd

5

)
. (14)

Note that this expression depends on the square of εdd , be-
cause the linear contribution from Eq. (8) averages out to zero.
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In the vicinity of the collapse, εdd → 1,

δN � − π
∫
drVi(r)

2
√
3g

√
1 − εdd

. (15)

This result is likely beyond the limits of applicability of
local-density approximation; see below. Still, it shows that
the number of bosons in the dressing cloud becomes large
close to collapse. For a mobile impurity, this should lead
to strong renormalization of the effective mass in agreement
with previous studies of dipolar Bose polarons [23–25]. The
mass renormalization is, however, direction-dependent with
the strongest effect in the xy plane, which cannot captured by
the angle-averaged quantity δN .

Limits of applicability of the Thomas-Fermi approxima-
tion. The Thomas-Fermi approximation is valid whenever
the quantum pressure term, proportional to ∂2ψ (r)

∂r2 , can be
neglected in Eq. (4). For a nondipolar gas that can be done
when the impurity potential changes weakly on length scales
given by the local healing length of the gas, ξ ∼ 1/

√
gn(r).

Obviously the Thomas-Fermi approximation fails when the
impurity potential is so strong that n(r) → 0, which hap-
pens for example in trapped gases close to the edges of the
Bose-Einstein condensate (BEC) [8]. For a dipolar gas, one
can generalize the condition above assuming that the healing
length depends on the direction.

To illustrate this, let us study a weak impurity potential,
namely, we consider Eq. (4) without a trap and Vi → 0. We
look for a solution ψ in the following form (cf. Ref. [26]):

ψ (r) � 1 + f (r)√
V

. (16)

We assume that f is small and satisfies

h̄2

2m
∇2 f (r) = 2μ f + 2μ

g

∫
dxVd (r − x) f (x) +Vi, (17)

which allows us to find Fourier transform f̃ (k) as

f̃ (k) = − Ṽi(k)
h̄2k2
2m + 2μ + 2μ

g Ṽd (k)
. (18)

By comparing this equation to Eq. (6), we conclude
that the Thomas-Fermi approximation is valid if the
characteristic momenta of Ṽi(k) are much smaller than√
4μm/h̄2

√
1 + 2εddP2(cosα). For εdd = 0, this condition

implies that the potential must change weakly on length
scales given by the healing length, validating our assertion
above. For a dipolar gas, this condition depends strongly on
εdd and on the direction. In particular, for εdd close to one,
1 + 2εddP2(0) is small and the Thomas-Fermi approximation
should be used with great care.

Finally, we mention another indication that the local-
density approximation fails, which follows from the obser-
vation that δn(r)/n + 1 should be non-negative. Assuming
repulsive spherically symmetric impurity with its maximum
at the origin, the fulfillment of this condition can be checked
by considering δn(0)/n + 1, which using Eq. (7) leads to

1 −
∫
dkṼi(k)k2

2π2μ
√
3εdd (1 − εdd )

tan−1

⎡
⎣

√
3εdd

1 − εdd

⎤
⎦ � 0. (19)

This condition clearly fails when the impurity potential is
too strong, i.e., Vi(0) � μ, or when the system is close to
the dipolar collapse, εdd → 1. In both of these cases, the
corresponding healing lengths diverge undermining the ap-
plicability of the Thomas-Fermi approximation. We illustrate
this in Fig. 1 where a strong impurity potential and a relatively
large value of εdd lead to δn/n0 + 1 < 0 signaling the break-
down of the Thomas-Fermi approximation.

IV. TRAPPED SYSTEM

Guided by the results above, we now conduct a detailed
analysis across a range of scenarios, which should help to
identify the physics described in the previous section in a labo-
ratory. To this end, we consider a harmonically trapped system
of dysprosium atoms whose large dipolar length add ≈ 130a0
puts them at the forefront of current experimental studies [1].
For simplicity, the trapping potential is assumed to be sym-
metric, with the form given by

Vtrap = 1
2mω2r2, (20)

where ω is the trapping frequency. The corresponding har-
monic oscillator length is L = √

h̄/(mω). In our numerical
simulations, we use L = 1µm, which is representative of ex-
perimentally relevant values [27]. We set the number of atoms
to N = 2 × 104. The atomic scattering length is chosen to be
a = 150a0, which makes the gas stable (a > add ). This a is
close to the background value in 162Dy samples, otherwise
our choice is rather arbitrary as a can be tuned using external
magnetic fields; see, e.g., Ref. [1].

In Fig. 2 the density distribution of the dipolar gas in the
absence of the impurity is shown in the xz plane, parallel to the
plane of polarization. As expected [28,29], the graph demon-
strates that the intrinsic interactions between the dipoles of
the system make the system elongated along the z axis, the
direction in which the dipoles are polarized. We stress that
the trap itself is isotropic, so that the anisotropy observed in
the density is purely from the interactions within the system
(cf. Sec. III). For the considered parameters of the Bose gas,
this anisotropy is weak close to the origin [see, e.g., the almost
flat curve at |r| = 1 µm in Fig. 2(b)], providing a suitable test
bed for investigating the anisotropy induced by the impurity.

A. Introducing the impurity

We assume an impurity described by the potential

Vi(x, y, z) = V0 exp

[
−

(
x2 + y2

a2L2
+ z2

b2L2

)]
. (21)

Here a and b parametrize the width of the impurity potential
in the transverse and longitudinal directions. The parameter
V0 determines the strength of the impurity potential. This pa-
rameter is positive in main part of this study, i.e., the impurity
repels the bosons; see Appendix B for a brief discussion of
the case with V0 < 0. It was set to be 5h̄ω in our calculations,
implying that the effect of the impurity is strong (nonpertur-
bative); i.e., a number of collective modes can be excited in
the Bose gas. The potential in Eq. (21) can be optically gen-
erated in a cold Bose gas [2], which would provide a physical
realization of the impurity studied here in a laboratory [30].
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FIG. 2. Density distribution of the BEC in the absence of the
impurity potential. (a) Density in the xz plane. (b) Density for a given
value of |r| as a function of the polar angle.

First, to understand the effect of the static impurity on the
BEC, we calculate the density of the Bose gas for various
deformation ratios. Here the “deformation ratio” refers to a
systematic variation in the values of a and b in Eq. (21), while
keeping the volume of the impurity (4πa2bL3/3, treating it
as an ellipsoid) constant at 1 µm3. The volume integral of
the potential,

∫
drVi(r), is then also constant at 3V0L3√π/4.

We showed in Sec. III that the volume integral of the im-
purity is a crucial property of the potential that determines
the energy of the system for the homogeneous nondipolar
BEC. Therefore, by fixing it we can more directly see
the effect of the dipolar nature of the bath, i.e., we can
isolate the effect of the last term in Eq. (11). (Note, how-
ever, that the interplay between the external trap and the
impurity potential also plays an important role in the re-
sults presented in this section.) For the sake of simplicity,
here we will mostly discuss results for a = b, a = 3b/2,
and a = 3b.

Figure 3(a) illustrates the scenario of an isotropic impurity
(a = b), as evidenced by the circular contours at the origin.
The emergence of two central peaks shows the effect of the

FIG. 3. Density of the system (BEC + static impurity) in the xz
plane for different deformation ratios a/b; cf. Eq. (21).

static impurity repelling the dipoles away from the origin.
The peaks of the densities are located along the z = 0 lines
in agreement with the discussion in Sec. III (see in particular
Fig. 1). This figure shows a 2D cut of a 3D system, so one
should bear in mind that instead of actual peaks in the density,
the highest density exists in a torus around the z axis centered
in the xy plane. Farther away from the impurity, the density is
dominated by the harmonic trap (cf. Fig. 2).

Figures 3(b)–3(c) display results for anisotropic impu-
rity potentials (a 	= b), with the impurity elongated along
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the x axis, which induces a competition between intrinsic
anisotropy of the system and anisotropy of the impurity. The
elongation of the impurity dominates the properties of the
dipolar gas at the origin. In particular, we see that contour
plots of the density are elongated predominantly along the x
axis in the vicinity of the origin.

In Fig. 3(c), which represents the maximum deformation
analyzed in this study, the peak density regions now appear
above and below the xy plane, though they appear much
broader and diffuse than the other cases. The large defor-
mation of the impurity has forced the system to reconstitute
itself away from the xy plane and assemble in large caps sep-
arated along the dipolar axis. While the behavior far from the
impurity remains similar to the previous cases, the system’s
response in the region of the impurity is clearly dependent on
the precise shape and orientation of the impurity; the latter
property we explore in the next section.

B. Orientation-dependent effects of impurity

To further analyze the interplay between the anisotropy of
the impurity and the dipolar nature of the bath, in particular,
the restoring of the dipolar symmetry far from the impurity,
we examine the effect of rotating the impurity about the y axis.
To achieve this, we employ a rotation matrix to change the
functional form of the impurity potential in Eq. (21). As a
result, we obtain

Vi =V0 exp

[
−

(
(x cosϕ + z sin ϕ)2 + y2

a2L2

+ (z cosϕ − x sin ϕ)2

b2L2

)]
, (22)

where the angle ϕ is defined relative to the x axis. Neither the
volume of the impurity (4πa2bL3/3 = 1μm3) nor the volume
integral of the potential is changed by rotation.

We present densities for 30◦, 60◦, and 90◦ fixing a = 3b/2
in Fig. 4. All these results exhibit similar features to those
discussed in Fig. 3. Furthermore, they demonstrate the rota-
tion of the density driven by the angle ϕ. For example, as the
angle increases, the center appears to rotate and align with that
particular angle. The density contours almost appear “stirred”
though the impurity is static. The contours in the case of the
top two panels also show the gradual evolution from the shape
and orientation of the impurity to that of the bath. In the bot-
tom panel, the impurity’s elongation matches the elongation
of the bath, so the center contours’ orientation matches that
of the edge contours. In addition, the maximal density regions
become more focused as the major axis of the impurity gets
closer to aligning with the polarization direction.

A superficial visual inspection of the density contours sug-
gests that the maximum effect of the impurity potential occurs
when the impurity’s major axis is orthogonal to the polariza-
tion of the dipoles and decreases as they becomemore aligned.
This remains true even for larger deformations of the impurity
(not shown). To quantify this observation, we calculate the
energy of the system below.

FIG. 4. Density of the system (BEC + static impurity) in the
xz plane for different orientations of the impurity, i.e., for different
values of ϕ; cf. Eq. (22). The deformation ratio is a = 3b/2.

C. Self-energy of impurity

The results above show the interplay between the
anisotropy of the impurity and the anisotropy of the medium
in a trap. Quantifying this interplay by looking at the densities
is difficult. Therefore, in this subsection we study the energy
of the system. To quantify this effect, we calculate the self-
energy (Eself ) defined as in Sec. III. We expect this quantity to
depend not only on the amount of deformation but also on the
orientation of the impurity.
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FIG. 5. Effect of rotation on the self-energy of the impurity for
different deformation ratios. Recall that the orientation angle is de-
fined with respect to the x axis and that the volume integral of the
impurity [

∫
drVi(r) = 3V0L3√π/4] is fixed; cf. Eq. (22).

In Fig. 5 the self-energy of the impurity for several defor-
mation ratios is presented with respect to various orientation
angles. The self-energy of the impurity-BEC system exhibits
a nearly sinusoidal variation, showing a strong preference for
the major axis of the impurity deformation to align along the z
axis [cf. Eq. (12)]. The effect is solely due to the dipolar nature
of the BEC and vanishes if εdd = 0. Larger deformation ratios
exhibit very similar qualitative behavior, though quantitatively
all the self-energies increase with increasing deformation.

We illustrate this in Fig. 6, which demonstrates the depen-
dence of the self-energy on the major and minor axis ratio,
a/b. This plot echoes what was seen in Fig. 5, in that the
most energetically favorable impurity is the one with the most
elongation along the polarization axis. The prolate (a < b)

FIG. 6. Self-energies plotted as a function of the deformation
ratio, a/b, for two orientations of the impurity potential in Eq. (22).
The inset zooms in on small a/b ratios.

impurity allows more of the dipoles to be closer together
in their favored head-to-tail configuration. Once the impurity
becomes isotropic and then oblate (a > b), the self-energy in-
creases more rapidly as the impurity’s presence is increasingly
disruptive to the dipolar gas. The dashed line in Fig. 6 shows
the self-energy results for the systems where the impurity has
been rotated by 90◦. Here we see that for the oblate case,
rotating the impurity decreases the self-energy. Since after
rotating 90◦, one of the impurity’s major axes is now along
the z axis, this result is not surprising. In the case of the
prolate impurity, we observe the opposite in that the rotation
increases the self-energy. The reasoning is the same since now
the longest axis is along the x axis, though the difference is
less dramatic than in the oblate case.

D. Time dynamics

Another interesting question is how the system evolves
once an impurity is introduced (going from Fig. 2 to Fig. 3).
To study it, we start with the density solution of our system
without an impurity and then utilize the real-time propagation
of the split-step Crank-Nicolson method for our numerical
solutions. The results of this can be seen in Fig. 7, where the
density in 1D cross sections along the x and z axes are shown
for an isotropic impurity. Results for the other impurities were
similar to the isotropic case, so we discuss the time evolution
without focusing on the different impurities. In Fig. 7 it can
be seen how the density plunges in the center of the trap by
first creating large peaks close to the origin, which then recede
over longer times as more particles are pushed away from the
repulsive impurity and vacate the center region of the trap.
In both plotted directions, the density plunges all the way to
zero in the center before rebounding back, and then repeating.
The repeating pattern is due to the trap and was also seen in
nondipolar trapped systems; see, e.g., Ref. [31].

An additional feature can be seen in the plots in the z
direction. One can see a shoulder in the density peaks forming
which separates into peaks seeming to show waves travel-
ing outward along the ±z axes. This behavior is similar to
what happens in a homogeneous nondipolar case (see, e.g.,
Ref. [32]) with a crucial difference that the dynamics in the
x direction are different from that in the z direction. These
waves appear to hit the trap boundary and then rebound and
collapse eventually into a single peak as time increases. Re-
call that the spatial extent in the x direction (see Fig. 2) is
not as large as that in the z direction, and thus the impurity
induces this behavior only in the z direction. Finally, these
results were obtained within the mean-field GPE framework,
and further study involving beyond mean-field effects and/or
finite temperature could be explored in the future.

V. CONCLUSION AND OUTLOOK

We have investigated the response of a dipolar medium
to an implantation of a repulsive impurity at its center. We
have observed a large distortion to the density of the medium,
which indicates a preference for the dipoles to stay in their
preferred head-to-tail configuration. This preference is rein-
forced by our results for self-energy, which we have examined
as a function of the deformation of the impurity as well
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FIG. 7. Density profiles along the x axis (a) and z axis (b) for dif-
ferent amounts of time evolution. At t = 0, a dipolar BEC without an
impurity has a spherical impurity implanted into it at the origin. The
center density decreases until t = 57.60 ω−1, then begins to rebound.
Note that the important timescale is defined by the frequency of the
external trap, ω, which sets the smallest energy scale of the system.
For the Dy system, which we use in our numerical simulations,
1/ω � 2.5 ms.

as the orientation of the impurity. Future experiments with
impurities in dipolar BECs would expect to see anisotropic
density modulations in their atom-cloud images regardless of
the type of impurity used. Mobile impurities, though smaller
in size than the impurity potential of this work, should also
lead to this behavior. It might be harder, however, to study the
density modulations in this case as mobile impurities are free
to move within the Bose gas distorting the signal. Our results
pave the way for a number of possible follow-up studies, some
of which we briefly outline below.

Mixtures. Mixtures of dipolar Bose gases with nondipolar
Bose or Fermi gases have received relatively little attention in
spite of their potentially rich physics [33,34]. Recent progress

in realizing quantum mixtures of dipolar gases [35] may,
however, motivate further exploration of such systems.

Inadvertently, our results provide insight into properties
of two-component mixtures. Arguably, the simplest mixture
is an impurity system—a dipolar polaron [23–25]—that was
mentioned already in Sec. III. The self-energy in Eq. (12)
suggests that the induced impurity-impurity interaction
becomes long-range. Indeed, assuming that the Vi = v1 + v2,
where v1 and v2 correspond to two impurities, we derive the
dipole-interaction-induced part of the mediated interaction as

Veff � 1

g2

∫
v1(r)Vd (x − r)v2(x) dr dx, (23)

which, assuming that v j (r) = gjδ(r − a j ), leads to Veff �
g1g2Vd (a1 − a2)/g2. This interaction is long-range in contrast
to the well-known mean-field effective impurity-impurity in-
teractions; see, e.g., [36–40]. In the future it will be interesting
to investigate this potential in the vicinity of the collapse
where the impurities strongly modify the bath, leading to
strong mediated correlations.

Finally, we note that one can naively think of the impurity
potential in Eq. (21) as of some zero-range-interacting Bose
or Fermi gas that does not mix with the dipolar BEC; for
conditions of miscibility of Bose-Bose mixtures see Ref. [41].
In this case our study provides some ideas for understanding
immiscible two-component gases, where one of the gases (im-
purity) has only zero-range interactions. For example, Fig. 6
suggests that the density of this impurity gas will be shaped
by the dipolar interaction.
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APPENDIX A: DERIVATION OF EQS. (11) AND (13)

First, let us outline a derivation of Eq. (10). We note that
the energy within the mean-field approximation is given by

E = μN − gN2

2

∫
ψ (x)4 dx

− N2

2

∫
ψ (x)2Vd (r − x)ψ (r)2 dr dx, (A1)

where ψ is the solution of the corresponding Gross-Pitaevskii
equation. Without the impurity ψ (x) is constant, whereas
in the presence of the impurity it depends on the position.
Equation (A1) together with Eq. (9) leads to Eq. (10). To
derive Eq. (11), we use Eq. (5) together with the identity
δn(x) = N |ψ (x)|2 − n0 in Eq. (10).

We derive Eq. (13) using Eq. (7). Indeed, by definition,

δN = − 1

g(2π )3

∫
dk dr

Ṽi(k)
1 + 2εddP2(cosα)

eik·r. (A2)
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FIG. 8. Density contours in the xz plane for an attractive
Gaussian impurity implanted into a dipolar BEC for two different
deformation ratios a/b. The dipoles are polarized in the z direction.

Noticing that δ(k) = 1
(2π )3

∫
dreik·r, we rewrite this expres-

sion as

δN = −Ṽi(0)

g

∫
dk

δ(k)
1 + 2εddP2(cosα)

, (A3)

where we assume that Ṽi(0) is well defined. As the delta
function is spherically symmetric, we can first take the integral
over the α angle

∫ 1

−1

dx

1 + 2εddP2(x)
=

2 tan−1
[√

3εdd
1−εdd

]
√

εdd (1 − εdd )
. (A4)

Utilizing this expression, the fact that
∫
k2 dkδ(k) = 1/(4π )

and Ṽi(0) = ∫
drVi(r), we derive the expression presented in

Eq. (13).

FIG. 9. Dependence of the self-energy as a function of the defor-
mation of the impurity potential (expressed as the ratio a/b) for an
attractive impurity. Inset: a close-up for small a/b ratios.

APPENDIX B: ATTRACTIVE IMPURITY

For an attractive impurity (V0 < 0), particles will naturally
be attracted to the center of the trap. We demonstrate contour
plots for attractive impurities in Fig. 8 showing both an
isotropic impurity and our extreme deformation, a = 3b. One
can see the very large density peak in the center, which is over
three times as dense as the maximum densities seen in the
repulsive case. Like before, the system is three-dimensional,
so this is an ellipsoid of maximum density in the center of the
trap. Interestingly, just as in the repulsive plot, there appears
to be a slight bump in the contour line as it crosses the x
axis (at around ± 4 µm) for the largest nonspherical case,
though the bump goes in the opposite direction. In both the
attractive and repulsive cases it makes sense. In the attractive
case it goes outward indicating a slight bulge of larger density
created by the attractive impurity, and it is the opposite in the
case of repulsion.

In Fig. 9 we show the self-energy as a function of
deformation plot analagous to Fig. 6. Here we see that,
qualitatively, the plot looks the same except it is reflected over
the x axis. The relationship between the 0◦ and 90◦ curves,
however, remains the same with the rotated impurities, where
the rotated curve is lower in energy for oblate impurities
and higher for prolate ones. The magnitudes are also about
twice that of the repulsive case for the solid curve. It is not
surprising that adding any kind of attraction lowers the energy
of the system, but this figure shows that an oblate impurity
with one of its major axes along the polarization direction of
the dipoles is the most stable. In the limit where the impurity
becomes a disk, then it would match the shape of the the
contours in the top panel of Fig. 2, and thus matching the
shape of the dipolar gas.
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[15] K. Góral, K. Rzążewski, and T. Pfau, Phys. Rev. A 61,
051601(R) (2000).

[16] E. Gross, Ann. Phys. 19, 234 (1962).
[17] A. G. Volosniev and H.-W. Hammer, Phys. Rev. A 96,

031601(R) (2017).
[18] O. Hryhorchak, G. Panochko, and V. Pastukhov, J. Phys. B: At.,

Mol. Opt. Phys. 53, 205302 (2020).
[19] J. Jager, R. Barnett, M. Will, and M. Fleischhauer, Phys. Rev.

Res. 2, 033142 (2020).
[20] M. Drescher, M. Salmhofer, and T. Enss, Phys. Rev. Res. 2,

032011(R) (2020).
[21] N.-E. Guenther, R. Schmidt, G. M. Bruun, V. Gurarie, and P.

Massignan, Phys. Rev. A 103, 013317 (2021).

[22] F. Scazza, M. Zaccanti, P. Massignan, M. M. Parish, and J.
Levinsen, Atoms 10, 55 (2022).

[23] B. Kain and H. Y. Ling, Phys. Rev. A 89, 023612 (2014).
[24] L. A. P. Ardila and T. Pohl, J. Phys. B: At., Mol. Opt. Phys. 52,

015004 (2019).
[25] A. G. Volosniev, G. Bighin, L. Santos, and L. A. Peña Ardila,

SciPost Phys. 15, 232 (2023).
[26] B. Nikolić, A. Balaž, and A. Pelster, Phys. Rev. A 88, 013624

(2013).
[27] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev.

Lett. 107, 190401 (2011).
[28] S. Yi and L. You, Phys. Rev. A 61, 041604(R) (2000).
[29] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein,

Phys. Rev. Lett. 85, 1791 (2000).
[30] Relevant examples might be dimple [42–47] and “bubble”

traps [48].
[31] J. Akram and A. Pelster, Phys. Rev. A 93, 033610 (2016).
[32] O. V. Marchukov and A. G. Volosniev, SciPost Phys. 10, 025

(2021).
[33] O. Dutta and M. Lewenstein, Phys. Rev. A 81, 063608 (2010).
[34] B. Kain and H. Y. Ling, Phys. Rev. A 83, 061603(R) (2011).
[35] A. Trautmann, P. Ilzhöfer, G. Durastante, C. Politi, M. Sohmen,

M. J. Mark, and F. Ferlaino, Phys. Rev. Lett. 121, 213601
(2018).

[36] M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, New J. Phys.
10, 033015 (2008).

[37] P. Naidon, J. Phys. Soc. Jpn. 87, 043002 (2018).
[38] F. Brauneis, H.-W. Hammer, M. Lemeshko, and A. G.

Volosniev, SciPost Phys. 11, 008 (2021).
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