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Abstract 
The study of brain age has emerged over the past decade, aiming to estimate a person’s age based on brain imaging scans. Ideally, 
predicted brain age shouldmatch chronological age in healthy individuals.However, brain structure and function change in the presence 
of brain-related diseases. Consequently, brain age also changes in affected individuals, making the brain age gap (BAG)—the difference 
between brain age and chronological age—a potential biomarker for brain health, early screening, and identifying age-related cognitive 
decline and disorders. With the recent successes of artificial intelligence in healthcare, it is essential to track the latest advancements 
and highlight promising directions. This review paper presents recent machine learning techniques used in brain age estimation 
(BAE) studies. Typically, BAE models involve developing a machine learning regression model to capture age-related variations in brain 
structure from imaging scans of healthy individuals and automatically predict brain age for new subjects. The process also involves 
estimating BAG as a measure of brain health. While we discuss recent clinical applications of BAE methods, we also review studies of 
biological age that can be integrated into BAE research. Finally, we point out the current limitations of BAE’s studies. 
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Introduction 
With the significant social change in the current century due to 
the population aging, our society sectors, especially healthcare, 
are adversely affected by the associated functional declines and 
diseases, such as cancer, cardiovascular disease, diabetes, and 
dementia [1, 2]. Aging is generally described as a gradual accu-
mulator of biological changes in a human subject leading to the 
progressive decline of various physiological and organ functions 
[3]. In order to provide adequate care and treatment, it became 
urgent to study the link between biological aging and potential 
diseases. Usually, biological age can be estimated from mediums, 
such as imaging data of an organ (brain) or blood samples [DNA 
methylation (DNAm)], or physical and functional assessments 
(grip strength and lung capacity) [4, 5]. 

Brain age estimation (BAE) stands out among biological age 
estimation options. This is because recent research studies have 
shown great success in accurately estimating the brain age of 
healthy subjects given the neuroimaging data [6, 7]. Brain aging is 
always accompanied by interactions and specific morphological 
changes in brain structure across the lifespan. Previous studies 
have demonstrated that brain structure and function are altered 
in neurodegenerative diseases, such as Parkinson’s disease (PD) 
and Alzheimer’s disease (AD) [8]. BAE typically applies machine 
learning regression algorithms on given neuroimaging data, such 
as T1-weighted imaging, diffusion-wighted imaging (DWI), and 
functional magnetic resonance imaging (fMRI), etc., to accurately 
predict brain ages for new unseen brain imaging. The brain age 

gap (BAG) is computed as the difference between the predicted 
brain age Ŷ from BAE models and the chronological age Y (i.e. 
the actual age of human subjects). Mathematically, BAG = Ŷ − Y, 
where positive BAG values imply “accelerated” aging, and negative 
BAG values reflect “delayed” aging. 

BAE models tend to learn a reference curve for healthy aging 
subjects. This allows the model to be a biomarker of brain health 
by reporting zero or small BAG values for healthy subjects and 
large BAG values for subjects with brain-related diseases. Such 
biomarkers are imperative in clinical applications for early detec-
tion of diseases, risk assessment, and accurate evaluation of 
potential treatments [8]. However, the results of BAE models still 
need to be more reliable due to multiple factors: (1) lack of 
specificity, (2) bias to gender, race, and scannning devices, (3) 
limited dataset size, and (4) lack of accounting in BAE studies to 
environmental factors and genetics that may manipulate human 
aging.Another challenge is that current BAEmodels only estimate 
brain age for input subjects at a specific time point instead of 
estimating the aging rate across subjects’ lifespans. This makes 
BAE models fail to meet one of the main criteria established by 
the American Federation for Aging Research for qualifying aging 
biomarkers [5, 9]. 

In this review paper, we discuss the process of BAE in Section 2. 
Then, we address the potential clinical applications of BAE as a 
biomarker in Section 3. Next, other approaches for estimating the 
biological age are presented in Section 4. After that, the current 
limitations of recent studies in BAE are addressed in Section 5. 
Finally, we report our conclusions in Section 6.
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Figure 1. The BAE pipeline involves preprocessing brain images to enhance critical information, followed by feature extraction and prediction using 
traditional regression (e.g., SVR) or deep learning (e.g., CNNs), with BAG computed as the difference between predicted and chronological age. 

Brain age estimation 
System design 
Generally speaking, building the BAE model consists of two steps. 
The first step is the training step,which basically involves training 
neuroimaging data to learn the model parameters. The second 
step is testing and involves testing neuroimaging data for model 
evaluation. The testing data are regularly distinct from the train-
ing data and are often constrained to follow the same training 
data distribution. 

Figure 1 illustrates the pipeline of the BAE process. The process 
starts by collecting neuroimaging data from healthy control (HC) 
subjects, along with the corresponding age, known as chronolog-
ical age. The collected data are further split into training and 
testing data. In the BAE training stage, we first preprocess the 
input data to eliminate noise and highlight the critical details. 
Then,we typically apply machine learning to the processed input. 

Machine learning methods are categorized into two types: 
traditional machine learning methods and deep learning meth-
ods. Traditional machine learning methods require feature engi-
neering, which extracts specific features and performs feature 
selection/reduction. After that, the engineered features are fed 
into one of the traditional regression methods to learn the model 
parameters and predict the brain age. If deep learning methods 
are used in BAE, they can be either directly applied to the raw 
input data or the processed input [10]. The difference between 
the predicted age and the corresponding chronological age is 
used to update model parameters in the training stage, calcu-
late the BAG, and perform some statistical analysis in the test-
ing stage. It is worth noting that the testing stage in machine 
learning generally does not involve updating the model param-
eters. In some studies [11], the BAE process may involve a val-
idation step after the training step and before performing the 
final model evaluation in the testing step. This validation step 
often involves one of these strategies: k-fold cross-validation or 
bootstrapping [4]. 

Input neuroimaging data modalities 
Neuroimaging is regarded as a noninvasive method that captures 
the whole brain of human subjects, including microstructural 
and morphological features. Magnetic resonance imaging (MRI) 
modalities usually capture information about the anatomy of the 
brain and have the following types: (i) T1-weighted (T1w), which 
shows desirable performance in BAE; (ii) T2-weighted (T2w); (iii) 
T2-FLAIR; (iv) Task-functional MRI (t-fMRI); and (v) Resting state-
functional MRI (rs-fMRI). Some other modalities exist, such as 
positron emission tomography (PET) and diffusion tensor imaging 
(DTI). The reader can getmore information about thesemodalities 
in this recent review [32]. Table 1 lists the standard brain imaging 
datasets that appeared in the recent studies of BAE. 

Preprocessing tools 
Preprocessing is an essential part of BAE that takes the raw 
imaging data as an input and conducts the lowermost level of 
abstraction to pinpoint the important details and filter out the 
distortions for the downstream analysis [33]. MRI preprocessing 
usually involves spatial normalization for mapping all scans to a 
template scan, resampling for minimizing variations between the 
reference scan and the following scans, and spatial smoothing for 
unifying the voxel size or scan space [34, 35]. 

Popular MRI preprocessing tools are the following: (i) Freesurfer 
[36] is a region-based software for extracting cortical and sub-
cortical measurements, such as surface area, volumes, and thick-
ness values; (ii) Statistical Parametric Mapping [35] uses a voxel-
based method to segment the input MRI image into the following 
regions: gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF); (iii) FSL [37] is a software that offers two types of 
interfaces: a command line and graphical user interface. The soft-
ware contains several analysis tools for several data modalities, 
including DTI,MRI, and fMRI. It is also used for motion correction, 
registration, and brain extraction.
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Table 1. List of popular datasets used for brain age prediction 

No. Dataset HC(#) Age Imaging Genetics 

1 IXI [12] 593 20–86 T1w, DTI 
2 ADHD-200 [13] 500 7–21 T1w, rs-fMRI 
3 ADNI [14] 923 40–100 T1W, rs-fMRI,PET, DTI � 
4 PPMI [15] 393 30–89 T1w, DTI � 
5 UK-BB [16] ∼40000 40–69 T1w, DTI, rs-fMRI, ASL � 
6 OASIS1 [17] 316 18-96 T1w 
7 OASIS2 [17] 72 60–96 T1w 
8 OASIS3 [17] 755 42–95 T1w, DTI, rs-fMRI, ASL 
10 CAM-CAN [18] 653 18–88 T1w, rs-fMRI, MEG 
11 HCP-D [19] 652 5–21 T1w, T2w, rs-fMRI, t-fMIR, DTI, ASL 
12 HCP-YA [20] 1003 22–37 T1w, rs-fMRI 
13 HCP-A [21] 725 36–100 T1w, T2w, rs-fMRI, t-fMRI, DTI,ASL 
14 DLBS [22] 350 20–89 T1w, PET � 
15 BNU [23] 180 17–25 T1w, rs-fMRI, DTI 
16 ABIDE I [24] 573 7–64 T1w, rs-fMRI 
17 ABIDE II [25] 593 5–64 T1w, rs-fMRI, DTI 
18 SALD [26] 494 19–80 T1w, rs-fMRI 
19 PNC [27] 1601 8–21 T1w, rs-fMRI, DTI, ASL � 
20 ABCD [28] 11 892 8–20 T1w, rs-fMRI, t-fMRI, DTI, ASL � 
21 OpenBHB [29] 5330 7–86 T1w, T2w, DWI, rsfMRI 
22 CC-359 [30] 359 29–80 T1w 
23 NCANDA [31] 831 12–21 T1w, rs-fMRI, DTI 

HC: Healthy Control subjects 

Feature selection/reduction 
In this step, the BAE process includes feature selection and/or 
reduction strategies. In feature selection, we usually keep the 
most essential and relevant features for BAE and exclude the 
remaining features. Features reduction (a.k.a dimension reduc-
tion) creates a new smaller feature set than the initially extracted 
features. Principal component analysis [38] represents one of 
the most popular techniques in feature reduction using linearly 
uncorrelated features called principal components. 

Machine learning methods 
BAE models mainly rely on machine learning regression methods 
for age prediction. The models are often trained in supervised 
mode (i.e. valid access to chronological age) on brain imaging data 
of HC subjects to build a reference curve based on brain struc-
tures. This turns BAE models to be used as clinical biomarkers for 
brain health and early detection of age-related diseases, such as 
AD and PD. Check Section 3 for more details about the clinical 
applications of BAE models. 

Machine learning methods, which aim to learn a specific task 
by capturing patterns from training data that relate inputs (e.g. 
neuroimaging data) to the target outputs (e.g. predicted age), can 
be categorized based on the input brain imaging data: voxel-
based, surface-based, and pixel-based. Recently, voxel-based 
methods have shown promising results in capturing the different 
aging rates in multiple brain regions [39]. However, these methods 
are hindered by the limited voxel resolution [4]. Surface-based 
methods use a triangled mesh representation of GM, WM, and 
CSF regions. In pixel-based methods, there are three strategies for 
training the model: whole slices [4], some slices [40], or the most 
significant slices [41]. 

Machine learning methods can also be categorized into two 
types based on the learning strategy. The first type is called 
traditional machine learning methods. The second type is called 
deep learning methods. Table 2 contains the results of recent and 

popular BAE methods, including both types of machine learning 
techniques. 

Traditional machine learning methods 
Traditional machine learning methods refer to machine learning 
methods requiring hand-crafted features as input. Since BAE 
models are usually regression models designed for predicting real 
numbers instead of a finite number of categories, we draw down 
our discussion for the traditional regression methods. Support 
vector regression (SVR), linear regression (LR), relevance vector 
regression (RVR), and Gaussian process regression (GPR) represent 
famous example methods that are adopted in several BAE models 
[10, 11, 45, 58]. 

LR represents the most straightforward and understandable 
regression method. Both SVR and RVR are designed to capture 
nonlinear interactions in learning. Since SVR learns multivariate 
prediction rules from one example and generalizes it to dis-
tinct examples, it can provide unbiased age prediction. However, 
SVR requires additional training for parameter optimization [59]. 
Unlike SVR, RVR shows more robustness to different scanners 
and captures changes related to the whole brain [60]. While 
the methods above are considered parametric methods, GPR is 
considered a nonparametric method that applies multivariate 
Gaussian distribution over an infinite number of variables. This 
allows GPR to model nonlinear relationships and show more 
flexibility compared with the previous parametric methods [10]. 

As reported in Table 2, several BAE strategies adopted the 
abovementioned machine learning algorithms. Specifically, both 
Cole et al. [10] and Aycheh  et al. [42] applied the GPR algorithm to 
the extracted features from T1w imaging input. Although Aycheh 
et al. [42] reported better results, this may be attributed to the 
reduced age range and increased number of subjects. Beheshti 
et al. [43] coupled 3D patch-based grading with the SVR algo-
rithm to estimate the brain age score. Learning from multi-modal 
imaging features was extensively explored in this study [45]. The
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Table 2. Results of BAE studies on healthy individuals. Studies that adopt only local BAE or merge it with global BAE have � in the 
“local” column. 

Local Subjects Age Model Modality Results 

MAE RMSE R2 ρ 

Traditional machine learning 
Cole et al. [10] 2001 18–90 GPR T1w 4.41 5.43 0.91 – 
Aycheh et al [42] 2911 45–91 GPR T1w 4.05 5.16 – – 
Beheshti et al. [43] 100 19–61 3D Patch [44] + SVR T1w 1.66 3.00 0.94 – 
Niu et al. [45] 839 8–21 Ridge Regression T1w, rs-fMRI, DTI 1.41 – 0.766 – 
Niu et al. [45] 839 8–21 SVR T1w, rs-fMRI, DTI 1.43 – 0.756 – 
Niu et al. [45] 839 8–21 GPR T1w, rs-fMRI, DTI 1.38 – 0.774 – 
Cherubini et al. [46] � 120 20–74 LR T1w, T2w, DTI, FLAIR – – > 0.4 0.963 
Kaufmann et al. [47] � 18990 female 3–96 XGBoost T1w – – – 0.93 
Kaufmann et al. [47] � 16484 male 3–96 XGBoost T1w – – – 0.94 
De Lange et al. [48] 18 578 (UKB) 45–82 XGBoost T1w 4.18 5.2 0.521 – 
De Lange et al. [48] 311 (CAM-CAN) 18–87 XGBoost T1w 6.78 8.43 0.79 – 
Baecker et al [11] 10 824 47–73 RVR T1w 3.66 4.51 0.53 – 
Basodi et al. [49] 1591 8–21 Decenteralized SVR T1W (GM) 3.1 3.6 – – 
Luo et al [50] 1101 12–82 Ensemble of 3 Models rs-fMRI 7.73 9.765 0.6 – 
Han et al [51] 125 12–85 XGBoost rs-fMRI 5.14 6.16 – 0.87 
Guan et al [52] 505 6–85 PLSR T1w, rs-fMRI 8.24 – – 0.86 
Ganaie et al [53] 788 18–94 Twin SVR T1w 2.77 3.56 0.97 – 

Deep learning 
Cole et al. [10] 2001 18–90 3DCNN Raw T1w 4.65 6.46 0.88 – 
Niu et al. [45] 839 8–21 DNN T1w, rs-fMRI, DTI 1.38 – 0.753 – 
Pardakhti & Sajedi [54] 562 20–86 3D-CNN T1w 5.15 13.497 – – 
Poloni & Ferrari [55] 774 20–70 EfficientNet T1w (3D patches) 3.64 5.32 – 0.94 
Popescu et al. [56] � 3463 18–90 U-Net T1w 9.94 – – 0.75 
He, Feng et al. [6] 6049 0–97 CNN + Transformer T1w 2.38 – – 0.988 
He, Grant et al. [7] 8379 0–97 CNN + Transformer T1w 2.7 – – 0.985 
Wang et al. [57] 2406 17–60 3DCNN DTI 2.79 – – 0.93 
Gianchan et al. [39] � 651 18–88 U-Net T1w 5.3 – – – 

authors also compared the results of using three different tradi-
tional algorithms (ridge regression, SVR, and GPR) and concluded 
that multi-modal features are beneficial in brain age prediction. 

De Lange et al. [48] also adopted the XGBoost algorithm [61] and  
studied two distinct T1w datasets. They also accounted for age 
bias correction to enhance the model’s generalizability. Interest-
ingly, Baecker et al. [11] compared three machine learning models 
(i.e. SVR, RVR, and GPR) under two formats of T1w inputs: voxel-
based and region-based. They also explored the feasibility of con-
duction dimensionality reductionwith voxel-basedmodels.At the 
end of their study, a decision tree is reported to guide researchers 
in designing their BAE studies. Federated learning was explored in 
a BAE study by Basodi  et al. [49]. Specifically, decentralized SVR is 
adopted to learn model parameters from multiple sites without 
sharing the data among sites. However, this study is limited by 
the narrow age range considered. Unlike previous works, which 
mainly used T1w inputs, Luo et al. [50] and  Han  et al. [51] used rs-
fMRI instead. Luo et al. [50] focused on performing ensemble learn-
ing of three learning models: ridge regression, Bayesian ridge [62], 
and elastic net [63].On the other hand,Han et al. [51] compared the 
performance of six different learning algorithms and concluded 
that XGBoost exhibits superior performance. Recently, Guan et al. 
[52] investigated the performance of the learning algorithm par-
tial least squares regression (PLSR) [64] on four T1w features 
(i.e. cortical thickness, GM volume, mean curvature, and surface 
area) and three rs-fMRI features (i.e. fALFF, ReHo, and ALFF). They 
concluded that (i) the cortical thickness feature is extremely vital 
in age prediction, and (ii) the left hemisphere contributes more to 
age prediction. Finally,Ganaie et al. [53] demonstrated outstanding 

performance by applying an improved version of the twin SVR 
algorithm [65] to input MRI features. 

Deep learning methods 
Deep learning methods generally refer to the machine learning 
approaches that adopt neural networks with several layers. These 
methods do not require feature engineering and automatically 
extract features from the input data. They also enjoy the high 
capacity of capturing interactive linkage among features during 
training. This allows deep learning models to successfully handle 
complex computer vision tasks such as image segmentation and 
object detection [6]. The most famous architecture in deep learn-
ing is a convolutional neural network (CNN) [66]. Transformer [67] 
is also a famous architecture that was initially used in natural 
language processing and has recently become popular in visual 
recognition tasks [68]. 

In BAE studies, popular deep learning MRI-based methods are 
Age-Net [69], DeepBrainNet [70], deep relation learning [6], and 
global-local BAE [7]. As illustrated in Table 2, Cole  et al. [10], and 
Niu et al. [45] compared the performance of deep learning meth-
ods with the traditional learning algorithms. Both studies indi-
cated similar results of learning methods, highlighting potential 
improvement in deep learning algorithms, given the availability of 
more training samples andmore computational resources to train 
larger models. Furthermore, Paradakhi & Sajadi deployed 3D-CNN 
on T1w input data and investigated the performance of traditional 
algorithms on the output features from the deep model compared 
with the fully connected layers. Instead of using MRI input data, 
Wang et al. [57] used DTI data in training 3D-CNN and reported
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outstanding results in age prediction. While most of the previous 
methods mainly adopt CNN in their framework, He et al. [7] adopt 
transformers [67], along with fusing extracted features from local 
patches as well as the whole image of T1w input. 

Local BAE 
Despite the increasing number of studies on brain age [6, 53, 57, 
71], most research treats the brain as a whole and predicts brain 
age on a global level. The brain, however, exhibits mosaic aging, 
wherein different regions may age at varying rates or undergo dis-
tinct age-related changes.Comparedwith global brain age, a finer-
grained approach may better reveal the spatial pattern of BAG in 
various diseases and track brain changes over time as diseases 
progress [56]. Limited work on local BAE exists. Cherubini et al. [46] 
built LR models for each voxel using features from voxel-based 
morphometry andDTI. Kaufmann et al. [47] trained separatemod-
els for each brain region, providing local or regional information 
but limiting the incorporation of contextual and global informa-
tion. Popescu et al. [56] were the first to employ deep learning 
for BAE. Using the U-Net architecture, the researchers produced 
individualized 3D maps of brain-predicted age and demonstrated 
distinct local brain-age patterns in individuals with mild cognitive 
impairment (MCI) or dementia. This study clearly shows that local 
BAE has the potential to provide spatial information, leading to 
a more mechanistic understanding of individual differences in 
brain aging patterns in health and disease. Finally, Gianchandani 
et al. [39] deployed multi-task deep learning model on T1w images 
to predict age at the voxel level and global level. They also per-
formed three types of brain segmentation on GM, WM, and CSF 
regions. 

Model selection 
According to the no free lunch theorems [72], no identical algo-
rithm is the best for all the machine learning tasks. Hereby, there 
is no identical machine learning algorithm that is the best in all 
BAE problems. Factors such as dataset size, input data modality, 
noise ratio in data, data distribution, gender, and task complexity 
play an imperative role when deciding to adopt a specificmachine 
learning algorithm. 

Traditional machine learning methods are easier to explain 
and interpret than deep learning methods due to their simple 
design. This enables the identification of the important features 
and their impact on the overall performance. However, these 
methods require many engineering efforts to extract features 
from the input. The hand-crafted features can sometimes be 
restrictive, resulting in the omission of crucial features in the raw 
input. On the other side, deep learning methods are more robust 
against bias and have the potential to generate desirable insights 
directly from the neuroimaging input, even without conducting 
preprocessing [10]. This, of course, obviates the need to consume 
hours of preprocessing neuroimaging inputs and enhances the 
clinical applicability of BAE models [6]. 

Some studies in BAE adopt multiple models to enhance age 
prediction accuracy. They usually adopt ensemble learning to 
train multiple machine learning models in age prediction tasks. 
Boosting, bagging, and stacking are the broad categories of ensem-
ble learning [73]. 

Model evaluation and statistical analysis 
Table 3 reports the prevalent metrics for assessing the accuracy of 
BAE models. The most widely used metric is mean absolute error 
(MAE), which computes average absolute BAG across subjects. 
However, MAE is susceptible to the age range of the test set, 

Table 3. Common evaluation metrics for machine learning 
regression models, such as brain age prediction models 

Metric Equation 

MAE: average of absolute residuals ↓ 1 
N

∑N 
i=1 | Ŷi − Yi | 

RMSE:
√
squared residuals ↓

√
1 
N

∑N 
i=1( Ŷi − Yi)

2 

R2: variance in Ŷ explained by Y ↑ 1 −
∑N 

i=1( Ŷi−Yi)
2∑N 

i=1(Yi−Yi)
2 

ρ: Pearson’s correlation coefficient ↑
∑N 

i=1( Ŷi−Ŷi)(Yi−Yi)√∑N 
i=1( Ŷi−Ŷi) 

2√∑N 
i=1(Yi−Yi) 

2 

Yi: true value of input sample i. Ŷi: predicted value of input sample i. N: 
number of samples. Y: 1 

N
∑N 

i=1 Yi. Ŷ: 1 
N

∑N 
i=1 Ŷi. ↓: lower value shows better 

fit. ↑: higher value shows better fit. 

leading to inaccuracies in cross-study comparisons [ 39]. To obtain 
a more holistic assessment of models performance, recent studies 
usually report R2 metric and use a violin plot. F-statistics and 
cumulative score are also reported in recent studies [6, 7]. 

Although there are several works in BAE studies, most of them 
lack standard evaluation protocols. Specifically, many aspects 
need to be addressed in model evaluation, including (i) model 
generalizability from one site to new sites, (ii) reliability of esti-
mated ages on repeated measurements, (iii) standard age dis-
tribution of the testing data, and (iv) estimated age consistency 
on longitudinal subjects. More et al. [74] and  Dular  et al. [75] 
have recently paved the way by providing standard protocols to 
evaluate BAE models. While More et al. [74] mainly focused on 
works that adopt traditional machine learning algorithms, Dular 
et al. [75] paid more attention to deep learning-based techniques. 
Also, integrating domain adaptation strategies to BAE design can 
contribute to generalizability on multi-site data, given its great 
success in recent works [76–78]. 

Bias correction to BAE 
Despite considerable efforts to reduce the prediction error in 
BAE models, a systematic bias persists when predicting individ-
ual brain ages. This bias typically manifests as overestimation 
in younger subjects and underestimation in older subjects. The 
causes of this bias vary depending on the type of brain age model. 
In linear models, the bias arises due to the orthogonality between 
predicted brain age and BAG, which restricts the angle between 
them to values between 0 and 90 deg [79]. In contrast, for nonlin-
ear models, the bias is thought to stem from regression dilution, 
which is linked to the non-Gaussian distribution of chronological 
age [80–82]. 

Bias correction is critical because BAG is intended to serve as 
an informative index of individual brain health. Previous stud-
ies have shown that higher order correction methods, such as 
quadratic corrections, yield similar results to linear correction 
methods [82]. As a result, linear correction methods are widely 
adopted in most BAE studies [74, 83]. 

Bias correction strategies can be categorized into two types: 
sample-level and age-level corrections (see Table 4). Sample-level 
bias correction, which adjusts the BAG bias across all samples, 
has been used for several years. The three main linear correction 
methods include Cole’s method [84], de Lange’s method [48], 
and Beheshti’s method [85], with Beheshti’s method shown to 
be equivalent to de Lange’s. These methods effectively reduce 
the overall BAG bias, bringing the mean BAG across all samples 
closer to zero. However, they fail to address the bias observed in 
samples of the same chronological age, known as age-level bias
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Table 4. Bias correction methods in BAE studies 

Authors Strategy Equation 

Cole et al. [84] Sample-level εc = (Ŷ−β1) 
α1 

− Y 
De lang et al. [87] ε̂ = α2 × Y + β2

εc = Ŷ − (α2 × Y − β2) 
Beheshti et al. [85] ε = α2 × Y + β2

εc = Ŷ − [(α2 + 1) × Y + β2] 
Zhang et al. [86] Age-level εia 

c = (εi−μi) 
αa 

Y: chronological age. Ŷ: predicted brain age, Ŷ = α1 × Y + β1. α1: slope of 
regressing Ŷ on Y. β1: intercept of regressing Ŷ on Y. ε̂: predicted age 
difference. ε: calculated age difference, ε = Ŷ − Y. εc: corrected age 
difference. εia 

c : corrected age difference for sample i at age a. α2: slope of 
regressing ε on Y. β2: intercept of regressing ε on Y. μa: mean age difference
ε at age a. σa: standard deviation of age difference at age a. 

[ 86]. To resolve this issue, an age-level bias correction method 
was recently proposed [86]. This approach is recommended as a 
follow-up step after applying sample-level correction to ensure 
both types of bias are adequately corrected. 

Clinical applications to BAE 
BAG as a biomarker for brain health and disease 
diagnosis 
The application of BAG has significant potential in clinical 
settings, particularly for diagnosing, prognosing, and making 
treatment decisions. A positive BAG, where an individual’s 
brain appears older than their chronological age, is commonly 
associated with neurodegenerative diseases such as AD and 
MCI. Studies using MRI and PET imaging have demonstrated 
that a significant BAG can predict cognitive decline and disease 
progression in these conditions, making it a valuable tool for 
early detection and monitoring. In contrast, smaller BAGs may be 
observed in other conditions, reflecting less severe or different 
types of brain changes. This variability in BAG across different 
diseases highlights its utility in differential diagnosis and in 
tailoring treatment strategies based on the severity of brain aging 
observed [8]. 

Brain age studies extend beyond AD and MCI, encompassing a 
range of clinical populations including those with traumatic brain 
injury, multiple sclerosis (MS), stroke, and psychiatric disorders 
such as schizophrenia, bipolar disorder, and major depressive 
disorder. A notable pattern is the consistently significant BAG 
observed in individuals with schizophrenia, which aids in dif-
ferential diagnosis and identifies those at greater risk for severe 
disease progression. This differential diagnostic capability is cru-
cial, as it helps distinguish between overlapping symptoms of 
various psychiatric disorders. For instance, while schizophrenia 
often shows a high BAG, bipolar disorder’s effect on BAG is less 
consistent, highlighting the importance of BAG in fine-tuning 
diagnostic processes [88]. Figure 2 plots the results of recent BAE 
studies on patients with the corresponding BAG values. 

Furthermore, BAG serves as a biomarker of overall brain health. 
A higher BAG correlates with various markers of poor health, such 
as cognitive decline, reduced physical strength, and slower walk-
ing speed. Conversely, lifestyle factors like regular meditation, 
music practice, and physical activity are associated with lower 
BAGs, indicating protective effects. This makes BAE a valuable 
tool for early disease detection, offering a biological dimension 
to the screening process and potentially enabling earlier and 
more accurate diagnoses. Longitudinal studies suggest that BAG 

monitoring could predict treatment responses, allowing for more 
personalized and effective management of conditions ranging 
from neurodegenerative diseases to psychiatric disorders. This 
evidence underscores the suitability of BAE for clinical applica-
tions, supporting its integration into routine clinical practice for 
enhanced patient care [89]. 

Genetic heterogeneity of BAG 
Recent advancements in brain imaging and genetics have shed 
light on brain age as a biomarker for understanding the aging pro-
cess and its genetic underpinnings.Multiple studies have explored 
how genetic variants influence brain aging. 

Kim et al. [90] conducted an in-depth study using multimodal 
examples from the UK-BB dataset, including brain MRI, genomics, 
blood-based biomarkers, andmetabolomics, to investigate genetic 
variants associated with BAG. Throughout the genome-wide 
association (GWAS) and Mendelian randomization (MR) analysis, 
they found genetic variants in KLF3-AS1 and STX1 regions 
and revealed a causal connection between immune-related 
biomarkers and BAG, indicating a genetic and immune link 
to brain aging. Leonardsen et al. [91] used neural networks 
with genetic architecture to estimate brain age in a cohort 
of over 53000 individuals. The GWAS identified eight genomic 
regions associated with BAG, and the MR analysis demonstrated 
causal relationships between BAG and neurological disorders, 
such as AD and bipolar disorder. Similarly, Wen et al. [92] 
leveraged multimodal brain imaging and genomic data to 
investigate the genetic architecture of brain aging. Their study 
confirmed the polygenic nature of brain aging and identified 
eight genomic regions associated with BAG, echoing the findings 
of Leonardsen et al. [91]. Their results highlighted the genetic 
links between neuropsychiatric disorders and accelerated brain 
aging. 

Ning et al. [93] investigated the associations between environ-
mental and genetic factors on brain aging using UK-BB data. The 
study revealed that brain age is influenced by lifestyle factors, 
such as tobacco and alcohol consumption, and identified a signif-
icant association with the MAPT gene. In a tract-based analysis, 
Salih et al. [94] examined how specific WM tracts contribute to 
brain aging. They discovered that limbic tracts provide the most 
accurate estimates of brain age and are significantly associated 
with lifestyle factors and genetic variants. This suggests that 
variations in WM integrity are influenced by genetic factors and 
may contribute to accelerated brain aging. Expanding on these 
genetic studies, Jawinski et al. [95] analyzed the heritability of 
BAG and its relationships with over 1000 health traits, including 
mental health (e.g. depression) and physical health (e.g. diabetes). 
They identified 25 loci associated with brain aging, with MAPT 
emerging as a significant locus, reinforcing its relevance to AD and 
broader brain aging mechanisms.Ning et al. [96] employed CNN to 
improve the accuracy of age predictions. Their study uncovered 
new genetic loci associated with brain aging, demonstrating that 
accurate models help detecting genetic factors involved in the 
aging process. 

Overall, the achievement of genetic research underscores the 
polygenic nature of brain aging and its intricate relationships 
with lifestyle factors, immune responses, and neuropsychiatric 
conditions. As machine learning and neuroimaging techniques 
continue to evolve, they are enabling more precise identification 
of genetic variants and pathways involved in brain aging, offering 
valuable insights into the biological mechanisms driving this 
process.
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Figure 2. BAE studies on common neurological disorders and psychiatric disorders. Each study is denoted as a circle, and the circle size increases 
proportionally with the number of incorporated subjects N. 

Longitudinal BAE studies 
While traditional BAE studies typically assess individuals at a 
single time point, longitudinal BAE studies, which follow the 
same individuals over time,offer several distinct advantages.Most 
notably, the longitudinal design enhances the detection of gradual 
or subtle changes in neuroimaging phenotypes that are often 
missed in cross-sectional analyses. Additionally, the longitudinal 
design provides greater statistical power and sensitivity,which are 
crucial for identifyingmarkers of neurodegenerative diseases [97]. 

Recent longitudinal studies have demonstrated the potential 
of BAE in various neurological conditions. For instance, a lon-
gitudinal study examining BAG and post-stroke neurocognitive 
disorder (NCD) found that individuals with lower BAG had a 
reduced risk of developing post-stroke NCD up to 36 months after 
a stroke. This finding suggests that a brain that appears younger 
relative to chronological age is more resilient and associated with 

milder cognitive impairments following stroke [98]. In the context 
of AD, longitudinal studies have shown that individuals with 
non-amnestic (non-memory-related) AD exhibit higher brain BAG 
scores compared with those with amnestic (memory-related) AD. 
This highlights the utility of brain BAG in distinguishing between 
different subtypes of Alzheimer’s and in assessing disease sever-
ity [99]. Similarly, changes in brain BAG over time have been linked 
to disease progression in MS. Specifically, an increasing brain 
BAG has been associated with worsening disability scores on the 
Expanded Disability Status Scale, indicating that brain BAG could 
serve as a valuable biomarker for tracking disease progression in 
MS patients [100]. Furthermore, in a longitudinal study involving 
the ABCD cohort, researchers found that as puberty progresses, 
brain maturation accelerates. Faster pubertal development was 
linked to slightly accelerated brain growth, suggesting that the 
timing and pace of puberty may influence brain development,
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with potential implications for future cognitive andmental health 
outcomes [101]. 

A major challenge limiting the progress of longitudinal BAE 
studies is the scarcity of available longitudinal neuroimaging 
datasets.Widely used datasets such as ADNI, PPMI, and the ABCD 
Study provide valuable resources, but their number is limited 
(see Table 1 for more details). Recently, new longitudinal datasets, 
includingNCANDAandHCP datasets, have been released, offering 
additional data and expanding opportunities for research in this 
field. 

Beyond BAG estimation for clinical applications 
Although BAG estimation has shown the potential for identify-
ing neurodegenerative diseases, it seems using a single value to 
summarize the whole regional variations in brains is insufficient. 
Consequently, the estimated value of BAG lacks spatial specificity, 
which is imperative in early screening [102]. Therefore, some 
recent studies have paid more attention to maximizing the gain 
of the extracted age information in BAE instead of only focusing 
on enhancing the accuracy of BAG estimation [102, 103]. 

For example, Ran et al. [102] developed brain age vector, com-
prising regional variations of the input brain imaging with the 
help of Shapely Additive Explanation [104]. The proposed vector 
has demonstrated promising results in early disease detection 
with high accuracy. Sihag et al. [103] went even further and addi-
tionally accounted for data heterogeneity and the limited size of 
training data in their study. They resorted to foundation models 
[105] to robustly interpret brain anatomy for any arbitrary brian 
atlas, expanding brain age use in numerous biomedical applica-
tions. Foundation models [105] have recently emerged in artifi-
cial intelligence (AI) to shift models’ deployment from context-
specific paradigm with narrow applicability to generic models 
that can readily be adapted to several downstream tasks with 
distinct contexts. 

Estimating biological age with omics 
technologies 
Estimating biological age, as opposed to chronological age, offers a 
more accurate reflection of an individual’s physiological state and 
their risk for age-related diseases [106, 107]. Recent advancements 
in high-throughput omics technologies have fueled the devel-
opment of tools to quantitatively assess biological aging. These 
include epigenomic, transcriptomic, and proteomic data, which 
can be integrated with machine learning to create “aging clock” 
that reveals novel biomarkers of aging. In this section, we first 
explore studies focused on DNAm age, a widely used epigenetic 
measure of biological aging. We then review research on tran-
scriptomic and proteomic approaches to estimate biological age. 
Finally, we discuss the relationship between brain age and other 
biological measures, providing insight into the integration of brain 
health with systemic aging processes. 

DNAm age (epigenetic clocks) 
Epigenetic clocks (referred to as “DNAmage”),which are predictive 
models based on DNAm patterns, have emerged as powerful 
tools to estimate an individual’s biological age. These clocks use 
patterns of methylation at specific CpG sites across the genome 
to predict an individual’s biological age [108]. Studies, such as 
those using Horvath’s clock, have demonstrated that DNAmage is 
highly correlated with chronological age and can predict various 
health outcomes more accurately than chronological age alone. 

For instance, a study in the ALSPAC cohort derived four methy-
lation age measures in late adolescence and compared them with 
brain age measures from structural neuroimaging. The results 
showed that smoking and BMI were associated with advanced 
methylation age but not brain age, indicating distinct pathways 
of aging in different tissues and highlighting the independence 
of these measures in adolescents [109]. DNAm PhenoAge is an 
advanced DNAm-based biomarker that predicts biological aging 
and is associated with various health outcomes, including car-
diovascular disease and mortality [110]. It is derived using a 
novel two-step method that trains an epigenetic predictor of 
phenotypic age,which reflects physiological dysregulation, rather 
than chronological age. This approach improves predictions over 
earlier DNAm biomarkers by targeting specific CpG sites, such as 
those associated with inflammatory markers and oxidative stress 
pathways. 

Research in animal models has also contributed to our under-
standing of DNAm changes in relation to lifespan. A study on 
rockfish, known for their exceptional longevity, revealed that 
certain DNAm changes, such as the transition from CpG to TpG 
mutations, were more prevalent in species with longer lifespans. 
While thesemutations do not directly cause longevity, they reflect 
a mutational signature that aligns with species-specific life his-
tory traits. Similar patterns in humans have allowed scientists to 
develop DNAm-based age estimators that surpass chronological 
age in predicting age-related health risks [111]. 

The value of DNAm-based clocks is not limited to cross-
sectional studies but has increasingly been explored in longi-
tudinal settings to assess how these markers evolve over time. 
Reynolds et al. [112] investigated the genetic and environmental 
influences on DNAm changes over aging population. Their 
decade-long study on twins revealed that while genetic contribu-
tions to DNAm were stable over time, environmental factors and 
individual-specific experiences played a greater role in driving 
DNAm changes during aging. Sites associated with senescence 
and aging appeared to be more heritable, suggesting a nuanced 
interplay between genetic predisposition and environmental 
exposure in shaping DNAm over time. Longitudinal studies also 
suggest that DNAm changes can capture the systemic nature of 
biological aging. Research by Joyce et al. [113] examined the role of 
GrimAge, an epigenetic clock designed to predict cardiovascular 
health and disease risk. This study highlighted how accelerated 
epigenetic aging is linked to the loss of cardiovascular health, 
thus linking biological aging processes in the cardiovascular 
system to broader health outcomes, including brain aging. Further 
expanding on the systemic implications of DNAm, Pang et al. 
[114] investigated the impact of COVID-19 and messenger RNA 
vaccination on epigenetic clocks in older individuals. Their 
findings revealed age-related divergence in DNAm patterns 
following infection, with older individuals showing significant 
increases in PhenoAge and GrimAge post-infection. Interestingly, 
vaccination, particularly with the Moderna vaccine, was found 
to mitigate this age acceleration, underscoring the potential 
for immune interventions to influence aging processes. An 
interesting longitudinal study to explore how environmental 
stressors can accelerate biological aging, particularly in vul-
nerable populations, is conducted by Smith et al. [115]. They 
analyzed the relationship between epigenetic age acceleration 
and posttraumatic stress disorder in women exposed to large-
scale disasters. The results revealed that racial minorities (Black 
and American Indian women) experienced accelerated epigenetic 
aging, linking environmental stress with accelerated biological 
aging and subsequent health risks. Lastly, Verschoor et al. [116]
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and Vetter et al. [117] explored the relationship between DNAm 
age and functional capacity (e.g. frailty) on older adults. To 
sum up, longitudinal studies have shown that DNAm changes 
over time reflect biological aging across different tissues and 
conditions. These findings emphasize the complexity of aging 
and the significance of DNAm-based biomarkers in capturing 
the influence of genetic, environmental, and lifestyle factors on 
biological age. 

Transcriptomic and proteomic approaches 
Beyond DNAm age, transcriptomic and proteomic data offer addi-
tional layers of molecular information. Transcriptomic analysis 
involves examining the complete set of RNA transcripts produced 
by the genomeunder specific circumstances or in a particular cell. 
Changes in gene expression profiles can indicate aging-related 
processes and help estimate biological age. Proteomic analysis, 
which studies the full set of proteins expressed by a genome, 
provides insights into the functional state of cells and tissues. 
Proteins are directly involved in most biological processes, and 
their abundance andmodification states can reflect the biological 
age of an organism. Combining posttranslational products like 
transcriptomic and proteomic data with machine learning tech-
niques enhances the interpretability and experimental testability 
of biological age estimation models and uncovers functional gene 
networks associated with aging [106]. 

Martínez-Magaña et al. [118] andHolzscheck et al. [119] both uti-
lized deep learning techniques to develop transcriptomic clocks 
for predicting biological age. The former applied their models to 
prefrontal cortex samples, which outperformed traditional meth-
ods and identified gene networks involved in signal transduction. 
This provides insights into transcriptomic changes associated 
with aging and psychiatric disorders. The latter demonstrated 
a strong correlation between transcriptomic age and visual age 
estimates in skin samples. Key aging-related pathways, such as 
p53- and TNFa/NFkB-signaling, were identified, with in silico gene 
knockdowns validating known aging mechanisms and suggesting 
new targets for interventions. 

In a related effort, Zarrella and Tsurumi [120] analyzed tran-
scriptomic changes in the prefrontal cortex during healthy aging, 
identifying differentially expressed genes like CA4 and OLFM1. 
Their models also highlighted genes such as ASPHD2 and CDC42 
as important predictors of aging. Qiu et al. [121] further advanced 
aging research by introducing the ENABL Age framework. Their 
framework enhanced the interpretability of biological age predic-
tions through explainable AI, identifying specific biomarkers and 
validating their models using large datasets. 

In proteomics, Oh et al. [122] used plasma proteomics and 
machine learning to track organ-specific aging, identifying sig-
natures linked to diseases like heart failure and AD, providing 
practical tools for predicting age-related health outcomes. Wingo 
et al. [123] also explored cognitive aging through proteomic anal-
ysis, identifying 579 proteins associated with cognitive function, 
offering potential new targets for cognitive aging research. 

How brain age relates to other biological age 
measures 
Alongside brain age, there are various measures such as DNAm 
age and heart age to estimate the biological age. Exploring the 
relationships between thesemeasuresmay reveal distinct aspects 
of understanding the aging process and its effects on health. 

Solovev et al. [124] used multi-omics data, including the methy-
lome, proteome, transcriptome, and metabolome data, to esti-
mate biological age. Although their approach helped uncover 

the complexity of aging and improve predictive models, it lacks 
the link to brain age. Studies have shown that while DNAm age 
strongly correlates with chronological age, it may not always align 
perfectly with BAE, particularly in contexts like neurodegenera-
tive diseases or cognitive decline [125]. Cole et al. [5] reported that 
DNAm age and brain age capture different aspects of the aging 
process. In their study, combining both measures provided a more 
robust predictor of aging.The study also introduced the concept of 
an “aging mosaic,” referring to the variability in aging rates across 
different biological systems, driven by genetic and environmental 
factors. Sugden et al. [126] emphasized that these two age mea-
sures offer complementary insights into aging, particularly with 
respect to cognitive decline and AD risk. This finding is further 
supported by Sanders et al. [109], who demonstrated that both 
aging markers capture different aspects of biological processes, 
particularly in the early stages of life. 

To gain further insights into the aging process, Iakunchykova 
et al. [127] investigated the relationship between brain age and 
heart age. Using deep neural network (DNN), they demonstrated 
a correlation between heart age, brain age, and cognitive function. 
This finding highlights the systemic connections between cardio-
vascular health and brain aging. 

In summary, while various measures of biological age, such as 
DNAm age and heart age, provide insights into different aspects 
of the aging process, research exploring the relationships among 
these measures is still limited. Current studies suggest that com-
bining brain age with other measures may offer a more com-
prehensive understanding of aging, though these measures often 
capture distinct biological processes. 

Limitations to BAE 
Recently, the adoption of various deep learning methods and the 
deployment of localized age predictions have gained attention in 
studies of BAE.However, the progress in BAE research remains hin-
dered by challenges such as learning biases and limited training 
data. These challenges are summarized in Fig. 3 and discussed in 
detail in this section. 

Learning bias 
Recent studies have shown significant differences in interpreting 
BAG across different age stages, races, and genders. Picarra and 
Glocker [128] demonstrated that common BAE models exhibit 
significant performance differences across different racial and 
gender groups, highlighting potential biases in race and gender. 

BAE also faces other challenges, including systematic biases 
such as overestimation in younger individuals and underestima-
tion in older individuals, as well as biases introduced by prepro-
cessing tools. Wang et al. [129] identified these common biases 
and attributed them to the uneven distribution of training data, 
which causes models to perform inconsistently across different 
age groups. Jirsaraie et al. [83] highlighted that the choice of pre-
processingmethods and the diversity of training data significantly 
affect the accuracy and generalizability of age predictions, with 
different scanner protocols introducing additional errors. Dular 
et al. [130] emphasized that extensive T1-w MRI preprocessing 
can reduce prediction errors, but the selection and application of 
these tools can introduce variability. Lu et al. [131] pointed out the 
“regression toward the mean” effect in BAE, where young brains 
are overestimated and older brains are underestimated, largely 
influenced by preprocessing choices and dataset selection. Tian 
et al. [132] suggested that the deterioration of physical health in 
neuropsychiatric disorders often masks changes in brain health,
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Figure 3. Limitations in current BAE methods. 

indicating that preprocessing steps might introduce errors affect-
ing the reliability of BAE. 

BAG reliability 
Moqadam et al. [133] found that head motion during MRI scanning 
significantly impacts brain age estimates, presenting a major con-
founding factor that complicates accurate brain age evaluation. 
Research by Sinha and Raamana [134] suggests that different 
brain regions undergo independent aging transformations due 
to neurobiological processes, making it potentially erroneous to 
simplify high-dimensional imaging features into a single value for 
assessing brain health. Additionally, Abrol et al. [135] highlighted 
that brain connectivity patterns evolve significantly over time, 
suggesting that BAGs may vary by age stage. In children and 
adolescents, high values of BAG might be associated with better 
cognitive development, indicating a beneficial aspect [136, 137]. 
However, in middle-aged and older adults, BAGs typically signal 
accelerated aging and cognitive decline, reflecting poorer health 
outcomes [138, 139]. These findings underscore the need for age-
specific contexts when interpreting BAGs. Without considering 
these limitations, there is a risk of misinterpreting brain age data, 
leading to inaccurate assessments of an individual’s cognitive 
health and developmental progress. Collectively, these studies 
emphasize the importance of accounting for factors such as 
head motion, regional brain aging, and age-specific differences to 
ensure reliability in BAE. 

BAG misinterpretation in disease diagnosis 
Recent studies have highlighted several limitations in using BAE 
for diagnosing psychiatric and neurological disorders. Wei et al. 
[140] found that patients with neuromyelitis optica spectrum 
disorder and MS exhibited significantly higher BAG values com-
pared with HCs, suggesting that pathological overlaps in these 
diseases complicate the interpretation of brain age differences. 
Similarly, Forrest and Kovacs [141] reviewed mixed pathologies in 

neurodegenerative diseases involving tau protein,TDP-43,Aβ, and  
α-synuclein deposits, which further obscure accurate BAG inter-
pretation. Sihag et al. [142] addressed this challenge by proposing 
an explainable BAE framework using covariance neural networks 
and cortical thickness features, emphasizing the need to account 
for spatial specificity in overlapping disease conditions. 

In addition to pathology-related complexities, comorbidities 
and broader health factors must be considered when interpreting 
BAG values.Mouches et al. [143] demonstrated that cardiovascular 
risk factors, such as obesity, smoking, and alcohol consumption, 
significantly affect BAGs, complicating the interpretation due 
to overlapping health conditions. Leonardsen et al. [91] identi-
fied eight genomic regions associated with BAG, revealing that 
BAE is influenced by a range of genetic and non-genetic traits. 
Saleem et al. [144] noted that while deep learning techniques 
show promise in diagnosing AD, BAE alone is insufficient for 
comprehensive diagnosis; additional biomarkers and datasets are 
necessary. Baldeiras et al. [145] echoed this sentiment, warning 
that relying solely on BAE may result in inaccuracies, especially 
in differentiating Alzheimer’s from other forms of dementia. 

To improve the reliability of BAE in clinical contexts, researchers 
have explored integrating it with other diagnostic approaches. 
Tian et al. [132] suggested combining BAE with broader assess-
ments of brain-body health to enhance diagnostic accuracy 
in neuropsychiatric disorders. Ernsting et al. [146] proposed a  
method using uncertainty-aware DNNs and conformal prediction 
theory to provide statistical guarantees for individual cases, 
though they raised concerns about the clinical generalizability 
of their findings, as their study relied primarily on the NAKO 
dataset,which predominantly includes German subjects and may 
encompass comorbidities. 

In summary, relying solely on BAE increases the risk of misin-
terpreting BAG results and inaccurately assessing an individual’s 
cognitive health and disease progression. Therefore, BAE studies 
should account for confounding factors such as head motion,
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overlapping pathologies, genetic influences, and comorbid con-
ditions when used for disease diagnosis. 

Few public models 
The brainageR,DeepBrainNet,MIDI BrainAgemodel (DenseNet121), 
and BARACUS have demonstrated significant utility in predicting 
brain age.The brainageR uses GPR for predicting the brain age, val-
idating its reliability and predictive capability [147]. DeepBrainNet 
constructs a deep brain network using large-scale MRI datasets, 
achieving robust brain age estimates across different scanners 
and populations [70]. The MIDI Brain Age model (DenseNet121) 
excels in brain tumor classification, particularly on smaller 
datasets [148]. BARACUS combines multimodal imaging data to 
capture cognitive impairment and brain age differences [149]. 
Despite their impressive performance in research settings, there 
are very few other publicly accessible models available for direct 
application. This limitation hinders their broader adoption in 
clinical and practical applications. 

Dataset size 
De Lange et al. [48] evaluated the impact of different age ranges 
and sample sizes on the performance of BAE models, finding 
that increasing sample size can improve model performance 
metrics. The study pointed out that insufficient sample sizes 
can lead to increased prediction errors and affect model stability. 
This was also supported in another study [47]. Jirsaraie et al. 
[83] studied the generalizability of two brain age models across 
different age samples, discovering that insufficient sample size 
and diversity can lead to inconsistent performance across dif-
ferent acquisition protocols, impacting prediction accuracy and 
reliability. Yu et al. [150] systematically evaluated the effects of site 
harmonization, age range, and sample size on estimating brain 
age, finding that model accuracy plateaued with sample sizes 
exceeding 1600 participants. The study noted that insufficient 
sample sizes limit model generalizability and stability. Barbano 
et al. [151] investigated BAE using contrastive learning on multi-
site datasets, finding that inadequate dataset sizes can lead to 
models overfitting site-specific noise, thus affecting prediction 
accuracy and stability. To overcome the limitation of training 
data, Mateus et al. [152] evaluated the feasibility of federated 
learning for BAE, a method that allows training global models on 
distributed data to protect patient privacy. However, the effective-
ness of this approach still requires further investigation. Overall, 
these studies consistently demonstrate that increasing sample 
size is crucial for enhancing the performance and stability of BAE 
models, while insufficient sample sizes significantly affect model 
generalizability and prediction reliability. 

Conclusion 
Over recent years, brain imaging data have been used more fre-
quently in BAE studies. Although the studies have demonstrated 
the benefits of using BAG as a biomarker for brain health and clin-
ical diagnosis, the lack of specificity presents a major challenge. 
This drew the attention of recent studies to explore the effec-
tiveness of local BAE and develop methods for bias correction. 
Adopting foundation models and deploying federated learning 
may also enhance the performance of BAEmodels.However, these 
directions require further studies. Finally, the clinical applicability 
of BAE models can significantly expand by integration with other 
age biomarkers, such as DNAm. 

Key Points 
• Brain age estimation (BAE) using machine learning 

methods can be beneficial in monitoring brain health 
and early disease screening. 

• Unlike global BAE methods that summarize the whole 
brain image into a single value (BAG), local BAE methods 
are advantageous in predicting aging rates in multiple 
regions. 

• Training data, data distribution, evaluation metrics, and 
gender can significantly influence BAE performance. 

• Adopting foundation models and federated learning 
may pave theway to overcome the significant challenges 
in BAE studies. 
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