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Abstract

The b-family-Kadomtsev—Petviashvili equation (b-KP) is a two dimensional gener-
alization of the b-family equation. In this paper, we study the spectral stability of
the one-dimensional small-amplitude periodic traveling waves with respect to two-
dimensional perturbations which are either co-periodic in the direction of propagation,
or nonperiodic (localized or bounded). We perform a detailed spectral analysis of the
linearized problem associated to the above mentioned perturbations, and derive various
stability and instability criteria which depends in a delicate way on the parameter value
of b, the transverse dispersion parameter o, and the wave number k of the longitudinal

waves.
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1 Introduction

In the study of wave phenomena, particularly in dispersive and nonlinear media, the
emergence of periodic wave trains stands out as a captivating outcome arising from the
intricate interplay between dispersion and nonlinearity. These wave patterns manifest
across diverse physical domains, encompassing phenomena such as water waves,
nonlinear optics, acoustics, and plasma. Given their pervasive presence in nature, the
investigation of periodic wave trains continues to attract considerable interest from
scientists and researchers.

One important question is the stability of the periodic waves. Stability properties
govern the long-term behavior of the wave patterns and play a crucial role in under-
standing the robustness and predictability of the phenomena they represent. While
many physical systems support unidirectional wave propagation, which can be mod-
eled by equations in a single spatial dimension, it is crucial to acknowledge that in
a multi-dimensional context, transverse effects become integral. Consequently, the
stability analysis of one-dimensional traveling waves, particularly concerning pertur-
bations propagating along the transverse direction of the primary axis—referred to as
transverse stability—becomes a naturally compelling avenue of interest. This explo-
ration extends beyond the traditional analysis of responses to perturbations along the
main propagation axis, providing a more comprehensive understanding of the intricate
dynamics governing wave stability in multi-dimensional settings.

Such a problem was first studied by Kadomtsev and Petviashvili [24], who derived
a two-dimensional generalization of the celebrated KdV equation, the so-called
Kadomtsev—Petviashvili (KP) equation. They found that the KdV localized solitons
in the KP flow are stable to transverse perturbations in the case of negative dispersion
(KP-II), while unstable by long wavelength transverse perturbations for the positive
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Spectral analysis of the periodic b-KP equation... 6317

dispersion model (KP-I). Later development of the theory for solitary waves includes
the use of integrability [35], explicit spectral analysis [2], perturbation analysis [26],
general Hamiltonian PDE techniques [32, 33], Miura transformation [30], the combi-
nation of algebraic properties, weighted function spaces, and refined PDE tools [28,
29], among others.

When periodic waves are considered, to the authors’ knowledge, most of the study
of transverse stability pertains to spectral analysis; see for e.g., [3, 16, 17, 22, 34] for
the KP and generalized KP equations, [1, 13] for the nonlinear Schrédinger (NLS)
equation, and [5, 21, 31] for the Zakharov—Kuznetsov (ZK) equation.

The goal of this paper is to extend the transverse stability analysis to periodic waves
arising from models exhibiting strong non-local and nonlinear features. Specifically,
we choose the one-dimensional b-family equation [14]

(1 — 83) U + (b + Duuy + ky — buyttyy — utiyyey =0,
u=u(t,x), beR x>0, (1.1)

and consider its two-dimensional generalization

[(1 — 8?) u; + (b4 Duuy + kuy — buyuy, — uu”x] +ouyy, =0,
X
o = =*l1, (1.2)

where the profile u = u(t, x, y). We refer to (1.2) as the b-KP equation due to the
resemblance of transverse term ouy, to that of the classical KP equation; and in a
similar way, the b-KP equation with 0 = —1 is called the b-KP-I equation, whereas
the one with o = 1 is called the b-KP-II equation. The physical relevance of the b-KP
Eq. (1.2) has been recently discovered in the context of shallow water waves [12, 23]
and nonlinear elasticity [6], for the case b = 2. The corresponding equation is also
referred to as the CH-KP equation as it generalizes the well-known Camassa—Holm
equation [4].

While the (longitudinal) stability of solitary and periodic waves of the b-family Eq.
(1.1) has been studied quite extensively, the understanding of the local dynamics of
these waves under the b-KP flow is much less developed. The only results that the
authors are aware of regard the line solitary waves of the CH-KP equation: the nonlinear
transverse instability of the solitary waves to the CH-KP-I equation is established in
[7], and linear stability of small-amplitude solitary waves is confirmed for CH-KP-II
very recently [9].

In this paper, we will investigate the transverse spectral stability/instability of small
periodic traveling waves of the b-family Eq. (1.1) with respect to perturbations in
the b-KP flow. Compared with the study of solitary waves, the stability of periodic
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6318 R.M.Chenetal.

waves is usually more delicate. The periodic waves in general exhibit a richer struc-
tural complexity, characterized by dependencies on three parameters—namely, the
period, wave speed, and integration constant. Such higher degree of freedom often
introduces additional technical difficulties not encountered in the analysis of solitary
waves. Moreover, a more broader class of perturbations can be considered for periodic
waves, encompassing co-periodic, multiple-periodic, localized perturbations, among
others. Our motivation for specifically studying the small-amplitude period waves is
inspired by the work of Haragus [16], where perturbation arguments have been suc-
cessfully employed to discern the spectra of the linear operator. In contrast to the
stability analysis of large waves, where instability criteria can usually be derived (in
the particular case of integrable systems, explicit computation can be performed, but
(1.2) is in general non-integrable), our choice to work with small-amplitude waves is
motivated by the potential for obtaining more explicit information on the spectra, and

for allowing for a broader range of perturbation types.

1.1 Main results

Although the basic idea of the approach stems from the work of Haragus [16], the quasi-
linear structure of the Eq. (1.2) makes the spectral computation a lot more involved.
For the case of b-KP-I flow 0 = —1 with co-periodic perturbations in the direction of
propagation (see Sect. 3 for a precise definition of the class of perturbations and the
corresponding notion of spectral stability), the linearized problem does not assume a
natural Hamiltonian structure, and hence the standard index counting method cannot
be applied directly. On the other hand, the linearized operator at the trivial solution
does admit a decomposition into a composition of a skew-adjoint operator with a self-
adjoint operator, and thus the counting result can be used to provide direct insights
for the spectrum of this operator. Such information can then be transferred to the lin-
earized operators at small-amplitude waves. Through a careful perturbation argument
and explicit computation on the expansion of the spectra, we confirm the emergence of
long-wave transverse instability for a range of b, which includes the examples of CH-
KP (b = 2) and Degasperis—Procesi(DP)-KP (b = 3). More interestingly, depending
on the wave number k of the line periodic waves, there also exists a large region of
values of b where the line periodic waves are transversally spectrally stable.

In contrast to the b-KP-I equation, the spectral analysis for the b-KP-II equation
(o = 1) presents a more intricate challenge, reminiscent of the complexities found in
the classical KP-II equation. The computation of the spectrum becomes substantially
more complicated due to the nature of the dispersion relation, which is more likely
to host unstable modes. Notably, in the limit of zero transverse wavelength, the dis-
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persion relation may harbor an infinite number of potentially unstable eigenvalues.
Tracking the locations of these eigenvalues further adds to the complexity, requiring
the computation of the Taylor expansion of the corresponding eigen-matrix to an arbi-
trarily high order. The difficulties involved in these computations make it exceptionally
challenging to achieve a comprehensive spectral analysis. What we are able to con-
clude in this case is a characterization of the spectra under long wavelength transverse
perturbations. While a complete spectral analysis remains elusive, our findings align
well with the spectral stability observed in the context of small-amplitude CH-KP-II

solitary waves, corresponding to b = 2 and k — 0 formally; see [9, Theorem 2.8].

Theorem 1.1 [Informal statement of transverse stability for periodic perturbation] Let
b # —1. Consider a 2n [k-periodic traveling wave solution of (1.1) constructed in
Lemma 2.1.

(a) For o = —1 (b-KP-I) and the amplitude of the wave is sufficiently small, such a
wave is transversely spectrally unstable with respect to co-periodic perturbations
in the x-direction and periodic in the y-direction, when the parameters (b, k%)
lie outside the shaded region showed in Fig. 1. This wave is transversely spec-
trally stable otherwise, provided that the wave is spectrally stable with respect to
longitudinal perturbations.

(b) For 0 = 1 (b-KP-II) and the amplitude of the wave is sufficiently small, such a
wave is transversely spectrally unstable with respect to co-periodic perturbations
in the x-direction and periodic in the y-direction, when the parameters (b, k*)
lie inside the shaded region showed in Fig. 1. Otherwise this wave is transversely
spectrally stable under long-wave transverse perturbation, provided that the wave

is spectrally stable with respect to longitudinal perturbations.

For non-periodic perturbations in the direction of propagation, the linearized opera-
tor has bands of continuous spectra. Since the coefficients of the operator are periodic,
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we will use the classical Floquet—Bloch theory to replace the study of the invertibility
of the original linearized operator by the invertibility of a family of Bloch operators in
parameterized by the Floquet exponent (see Lemma 5.1). Through a detailed calcula-
tion of the spectrum of the linearized operator at the trivial solution (zero-amplitude
solution), a perturbation argument is performed, which allows one to derive instability
criterion for the b-KP-I case. We would like to point out that, a complete understand-
ing of the Floquet analysis for the linearized operator is exceedingly difficult due to
the appearance of the terms corresponding to the smoothing operator in the dispersion
relation. Instead, when focused on the regime where the transverse perturbations are of
finite wavelength, we manage to track the location where there is exactly one collision
between a pair of eigenvalues of the linearized operator at the trivial solution from the
imaginary axis, which results in the bifurcation of the unstable eigenvalues of the full
linearized problem. The exact statement of the results is given in Theorem 5.1. For
long-wavelength transverse perturbations, an additional condition on the longitudinal
wavelength is needed in order to eliminate the eigenvalue collisions. The detailed
discussion is provided in Sect. 5.5.

The remainder of this paper is organized as follows. In Sect. 2, we use the Lyapunov—
Schmidt reduction to construct the family of the one-dimensional small-amplitude
periodic traveling waves of the b-KP equation and provide a parameterization of
these waves. In Sect. 3, we formulate the spectral problem for the »-KP equation and
introduce the definition of spectral stability in various function space settings. In Sects.
4 and 5, we discuss the spectra of the resulting linear operators, and investigate the
transverse spectral stability/instability of the small periodic waves of the b-KP-I and
b-KP-II equation for periodic and non-periodic perturbations.

1.2 Notations

Throughout this paper, we will use the following notations. The space L?(R) denotes
the set of real or complex-valued, Lebesgue measurable functions over R such that

1/2
£l 2y = ( /R |f<x>|2dx) < 400,

and L%(T) denotes the space of 2m-periodic, measurable, real or complex-valued
functions over R such that

172

1 2
I fllz2ery = (E/O Lf o) dx) < +o0.
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The space Cpgq(R) contains all bounded continuous functions on R, normed with
Il £1I = sup [ f(x)].
xeR

For s € R, let H*(R) consist of tempered distributions such that

s 172
||f||H-f(R>=</R <1+It|2) If(t)lzdt> < 400,

where fis the Fourier transform of f, and
H*(T) = {f € H}).(R) : [ is 2-periodic} .

We define the L2(T)-inner product as

1 2w —
(fe) =50 | f@E@dz= > Fagas (1.3)

2w
nez

where fAn are Fourier coefficients of the function f defined by

2

1 .
fo=— f(z)e"dz.
2 0

We denote R (X) the real part of 1 € C.

2 Existence of small periodic traveling waves

One-dimensional traveling waves of the b-KP Eq. (1.2) are solutions of the form
u(x,y, t) =u(x —ct),
where ¢ > 0 is the speed of propagation, and u satisfies the ODE
[—c (' —u")+ @+ Duu' +xu’ — bu'u" — uuw]/ =0.

Integrating this equation twice, and writing x instead of x — ct, we obtain the second
order ODE

2 " b—1

b+1
(K—c)u—l—cu”—i—%u —uu” = — (u/)zzAx—m(c—/c)z,
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6322 R.M.Chenetal.

in which A and m are arbitrary integration constants. Considering periodic solutions,
we set A = 0 and the equation reduces to

u- —uu — 7 (u’)2=—m(c—/<)2. 2.1

Since this equation does not possess scaling and Galilean invariance, we may not
simply assume thatc = 1, m = 0.

Let u be a 27 /k-periodic function of its argument, for some k£ > 0. Then, w(z) :=
u(x) with z = kx, is a 2z -periodic function in z, satisfying

b+1 b
(k — ¢)w + ck*w,; + %wz — Kww,, — Tkz 2= —m(c—K)?* (2.2)

Let F : szn (T) x Ry x R x R — L%(T) be defined as

F(w; k,c,m) = (/c—c)w+ck2wzz+ b—;l 2 —kzwwZZ
—%Igw? +m(c — k)% (2.3)
We seek a solution w € H%(T) of
F(w; k,c,m) =0. (2.4)

Noting that (2.3) remains invariant under z — z + z9, z +— —z for any zo € R, we
may assume that w is even. Clearly F is analytic on its arguments.
It is easy to see that a constant solution wq of Eq. (2.4) satisfies

b+1

5 wo + (k — c)wo —i—m(c—lc)2 =0.

Thus for any k£ > 0,c¢ > 0,x,m € R and |m| sufficiently small, we may expand to
get

wo(c, m. k) = m(c — k) + O (mz) 2.5)

It follows from the implicit function theorem that if non-constant solutions of (2.4)
(and hence (2.2)) bifurcate from w = wq for some ¢ = ¢ then necessarily,

Lo == 3, F (wo; co, k,m) : H*(T) — L*(T)
is not an isomorphism, where
Lo = k* (co — wo) 82 + (k — c) + (b + Dwo.
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Further calculation reveals that Loe'™® = 0, n € Z, if and only if

R (b+ 1) +k*n?
Tl T T T e

o , (2.6)
which, when plugging in the form of wg, would lead to a solution

co = co(k, m),

at least for m sufficiently small.
Without loss of generality, we restrict our attention to |n| = 1. For |m| sufficiently

small, (2.5) and (2.6) become, respectively,
1 2
w0=/cm<1+—kz—l)+0<m),

ok 1 (b+1)+ k> 5
C0_1+k2+Km(l+k2_1)(l+—k2 +O<m). 27

In this case it is straightforward to verify that, for any «,k > 0,m € R and |m|

sufficiently small, the kernel of Lo : H 2(T) — L3(T) is two-dimensional and spanned
by e+%, Moreover, the co-kernel of Lo is two-dimensional. Therefore, L is a Fredholm
operator of index zero. One may then follow an idea similar to that of [ 19, 20] to employ
a Lyapunov—Schmidt reduction and construct a one parameter family of non-constant,
even and smooth solutions of (2.1) near w = wqg(k, m) and ¢ = co(k, m). The small-
amplitude expansion of these solutions is given as follows and the details are provided
in Appendix A.

Lemma 2.1 Foreachk,k > 0, m € R and |m| sufficiently small, there exists a family
of small amplitude 25 [ k-periodic traveling waves of (1.2)

wk,a,m) :=u &k (x —clk,a, mit)) (2.8)

for |a| sufficiently small; w and c depend analytically on k and a, w is smooth, even

and 27 -periodic in z, and c is even in a. Furthermore, as a — 0,

w(z; k,a, m) = wo(k,m) +acosz+ a’ (Ag + Ay cos2z)
+d3A3c08374 0 (a(a3 n m)) , (2.9)

ck.a,m) = cotk.m) +dcs+ O (a(a3 n m)) , (2.10)
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6324 R.M.Chenetal.

with
2
(1+K%) 2 (b+1)(1+k%)
=——2(b=-3*-0b+1)), Aj= —— L,
0= a2 <( = b+ )> 2 12ck2
3
b+1) (kK +1) 5
Ay=— 2 (@432 + b+ D), (2.11)
3 g (@ + 3K+ @+ 1)
1 (=2 +11b—11 , 5b*>—11b—16 5(b+1)>
0 =- k™ + - ,
K 24 24 24k2

and wy, co being given in (2.7).

To further simplify the analysis, we take the constant m = 0, and consider the

constant solution wg = 0 and ¢y = #

3 Formulation of the spectral problem
Linearizing the b-KP Eq. (1.2) about its one-dimensional periodic traveling wave
solution w given in (2.9), and considering the perturbations to w of the form w +

ev(t, z, y), we arrive that the equation

k [(1 _ kzaf) (v — kev,) + kkv- + (b + Dk (wv),

i (o, + (b — Dw,v, + wzzv)z] +ovyy =0.
Z
Using change of variables and abusing notation t — k¢, y — ky, we obtain

[(1 — kzaf) (vt — cvy) + kv + (b + 1) (wv),

—k? (wvy, + (b — Dw,v, + wzzv)z] +ovyy =0.
Z
For v(z, y, t) = MYV (z), we have

[(1=K202) GV = cVo) + Ve + b+ D@V

KWV, + (b — Dw, V. + wZZV)Z] — o2V =0.
z
The left-hand side of this equation defines the differential operator
-1
T.(h, OV = (1 - kZag) 3, [xv — V. + (1 ~ kzaf) 3,
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(K £+ Dw — Kw., — Kb — Dw,d, — kzwag) v] — 602V,
3.1)

where the subscript a in 7, addresses the dependence of w, ¢ on the expansion parame-
ter a as in Lemma 2.1. Clearly, the spectral stability problem concerns the invertibility
of T,(x, 0).

The longitudinal problem corresponds to perturbations with £ = 0. In the particular
cases of CH (b = 2) equation and Degasperis—Procesi (DP) equation (b = 3), the
spectral and orbital stability for smooth periodic waves were obtained via inverse
scattering [27] or by exploiting the variational characterization of the waves [10, 11].
This variational argument was further extended to treat the nonlinear orbital stability
of periodic waves to the general »-CH family [8] for all b # 1. The first approach
relies substantially on the structure implication from the special values of b: Eq.
(1.1) is completely integrable only for b = 2, 3. On the other hand, the variational
approach utilizes the Hamiltonian structures. It turns out that the standard Hamiltonian
formulation of the DP equation is amenable to the usual spectral stability theory [11],
whereas one needs to resort to the non-standard Hamiltonian formulation involving
momentum density for the CH [10] and for the general b-family [8] to deduce the
stability criterion for periodic waves.

We consider in this paper two dimensional transverse perturbations which require

£ # 0. Specifically, three types of perturbations will be addressed:

e periodic (in z) perturbations, where 7, (1, £) is considered to be H*(T) — L*(T),
e localized perturbations, where 7, (4, £) is considered to be H 4(R) > L%(R), and
e bounded perturbations, where 7, (1, £) is considered to be Cédd (R) — Cpga(R).

The precise definition of the transverse spectral stability is given as follows.

Definition 3.1 [Transverse spectral stability] For a 21 /k-periodic traveling wave solu-
tion u(x, y,t) = w(k(x — ct)) of (1.2) where w and c are as in (2.9) and (2.10),
we say that the periodic wave w is transversely spectrally stable with respect to
two-dimensional periodic perturbations (resp. non-periodic (localized or bounded per-
turbations)) if the b-KP operator 7, (A, £) acting in L*(T) (resp. L%(R) or Cpaa(R) )
with domain H*(T) (resp. H 4(R) or Cédd(R)) is invertible, for any A € C, (%) > 0
and any £ # 0.

4 Periodic perturbations

In this section we study the transverse spectral stability of the periodic waves w with
respect to periodic perturbations for the »-KP equation. More precisely, we study
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the invertibility of the operator 7, (%, £) acting in L*(T) with domain H*(T) for
A e C, N > 0and ¢ € R\{0}. Following the general strategy of [16], let’s first
reformulate the spectral problem for this particular case, as in the proposition below.

Proposition 4.1 The following statements are equivalent:

(1) T,(r, L) acting in L%(T) with domain H*(T) is not invertible.
(2) The restriction of T, (A, €) to the subspace L% (T) of L2(T) is not invertible, where

2
L3(T) = {f e LX(T): f(ydz = 0} .
0

(3) X belongs to the spectrum of the operator A, (£) acting in L%(T) with domain
HY(T)n L(z)(']T) where A, (0) is defined as follows:

—1
Aa(0) ==, |:c — (1-#%2)
(K + (b + Dw — K — k(b — Dw=d, — Kwd? — oezagz)]
-1
=o. (1-#%02) e (1-#%2)

- </c + (b + Dw — KPw.. — k(b — Dw.d. — Kwd? — aezaz—Z)] .
The proof of the above result follows along similar lines as [16, Lemma 4.1, Corollary
4.2], together with the fact that 1 — k2 83 - H"1t2(T) — H*(T) is invertible. Therefore
it suffices to analyze the spectrum of 4,(¢). Since it has a compact resolvent, the
spectrum consists of isolated eigenvalues with finite algebraic multiplicity. Moreover,

the evenness of w leads to the following symmetry of the spectrum of A4, (£), the proof

of which follows along the same line as [16, Lemma 4.3], and hence we omit it.

Lemma 4.1 The spectrum of A, (€) is symmetric with respect to both the real and

imaginary axes.

The operator Ag(£) has constant coefficients, and a straightforward calculation

reveals that
Ao(0)e™ = iw, e forall n e Z*:=Z\{0},

where

K o l?
wpe=n|co— -
n. O T k2 T 22 (1+ k%n?)
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K K o2
=n —_ —_
1+k2  14+k2n2  n2(14k%n?)

n Km?—1) o2
= K —_ — .
1+ k2n? 1+ k2 n?

Consequently, the L%(T)—spectmm of Ay(£) consists of purely imaginary eigenvalues

of finite multiplicity. On the other hand, we write
Aa(®) = Ao(0) + A,
with
Ao(0) = 8, (1 - k2812>71 (-a)kzaf Yoo —K+ 062352) 4.1)
and

Aq = Aa(0) = Ao(0)
=0, (1- k28§>71 [ = co) (1= K202)
(@ + Dw = Kz 20 = Dwed; — Kwa?) |

A direct calculation shows that
I Aall g1 (1) L2y = O(lal) asa — 0. 4.2)

A standard perturbation argument ensures that the spectra of A, (£) and Ay(£) stay
close for |a| small [18]. Due to the symmetry in Lemma 4.1, it follows that for |a|
sufficiently small the bifurcation of eigenvalues of A, (¢) from the imaginary axis
happens in pairs, and is completely due to the collisions of eigenvalues of .Ap(¢) on
the imaginary axis.

Note that the operator A, (£) admits a natural decomposition

Aa(e) = j,Ca (E)v
where J = 0, (1 — kzaf)_l is skew-adjoint and invertible in L%(T), and

Ka(0) := ¢ (1 _ kzaf) — [k + (b + Dw — Kw.. — Kb — Dw.o,

—kPwd? — o *3?].
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However, it can be checked that, except for b = 2, the operator I, (¢) fails to be
self-adjoint. Therefore the standard index counting for Hamiltonian system does not
immediately apply to A, (¢).

The way to go around this issue is to investigate the spectrum of the operator
Ap(£), and then use perturbation method to transfer the spectral information to A, (¢).
It turns out that we can decompose the operator A (£) into a composition of 7 and a
self-adjoint operator /Co(£):

Ao(8) = TKo(0),
where
Ko(€) = co — cok?d? — k + o £*3; >

and cq is given in (2.7) with m = 0.

Standard linear Hamiltonian theory suggests to track the Krein signature to detect
the onset of instability bifurcation (see [25, Sect. 7], for instance). Specifically, the
Krein signature K, of an eigenvalue iw, ¢ of Ag({) is defined as

(4.3)

Kmn*—=1) o
14+ k2 n2 )’

K, :=sgn ((Ko(ﬁ)ei”z, ei’1Z>> = sgn (K

A necessary condition for a pair of eigenvalues to leave imaginary axis after collision

is that they carry opposite Krein signatures (see [25, Proposition 7.1.14], for instance).

4.1 b-KP-l equation

We first consider the case o = —1. For this we compute to get

K2mn?—1) ¢
SPECr2(T) (Ko(0)) = {KH——kZ + n_2; € Z*} .

4.1.1 Finite and short wavelength transverse perturbations

It’s easy to see from the above that when o = —1, the Krein signatures of all eigen-
values remain the same, which implies that for |a| sufficiently small, the eigenvalues
will not bifurcate from the imaginary axis even if there is a collision away from the
origin. On the other hand, the only possible scenario when eigenvalues split into the
complex plane as unstable eigenvalues is when £ is small and the collision occurs at

the origin. Therefore we have the following lemma.
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Lemma 4.2 For any given £* > 0 there exists |a| sufficiently small such that for all
[€] > £*, the spectrum of A, (£) is purely imaginary.

4.1.2 Long wavelength transverse perturbations

The discussion above leaves possible the onset of instability due to eigenvalue coales-
cence at the origin, for small £. This corresponds to the transverse perturbations being
of long wavelength.

Different from how we obtain Lemma 4.2, now we will perform a double pertur-

bation by regarding .4, (¢) as a perturbation of the constant-coefficient operator
-1 -1
Ao(0) = 0z (1= K202)  Ko(0) = oz (1= K%02)  (—cok?0? + co — «)
acting in L%(T). A direct calculation shows that the spectrum of A (0) is given by

spec () (Ap(0)) = {inr*(n); ne Z*}, where
r«(n) : =« < ! ! ) . “4.4)

14+4k2  1+Kk2n2

In particular, zero is a double eigenvalue of Ap(0), and the remaining eigenvalues are
all simple, purely imaginary, and located outside the open ball B (0; r(2)). Besides,
letting

—~ ~ -1
Au(0) 1= Aa(0) = 4@ = A, + 0z (1= K202) (@027,
from (4.2), we get
H"Zl\“(e)”H1—>L2 =0 (zz + |a|> .

We proceed similarly to the proof in [16, Lemma 4.7] to get the following lemma.
Lemma 4.3 The following properties hold, for any € and a sufficiently small.
(a) The spectrum of A, (£) decomposes as

specy2(p) (Aa(£)) = specy (Aq(£)) U spec (Aq (D)) ,

with

specy (A, (€)) C B (0; r*;2)

) . specy (A (0)) C C\B (0; r«(2)),
where r.(n) is defined in (4.4).
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(b) The spectral projection T1,(£) associated with specy (A, (£)) satisfies H I, ¢) —
Mo(0) || = 0(¢% + |al).
(c) The spectral subspace X,(£) = I1,(€) (L(Z)(T)) is two dimensional.

This lemma ensures that for sufficiently small £ and a, bifurcating eigenvalues from the
origin are uniformly separated from the rest of the spectrum. In the following theorem,
we show that for sufficiently small £ and a, the two eigenvalues in spec (A, (£)) leave

imaginary axes.

Theorem 4.2 Assume |£|, |a| are sufficiently small. Denote

b+ 1) (1+K2)°

2= [(b D+ (T 2b)k2] o

(4.5)

If Zczl > 0, then there exists some
2. 2 4
ly =L, +0@) >0

such that

(i) for any €% > Zi, the spectrum of A, (£) is purely imaginary.
(ii) for any €> < Ei, the spectrum of A, (L) is purely imaginary, except for a pair of

simple real eigenvalues with opposite signs.

If ZZ < 0, then the spectrum of A, (£) is purely imaginary.

Proof Consider the decomposition of the spectrum of A, (¢) in lemma 4.3. We first
study spec; (A4 (£)) for € and a sufficiently small. Forn € Z*\{=%1}, as £ is sufficiently
small, K,, = 1in (4.3) for all n. This implies that even if eigenvalues in spec; (A (£))
collide, they remain on the imaginary axis. Then for all £ and a sufficiently small,
spec; (A4 (£)) is a subset of the imaginary axis.

The eigenvalues in spec, (A, (£)) are the eigenvalues of the restriction of A, (£)
to the two-dimensional spectral subspace X, (¢). We determine the location of these
eigenvalues by computing successively a basis of &, (£), the 2 x 2 matrix representing
the action of 4, (£) on this basis, and the eigenvalues of this matrix.

For a = 0, Ag(¢) is an operator with constant coefficients, and

2 EZ

Tre T xe

speco (Ao(0)) = { 0 e Z*} .

The associated eigenvectors are e'* and e~*%, and we choose

£0(0) = sin(z), & () = cos(2),
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as basis of the corresponding spectral subspace. Since
0 e 1 1 e 0
Ao(D)§g (0) = mé‘o ©), Ao(O)§(0) = _1+—k2$0 ),
the 2 x 2 matrix representing the action of Ay (¢) on this basis is given by
0o £
Mo(0) = ( » 1+k2 ) )
e 0

We use expansions of w and ¢ in (2.9) and (2.10) to calculate the expansion of a
basis {EQ(Z), £, (2)} for X, (¢) for small a and € as

1
£9(2) 1= — —d.w(z: k. a,0) = sinz + 2aA, sin 2z + 3a2 A3 sin 3z + O (a3) ,
a

04k
kk? ((b+1) +k?)

=cosz +2aA)cos2z + 3a2A3 cos3z+ O (a3) .

£,(2) = [(@mc) (daw) — (3a¢) (Omw)] (z; k, a, 0)

As
~1
02) o

Aa(0) = (1 K2
- kzaf) - (K F b+ Dw — KCw,, — Kb — Dw,d. — kzwaf)]
k2

c (1
=(1- af)_l a,
[—kzaz(c — w)a, + (c —k— (b4 Dw + Kw,, + (b — 2)k2wzaz)] ,

using expansions of w and ¢ in (2.9) and (2.10), we obtain that the action of A, (0) on
the basis (£0(2), £} (2)) is

M4 (0) =

(b+1)+ (7 —2b)k* , 3
A e a +0(|a|>0

Together with the expression of M((£), we get that
ZQ
1+ k?

22 (b+1)+ (7 -2b)k* , 5,
et e a+0(|a|(e +a)> 0

My (6) =
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The two eigenvalues of M, (£), which are also the eigenvalues in spec, (A, (£)), are
roots of the characteristic polynomial

PO =212+

2 2 (b+1D+ @7 -2b)k> N

— A .
1+k2<1+k2 1+ k2 2a>+0(|a|€ (¢ +a%)
Furthermore, since w(z + 7; k, a, 0) = w(z; k, —a, 0), the two roots of this polyno-

mial are the same for a and —a, and we conclude that

22 22 (b+ 1)+ (7 —2b)k?
2 _ . 2 2,2 (52 2
32 = 1+k2<1+k2 e Aza)—i—O(a@(@ +a?))
2
_ ¢ b+ D+ T2 b+ (1+EK)
1+k2 \ 1442 1+ k? 12ick? (4.6)

+0 (a2 (2 +a?))

-l avo (e (e ).

where ¢2 is defined in (4.5). Thus when ¢2 > 0, then for a sufficiently small there
exists some

2. 2 4
2=02+0@@H>0

such that when £% > Zi then the two eigenvalues are purely imaginary, whereas the
eigenvalues are real with opposite signs when ¢> < Ei. On the other hand, when
Zg < 0 then the spectrum of A, (¢) is purely imaginary for a sufficiently small.

We list the cases of £2 > 0 and £2 < 0 in the following lemma and the detail
discussion is given in the Appendix B.

Lemma 4.4 Zﬁ > 0 is valid for the following cases:

b+1

b+1
— - (3)b<—I, o2t l
2b—7

) —1<b< .
D —1< 2b—7

7
: (2)b>§, K <

N

On the other hand, EZ < 0 when

b+1
2b—7

7 b+1
MHb>—, k¥ > +; Q)b <—1, k*>

2 2b—17
4.2 b-KP-ll equation

Now let’s turn to the case when o = 1. We begin by analyzing the spectra of the
unperturbed operators Ko (£) and Ag(¢).
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.| ./‘

(a) (b)

20,2 2
Fig. 2 [b-KP-II equation] a Graph of the map n K% — ﬁ—z fork =2,k =1and ¢ = 0.8. The

eigenvalues of K (¢) are found by taking n = ¢, ¢ € Z*. b Graph of the dispersion relation n > v(n) =

L,L,L) — 2 k=1landl—= imaginary parts ioenvalues
n ( TRV aws o T ww v for k =2,k = 1 and ¢ = 0.8. The imaginary parts of the eigenvalues

of Ag () are found by taking k = n, n € Z*. Notice that the zeros of the two maps are the same

4.2.1 Spectrum of /Cq(£)

Using Fourier series we find that the spectrum of the operator Ky (¢) acting in L%(T)
is given by (see also Fig. 2a)

Kmn:-1) 2

SPEC2(T) (Ko(6)) = {K1+—k2 — i ne Z*} .

In contrast to the b-KP-I equation, the spectrum of Ky(£) contains negative eigen-
values, and the number of these eigenvalues increases with £.

4.2.2 Spectrum of Ay ({)

The spectrum of the operator A (£) acting in L%(T) is given by (see also Fig. 2b)

Ao(@) = Liv,(0) = in | — d e CnelZ*
spec 2y (Ao(0)) = yiva(6) = in 1+&2 14k n2(1+K2n2) Tne :

Notice that the dispersion relation

- K K 02
v(n) :=n — —
1+k2 14+k%n2  n2( +k2n2)

is monotonically increasing on (—oo, —1] and [1, 00), so that colliding eigenvalues
correspond to Fourier modes with opposite signs. A direct calculation then shows that
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for any p,q € N* the eigenvalues corresponding to the Fourier modes p and —¢g
collide when

P s pqg (L+Kkp?) (1+k%¢*) [p+q _p(1+k2q2)+q(1+k2p2)
P T p (14 k2p2) +q (1 +k2¢2) \ 14 &2 (1 +k2p) (1 + k2g?) '

Moreover, the corresponding eigenvalues of /Cy(£) have opposite signs, so that any of
these collisions may lead to unstable eigenvalues of the operator .4, (€).

4.2.3 Long wavelength transverse perturbations

Lemma 4.5 Assume that |£| and |a| are sufficiently small. Recall the definition (4.5)
for 2. If €2 < 0, then there exists some

2 . 2 4
o i=—L,+0(@a") > 0.

(i) for any €% > Zi*, the spectrum of A, (€) is purely imaginary.
(ii) for any €% < Ei*, the spectrum of Ay (£) is purely imaginary, except for a pair

of simple real eigenvalues with opposite signs.

Ifﬁg > 0, then the spectrum of A, (L) is purely imaginary.

Proof Upon replacing ¢> by —¢2 in (4.6), we find that the two eigenvalues satisfy

32 = —# [+ +0(a? (2 +a%))].

Consequently, we may process as in Theorem 4.2 to get the results.

The parameter regimes indicating the sign of Zg is given in Lemma 4.4, which
together with Lemma 4.5 provides the spectral stability for the b-KP-II case.

5 Non-periodic perturbations for b-KP-I: onset of instability

In this section, we will consider the two-dimensional perturbations which are non-
periodic (localized or bounded) in the direction of the propagation of the wave. For
non-periodic perturbations, we study the invertibility of 7, (A, £) in (3.1) acting in
L?*(R) or Cpaa(R) (with domain H*(R) or Cit (R) ), for A € C, %(x) > 0, and
£ € R\{0}. The notable difference in this case is that 7,(}, £) now has bands of

continuous spectrum.
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5.1 Reformulation and main result

Since the coefficients of 7, (A, £) are periodic functions, using Floquet theory, all
solutions of 7, (A, )V = 0 in L%(R) or Cpaa(R) are of the form V(z) = eiézf/(z)
where & € (—%, %] is the Floquet exponent and Visal2w -periodic function; see [15]
for a similar situation. This replaces the study of invertibility of the operator 7, (%, £)
in L2(R) or Cpga(R) by the study of invertibility of a family of Bloch operators in
L?(T) parameterized by the Floquet exponent £. We present the precise reformulation
in the following lemma.

Lemma 5.1 The linear operator T, (A, £) is invertible in L*(R) if and only if the linear

operators

Ta e (X, 0)
= (1 —K* (3, + &)%) (3, + i) {x @ +iE) + (1 - k2@, +i5)?7)

@, + i) [k + (b + Dw — Kw,, — (b — DK w, (3, +if) — k*w (3. +i§)?]} — o ?

acting in L? (T) with domain ngr(’]l‘) are invertible for all & € (—% %]

Werefer to [15, Proposition A.1] for a detailed proof in the similar situation. The fact
that the operators 7, ¢ (A, £) act in L2(T) with compactly embedded domain ngr (T)
implies that these operators have only point spectrum. Noting that & = 0 corresponds
to the periodic perturbations which we have already investigated, we would restrict
ourselves to the case of £ # 0. Thus the operator 9, + i& is invertible in L>(T). Using

this, we have the following result.
Lemma5.2 The operator 1, ¢ (A, £) is not invertible in L?(T) for some % € C and
& # 0 if and only if A € spec;a(qy (Aa(¥, §)), where
Aa(L, §)
= (0, +if) [c — (1=K @+ ié)z)ﬂ
(e + b+ Dw = Kz — (b = Dw, (3 +i8) — k2w @ +i6)> — o (0 + is)*z)]
=@ +i§)[1 -k @ + i§)2]_l [e(1 = k2@ +i6))-
(K F b+ Dw — Kws — Kb — Dw, 8, +i&) — k2w (0, + €)% — 06?8, + ig)‘z)] .
Note that the operator (9, + &)~ becomes singular as & — 0. Thus the implication
from the spectral information of A, (£, &) to the invertibility of 7, ¢ (A, £) is notuniform

in £. Therefore we will restrict our attention to the case when |£| > ¢ > 0, and look
to detect the onset of instability.
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Lemma 5.3 Assumethat& € (— % , %] and§ #0. Then the spectrumspec 2 ) (A, (L,8))
is symmetric with respect to the imaginary axis, and spec;aq) (Aq(¢,§)) =
speca(r) (—Aq (€, —§)).

Proof We consider S to be defined as follows

SY(z) = ¥ (—2),

and notice that A, (¢, €) anti-commutes with S,

(Au(£, V) () =Au(0.6) (VD)) = —(ACEHV ()=~ (SALHY) (),

where we have used the fact that w is an even function. Assume u is the eigenvalue
of A, (¢, &) with an associated eigenvector ¢,

Adl, 8o = po.

then we have
Aa(l,6)Sp = —SA (L, ) = —iSg.

Consequently, —7t is an eigenvalue of A, (¢, §). This implies that the spectrum of
A, (£, &) is symmetric with respect to imaginary axis.
Consider R to be the reflection as follows

Ry (2) = ¥ (—2),

then we have

(Aal, OR) ¥ (2) = Aa(, §) (Y (=2)) = — (Aa(l, =5)¥) (—2)
= —(RAL, =5)¥) (2).

This gives the second property.

From the above lemma, we can without loss of generality assume that & € (0, %]
We will study the L?(T)-spectra of the linear operators A, (¢, £) for |a| sufficiently

small. It is straightforward to establish the estimate

A (€, &) = Ao(€, )l 1 (1) 2(T) = O(lal)
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as a — 0 uniformly for & € (O, %] in the operator norm. Therefore, in order to locate
the spectrum of A, (¢, &), we need to determine the spectrum of Ay (£, &). A simple
calculation yields that

Aol ) = iy (€, £, n € Z, (>-12)
where
€& =n+8|—s - - B "
wn (€, §) = (n L+k2 140 +86)? +*(1+kn+8)?))
(5.1b)

As in the previous section, the linear operator A (¢, §) can be decomposed as
Ao, &) = JeKo(L, §),
where
Je = (0 +i8) (1 - K @ + i§)2>71 ,
and
Ko(, &) = (col = K20, +i8)) = & + €2 (0, +i8)72).

The operator Jg is skew-adjoint, whereas the operator Ko(¢, £) is self-adjoint. As
definedin (4.3), the Krein signature, K, ¢ of an eigenvalue iw, (¢, £) inspec (Ag (¢, £))
is

2 2 2
K¢ = sgn (Mn(ﬁ, £) = Kkk? ((n+8)* - 1) ol )

1+k2 T (n+6)?

for n € Z. Note that we have

on(t,8) = — 215 (L6 (5.2)

14+k2(n+¢
As explained in the previous section, the b-KP-II case is very difficult to analyze, and
hence we will mainly focus on the b-KP-I equation (0 = —1).

The main result of this section is the following theorem showing the finite-
wavelength transverse spectral instability of the periodic waves for the b-KP-I equation
under perturbations which are non-periodic in z.
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Theorem 5.1 [Instability under finite-wavelength transverse perturbation] Consider
o = —1. Assume that £ € (0, %] and define

) _ k(1 - £)8

(1+4k2) 53
2. KA -9 148 [1+k20 -8+ (1+k%5)2-8 )
(1443 (1= [1+KA -2+ (1+k%2)¢
which satisfy lg < lg and
B =[P+ (1 - b + K2+ b+ D]
[kzéz b=+ (B — bk + b+ 1)] . (5.4)

Then for 02> Z%, we have

(I) In the case of B > 0, for any |a| sufficiently small, there exists €,(§) > 0 with

(1 + K26 (1148201 — £2)7

Bz 55
(1—E)[1+k2(1—5)2]+$(1+k2§2) lal 53

£aE) 1= E2(1 — £)2

such that

(i) for |£2 — E%(§)| > £4(&), the spectrum of Ay, (€, &) is purely imaginary;
(ii) for ‘Zz — EE(S) ’ < &4(&), the spectrum of A, (£, §) is purely imaginary, except

for a pair of complex eigenvalues with opposite nonzero real parts.

(I) In the case when B < 0, the spectrum of A, (€, &) is purely imaginary.

Remark 5.2 From Lemma 5.9 we see that the transverse spectral instability holds for
—1 < b < 3, which covers the well-known examples of CH-KP-1 (b = 2) and
DP-KP-I (b = 3).

The remainder of this subsection aims at proving this theorem, and the main argument
is provided in Sect. 5.4.

5.2 The Krein signature and stability under short-wavelength transverse
perturbations

We start the analysis of the spectrum of Ay (¢, §) with the values of £ away from the
origin, |£| > £o, for some £y > 0. Recall that now we take ¢ = —1. It is straight
forward to verify that
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(a) (b)

. . 2 kk2(1-n?) _ _ _
Fig. 3 [b-KP-I equation] a Graph of the map n +— e T A fork =2,k =1and £ = 0.8 and
¢ = 0.3 (from left to right). The eigenvalues of Ky (¢) are found by taking n = p + &, p € Z. b Graph
ispersi i K __k_ L2
of the dispersion relation n — n (m T + n2(1+k2n2)) for the same values of £, k and k. The
imaginary parts of the eigenvalues of A (¢) are found by taking n = p + &, p € Z. Notice that the zeros
of the two maps are the same

o Ky =1foralln € Z\{—1,0},k > 0,and & € (0, 1], as

wk? ((n + 5)2 — 1) wk?
>
1+ &2 (1+K2)

Mn(€,§) > £(2+8);

e when n = —1, the eigenvalue

B & Kk*E(2 — £)
//L_](E, s) - <(1 — 5)2 - (1 +k2) )

kk?EQ2—£)(1-§)?

s 9
(1+42) ;itis zero when £~ = {2,

is positive when 0% > (2, where (2 :=
and it is negative when 02 <02,
e when the Fourier mode n = 0, the eigenvalue

2 Kk — 52)>

no(€,§) = (5_2 - W

is positive when 02 > (% where Z% is defined in (5.3); it is zero when 02 = 02

and it is negative when £2 < Z(z). (see also Fig. 3a).

Here

p_KRA-EE 5 k(162 -8
07 (1442) - (1+42)

)
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forany &£ € (O, %), so that the unperturbed operator Ko(¢, §) has positive spectrum
for £> > ¢2, one negative eigenvalue if E% < £% < ¢2, and two negative eigenvalues
if 02 < E%. The following result is an immediate consequence of these properties and

we refer to [16, Lemma 5.4] for a detailed proof in a similar situation.

Lemma 5.4 [Stability under short-wavelength transverse perturbation] Assume that
£ e (0, %] For any g, > 0 there exists a, > 0, such that the spectrum of A, (L, &) is
purely imaginary, for any € and a satisfying £> > €2 + &, and |a| < as.

It remains to determine the spectrum of A, (€, §) for 0 < 2 <0246, We proceed
as in Sect. 4.1 to decompose the spectrum of A, (¢, ) into o (A, (£, £)) containing a
minimal number of eigenvalues, and o7 (A, (¢, £)) for which we argue as in Theorem

4.2 to show that it is purely imaginary.

5.3 Spectral decomposition of Ao (¢, &) for 3 < 2 < 2 + &,

Recall that the spectrum of A (¢, &) is given in (5.1). The distribution of these eigen-
values on the imaginary axis can be inferred from the study of the dispersion relation
(see Fig. 3b). The discussion preceding Lemma 5.4 implies that the eigenvalues of
Ao (£, &) that might lead to instability under perturbations are

iw_1(C, ), if € <e?<e?,
iw_1(L, &), iwp(L,§), if 0<€* < 3.

The next step is to separate these eigenvalues from the remaining point spectra, which
correspond to the ones with positive Krein signature. Such a separation is possible as
long as there are no collisions between these eigenvalues and other ones. The following
lemma confirms this lack of collision for transverse perturbations in the finite wave
length regime.

Lemma 5.5 Assume that & € (O, %] The eigenvalues of Ao (€, &) satisfy

w_1(£, &) = wo(l, &) only when 02 = Z%,

(5.62)
w_1£, &) #w, (£, &) forall n #0,—1,1.
When €3 < €><€2 it further holds that
w_1(L, &) # wu (L, &) forall n#0,—1. (5.6b)

Proof Define the collision function

Fu(€2,8) = 0(L.8) — 01 (£,§) = ¢ (6

1+k2(1—¢
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n+é&
I+ 2mt et
Kk (1—5)[0—5)2—1]+(n+s)[(n+s)2—1]
14k 14+ k2(1 — )2 L+ k2(n+£)2

(€. %)

1 1
£2
* |:(1—$)[1+k2(1—5)2]+(n+§)[l+k2(n+5)2]:|
=1 Gu(§) + (2 Hy ().

Clearly F, is linear in £2. From the previous discussion we see that

>0, forn

>
w_1(£,6)>0, if2 <, and ()
<0, forn < -2.

Thus only w, (¢, £) with n > 0 is possible to collide with w_1 (£, &).
When n = 0, we consider solving

Fo(€%) =

1-¢&
s-1(£,8) + mo(€,8) =0

1+k2(1—§) 1+ k%

for £2. Since both u_; (£, &) and po(L, €) are linear increasing functions in 22,50 is
Fo(£?,€). Also we have Fy(¢3, &) < 0 and Fy(€%,&) > 0 for & € (0, %) Hence
for any given & € (0, %) there exists a unique ¢2 € (¢2, €%) such that F(¢2,&) = 0.
Explicit computation reveals that E% is given in (5.3). For the case £ = % we have
E% = E% = ¢2, and hence w_l(ﬂg, &) = a)o(ﬁg, &) = 0. This proves the first part of
(5.6).

Now for n > 1, the function G, (£) is related to the function

_0=pla-er-1] o[+’ 1]

@ 1+ K2(1— )2 1+ +8?2

which is increasing for |x + &| > \% Moreover,

(6495 +98%) +3k> (1 — £ —E2) 2+ &) (1 — &) _

0.
(1+k224+8?) (1+k21—8)?)

f@ =

Therefore w_1 (£, &) does not collide with w, (¢, &) for n > 2, and hence it suffices to
consider the case when n = 1. Direct computation shows that

ick? 262 [3—k*(1 — &%)]
L+ k2 [T+ 21— &2 [1 + k21 +8)?]

Gi1(§) =
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and

Gi(§) <0 onlyif k*>>

3
1 —£2°
In this case, solving F} (02, &) = 0 we find that the unique solution for 2 is

) _ KR -§DE K1 -§) -3 k21—
T+ T+ (+3)  (+k)

Therefore the second part of (5.6) is proved.

From the above lemma it follows that
Lemma 5.6 Given & € (0, %] there exist &, > 0 and cy > 0 such that
(i) foranyl satisfying E%+e* < 02 < 02 t¢,, the spectrum of Ay (€, &) decomposes

as

o (Ao, §) = {iw—_1(£,§)} Uor (Ao (L, §)) ,

with dist iw_1 (£, &), 01 (Ao(L, £))) = cx > O;
(ii) for any € satisfying E(z) <2< Eg + &4, the spectrum of Ag(£, &) decomposes as

o (Ao, &) = {iw—1(£,§), iwo(t, §)} Uor (Ao(L, §)),

with dist ({iw_1(€, &), iwo(€, §)}, 01 (Ao (¢, §))) = ¢ > 0.

Continuity arguments show that for sufficiently small a, this decomposition persists
for the operator A, (¢, §), and we argue as in Sect. 4.1.2 to locate the spectrum of

Aa(L,§).

5.4 Spectrum of A, (L, &) for 3 < 2 < €2 + &,

Let us start with the case 62 + ey < 02 <02 4 &x. The following lemma asserts that
for £ in this range the spectrum of A, (¢, §) is purely imaginary. The argument follows
in a similar way as that of [16, Lemma 5.6], and hence we omit the proof here.

Lemma 5.7 Assume that & € (0, %] There exist &, > 0 and ay, > 0 such that the

spectrum of Ay (L, &) is purely imaginary, for any € and a satisfying Eg +e, < 02 <
2 + e, and |a| < as.

Next we consider the spectrum of A, (¢, &) for Z% <2< Z% + &4. From Sect.
5.3 we know that the two eigenvalues of Ay (¢, &) corresponding to the Fourier modes
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n = —1andn = 0 collide at £> = Ez. Using perturbation arguments we prove in
the following that for a sufficiently small and £ close to the value £, the linearized
operator A, (£, &) will continue to accommodate a pair of unstable eigenvalues. This,
together with the definition of instability, proves Theorem 5.1.

Lemma 5.8 Assume that & € (O, %] and recall B in (5.4). In the case of B > 0, there
exist constants €y, a, > 0, and ¢,(&) as defined in (5.5) with ¢,(§) < &y, such that if
<< +eand

(i) |€2 — €g| > £4(&), then the spectrum of A, (L, &) is purely imaginary;
(ii) |E2 — €§| < €4(&) then the spectrum of A, (£, &) is purely imaginary, except for

a pair of complex eigenvalues with opposite nonzero real parts.

Inthe case B < 0, the spectrum of A, (€, €) is purely imaginary for E% << Z% + &4

Proof The spectrum of A, (¢, &) can be decomposed as

o (Aa(l,§)) = 00 (A, §)) Uor (AL, §)),

where o1 (A, (£, §)) is purely imaginary, and o (A4 (£, §)) consists of two eigenvalues
which are the continuation of the eigenvalues iw_j (¢, ) and iwg (¢, &) for small a.
Choosing ¢, and a, sufficiently small, such decomposition persists for any K% <2<
Z% + &4 and |a| < as. Therefore what remains to check are the location of the two
eigenvalues in og (A, (¢4, £)).

From Lemma 5.5 we know that for any 8(2) <2< E% + &4 such that £ outside
a neighborhood of ¢, the two eigenvalues iw_1 (¢, £) and iwg (€, &) are simple and
there exists c¢o > 0 such that

liw_1(€, &) —iwo(L, &)| = co.

For a sufficiently small, the simplicity of this pair of eigenvalues continues to hold
into the spectrum of A, (¢, £). As the spectrum of A, (¢, £) is symmetric with respect
to the imaginary axis, each of these eigenvalues of A, (€, &) is purely imaginary for
any ¢ outside some neighborhood of £,.

We will proceed as in the proof of Theorem 4.2 to locate og (A4 (£, &)) for £ close
to £.. We compute successively a basis for the two-dimensional spectral subspace
associated with oq (A, (¢, £)), the 2 x 2 matrix M, (£, §) representing the action of
Aq (£, &) on this basis, and the eigenvalues of this matrix.

At a = 0, the basis vectors are chosen to be the two eigenvectors associated with
the eigenvalues iwg (¢, &) and iw_1 (¢, &),

). e)=1, £t &) =e"
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At order a, we take ¢ = £, and proceed as the computation in the proof of Theorem
4.2 to find

. i E—D (K22 +(1—D)K>E+K>+(b+1)
M. (¢ _ Lwo (zmé) _lf ( 1+k2(E—1)2 )(l
a(le.§) = i E(K2E24+(b—3)K*E+(B—b)k>+(b+1)) .
-2 1+k2§2 a Lw—| (‘KLW S)

+ 0 (az) .
Together with the expression of My (¢, &), this yields that

_ i EED[REHU-DIEH+GHD]

. . &
i (b, §) + i grpmgn 2 THPE -1
Mg (€, 8) =
i E[RPE2+(b-D)K*E+B—DK+(+D)] . . .
~2 [Erer @ io-1 (be §) +i eprmee—n]
+ 0 (a® + |acl),

with & = ¢? — ¢2. Recall the definition of £2 in (5.3), and the colliding eigenvalues

2kk?E(1 — £)(1 — 28)

@0 (b 8) = @t e ) = o T O 1+ 20 —67] + (1 + K260) €]

=: w4(§).

Seeking eigenvalues A of the form

A= i) +iX,

we find that X is root of the polynomial

2 & e 5
PRO=X"-X (sa ) T e-nirec-ny) ¢ (a2 + '“8'))

_a ((s ~ D) (K2 + (1 -hKE+E + (b + 1)))

4 1+ k2 — 1)2
£ (K82 + (b — DK+ B —Dbk*+ (b + 1))
' 1+ k22

&2

i EE — DA+ (1+K2E —1)?)

o <a2|8| +lale® + |a|3) .
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A direct computation shows that the discriminant of this polynomial P(X) is

2
Role 0= L(l TR T a—p [+ ed —5)2]]
B (01— £)B
a +k2§2) [1 +k2(1 — 5)2]

a*+ 0 (lela® + £lal + lal)

where B is defined in (5.4).
In the case when B > 0, we can define

(1 + K262} (1 +42(1 - £2)? s

3 3 1
)= 620 =0 e e e 0

Therefore for any a sufficiently small we have A, (e, &) > 0 when |e| > ¢,(§) and
Aq(e, &) < 0 when |e| < g,(&). This implies that, for £ < €2 < £2 + &, the two
eigenvalues of A, (¢, &) are purely imaginary when |Ez - £2| > &4(&), and complex,
with opposite nonzero real parts when |£2 - E§| < gq4(8).

In the case when B < 0, we have A, (g, ¥) > 0, and this implies that the two
eigenvalues of A, (¢, &) are purely imaginary for Z(z) <2< Z% + &x.

For & € (0, %], we list the cases of B > 0 and B < 0 in the following lemma and
the detailed discussion is given in the Appendix B.

Lemma 5.9 B > 0 is valid for the following cases:

(1) —1<b<3;

(2) b<—16=1 k> # =200,

_ 1 2 —(14b) 2 —(14b) .
(3) b <—-18€0.3). k" > ot 7K < g+
(4) b>3,k> < 545

(5)3<b<f&=35k >z -
6) b>1&=1 1> ;25 and k? # =40,

2_
(7)3<b< 5P 60, )

£2-3t43 24641 Ly 4 g2 —(+h) .
)3 < 7 <b<s58€0.2) 353 <k <m0

$2+§+1 l 2 —(14+b) 4 2
9) b > B > 3, & € (0, 2)! ke > (EZF(1—-b)E+1) or 3 < k= <
—(1+b)

E24(b—3)E+(3—b)"

B < 0 when one of the following cases occurs:

— Ly =0+b) 42 o =(d4b) .
()b <—18€03) arizper <% < pro-seran’

£2-36+3 £245+1 1y 12 —(1+b) )
23 <522 <h< B e 0. DR > il
Eret] 1 —(1+h) 2 —(1th)
() b>"==>3.5€ 0.2 prgmseran <K < @ri-perny

@ Springer



6346 R.M.Chenetal.

5.5 Discussion for long-wavelength transverse perturbations 0 < ¢? < Zg

In contrast to case when £% > IZ(Q), for long-wavelength transverse perturbations 0 <
2 < Z(z), the collision dynamics of the eigenvalues become much harder to track. In
fact, it is possible that infinitely many pairs of eigenvalues collide with each other.
What we find is that, in order to eliminate these collisions, an additional condition on
the longitudinal wavelength is needed. The detailed discussion is provided below.

The collision between w_; and w, is studied in Lemma 5.5. So we consider the
collision between wg and wj, described by the function

Fp(?,8) := w, (£, &) — wo(L, &)
Kck? [s (1-&2) L+ [(n+&)% - 1]]

TR | 1k L+ K2(n+6)?
5.7
+ ¢ ! + !
E(1+K2%2)  (n+&)[l+k2n+6)?]
=: Gu(§) + 2 Hy(8).
We can also write Fn (02, &) as
~ 02— ¢? an+E [(n+8&*— 1]+
F(8?,8) = ——— [ . ]2 : (5.8)
£(14k%2) (n+&) [1 4+ k>(n + £)?]
where @ := l’jrikzz The first term in the right-hand side of (5.8) is positive in the range

of £ considered here. For n > 1, the second term is clearly positive. So we consider
the case when n < —2. Define the function

Then from the estimate that
< l=at?(1-¢£%, and £*(1-£%) < %,
we have
a (kK2x0 + k2x* + 3x* —x%) — 2Bk X2 + 1)
x2(1 + k2x2)2

¢ [K2x® + k2x* +3x* —x? —£2(1 — E2)Bk>x* + 1)]
- x2(1 +k2x2)2

g =

3
>0, for x < —=.
2
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Therefore we see that the second term in the last equality of (5.8) is increasing in n
forn < =2, thatis, F,(¢2, &) < F_y(¢2, &) forn < —2.

Looking at (5.7) we find the H, (§) < Owhenn < —2. Explicit computation reveals
that

Gy = 220 - §)?[K52 -8 - 3]
YT ar eI+ kE -2

In fact we have

(1+ K [14+3(1—8)?%]) € — [k —¢&) — 3] ¢
£ =2+ K2 [1 + k(€ —2)?]

1 -
5@(42,5) =

Therefore we have
KeQ2—86)—3<0 = F,(%&) <0 = F,(0? &) <O0foralln < —2.

Thus we find that for
2 g ;v
§2-8%)

To summarize, we have the following

= wo(l, £) # wp(l, £) foralln £ 0, —1. (5.9)

Lemma 5.10 Assumethat& € (O, %] and0 < 0% < 8(2). Fork? < 4we have wol, &) #
wn (L, &) forall n # 0 and for k* < 3 we have w_1(£, &) # w, (£, &) foralln # —1.

Proof The above discussion leads to (5.9). Since 0 < & < 2 ,we know that -+ > 4

$(2 § ~
and 1—§2 > 3. Moreover, the calculation in Lemma 5.5 indicates that wg(¢, &) =
w_1(¢, &) only for €2 = ¢2 > €3 and for 0 < €% < €2 and k> < 1_—352 w_1(L,§) #

wn (£, &) for all n # —1. Thus the proof of the lemma is complete.

From this lemma we may extend the stability part of Theorem 5.1 to the regime of
long-wavelength transverse perturbation, provided that the longitudinal wavelength is
bounded below.

Proposition 5.3 If k* < 3, then the results in (1) and (11) parts of Theorem 5.1 hold
forall £* > 0.

6 Conclusion

We have provided a detailed spectral analysis of the linearized operators arising from
small-amplitude waves of a family of quasilinear dispersive models under transverse
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perturbations. Similar to the generalized KP theory, a rather complete spectral infor-
mation can be obtained for the b-KP-I equation, whereas only the spectra under long
wavelength transverse perturbations can be determined for the 5-KP-II equation.

We want to address that considering the whole b-family of equations leads to a
richer spectral picture in the transverse problem. For instance, a periodic wave of b-
KP-I can be transversely stable forb < —1 or b > 7/2, as depicted in Fig. 1. This is in
sharp contrast to the gKP case, where long-wave transverse instability always persists
under KP-I perturbations.

We conclude the paper with a brief outlook. A natural next step is toward nonlinear
analysis. We expect that the nonlinear instability for spectrally unstable waves can be
achieved by adapting the method of [32, 33] in the frame of periodic waves. Another
direction to go is the transverse problem for longitudinal periodic waves with singular-
ities. It is a remarkable feature that the b-family Eq. (1.1) admits periodic waves with
cornered singularity when k = 0. An understanding of the stability property of these
peaked profiles under transverse perturbations would be a very interesting problem to
study.

Appendix A. Small-amplitude expansion

In this section, we give the details on small-amplitude expansion of (2.1). We assume
that m = 0. Since w and ¢ depend analytically on a for |a| sufficiently small and since
c is even in a, we write that

w(k,a, m)(z) == wo(k,m) +acosz+ azwz(z) + a3w3(z) + O (a4)
and
clk,a,m) :=co(k,m) + a’cy + 0 (a4>

as a — 0, where wy, w3, ... are even and 2m-periodic in z. Substituting these into
(2.2), at the order of a?, we gather that

K

2 2
T k“sin“z =0,

kzafwz + cos? z + k% cos? 7 —

(k —co) wa +

(b+1) o (=1
2 2

which is equivalent to

k2 k? bh—1 b+1
lik2w2+lik231211)2=( 3 )kzsinzz—(( _; )—i-kz)coszz
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b—1 b+1)+2k?
_ ¢ )k2(1 — cos2z7) — (i) (cos2z+1).
4 4
Then we get that
k2 ) b+ +@B=bk> B+DA+E?
s (w2 + d;wz) = — ) - 1 cos2z. (A.1)

A straightforward calculation then reveals that

(1+&2) [(b + (k>4 1)
wy =

2
e ; cos 2z + ((b = 3> — (b + 1))] . (A2)

At the order of a3,
(k — co) w3 —cpcosz + cokzazzwg — C2k2 cosz+ (b+ 1) coszw;
— k> (cos zang — Wy COS z) + (b — 1)k2 sin zo,wp = 0,
which is equivalent to

k>

1+ 12 (w3+8§w3) =—(b+Dcoszwz + 2 (1 +k2)cosz

K2 cosz (afwz . u)z) — (b — Dk? sin z8,w».
(A3)

From (A.2), we get that

;2 _1+k2[ 5(b+1)
Wy — w2 = —

s — (1) cos2z+ (B -0k + b+ 1))] ,

which helps us to get that

k2 cos z (a§w2 - wz) — (b — DK? sin z0,w»

_pl+RT 564D
T 2kk? 6

B —b)k>+ (b + 1))
) COS Z

<k2 + 1) cos2zcosz + (

> —1
+T (k2 + 1) sin z sin 2z]

L+k2 b~ 1 b+ 1)2b+3

= —2: |: 3 (k2+1)005(2Z—Z)—%(k2+1)cos2zcosz
((3—b)k2+(b+l)> }

+ > cosz
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1+k%> K>2b%> =3b+T7)+ 2b+ 1)(b+ 1)
= [ cosz
2K 6
b+ D2b+3)

5 (k2 + 1) cos2zcos z].

Then the right hand side of (A.3) equals to

1+ &2 [kz(sz —3b4+ N+ Qb+ Db+ 1)
COS Z
2k 6

b+1)2b+3
— % (k2 + 1) C0S27C0S Z
b+ 1)?
—( ;I;Z) (k2+1)c0522cosz
b+ 1) ((b—3)k*>—b+1
—( )(( 2132 ( )) cosz+2/cczcosz:|
1+k2[b+1 b+1
= - _2|_/< [% ((2b+3)+%) (k2+1) cos2z¢cos 7
k*@2b% —3b+7) —k2(b + 1)(b — 10) + 3(b + 1)?
_ + 2kcr | cosz| .
6k2
Noting that
cos 3o = 2 cos2a cosa — cos «,
we choose

(A4)

/=20 +11b—11 , 5b*>—11b—16 5(b+1)?
)= — k™ + -
K 24 24 24k2

Then (A.3) gives

Kk? 5

1+k2(2+1)b+1)
K 24

b+1
((2b+3)+ Ij; )cos3z,

which is equivalent to

G+D 2+ (Qb+3H2+B+1)
<w3 + Bzzwg) = — ( ) 2E1K2k4 ) cos 3z.

A straightforward calculation then reveals that

DR+ 1)

2
wy = o5 (@b + 3 + (b + 1)) cos3z. (A3)

@ Springer



Spectral analysis of the periodic b-KP equation... 6351

Appendix B. Proof of Lemma 4.4 and Lemma 5.9

Proof of Lemma 4.4 Note that

b+1)(1 +k2)2a2

2= ((b D+ 2b)k2) e

Now we discuss b in detail.
(HGB+1)>0
(la)Ifb < J,ie. —1 < b < , we have £2 > 0.
(1b) If b > 1, we have €2 > 0 for k* < ;;7“7 and €2 < 0 for k> > ZtL.
2bB+1)<0
(a) If k% < 2bb%17’ we have 63 > 0.
(2b) If k2 > ZEL we have €2 < 0.
B)(b+1)=0,£2=0.

Proof of Lemma 5.9 We can rewrite B as

B =[k&* + (1 — bk’ + k> + (b + 1)] [K26% + (b — 3)K*E + 3 = b)k* + (b + 1)]

_ 2
=[k2<$+(1 b)) +(1+b) —(3—b)+1 }

2
b—3)\>
. [kz (§+ ¢ 5 )) + (14 b) ((S—b)+1>}
M In the case of —1 < b < 3, (1 +b) (%(3 b+ 1) > 0 and thus
B > 0.
(I In the case of b < —1, we have (1 + b) (%(3 — b+ 1) < 0. Then
2
(II-1) for & = %, we have B = (@]ﬁ + (1 + b)) , then
(I1-1-1) for k> = =2t e have B = 0.
(I-14i)  for k% # =25ED 'we have B > 0.
(11-2) for £ € (0, 1), we hzave e+ 952 < |& + €52, and thus
—(1+b) (4 3-b)+1 1+b) (& 3—b)+1
(II-2-1) for k2 > % or k2 % ie. k2 >
() =
—524__(?_4;;;“ ork? < —52—&-(17_—(?1)_;?(3—&1) , we have B > 0.
(I1-2-ii)  for —Ut) 42 o =U4D) e have B < 0.

E2+4+(1-b)E+1 £24+(b—3)E+(3-b)’
(1) In the case of b > 3, we have
(IT-1) for k? < 5, we have (1 + b) (%(3 Y 1) > 0 and thus B > 0.

(111-2) for k2 > -, we have (1 + b) (%(3 —b)+ 1) < 0, and thus we can
proceed a 51m11ar discussion as in (II).
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2
(1-2-)  for& =1, we have B = (@k2 T4+ b)) , then
(IlI-2-i-a)  for3 < b < %, we have B > 0.
(Il1-2-i-b)  for b > %, we have B = 0 for k2 = % > % and B > 0 for
2 4 2 —4(1+Db)
k > —3 and k ;ﬁ w ,
(I0-2-i))  for& € (0, 1), we have & +§+‘ > & ;ﬁ” > 3, then

(M-2-ii-a) for3 <b < €723 we have

0< (82+06-3e+G-0) < (2 +01 -5 +1),

then B > 0.
2 2
(II-2-ii-b) for & ;ﬁi” <b<t +§+1,we have

(E+e-36+36-h) <0< (+0-bE+1),

4 _ g2 —(1+b)
then we have B > 0 for ;=5 < k° < TG 3100 and B < O for

2 —(1+b)
k> o360

(M-2-ii¢) forb > £*EEL we have

(£ +0-3e+G-n) < (2+1-b +1) <0,

S (EY) N T B (E)

then we have B > 0 for ki~ > @+-bern) o' 53 < ke < E24+(b-3)+(3~b)’ and
 —(+b) 2 o ___—U+h)

B < 0 for T (—3)E+(3—b) < k® < (52+(17b)§+1)'
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