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Abstract

The study of brain age has emerged over the past decade, aiming to estimate a person’s age based on brain imaging scans. Ideally,
predicted brain age should match chronological age in healthy individuals. However, brain structure and function change in the presence
of brain-related diseases. Consequently, brain age also changes in affected individuals, making the brain age gap (BAG)—the difference
between brain age and chronological age—a potential biomarker for brain health, early screening, and identifying age-related cognitive
decline and disorders. With the recent successes of artificial intelligence in healthcare, it is essential to track the latest advancements
and highlight promising directions. This review paper presents recent machine learning techniques used in brain age estimation
(BAE) studies. Typically, BAE models involve developing a machine learning regression model to capture age-related variations in brain
structure from imaging scans of healthy individuals and automatically predict brain age for new subjects. The process also involves
estimating BAG as a measure of brain health. While we discuss recent clinical applications of BAE methods, we also review studies of

biological age that can be integrated into BAE research. Finally, we point out the current limitations of BAE’s studies.

Keywords: brain age; biological age; disease diagnosis; machine learning; deep learning

Introduction

With the significant social change in the current century due to
the population aging, our society sectors, especially healthcare,
are adversely affected by the associated functional declines and
diseases, such as cancer, cardiovascular disease, diabetes, and
dementia [1, 2]. Aging is generally described as a gradual accu-
mulator of biological changes in a human subject leading to the
progressive decline of various physiological and organ functions
[3]. In order to provide adequate care and treatment, it became
urgent to study the link between biological aging and potential
diseases. Usually, biological age can be estimated from mediums,
such as imaging data of an organ (brain) or blood samples [DNA
methylation (DNAm)], or physical and functional assessments
(grip strength and lung capacity) [4, 5].

Brain age estimation (BAE) stands out among biological age
estimation options. This is because recent research studies have
shown great success in accurately estimating the brain age of
healthy subjects given the neuroimaging data [6, 7]. Brain aging is
always accompanied by interactions and specific morphological
changes in brain structure across the lifespan. Previous studies
have demonstrated that brain structure and function are altered
in neurodegenerative diseases, such as Parkinson’s disease (PD)
and Alzheimer’s disease (AD) [8]. BAE typically applies machine
learning regression algorithms on given neuroimaging data, such
as T1l-weighted imaging, diffusion-wighted imaging (DWI), and
functional magnetic resonance imaging (fMRI), etc., to accurately
predict brain ages for new unseen brain imaging. The brain age

gap (BAG) is computed as the difference between the predicted
brain age ¥ from BAE models and the chronological age Y (i.e.
the actual age of human subjects). Mathematically, BAG = ¥ — Y,
where positive BAG values imply “accelerated” aging, and negative
BAG values reflect “delayed” aging.

BAE models tend to learn a reference curve for healthy aging
subjects. This allows the model to be a biomarker of brain health
by reporting zero or small BAG values for healthy subjects and
large BAG values for subjects with brain-related diseases. Such
biomarkers are imperative in clinical applications for early detec-
tion of diseases, risk assessment, and accurate evaluation of
potential treatments [8]. However, the results of BAE models still
need to be more reliable due to multiple factors: (1) lack of
specificity, (2) bias to gender, race, and scannning devices, (3)
limited dataset size, and (4) lack of accounting in BAE studies to
environmental factors and genetics that may manipulate human
aging. Another challenge is that current BAE models only estimate
brain age for input subjects at a specific time point instead of
estimating the aging rate across subjects’ lifespans. This makes
BAE models fail to meet one of the main criteria established by
the American Federation for Aging Research for qualifying aging
biomarkers [5, 9].

In this review paper, we discuss the process of BAE in Section 2.
Then, we address the potential clinical applications of BAE as a
biomarker in Section 3. Next, other approaches for estimating the
biological age are presented in Section 4. After that, the current
limitations of recent studies in BAE are addressed in Section 5.
Finally, we report our conclusions in Section 6.
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Figure 1. The BAE pipeline involves preprocessing brain images to enhance critical information, followed by feature extraction and prediction using
traditional regression (e.g., SVR) or deep learning (e.g., CNNs), with BAG computed as the difference between predicted and chronological age.

Brain age estimation
System design

Generally speaking, building the BAE model consists of two steps.
The first stepis the training step, which basically involves training
neuroimaging data to learn the model parameters. The second
step is testing and involves testing neuroimaging data for model
evaluation. The testing data are regularly distinct from the train-
ing data and are often constrained to follow the same training
data distribution.

Figure 1illustrates the pipeline of the BAE process. The process
starts by collecting neuroimaging data from healthy control (HC)
subjects, along with the corresponding age, known as chronolog-
ical age. The collected data are further split into training and
testing data. In the BAE training stage, we first preprocess the
input data to eliminate noise and highlight the critical details.
Then, we typically apply machine learning to the processed input.

Machine learning methods are categorized into two types:
traditional machine learning methods and deep learning meth-
ods. Traditional machine learning methods require feature engi-
neering, which extracts specific features and performs feature
selection/reduction. After that, the engineered features are fed
into one of the traditional regression methods to learn the model
parameters and predict the brain age. If deep learning methods
are used in BAE, they can be either directly applied to the raw
input data or the processed input [10]. The difference between
the predicted age and the corresponding chronological age is
used to update model parameters in the training stage, calcu-
late the BAG, and perform some statistical analysis in the test-
ing stage. It is worth noting that the testing stage in machine
learning generally does not involve updating the model param-
eters. In some studies [11], the BAE process may involve a val-
idation step after the training step and before performing the
final model evaluation in the testing step. This validation step
often involves one of these strategies: k-fold cross-validation or
bootstrapping [4].

Input neuroimaging data modalities

Neuroimaging is regarded as a noninvasive method that captures
the whole brain of human subjects, including microstructural
and morphological features. Magnetic resonance imaging (MRI)
modalities usually capture information about the anatomy of the
brain and have the following types: (i) T1-weighted (T1w), which
shows desirable performance in BAE; (ii) T2-weighted (T2w); (iii)
T2-FLAIR,; (iv) Task-functional MRI (t-fMRI); and (v) Resting state-
functional MRI (rs-fMRI). Some other modalities exist, such as
positron emission tomography (PET) and diffusion tensor imaging
(DTI). The reader can get more information about these modalities
in this recent review [32]. Table 1 lists the standard brain imaging
datasets that appeared in the recent studies of BAE.

Preprocessing tools

Preprocessing is an essential part of BAE that takes the raw
imaging data as an input and conducts the lowermost level of
abstraction to pinpoint the important details and filter out the
distortions for the downstream analysis [33]. MRI preprocessing
usually involves spatial normalization for mapping all scans to a
template scan, resampling for minimizing variations between the
reference scan and the following scans, and spatial smoothing for
unifying the voxel size or scan space [34, 35].

Popular MRI preprocessing tools are the following: (i) Freesurfer
[36] is a region-based software for extracting cortical and sub-
cortical measurements, such as surface area, volumes, and thick-
ness values; (ii) Statistical Parametric Mapping [35] uses a voxel-
based method to segment the input MRI image into the following
regions: gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF); (iii) FSL [37] is a software that offers two types of
interfaces: a command line and graphical user interface. The soft-
ware contains several analysis tools for several data modalities,
including DTI, MRI, and fMRI. It is also used for motion correction,
registration, and brain extraction.
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Table 1. List of popular datasets used for brain age prediction

No. Dataset HC(#) Age Imaging Genetics
1 IXI [12] 593 20-86 T1w, DTI

2 ADHD-200 [13] 500 7-21 T1w, rs-fMRI

3 ADNI [14] 923 40-100 T1W, rs-fMRI,PET, DTI v
4 PPMI [15] 393 30-89 T1w, DTI v
5 UK-BB [16] ~40000 40-69 T1w, DTI, rs-fMRI, ASL Ve
6 OASIS1 [17] 316 18-96 Tlw

7 OASIS2 [17] 72 60-96 Tiw

8 OASIS3 [17] 755 42-95 T1w, DTI, rs-fMRI, ASL

10 CAM-CAN [18] 653 18-88 T1w, rs-fMRI, MEG

11 HCP-D [19] 652 5-21 T1w, T2w, rs-fMRI, t-fMIR, DTI, ASL

12 HCP-YA [20] 1003 22-37 T1w, r5-fMRI

13 HCP-A [21] 725 36-100 T1w, T2w, rs-fMRI, t-fMRI, DTI,ASL

14 DLBS [22] 350 20-89 T1w, PET v
15 BNU [23] 180 17-25 T1w, rs-fMRI, DTI

16 ABIDE I [24] 573 7-64 T1w, rs-fMRI

17 ABIDE II [25] 593 5-64 T1w, rs-fMRI, DTI

18 SALD [26] 494 19-80 T1w, rs-fMRI

19 PNC [27] 1601 8-21 T1w, rs-fMRI, DTI, ASL v
20 ABCD [28] 11892 8-20 T1w, rs-fMRI, t-fMRI, DTI, ASL v
21 OpenBHB [29] 5330 7-86 T1w, T2w, DWI, rsfMRI

22 CC-359 [30] 359 29-80 Tlw

23 NCANDA [31] 831 12-21 T1w, rs-fMRI, DTI

HC: Healthy Control subjects

Feature selection/reduction

In this step, the BAE process includes feature selection and/or
reduction strategies. In feature selection, we usually keep the
most essential and relevant features for BAE and exclude the
remaining features. Features reduction (a.k.a dimension reduc-
tion) creates a new smaller feature set than the initially extracted
features. Principal component analysis [38] represents one of
the most popular techniques in feature reduction using linearly
uncorrelated features called principal components.

Machine learning methods

BAE models mainly rely on machine learning regression methods
for age prediction. The models are often trained in supervised
mode (i.e. valid access to chronological age) on brain imaging data
of HC subjects to build a reference curve based on brain struc-
tures. This turns BAE models to be used as clinical biomarkers for
brain health and early detection of age-related diseases, such as
AD and PD. Check Section 3 for more details about the clinical
applications of BAE models.

Machine learning methods, which aim to learn a specific task
by capturing patterns from training data that relate inputs (e.g.
neuroimaging data) to the target outputs (e.g. predicted age), can
be categorized based on the input brain imaging data: voxel-
based, surface-based, and pixel-based. Recently, voxel-based
methods have shown promising results in capturing the different
aging rates in multiple brain regions [39]. However, these methods
are hindered by the limited voxel resolution [4]. Surface-based
methods use a triangled mesh representation of GM, WM, and
CSF regions. In pixel-based methods, there are three strategies for
training the model: whole slices [4], some slices [40], or the most
significant slices [41].

Machine learning methods can also be categorized into two
types based on the learning strategy. The first type is called
traditional machine learning methods. The second type is called
deep learning methods. Table 2 contains the results of recent and

popular BAE methods, including both types of machine learning
techniques.

Traditional machine learning methods

Traditional machine learning methods refer to machine learning
methods requiring hand-crafted features as input. Since BAE
models are usually regression models designed for predicting real
numbers instead of a finite number of categories, we draw down
our discussion for the traditional regression methods. Support
vector regression (SVR), linear regression (LR), relevance vector
regression (RVR), and Gaussian process regression (GPR) represent
famous example methods that are adopted in several BAE models
[10, 11, 45, 58].

LR represents the most straightforward and understandable
regression method. Both SVR and RVR are designed to capture
nonlinear interactions in learning. Since SVR learns multivariate
prediction rules from one example and generalizes it to dis-
tinct examples, it can provide unbiased age prediction. However,
SVR requires additional training for parameter optimization [59].
Unlike SVR, RVR shows more robustness to different scanners
and captures changes related to the whole brain [60]. While
the methods above are considered parametric methods, GPR is
considered a nonparametric method that applies multivariate
Gaussian distribution over an infinite number of variables. This
allows GPR to model nonlinear relationships and show more
flexibility compared with the previous parametric methods [10].

As reported in Table 2, several BAE strategies adopted the
abovementioned machine learning algorithms. Specifically, both
Cole et al. [10] and Aycheh et al. [42] applied the GPR algorithm to
the extracted features from T1w imaging input. Although Aycheh
et al. [42] reported better results, this may be attributed to the
reduced age range and increased number of subjects. Beheshti
et al. [43] coupled 3D patch-based grading with the SVR algo-
rithm to estimate the brain age score. Learning from multi-modal
imaging features was extensively explored in this study [45]. The
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Table 2. Results of BAE studies on healthy individuals. Studies that adopt only local BAE or merge it with global BAE have v" in the

“local” column.

Local Subjects Age Model Modality Results

MAE RMSE R? P
Traditional machine learning
Cole et al. [10] 2001 18-90 GPR Tiw 4.41 5.43 0.91 -
Aycheh et al [42] 2911 45-91 GPR Tlw 4.05 5.16 - -
Beheshti et al. [43] 100 19-61 3D Patch [44] + SVR Tiw 1.66 3.00 0.94 -
Niu et al. [45] 839 8-21 Ridge Regression T1w, rs-fMRI, DTI 1.41 - 0.766 -
Niu et al. [45] 839 8-21 SVR T1w, rs-fMRI, DTI 1.43 - 0.756 -
Niu et al. [45] 839 8-21 GPR T1w, rs-fMRI, DTI 1.38 - 0.774 -
Cherubini et al. [46] v 120 20-74 LR T1w, T2w, DTI, FLAIR - - > 0.4 0.963
Kaufmann et al. [47] v 18990 female 3-96 XGBoost Tlw - - - 0.93
Kaufmann et al. [47] v 16484 male 3-96 XGBoost Tlw - - - 0.94
De Lange et al. [48] 18578 (UKB) 45-82 XGBoost Tiw 4.18 5.2 0.521 -
De Lange et al. [48] 311 (CAM-CAN)  18-87 XGBoost Tiw 6.78 8.43 079 -
Baecker et al [11] 10824 47-73 RVR Tiw 3.66 4.51 0.53 -
Basodi et al. [49] 1591 8-21 Decenteralized SVR T1W (GM) 3.1 3.6 - -
Luo et al [50] 1101 12-82 Ensemble of 3 Models  rs-fMRI 7.73 9.765 0.6 -
Han et al [51] 125 12-85 XGBoost rs-fMRI 5.14 6.16 - 0.87
Guan et al [52] 505 6-85 PLSR T1w, rs-fMRI 8.24 - - 0.86
Ganaie et al [53] 788 18-94 Twin SVR Tiw 2.77 3.56 0.97 -
Deep learning
Cole et al. [10] 2001 18-90 3DCNN Raw T1w 4.65 6.46 0.88 -
Niu et al. [45] 839 8-21 DNN T1w, rs-fMRI, DTI 1.38 - 0.753 -
Pardakhti & Sajedi [54] 562 20-86 3D-CNN Tiw 5.15 13.497 - -
Poloni & Ferrari [55] 774 20-70 EfficientNet T1w (3D patches) 3.64 5.32 - 0.94
Popescu et al. [56] v 3463 18-90 U-Net T1w 9.94 - - 0.75
He, Feng et al. [6] 6049 0-97 CNN + Transformer Tlw 2.38 - - 0.988
He, Grant et al. [7] 8379 0-97 CNN + Transformer Tlw 2.7 - - 0.985
Wang et al. [57] 2406 17-60 3DCNN DTI 2.79 - - 0.93
Glanchan et al. [39] v 651 18-88 U-Net Tlw 5.3 - - -

authors also compared the results of using three different tradi-
tional algorithms (ridge regression, SVR, and GPR) and concluded
that multi-modal features are beneficial in brain age prediction.
De Lange et al. [48] also adopted the XGBoost algorithm [61] and
studied two distinct T1w datasets. They also accounted for age
bias correction to enhance the model’s generalizability. Interest-
ingly, Baecker et al. [11] compared three machine learning models
(i.e. SVR, RVR, and GPR) under two formats of T1w inputs: voxel-
based and region-based. They also explored the feasibility of con-
duction dimensionality reduction with voxel-based models. At the
end of their study, a decision tree is reported to guide researchers
in designing their BAE studies. Federated learning was explored in
a BAE study by Basodi et al. [49]. Specifically, decentralized SVR is
adopted to learn model parameters from multiple sites without
sharing the data among sites. However, this study is limited by
the narrow age range considered. Unlike previous works, which
mainly used T1w inputs, Luo et al. [50] and Han et al. [51] used rs-
fMRIinstead. Luo et al. [50] focused on performing ensemble learn-
ing of three learning models: ridge regression, Bayesian ridge [62],
and elastic net [63]. On the other hand, Han et al. [51] compared the
performance of six different learning algorithms and concluded
that XGBoost exhibits superior performance. Recently, Guan et al.
[52] investigated the performance of the learning algorithm par-
tial least squares regression (PLSR) [64] on four T1w features
(i.e. cortical thickness, GM volume, mean curvature, and surface
area) and three rs-fMRI features (i.e. fALFF, ReHo, and ALFF). They
concluded that (i) the cortical thickness feature is extremely vital
in age prediction, and (ii) the left hemisphere contributes more to
age prediction. Finally, Ganaie et al. [53] demonstrated outstanding

performance by applying an improved version of the twin SVR
algorithm [65] to input MRI features.

Deep learning methods

Deep learning methods generally refer to the machine learning
approaches that adopt neural networks with several layers. These
methods do not require feature engineering and automatically
extract features from the input data. They also enjoy the high
capacity of capturing interactive linkage among features during
training. This allows deep learning models to successfully handle
complex computer vision tasks such as image segmentation and
object detection [6]. The most famous architecture in deep learn-
ingis a convolutional neural network (CNN) [66]. Transformer [67]
is also a famous architecture that was initially used in natural
language processing and has recently become popular in visual
recognition tasks [68].

In BAE studies, popular deep learning MRI-based methods are
Age-Net [69], DeepBrainNet [70], deep relation learning [6], and
global-local BAE [7]. As illustrated in Table 2, Cole et al. [10], and
Niu et al. [45] compared the performance of deep learning meth-
ods with the traditional learning algorithms. Both studies indi-
cated similar results of learning methods, highlighting potential
improvement in deep learning algorithms, given the availability of
more training samples and more computational resources to train
larger models. Furthermore, Paradakhi & Sajadi deployed 3D-CNN
on T1winput data and investigated the performance of traditional
algorithms on the output features from the deep model compared
with the fully connected layers. Instead of using MRI input data,
Wang et al. [57] used DTI data in training 3D-CNN and reported
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outstanding results in age prediction. While most of the previous
methods mainly adopt CNN in their framework, He et al. [7] adopt
transformers [67], along with fusing extracted features from local
patches as well as the whole image of T1w input.

Local BAE

Despite the increasing number of studies on brain age [6, 53, 57,
71], most research treats the brain as a whole and predicts brain
age on a global level. The brain, however, exhibits mosaic aging,
wherein different regions may age at varying rates or undergo dis-
tinct age-related changes. Compared with global brain age, a finer-
grained approach may better reveal the spatial pattern of BAG in
various diseases and track brain changes over time as diseases
progress [56]. Limited work on local BAE exists. Cherubini et al. [46]
built LR models for each voxel using features from voxel-based
morphometry and DTI. Kaufmann et al. [47] trained separate mod-
els for each brain region, providing local or regional information
but limiting the incorporation of contextual and global informa-
tion. Popescu et al. [56] were the first to employ deep learning
for BAE. Using the U-Net architecture, the researchers produced
individualized 3D maps of brain-predicted age and demonstrated
distinct local brain-age patterns in individuals with mild cognitive
impairment (MCI) or dementia. This study clearly shows that local
BAE has the potential to provide spatial information, leading to
a more mechanistic understanding of individual differences in
brain aging patterns in health and disease. Finally, Gianchandani
et al. [39] deployed multi-task deep learning model on T1w images
to predict age at the voxel level and global level. They also per-
formed three types of brain segmentation on GM, WM, and CSF
regions.

Model selection

According to the no free lunch theorems [72], no identical algo-
rithm is the best for all the machine learning tasks. Hereby, there
is no identical machine learning algorithm that is the best in all
BAE problems. Factors such as dataset size, input data modality,
noise ratio in data, data distribution, gender, and task complexity
play an imperative role when deciding to adopt a specific machine
learning algorithm.

Traditional machine learning methods are easier to explain
and interpret than deep learning methods due to their simple
design. This enables the identification of the important features
and their impact on the overall performance. However, these
methods require many engineering efforts to extract features
from the input. The hand-crafted features can sometimes be
restrictive, resulting in the omission of crucial features in the raw
input. On the other side, deep learning methods are more robust
against bias and have the potential to generate desirable insights
directly from the neuroimaging input, even without conducting
preprocessing [10]. This, of course, obviates the need to consume
hours of preprocessing neuroimaging inputs and enhances the
clinical applicability of BAE models [6].

Some studies in BAE adopt multiple models to enhance age
prediction accuracy. They usually adopt ensemble learning to
train multiple machine learning models in age prediction tasks.
Boosting, bagging, and stacking are the broad categories of ensem-
ble learning [73].

Model evaluation and statistical analysis

Table 3 reports the prevalent metrics for assessing the accuracy of
BAE models. The most widely used metric is mean absolute error
(MAE), which computes average absolute BAG across subjects.
However, MAE is susceptible to the age range of the test set,

Table 3. Common evaluation metrics for machine learning
regression models, such as brain age prediction models

Metric Equation

N il Y=Y

v F - v)?

1 Ly
>N (-2

MAE: average of absolute residuals |

RMSE: /squared residuals |

R2: variance in ¥ explained by Y 4
SN @Y=

\/ AN R oY

Y;: true value of input sample i. V;: predicted value of input sample i. N:

number of samples. Y: % Zfil Y. 7. & Zfil Y;. |: lower value shows better

fit. 1: higher value shows better fit.

p: Pearson’s correlation coefficient 4

leading to inaccuracies in cross-study comparisons [39]. To obtain
a more holistic assessment of models performance, recent studies
usually report R? metric and use a violin plot. F-statistics and
cumulative score are also reported in recent studies [6, 7].

Although there are several works in BAE studies, most of them
lack standard evaluation protocols. Specifically, many aspects
need to be addressed in model evaluation, including (i) model
generalizability from one site to new sites, (ii) reliability of esti-
mated ages on repeated measurements, (iii) standard age dis-
tribution of the testing data, and (iv) estimated age consistency
on longitudinal subjects. More et al. [74] and Dular et al. [75]
have recently paved the way by providing standard protocols to
evaluate BAE models. While More et al. [74] mainly focused on
works that adopt traditional machine learning algorithms, Dular
et al. [75] paid more attention to deep learning-based techniques.
Also, integrating domain adaptation strategies to BAE design can
contribute to generalizability on multi-site data, given its great
success in recent works [76-78].

Bias correction to BAE

Despite considerable efforts to reduce the prediction error in
BAE models, a systematic bias persists when predicting individ-
ual brain ages. This bias typically manifests as overestimation
in younger subjects and underestimation in older subjects. The
causes of this bias vary depending on the type of brain age model.
In linear models, the bias arises due to the orthogonality between
predicted brain age and BAG, which restricts the angle between
them to values between 0 and 90 deg [79]. In contrast, for nonlin-
ear models, the bias is thought to stem from regression dilution,
which is linked to the non-Gaussian distribution of chronological
age [80-82].

Bias correction is critical because BAG is intended to serve as
an informative index of individual brain health. Previous stud-
ies have shown that higher order correction methods, such as
quadratic corrections, yield similar results to linear correction
methods [82]. As a result, linear correction methods are widely
adopted in most BAE studies [74, 83].

Bias correction strategies can be categorized into two types:
sample-level and age-level corrections (see Table 4). Sample-level
bias correction, which adjusts the BAG bias across all samples,
has been used for several years. The three main linear correction
methods include Cole’s method [84], de Lange’s method [48],
and Beheshti’s method [85], with Beheshti’s method shown to
be equivalent to de Lange’s. These methods effectively reduce
the overall BAG bias, bringing the mean BAG across all samples
closer to zero. However, they fail to address the bias observed in
samples of the same chronological age, known as age-level bias
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Table 4. Bias correction methods in BAE studies

Authors Strategy Equation
Cole et al. [84] Sample-level €= (?;% -Y
De lang et al. [87] E=ar x Y+

=Y~ (0 xY—p)
Beheshti et al. [85] e=ay xY+ B

=Y [ +1) xY+p)]
Zhang et al. [86] Age-level ela = EG-m)

q

Y: chronological age. ¥: predicted brain age, ¥ = a; x Y + 1. a1: slope of
regressing ¥ on Y. g;: intercept of regressing ¥ on Y. é: predicted age
difference. e: calculated age difference, ¢ =¥ — Y. ¢ corrected age

difference. €%: corrected age difference for sample i at age a. a: slope of
regressing e on Y. By: intercept of regressing € on Y. j1,: mean age difference
€ at age a. o4: standard deviation of age difference at age a.

[86]. To resolve this issue, an age-level bias correction method
was recently proposed [86]. This approach is recommended as a
follow-up step after applying sample-level correction to ensure
both types of bias are adequately corrected.

Clinical applications to BAE

BAG as a biomarker for brain health and disease

diagnosis

The application of BAG has significant potential in clinical
settings, particularly for diagnosing, prognosing, and making
treatment decisions. A positive BAG, where an individual’s
brain appears older than their chronological age, is commonly
associated with neurodegenerative diseases such as AD and
MCI. Studies using MRI and PET imaging have demonstrated
that a significant BAG can predict cognitive decline and disease
progression in these conditions, making it a valuable tool for
early detection and monitoring. In contrast, smaller BAGs may be
observed in other conditions, reflecting less severe or different
types of brain changes. This variability in BAG across different
diseases highlights its utility in differential diagnosis and in
tailoring treatment strategies based on the severity of brain aging
observed [8].

Brain age studies extend beyond AD and MCI, encompassing a
range of clinical populations including those with traumatic brain
injury, multiple sclerosis (MS), stroke, and psychiatric disorders
such as schizophrenia, bipolar disorder, and major depressive
disorder. A notable pattern is the consistently significant BAG
observed in individuals with schizophrenia, which aids in dif-
ferential diagnosis and identifies those at greater risk for severe
disease progression. This differential diagnostic capability is cru-
cial, as it helps distinguish between overlapping symptoms of
various psychiatric disorders. For instance, while schizophrenia
often shows a high BAG, bipolar disorder’s effect on BAG is less
consistent, highlighting the importance of BAG in fine-tuning
diagnostic processes [88]. Figure 2 plots the results of recent BAE
studies on patients with the corresponding BAG values.

Furthermore, BAG serves as a biomarker of overall brain health.
Ahigher BAG correlates with various markers of poor health, such
as cognitive decline, reduced physical strength, and slower walk-
ing speed. Conversely, lifestyle factors like regular meditation,
music practice, and physical activity are associated with lower
BAGs, indicating protective effects. This makes BAE a valuable
tool for early disease detection, offering a biological dimension
to the screening process and potentially enabling earlier and
more accurate diagnoses. Longitudinal studies suggest that BAG

monitoring could predict treatment responses, allowing for more
personalized and effective management of conditions ranging
from neurodegenerative diseases to psychiatric disorders. This
evidence underscores the suitability of BAE for clinical applica-
tions, supporting its integration into routine clinical practice for
enhanced patient care [89].

Genetic heterogeneity of BAG

Recent advancements in brain imaging and genetics have shed
light on brain age as a biomarker for understanding the aging pro-
cess and its genetic underpinnings. Multiple studies have explored
how genetic variants influence brain aging.

Kim et al. [90] conducted an in-depth study using multimodal
examples from the UK-BB dataset, including brain MRI, genomics,
blood-based biomarkers, and metabolomics, to investigate genetic
variants associated with BAG. Throughout the genome-wide
association (GWAS) and Mendelian randomization (MR) analysis,
they found genetic variants in KLF3-AS1 and STX1 regions
and revealed a causal connection between immune-related
biomarkers and BAG, indicating a genetic and immune link
to brain aging. Leonardsen et al. [91] used neural networks
with genetic architecture to estimate brain age in a cohort
of over 53000 individuals. The GWAS identified eight genomic
regions associated with BAG, and the MR analysis demonstrated
causal relationships between BAG and neurological disorders,
such as AD and bipolar disorder. Similarly, Wen et al. [92]
leveraged multimodal brain imaging and genomic data to
investigate the genetic architecture of brain aging. Their study
confirmed the polygenic nature of brain aging and identified
eight genomic regions associated with BAG, echoing the findings
of Leonardsen et al. [91]. Their results highlighted the genetic
links between neuropsychiatric disorders and accelerated brain
aging.

Ning et al. [93] investigated the associations between environ-
mental and genetic factors on brain aging using UK-BB data. The
study revealed that brain age is influenced by lifestyle factors,
such as tobacco and alcohol consumption, and identified a signif-
icant association with the MAPT gene. In a tract-based analysis,
Salih et al. [94] examined how specific WM tracts contribute to
brain aging. They discovered that limbic tracts provide the most
accurate estimates of brain age and are significantly associated
with lifestyle factors and genetic variants. This suggests that
variations in WM integrity are influenced by genetic factors and
may contribute to accelerated brain aging. Expanding on these
genetic studies, Jawinski et al. [95] analyzed the heritability of
BAG and its relationships with over 1000 health traits, including
mental health (e.g. depression) and physical health (e.g. diabetes).
They identified 25 loci associated with brain aging, with MAPT
emerging as a significantlocus, reinforcingits relevance to AD and
broader brain aging mechanisms. Ning et al. [96] employed CNN to
improve the accuracy of age predictions. Their study uncovered
new genetic loci associated with brain aging, demonstrating that
accurate models help detecting genetic factors involved in the
aging process.

Overall, the achievement of genetic research underscores the
polygenic nature of brain aging and its intricate relationships
with lifestyle factors, immune responses, and neuropsychiatric
conditions. As machine learning and neuroimaging techniques
continue to evolve, they are enabling more precise identification
of genetic variants and pathways involved in brain aging, offering
valuable insights into the biological mechanisms driving this
process.
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Figure 2. BAE studies on common neurological disorders and psychiatric disorders. Each study is denoted as a circle, and the circle size increases

proportionally with the number of incorporated subjects N.

Longitudinal BAE studies

While traditional BAE studies typically assess individuals at a
single time point, longitudinal BAE studies, which follow the
same individuals over time, offer several distinct advantages. Most
notably, the longitudinal design enhances the detection of gradual
or subtle changes in neuroimaging phenotypes that are often
missed in cross-sectional analyses. Additionally, the longitudinal
design provides greater statistical power and sensitivity, which are
crucial for identifying markers of neurodegenerative diseases [97].

Recent longitudinal studies have demonstrated the potential
of BAE in various neurological conditions. For instance, a lon-
gitudinal study examining BAG and post-stroke neurocognitive
disorder (NCD) found that individuals with lower BAG had a
reduced risk of developing post-stroke NCD up to 36 months after
a stroke. This finding suggests that a brain that appears younger
relative to chronological age is more resilient and associated with

milder cognitive impairments following stroke [98]. In the context
of AD, longitudinal studies have shown that individuals with
non-amnestic (non-memory-related) AD exhibit higher brain BAG
scores compared with those with amnestic (memory-related) AD.
This highlights the utility of brain BAG in distinguishing between
different subtypes of Alzheimer’s and in assessing disease sever-
ity [99]. Similarly, changes in brain BAG over time have been linked
to disease progression in MS. Specifically, an increasing brain
BAG has been associated with worsening disability scores on the
Expanded Disability Status Scale, indicating that brain BAG could
serve as a valuable biomarker for tracking disease progression in
MS patients [100]. Furthermore, in a longitudinal study involving
the ABCD cohort, researchers found that as puberty progresses,
brain maturation accelerates. Faster pubertal development was
linked to slightly accelerated brain growth, suggesting that the
timing and pace of puberty may influence brain development,
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with potential implications for future cognitive and mental health
outcomes [101].

A major challenge limiting the progress of longitudinal BAE
studies is the scarcity of available longitudinal neuroimaging
datasets. Widely used datasets such as ADNI, PPMI, and the ABCD
Study provide valuable resources, but their number is limited
(see Table 1 for more details). Recently, new longitudinal datasets,
including NCANDA and HCP datasets, have been released, offering
additional data and expanding opportunities for research in this
field.

Beyond BAG estimation for clinical applications

Although BAG estimation has shown the potential for identify-
ing neurodegenerative diseases, it seems using a single value to
summarize the whole regional variations in brains is insufficient.
Consequently, the estimated value of BAG lacks spatial specificity,
which is imperative in early screening [102]. Therefore, some
recent studies have paid more attention to maximizing the gain
of the extracted age information in BAE instead of only focusing
on enhancing the accuracy of BAG estimation [102, 103].

For example, Ran et al. [102] developed brain age vector, com-
prising regional variations of the input brain imaging with the
help of Shapely Additive Explanation [104]. The proposed vector
has demonstrated promising results in early disease detection
with high accuracy. Sihag et al. [103] went even further and addi-
tionally accounted for data heterogeneity and the limited size of
training data in their study. They resorted to foundation models
[105] to robustly interpret brain anatomy for any arbitrary brian
atlas, expanding brain age use in numerous biomedical applica-
tions. Foundation models [105] have recently emerged in artifi-
cial intelligence (Al) to shift models’ deployment from context-
specific paradigm with narrow applicability to generic models
that can readily be adapted to several downstream tasks with
distinct contexts.

Estimating biological age with omics
technologies

Estimating biological age, as opposed to chronological age, offers a
more accurate reflection of an individual’s physiological state and
their risk for age-related diseases [106, 107]. Recent advancements
in high-throughput omics technologies have fueled the devel-
opment of tools to quantitatively assess biological aging. These
include epigenomic, transcriptomic, and proteomic data, which
can be integrated with machine learning to create “aging clock”
that reveals novel biomarkers of aging. In this section, we first
explore studies focused on DNAm age, a widely used epigenetic
measure of biological aging. We then review research on tran-
scriptomic and proteomic approaches to estimate biological age.
Finally, we discuss the relationship between brain age and other
biological measures, providing insight into the integration of brain
health with systemic aging processes.

DNAm age (epigenetic clocks)

Epigenetic clocks (referred to as “DNAm age”), which are predictive
models based on DNAm patterns, have emerged as powerful
tools to estimate an individual’s biological age. These clocks use
patterns of methylation at specific CpG sites across the genome
to predict an individual’s biological age [108]. Studies, such as
those using Horvath'’s clock, have demonstrated that DNAm age is
highly correlated with chronological age and can predict various
health outcomes more accurately than chronological age alone.

For instance, a study in the ALSPAC cohort derived four methy-
lation age measures in late adolescence and compared them with
brain age measures from structural neuroimaging. The results
showed that smoking and BMI were associated with advanced
methylation age but not brain age, indicating distinct pathways
of aging in different tissues and highlighting the independence
of these measures in adolescents [109]. DNAm PhenoAge is an
advanced DNAm-based biomarker that predicts biological aging
and is associated with various health outcomes, including car-
diovascular disease and mortality [110]. It is derived using a
novel two-step method that trains an epigenetic predictor of
phenotypic age, which reflects physiological dysregulation, rather
than chronological age. This approach improves predictions over
earlier DNAm biomarkers by targeting specific CpG sites, such as
those associated with inflammatory markers and oxidative stress
pathways.

Research in animal models has also contributed to our under-
standing of DNAm changes in relation to lifespan. A study on
rockfish, known for their exceptional longevity, revealed that
certain DNAm changes, such as the transition from CpG to TpG
mutations, were more prevalent in species with longer lifespans.
While these mutations do not directly cause longevity, they reflect
a mutational signature that aligns with species-specific life his-
tory traits. Similar patterns in humans have allowed scientists to
develop DNAm-based age estimators that surpass chronological
age in predicting age-related health risks [111].

The value of DNAm-based clocks is not limited to cross-
sectional studies but has increasingly been explored in longi-
tudinal settings to assess how these markers evolve over time.
Reynolds et al. [112] investigated the genetic and environmental
influences on DNAm changes over aging population. Their
decade-long study on twins revealed that while genetic contribu-
tions to DNAmM were stable over time, environmental factors and
individual-specific experiences played a greater role in driving
DNAm changes during aging. Sites associated with senescence
and aging appeared to be more heritable, suggesting a nuanced
interplay between genetic predisposition and environmental
exposure in shaping DNAm over time. Longitudinal studies also
suggest that DNAm changes can capture the systemic nature of
biological aging. Research by Joyce et al. [113] examined the role of
GrimAge, an epigenetic clock designed to predict cardiovascular
health and disease risk. This study highlighted how accelerated
epigenetic aging is linked to the loss of cardiovascular health,
thus linking biological aging processes in the cardiovascular
system to broader health outcomes, including brain aging. Further
expanding on the systemic implications of DNAm, Pang et al.
[114] investigated the impact of COVID-19 and messenger RNA
vaccination on epigenetic clocks in older individuals. Their
findings revealed age-related divergence in DNAm patterns
following infection, with older individuals showing significant
increases in PhenoAge and GrimAge post-infection. Interestingly,
vaccination, particularly with the Moderna vaccine, was found
to mitigate this age acceleration, underscoring the potential
for immune interventions to influence aging processes. An
interesting longitudinal study to explore how environmental
stressors can accelerate biological aging, particularly in vul-
nerable populations, is conducted by Smith et al. [115]. They
analyzed the relationship between epigenetic age acceleration
and posttraumatic stress disorder in women exposed to large-
scale disasters. The results revealed that racial minorities (Black
and American Indian women) experienced accelerated epigenetic
aging, linking environmental stress with accelerated biological
aging and subsequent health risks. Lastly, Verschoor et al. [116]

G20z Joquialdag 9| U Josn saLieiqrT UjoouIT-exseIgaN JO Ausioaun Aq 0G11E82/2y09e10/dBIa/e60L 0 L/10p/a1o1HE/B)q /W09 dNo"olWapeD.//:Sd)y WOl papeojumod



A review of Al-based brain age estimation and its applications for related diseases | 9

and Vetter et al. [117] explored the relationship between DNAmM
age and functional capacity (e.g. frailty) on older adults. To
sum up, longitudinal studies have shown that DNAm changes
over time reflect biological aging across different tissues and
conditions. These findings emphasize the complexity of aging
and the significance of DNAm-based biomarkers in capturing
the influence of genetic, environmental, and lifestyle factors on
biological age.

Transcriptomic and proteomic approaches

Beyond DNAm age, transcriptomic and proteomic data offer addi-
tional layers of molecular information. Transcriptomic analysis
involves examining the complete set of RNA transcripts produced
by the genome under specific circumstances or in a particular cell.
Changes in gene expression profiles can indicate aging-related
processes and help estimate biological age. Proteomic analysis,
which studies the full set of proteins expressed by a genome,
provides insights into the functional state of cells and tissues.
Proteins are directly involved in most biological processes, and
their abundance and modification states can reflect the biological
age of an organism. Combining posttranslational products like
transcriptomic and proteomic data with machine learning tech-
niques enhances the interpretability and experimental testability
of biological age estimation models and uncovers functional gene
networks associated with aging [106].

Martinez-Magana et al. [118] and Holzscheck et al. [119] both uti-
lized deep learning techniques to develop transcriptomic clocks
for predicting biological age. The former applied their models to
prefrontal cortex samples, which outperformed traditional meth-
ods and identified gene networks involved in signal transduction.
This provides insights into transcriptomic changes associated
with aging and psychiatric disorders. The latter demonstrated
a strong correlation between transcriptomic age and visual age
estimates in skin samples. Key aging-related pathways, such as
p53- and TNFa/NFkB-signaling, were identified, with in silico gene
knockdowns validating known aging mechanisms and suggesting
new targets for interventions.

In a related effort, Zarrella and Tsurumi [120] analyzed tran-
scriptomic changes in the prefrontal cortex during healthy aging,
identifying differentially expressed genes like CA4 and OLFMI.
Their models also highlighted genes such as ASPHD2 and CDC42
as important predictors of aging. Qiu et al. [121] further advanced
aging research by introducing the ENABL Age framework. Their
framework enhanced the interpretability of biological age predic-
tions through explainable Al, identifying specific biomarkers and
validating their models using large datasets.

In proteomics, Oh et al. [122] used plasma proteomics and
machine learning to track organ-specific aging, identifying sig-
natures linked to diseases like heart failure and AD, providing
practical tools for predicting age-related health outcomes. Wingo
et al. [123] also explored cognitive aging through proteomic anal-
ysis, identifying 579 proteins associated with cognitive function,
offering potential new targets for cognitive aging research.

How brain age relates to other biological age
measures

Alongside brain age, there are various measures such as DNAm
age and heart age to estimate the biological age. Exploring the
relationships between these measures may reveal distinct aspects
of understanding the aging process and its effects on health.
Solovev et al. [124] used multi-omics data, including the methy-
lome, proteome, transcriptome, and metabolome data, to esti-
mate biological age. Although their approach helped uncover

the complexity of aging and improve predictive models, it lacks
the link to brain age. Studies have shown that while DNAm age
strongly correlates with chronological age, it may not always align
perfectly with BAE, particularly in contexts like neurodegenera-
tive diseases or cognitive decline [125]. Cole et al. [5] reported that
DNAm age and brain age capture different aspects of the aging
process. In their study, combining both measures provided a more
robust predictor of aging. The study also introduced the concept of
an “aging mosaic,” referring to the variability in aging rates across
different biological systems, driven by genetic and environmental
factors. Sugden et al. [126] emphasized that these two age mea-
sures offer complementary insights into aging, particularly with
respect to cognitive decline and AD risk. This finding is further
supported by Sanders et al. [109], who demonstrated that both
aging markers capture different aspects of biological processes,
particularly in the early stages of life.

To gain further insights into the aging process, Iakunchykova
et al. [127] investigated the relationship between brain age and
heart age. Using deep neural network (DNN), they demonstrated
a correlation between heart age, brain age, and cognitive function.
This finding highlights the systemic connections between cardio-
vascular health and brain aging.

In summary, while various measures of biological age, such as
DNAm age and heart age, provide insights into different aspects
of the aging process, research exploring the relationships among
these measures is still limited. Current studies suggest that com-
bining brain age with other measures may offer a more com-
prehensive understanding of aging, though these measures often
capture distinct biological processes.

Limitations to BAE

Recently, the adoption of various deep learning methods and the
deployment of localized age predictions have gained attention in
studies of BAE. However, the progress in BAE research remains hin-
dered by challenges such as learning biases and limited training
data. These challenges are summarized in Fig. 3 and discussed in
detail in this section.

Learning bias

Recent studies have shown significant differences in interpreting
BAG across different age stages, races, and genders. Picarra and
Glocker [128] demonstrated that common BAE models exhibit
significant performance differences across different racial and
gender groups, highlighting potential biases in race and gender.
BAE also faces other challenges, including systematic biases
such as overestimation in younger individuals and underestima-
tion in older individuals, as well as biases introduced by prepro-
cessing tools. Wang et al. [129] identified these common biases
and attributed them to the uneven distribution of training data,
which causes models to perform inconsistently across different
age groups. Jirsaraie et al. [83] highlighted that the choice of pre-
processing methods and the diversity of training data significantly
affect the accuracy and generalizability of age predictions, with
different scanner protocols introducing additional errors. Dular
et al. [130] emphasized that extensive T1-w MRI preprocessing
can reduce prediction errors, but the selection and application of
these tools can introduce variability. Lu et al. [131] pointed out the
“regression toward the mean” effect in BAE, where young brains
are overestimated and older brains are underestimated, largely
influenced by preprocessing choices and dataset selection. Tian
et al. [132] suggested that the deterioration of physical health in
neuropsychiatric disorders often masks changes in brain health,
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Figure 3. Limitations in current BAE methods.

indicating that preprocessing steps might introduce errors affect-
ing the reliability of BAE.

BAG reliability

Mogadam et al. [133] found that head motion during MRI scanning
significantly impacts brain age estimates, presenting a major con-
founding factor that complicates accurate brain age evaluation.
Research by Sinha and Raamana [134] suggests that different
brain regions undergo independent aging transformations due
to neurobiological processes, making it potentially erroneous to
simplify high-dimensional imaging features into a single value for
assessing brain health. Additionally, Abrol et al. [135] highlighted
that brain connectivity patterns evolve significantly over time,
suggesting that BAGs may vary by age stage. In children and
adolescents, high values of BAG might be associated with better
cognitive development, indicating a beneficial aspect [136, 137].
However, in middle-aged and older adults, BAGs typically signal
accelerated aging and cognitive decline, reflecting poorer health
outcomes [138, 139]. These findings underscore the need for age-
specific contexts when interpreting BAGs. Without considering
these limitations, there is a risk of misinterpreting brain age data,
leading to inaccurate assessments of an individual's cognitive
health and developmental progress. Collectively, these studies
emphasize the importance of accounting for factors such as
head motion, regional brain aging, and age-specific differences to
ensure reliability in BAE.

BAG misinterpretation in disease diagnosis

Recent studies have highlighted several limitations in using BAE
for diagnosing psychiatric and neurological disorders. Wei et al.
[140] found that patients with neuromyelitis optica spectrum
disorder and MS exhibited significantly higher BAG values com-
pared with HCs, suggesting that pathological overlaps in these
diseases complicate the interpretation of brain age differences.
Similarly, Forrest and Kovacs [141] reviewed mixed pathologies in

Limitations

. o . BAG reliability

a) Head Motion
b) Independent aging

¢) Evolution of Brain Connectivity Patterns

a) Spatial specificity in
overlapping disease conditions

b) Statistical guarantees

¢) Cardiovascular risk factors
such as obesity, smoking, and

alcohol

neurodegenerative diseases involving tau protein, TDP-43, AB, and
a-synuclein deposits, which further obscure accurate BAG inter-
pretation. Sihag et al. [142] addressed this challenge by proposing
an explainable BAE framework using covariance neural networks
and cortical thickness features, emphasizing the need to account
for spatial specificity in overlapping disease conditions.

In addition to pathology-related complexities, comorbidities
and broader health factors must be considered when interpreting
BAG values. Mouches et al. [143] demonstrated that cardiovascular
risk factors, such as obesity, smoking, and alcohol consumption,
significantly affect BAGs, complicating the interpretation due
to overlapping health conditions. Leonardsen et al. [91] identi-
fied eight genomic regions associated with BAG, revealing that
BAE is influenced by a range of genetic and non-genetic traits.
Saleem et al. [144] noted that while deep learning techniques
show promise in diagnosing AD, BAE alone is insufficient for
comprehensive diagnosis; additional biomarkers and datasets are
necessary. Baldeiras et al. [145] echoed this sentiment, warning
that relying solely on BAE may result in inaccuracies, especially
in differentiating Alzheimer’s from other forms of dementia.

To improve the reliability of BAE in clinical contexts, researchers
have explored integrating it with other diagnostic approaches.
Tian et al. [132] suggested combining BAE with broader assess-
ments of brain-body health to enhance diagnostic accuracy
in neuropsychiatric disorders. Ernsting et al. [146] proposed a
method using uncertainty-aware DNNs and conformal prediction
theory to provide statistical guarantees for individual cases,
though they raised concerns about the clinical generalizability
of their findings, as their study relied primarily on the NAKO
dataset, which predominantly includes German subjects and may
encompass comorbidities.

In summary, relying solely on BAE increases the risk of misin-
terpreting BAG results and inaccurately assessing an individual’s
cognitive health and disease progression. Therefore, BAE studies
should account for confounding factors such as head motion,
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overlapping pathologies, genetic influences, and comorbid con-
ditions when used for disease diagnosis.

Few public models

The brainageR, DeepBrainNet, MIDI Brain Age model (DenseNet121),
and BARACUS have demonstrated significant utility in predicting
brain age. The brainageR uses GPR for predicting the brain age, val-
idating its reliability and predictive capability [147]. DeepBrainNet
constructs a deep brain network using large-scale MRI datasets,
achieving robust brain age estimates across different scanners
and populations [70]. The MIDI Brain Age model (DenseNet121)
excels in brain tumor classification, particularly on smaller
datasets [148]. BARACUS combines multimodal imaging data to
capture cognitive impairment and brain age differences [149].
Despite their impressive performance in research settings, there
are very few other publicly accessible models available for direct
application. This limitation hinders their broader adoption in
clinical and practical applications.

Dataset size

De Lange et al. [48] evaluated the impact of different age ranges
and sample sizes on the performance of BAE models, finding
that increasing sample size can improve model performance
metrics. The study pointed out that insufficient sample sizes
can lead to increased prediction errors and affect model stability.
This was also supported in another study [47]. Jirsaraie et al.
[83] studied the generalizability of two brain age models across
different age samples, discovering that insufficient sample size
and diversity can lead to inconsistent performance across dif-
ferent acquisition protocols, impacting prediction accuracy and
reliability. Yu et al. [150] systematically evaluated the effects of site
harmonization, age range, and sample size on estimating brain
age, finding that model accuracy plateaued with sample sizes
exceeding 1600 participants. The study noted that insufficient
sample sizes limit model generalizability and stability. Barbano
et al. [151] investigated BAE using contrastive learning on multi-
site datasets, finding that inadequate dataset sizes can lead to
models overfitting site-specific noise, thus affecting prediction
accuracy and stability. To overcome the limitation of training
data, Mateus et al. [152] evaluated the feasibility of federated
learning for BAE, a method that allows training global models on
distributed data to protect patient privacy. However, the effective-
ness of this approach still requires further investigation. Overall,
these studies consistently demonstrate that increasing sample
size is crucial for enhancing the performance and stability of BAE
models, while insufficient sample sizes significantly affect model
generalizability and prediction reliability.

Conclusion

Over recent years, brain imaging data have been used more fre-
quently in BAE studies. Although the studies have demonstrated
the benefits of using BAG as a biomarker for brain health and clin-
ical diagnosis, the lack of specificity presents a major challenge.
This drew the attention of recent studies to explore the effec-
tiveness of local BAE and develop methods for bias correction.
Adopting foundation models and deploying federated learning
may also enhance the performance of BAE models. However, these
directions require further studies. Finally, the clinical applicability
of BAE models can significantly expand by integration with other
age biomarkers, such as DNAm.

Key Points

e Brain age estimation (BAE) using machine learning
methods can be beneficial in monitoring brain health
and early disease screening.

e Unlike global BAE methods that summarize the whole
brain image into a single value (BAG), local BAE methods
are advantageous in predicting aging rates in multiple
regions.

¢ Training data, data distribution, evaluation metrics, and
gender can significantly influence BAE performance.

e Adopting foundation models and federated learning
may pave the way to overcome the significant challenges
in BAE studies.
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