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Key Points
e Southern Hemisphere has higher occurrence frequency and higher mass fraction of
supercooled liquid water than Northern Hemisphere
e E3SMvI/EAMv1 model misses the hemispheric asymmetry of phase partition listed above
e [ WC is consistently too high in EAMvlI in all phases, but IWC biases depend on cloud
phase

Abstract

Mixed-phase clouds contribute to substantial uncertainties in global climate models due to their
complex microphysical properties. Former model evaluations almost exclusively rely on satellite
observations to assess cloud phase distributions globally. This study investigated mixed-phase
cloud properties using near global-scale in situ observation datasets from 14 flight campaigns in
combination with collocated output from a global climate model. The Southern Hemisphere (SH)
shows significantly higher occurrence frequencies and higher mass fractions of supercooled liquid
water than Northern Hemisphere (NH) based on observations at 0.2 and 100 km horizontal scales.
Such hemispheric asymmetry is not captured by the model. The model also consistently
overestimates liquid water content (LWC) in all cloud phases but shows ice water content (IWC)
biases that vary with phase. Key processes contributing to model biases in phase partition can be
identified through the combination of evaluation of phase frequency, liquid mass fraction, LWC
and IWC.

Plain Language Summary

The partition between supercooled liquid water and ice in clouds affects how clouds interact with
solar and terrestrial radiation. Mixed-phase clouds, which may contain both supercooled liquid
droplets and ice crystals, are especially challenging for climate models to represent. This study
compares the occurrence frequencies and microphysical properties of these clouds between the
Northern and Southern Hemispheres using data from multiple aircraft-based field campaigns and
simulations from a global climate model. The Southern Hemisphere shows higher probabilities of
liquid clouds and higher mass fractions of supercooled liquid water than the Northern Hemisphere.



47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

These hemispheric differences are not captured by the model. The results indicate that mixed-
phase clouds may have different responses to a changing global climate in the two hemispheres.

1. Introduction

Clouds represent a crucial component of the Earth system due to their modulations of
energy transfer and radiative balance (e.g. Hartmann et al., 1992; Matus and L Ecuyer, 2017). In
the temperature range of -35° — 0°C (hereafter defined as the mixed phase cloud regime), ice
crystals and supercooled liquid droplets can potentially co-exist. These clouds demonstrate large
spatial heterogeneities in their macrophysical properties (e.g., genuinely mixed or conditionally
mixed ice and liquid segments, Korelev et al., 2017; Korolev and Milbrandt, 2022) and
microphysical properties (e.g., partition between ice crystals and supercooled liquid droplets,
Maciel et al., 2024). These spatial heterogeneities impose a challenge to various types of
observational techniques (D’Alessandro et al., 2023; Wang et al., 2024) as well as the
parameterizations at sub-grid scales in global climate models (GCMs) (Zhang et al., 2019; Zhang
et al., 2024).

Traditionally, satellite observations have been the gold standard for quantifying the
frequency distributions of three cloud thermodynamic phases — liquid, ice, and mixed phases — at
a near global scale (e.g., Hu et al., 2010; Cesana & Chepfer, 2012; Sokol & Storelvmo, 2024).
Satellite observations have also been proven highly valuable for the evaluation of mixed-phase
clouds in GCM simulations (Kay et al., 2016; Tan & Storelvmo, 2016; Cesana et al., 2022; Hofer
et al., 2024). Phase partition between ice and supercooled liquid water has been found to play an
important role in the estimations of climate feedback and climate sensitivity (e.g., Tan et al., 2016;
Frey & Kay, 2017; McCoy et al., 2017; Zelinka et al., 2020). However, inherent issues still exist
in the spaceborne retrievals of mixed-phase cloud regime, such as the attenuation of lidar signals
when penetrating through supercooled liquid-topped cloud layers (e.g., Silber et al., 2018; Desai
et al.,, 2023; Wang et al., 2024) and the large uncertainties in the derivations of hydrometeor
concentrations (e.g., Hogan et al., 2005). When comparing three satellite-derived cloud phase
products with in sifu airborne observations, statistically significant discrepancies were seen at
various latitudes and pressure levels (Wang et al., 2024). These remaining challenges in
spaceborne observations demonstrate the need of conducting an alternate type of analysis of cloud
phases at global scales to complement the conventional satellite-based analysis.

This study presents an alternative approach for investigations of cloud phase distributions
and microphysical properties at a near global scale based on in situ airborne observations from
multiple flight campaigns. As far as the authors are aware, a hemispheric comparison for cloud
phase partition has not been conducted previously based on in situ airborne observations, nor has
an evaluation study of GCM simulations been conducted against in situ observations at a near pole-
to-pole scale (i.e., 75°S to 87°N). By leveraging the compiled in situ observation dataset, this study
is uniquely poised to examine mixed-phase cloud properties that could be challenging to derive
from remote sensing retrievals, including the frequency distributions of three thermodynamic
phases at various temperatures (Section 3.1), the partition between liquid and ice at various
latitudes (Section 3.2), and cloud microphysical properties, i.e., ice water content (IWC) and liquid
water content (LWC), for each cloud phase (Section 3.3).

2. Methodology

2.1 In situ datasets and instrumentation
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This study compiled observation datasets of eleven U.S. National Science Foundation
(NSF) and three U.S. Department of Energy (DOE) airborne campaigns, including NSF STARTO0S8
(Pan et al., 2010), HIPPO (Wofsy, 2011), PREDICT (Montgomery et al., 2012), TORERO
(Volkamer et al., 2015), DC3 (Barth et al., 2015), CONTRAST (Pan et al., 2017), WINTER (Lee
et al., 2018), CSET (Albrecht et al., 2019), ORCAS (Stephens et al., 2018), SOCRATES
(McFarquhar et al., 2021), and OTREC (Fuchs-Stone et al., 2020) campaigns, as well as DOE M-
PACE (Verlinde et al., 2007), ISDAC (McFarquhar et al., 2011), and ACME-V (Maahn et al.,
2017) campaigns. Supplementary Table S1 provides detailed information about these campaigns,
including name, number of research flights, time, location, and flight hours at all temperatures as
well as at mixed-phase range. A total of 576 hours were flown at -35°C to 0°C, with 463 and 113
hours of clear-sky and in-cloud conditions, respectively. Collectively, the 14 airborne campaigns
conducted between April 2008 and September 2019 covered a spatial range from 75°S to 8§7°N
and from 38°W to 128°E (Figure 1 a). A similar but smaller in sifu observation dataset was
previously used in Wang et al. (2024) as described in their Table 1 to validate three satellite-based
cloud phase products.

For most campaigns (except M-PACE and ISDAC), we applied a phase identification
method that involves (i) the identification of ice or supercooled liquid for each second of a cloud
probe and (ii) IWC and LWC calculations (D’Alessandro et al., 2019; Yang et al., 2021; Maciel et
al., 2024). Several key parameters were used, including the mass—number concentration (M—N)
relationship, maximum particle diameters, the standard deviations of particle size distributions,
and temperature. For most campaigns, these parameters were derived from the Cloud Droplet
Probe (CDP) (2-50 um) and the Fast-Two Dimensional Cloud probe (Fast-2DC) (62.5-3200 pum).
The 2-Dimensional Stereo (2DS) cloud probe (40 — 5000 um) was used instead of the Fast-2DC
probe in SOCRATES and ACME-V. The 1-Hz CDP observations were categorized as large
aerosols (N< 107 1° cm™ or M < 1073 g m™), ice crystals (both 1075 <N <10 cm™ and M >
10734 g m™), or liquid droplets (both N > 107%% cm™ and M > 10* g m ™). A more complex
decision tree was applied for Fast-2DC and 2DS following D’ Alessandro et al. (2019).

To calculate LWC or IWC, spherical shape was assumed for supercooled liquid droplets,
while the mass-dimension (M-D) relationships from Brown and Francis (1995) were used for small
and large ice particles, separated by maximum dimensions < and > 75 pm, respectively. M-PACE
(McFarquhar et al., 2007) and ISDAC (Jackson et al., 2012) derived IWC and LWC from two
different suites of instruments. M-PACE used Forward Scattering Spectrometer Probe (FSSP), 1-
Dimensional Cloud probe (1DC), 2DC, and High Volume Precipitation Spectrometer (HVPS),
while ISDAC used FSSP, CDP, 2DC, 2DS, Cloud Imaging Probe 2 (CIP2), and 2-D Precipitation
(2DP) probe.

A consistent definition of three cloud phases was applied to all observations and
simulations. That is, if supercooled liquid fraction (SLF) < 0.1, between 0.1 — 0.9, or > 0.9, then
this sample is defined as ice, mixed, or liquid phase, respectively. Here SLF = LWC / (LWC +
IWC), which represents the mass fraction of supercooled liquid water.

2.2 Model Simulations

The DOE Energy Exascale Earth System Models version 1 (E3SMv1), specifically its
atmospheric component, the E3SM Atmosphere Model version 1 (EAMv1), was used in this work
(Xie et al., 2018; Rasch et al., 2019). EAMv1 employs a Spectral Element (SE) dynamical core at
~1-degree resolution with 72 vertical levels (Golaz et al., 2019). The SE dynamical core uses
unstructured grids and has advantages of near-perfect scalability and GPU (Graphics Processing
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Unit) acceleration (Dennis et al., 2012; Adbi et al., 2017). Cloud microphysics in EAMv1 are
treated by version 2 of Morrison and Gettelman (MG2) with representations of cloud particle
formation, growth, and precipitation processes (Gettelman et al., 2015). Cloud macrophysics,
shallow convection, and boundary layer turbulence are simulated using the Cloud Layers Unified
By Binormals (CLUBB) (Golaz et al., 2002; Larson & Golaz, 2005), deep convection processes
are parameterized based on Zhang and McFarlane (1995), and the aerosol module used the Modal
Aerosol Module (MAM4) (Liu et al., 2016).

For each flight campaign, one model simulation was set up to cover the same time period
with ~6 months of spin-up time prior to the start date of the campaign. The model output was saved
along the flight tracks at a 10-minute frequency. Simulations were nudged towards the Modern-
Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) reanalysis
dataset (Gelaro et al., 2017) for temperature and horizontal wind fields, consistent with previous
model evaluation studies (e.g., Yang et al., 2021; Yip et al., 2021; Patnaude et al., 2024; Desai et
al., 2023, 2025). Several sensitivity tests were conducted to examine the impacts of vertical
sampling and horizontal spatial averaging, similar to the method used in Yang et al. (2021) in their
section 2.3, and consistent results were found among these tests.

3. Results

3.1 Cloud phase frequency distributions and phase partition at a near global scale

One advantage of airborne observations is the ability to provide synchronized in situ
measurements of cloud hydrometeors and environmental conditions (such as temperature). Hence,
the mass partition between supercooled liquid and ice (indicated by SLF) is examined as a function
of temperature in two hemispheres (Figure 1 b and 1 c), with the number of samples shown in
Figure S1. As for seasonal distributions, most samples in the SH occurred during austral summer,
while the NH has more similar sample sizes in all four seasons (Table S2 and Figure S2).

Based on high-resolution 1-s observations, a main hemispheric difference is the higher SLF
in the SH compared with the NH, with SLF in the SH being 0.2 — 0.4 higher at -25 to 0°C. A
moving average at 100-km resolution that included both clear-sky and in-cloud segments was used
to compare with model grid-mean values, consistent with the method used in D’ Alessandro et al.
(2019) and Yang et al. (2021). After spatial averaging, SLF shows larger increases in the NH (by
0.1 — 0.2) than the SH (by 0.05 — 0.1), because the 1-s observations are dominated by pure ice
segments especially in the NH, while 100-km observations have more mixtures of ice and liquid.

Compared with the 100-km observations, the EAMv1 simulations show similar SLF values
in the SH but show much higher SLF in the NH by 0.1 — 0.2. Consequently, the EAMv1
simulations do not show a significant contrast of SLF between the two hemispheres. This result
indicates that future improvement of the model parameterization should convert more liquid-
containing clouds to the ice-containing clouds at temperatures between -35°C to 0°C in the NH.

3.2 Latitudinal-temperature distributions of three cloud phases

The latitudinal-temperature distributions of three cloud phases are shown in Figure 2. The
number of samples and in-cloud frequencies are shown in Figures S3 and S4, respectively. To
reduce the noise in frequency distributions due to fluctuations of sampling sizes, we applied an
averaging process to every 3x3 bins (i.e., a center bin and its 8 surrounding bins). Key features are
consistently seen without the 3x3 grid smoothing (Figure S5) or using a larger model sample size
(Figure S6). The cloud phase frequency is calculated as the number of a phase divided by the total
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number of in-cloud samples in each bin. In addition, in-cloud frequency is calculated as the number
of in-cloud samples divided by the total number of all-sky samples.

A hemispheric contrast is consistently seen in this latitudinal view based on in situ
observations at both ~0.2-km and 100-km resolutions, showing higher liquid phase frequency in
the SH compared with the NH (Figure 2 a and 2 b). The EAMv1 simulations show similar
latitudinal gradient of in-cloud frequencies compared with 100-km observations, with the highest
in-cloud frequencies located at the polar regions (Figure S4). However, the lack of hemispheric
differences in frequency distributions of liquid and ice phases is seen in the simulations, consistent
with the lack of hemispheric asymmetry in SLF (Figure 1).

The hemispheric differences for observations and simulations are more evidently
represented in Figure 3, including the differences between each pair of latitudinal-temperature bins
symmetrically distributed between the NH and SH (columns 1 — 4) and the phase occurrence
frequencies in each 5°C temperature bin (column 4). The number of samples are shown in Figure
S7. Both 1-s and 100-km observations show higher liquid phase frequency in the SH by 0.2 to 0.4
than the NH at -25 to 0°C (Figure 3 d). Such observed hemispheric differences are even larger at
higher temperatures than lower temperatures. In addition, both observations show significantly
higher ice phase frequencies in the extratropical regions in the NH (> 30°N) compared with the
extratropics in the SH (< 30°S) (Figure 3 i and 3 j).

The model simulations show lack of hemispheric differences in both liquid and ice phase
frequencies (Figure 3 d and 3 1). These lack of hemispheric differences in the simulations can be
attributed to the different magnitudes of model biases between the two hemispheres for liquid and
ice frequencies. That is, simulations in the SH show similar liquid and ice phase frequencies
compared with 100-km observations (Figure 3 h and 1). However, in the NH, the model
underestimates ice phase frequency and overestimates liquid phase frequencies from -30 to 0°C.

Smaller model biases are seen for mixed phase frequencies when compared with the 100-
km observations, especially for the SH (Figure 3 h). However, the model still overestimates mixed
phase frequency at -30 to -15°C and underestimates it at -15 to 0°C in the NH. In addition, the
model misses the trend of increasing mixed phase frequencies at higher temperatures as shown by
the observations. The results from Figures 2 and 3 indicate that the model biases in terms of phase
occurrence frequency are more severe in the NH, consistent with the SLF biases in Figure 1.

3.3 Hemispheric comparisons of cloud microphysical properties in respective cloud phases

Cloud microphysical properties, i.e., LWC and IWC, are examined for individual cloud
phase or all phases at various temperatures (Figure 4 a — h) alongside their hemispheric differences
(i.e., NH minus SH) in Figure 4 i — p. The number of the samples is shown in Figure S8. Due to
the definitions of three cloud phases, each phase may contain a certain amount of IWC, LWC, or
both.

Focusing on the dominate type of hydrometeor in the liquid and ice phases, both
observations show higher LWC of the liquid phase in the SH than NH (Figure 4 a) and relatively
similar IWC of ice phase between the two hemispheres (Figure 4 g). Spatial averaging leads to
higher decreases of LWC in liquid phase (Figure 4 a) and smaller decreases of IWC in ice phase
(Figure 4 g) because most of the liquid segments are shorter than ice segments (not shown). More
significant decreases of LWC are seen in the NH than SH after averaging, consistent with the more
extensive coverage of supercooled liquid clouds over the SH as reported by previous studies (e.g.,
Hu et al., 2010; Desai et al., 2023, 2025; Barone et al., 2024).
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Compared with 100-km observations, EAMv1 significantly overestimates the LWC in the
liquid phase (Figure 4 a) and mixed phase (Figure 4 b), as well as overestimating the total LWC
of all phases (Figure 4 d) by 1 — 2 orders of magnitude. In fact, the simulated LWC is closer to the
1-s observations than the 100-km observations. The overestimations of simulated LWC in both
hemispheres lead to small hemispheric differences of LWC at -25 to -10°C, similar to the 100-km
observations at that temperature range (Figure 4 1). At temperatures above -10°C, both
observations show higher total LWC in the SH than NH, but the model shows the opposite
hemispheric difference.

Differing from the consistent overestimation of LWC in all phases, the model biases in
IWC vary with phase. The simulated total IWC of all phases is more similar to the 100-km
observations except for the large negative biases in the NH around -20 to -5°C (Figure 4 h).
However, the simulations overestimate IWC for mixed phase in two hemispheres (Figure 4 f) and
underestimate IWC for ice phase in the SH (Figure 4 g). Despite these IWC biases for individual
phase, the hemispheric differences in the total IWC (Figure 4 p) show similar results between
EAMvI and 100-km observations at -30 to -20°C with higher total IWC in the NH. However,
EAMv1 misses the higher total IWC in the NH at -20 to 0°C due to its underestimation of the total
IWC in the NH at that temperature range (Figure 4 h).

4. Discussions and Implications

A near global-scale dataset was compiled from 14 aircraft-based field campaigns, covering
a wide latitudinal range from 75°S to 87°N. Distinct hemispheric differences were found based on
in situ observations at various horizontal resolutions (i.e., 0.2 and 100 km), including higher SLF
(Figure 1), higher liquid phase frequencies (Figures 2 and 3), and higher LWC in liquid phase
(Figure 4) in the SH compared with the NH. All of these hemispheric differences are not
represented in the EAMv1 simulations. Although previous studies also reported ubiquitous low-
level marine boundary clouds with large spatial extent and significant amount of supercooled
liquid water in the Southern Ocean region (e.g., Mace et al., 2021; Yang et al., 2021; Desai et al.,
2023; Wang et al., 2024; Barone et al., 2024), a hemispheric comparison has rarely been conducted
using in situ airborne observations.

Phase partition was quantified by two parameters in this work — liquid phase frequency
(related to spatial coverage) and SLF (related to mass concentrations). The fact that observations
show higher values of both parameters in the SH suggests that the SH has more liquid-containing
segments relative to ice-containing segments and also higher mass concentrations of supercooled
liquid droplets relative to ice crystals. This is consistent with a previous study of Maciel et al.
(2024), which shows that the increasing mass fraction of supercooled liquid water is positively
correlated with the spatial expansion of liquid-containing segments. Airborne observations in this
study have limited samples in high-latitudinal regions especially in the SH outside austral summer,
which leads to a knowledge gap regarding seasonality of phase partition in these regions. Previous
satellite observations showed that the probability of supercooled liquid clouds as a function of
mid-layer cloud temperature is not significantly different among various seasons as long as
temperature is considered in the analysis (Hu et al., 2010). Future work is recommended to further
investigate seasonality by leveraging recent observations, e.g., NASA Plankton, Aerosol, Cloud,
ocean Ecosystem (PACE) and EU Earth Cloud Aerosol and Radiation Explorer (EarthCARE)
missions.

We further diagnose the potential reasons behind the lack of hemispheric differences in
EAMv1 by comparing against 100-km observations. The simulated ice phase frequencies in the
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NH are lower by 0.1-0.2, while the SH shows more comparable values (Figure 3 1). These biases
become even larger at the NH high latitudes since the observed ice phase frequencies further
increase in that region (Figure 3 i and 3 j). The simulated LWC shows positive biases in both
hemispheres (Figure 4 a, b, and d), while the simulated IWC in ice phase shows negative biases in
the SH and comparable values in NH (Figure 4 g). Overall, the model biases associated with ice
processes are more complex, compared with the consistent positive biases in LWC across all
phases in both hemispheres. The model biases are likely attributed to EAMv1 model’s treatments
of ice nucleation and secondary ice production (SIP). EAMv1 uses the classical nucleation theory
for ice nucleation, which severely underestimates concentrations of ice nucleating particles (INPs)
in the NH high latitudes compared with DeMott et al. (2015) at -20°C — 0°C. The model also does
not include high-latitude dust and biological INPs, which likely leads to low ice phase frequency,
high LWC, and high SLF biases in the NH high latitudes. The lack of treatment of SIP and the
uncertainties in droplet autoconversion may also lead to overestimations of LWC (Zhao et al.,
2023).

Overall, this study provides a unique approach to examine phase partition at near global
scale by compiling a large dataset based on in situ airborne observations, benefiting from an
increasing number of flight campaigns over the high latitudes. The results indicate that by
quantifying different properties of clouds (i.e., occurrence frequencies, phase partition, LWC and
IWC in each phase), a model evaluation framework can be developed to diagnose the key processes
contributing to model biases. In addition, this study demonstrates the feasibility of using high-
resolution in situ observations to evaluate coarser-scale model simulations through scale-aware
comparisons, as well as the potential usage of multiple flight campaigns for a near global-scale
analysis. Lastly, the results from this study suggest that asymmetric distributions of ice and
supercooled liquid water in the two hemispheres may lead to asymmetric responses of cloud
radiative effects to a changing climate, which may potentially be overlooked if such hemispheric
asymmetry in phase partition is not captured by model simulations.
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averaged by 5°C bins in the (b) NH and (c) SH. The average SLF of individual campaigns is shown
in light colored dots. Vertical bars represent standard deviations of all campaigns.
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