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Abstract

The b-family-Kadomtsev–Petviashvili equation (b-KP) is a two dimensional gener-

alization of the b-family equation. In this paper, we study the spectral stability of

the one-dimensional small-amplitude periodic traveling waves with respect to two-

dimensional perturbations which are either co-periodic in the direction of propagation,

or nonperiodic (localized or bounded). We perform a detailed spectral analysis of the

linearized problemassociated to the abovementioned perturbations, and derive various

stability and instability criteria which depends in a delicate way on the parameter value

of b, the transverse dispersion parameter σ , and the wave number k of the longitudinal

waves.
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1 Introduction

In the study of wave phenomena, particularly in dispersive and nonlinear media, the

emergence of periodic wave trains stands out as a captivating outcome arising from the

intricate interplay between dispersion and nonlinearity. These wave patterns manifest

across diverse physical domains, encompassing phenomena such as water waves,

nonlinear optics, acoustics, and plasma. Given their pervasive presence in nature, the

investigation of periodic wave trains continues to attract considerable interest from

scientists and researchers.

One important question is the stability of the periodic waves. Stability properties

govern the long-term behavior of the wave patterns and play a crucial role in under-

standing the robustness and predictability of the phenomena they represent. While

many physical systems support unidirectional wave propagation, which can be mod-

eled by equations in a single spatial dimension, it is crucial to acknowledge that in

a multi-dimensional context, transverse effects become integral. Consequently, the

stability analysis of one-dimensional traveling waves, particularly concerning pertur-

bations propagating along the transverse direction of the primary axis—referred to as

transverse stability—becomes a naturally compelling avenue of interest. This explo-

ration extends beyond the traditional analysis of responses to perturbations along the

main propagation axis, providing amore comprehensive understanding of the intricate

dynamics governing wave stability in multi-dimensional settings.

Such a problem was first studied by Kadomtsev and Petviashvili [24], who derived

a two-dimensional generalization of the celebrated KdV equation, the so-called

Kadomtsev–Petviashvili (KP) equation. They found that the KdV localized solitons

in the KP flow are stable to transverse perturbations in the case of negative dispersion

(KP-II), while unstable by long wavelength transverse perturbations for the positive
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Spectral analysis of the periodic b-KP equation… 6317

dispersion model (KP-I). Later development of the theory for solitary waves includes

the use of integrability [35], explicit spectral analysis [2], perturbation analysis [26],

general Hamiltonian PDE techniques [32, 33], Miura transformation [30], the combi-

nation of algebraic properties, weighted function spaces, and refined PDE tools [28,

29], among others.

When periodic waves are considered, to the authors’ knowledge, most of the study

of transverse stability pertains to spectral analysis; see for e.g., [3, 16, 17, 22, 34] for

the KP and generalized KP equations, [1, 13] for the nonlinear Schrödinger (NLS)

equation, and [5, 21, 31] for the Zakharov–Kuznetsov (ZK) equation.

The goal of this paper is to extend the transverse stability analysis to periodic waves

arising from models exhibiting strong non-local and nonlinear features. Specifically,

we choose the one-dimensional b-family equation [14]

(
1 − ∂2x

)
ut + (b + 1)uux + κux − buxuxx − uuxxx = 0,

u = u(t, x), b ∈ R, κ > 0, (1.1)

and consider its two-dimensional generalization

[(
1 − ∂2x

)
ut + (b + 1)uux + κux − buxuxx − uuxxx

]
x

+ σuyy = 0,

σ = ±1, (1.2)

where the profile u = u(t, x, y). We refer to (1.2) as the b-KP equation due to the

resemblance of transverse term σuyy to that of the classical KP equation; and in a

similar way, the b-KP equation with σ = −1 is called the b-KP-I equation, whereas

the one with σ = 1 is called the b-KP-II equation. The physical relevance of the b-KP

Eq. (1.2) has been recently discovered in the context of shallow water waves [12, 23]

and nonlinear elasticity [6], for the case b = 2. The corresponding equation is also

referred to as the CH-KP equation as it generalizes the well-known Camassa–Holm

equation [4].

While the (longitudinal) stability of solitary and periodic waves of the b-family Eq.

(1.1) has been studied quite extensively, the understanding of the local dynamics of

these waves under the b-KP flow is much less developed. The only results that the

authors are aware of regard the line solitarywaves of theCH-KPequation: the nonlinear

transverse instability of the solitary waves to the CH-KP-I equation is established in

[7], and linear stability of small-amplitude solitary waves is confirmed for CH-KP-II

very recently [9].

In this paper, we will investigate the transverse spectral stability/instability of small

periodic traveling waves of the b-family Eq. (1.1) with respect to perturbations in

the b-KP flow. Compared with the study of solitary waves, the stability of periodic
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waves is usually more delicate. The periodic waves in general exhibit a richer struc-

tural complexity, characterized by dependencies on three parameters—namely, the

period, wave speed, and integration constant. Such higher degree of freedom often

introduces additional technical difficulties not encountered in the analysis of solitary

waves. Moreover, a more broader class of perturbations can be considered for periodic

waves, encompassing co-periodic, multiple-periodic, localized perturbations, among

others. Our motivation for specifically studying the small-amplitude period waves is

inspired by the work of Haragus [16], where perturbation arguments have been suc-

cessfully employed to discern the spectra of the linear operator. In contrast to the

stability analysis of large waves, where instability criteria can usually be derived (in

the particular case of integrable systems, explicit computation can be performed, but

(1.2) is in general non-integrable), our choice to work with small-amplitude waves is

motivated by the potential for obtaining more explicit information on the spectra, and

for allowing for a broader range of perturbation types.

1.1 Main results

Although the basic idea of the approach stems from theworkofHaragus [16], the quasi-

linear structure of the Eq. (1.2) makes the spectral computation a lot more involved.

For the case of b-KP-I flow σ = −1 with co-periodic perturbations in the direction of

propagation (see Sect. 3 for a precise definition of the class of perturbations and the

corresponding notion of spectral stability), the linearized problem does not assume a

natural Hamiltonian structure, and hence the standard index counting method cannot

be applied directly. On the other hand, the linearized operator at the trivial solution

does admit a decomposition into a composition of a skew-adjoint operator with a self-

adjoint operator, and thus the counting result can be used to provide direct insights

for the spectrum of this operator. Such information can then be transferred to the lin-

earized operators at small-amplitude waves. Through a careful perturbation argument

and explicit computation on the expansion of the spectra, we confirm the emergence of

long-wave transverse instability for a range of b, which includes the examples of CH-

KP (b = 2) and Degasperis–Procesi(DP)-KP (b = 3). More interestingly, depending

on the wave number k of the line periodic waves, there also exists a large region of

values of b where the line periodic waves are transversally spectrally stable.

In contrast to the b-KP-I equation, the spectral analysis for the b-KP-II equation

(σ = 1) presents a more intricate challenge, reminiscent of the complexities found in

the classical KP-II equation. The computation of the spectrum becomes substantially

more complicated due to the nature of the dispersion relation, which is more likely

to host unstable modes. Notably, in the limit of zero transverse wavelength, the dis-
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Fig. 1 A schematic plot of the

stability region for the periodic

perturbation of the b-KP flow.

The two shaded regions

correspond to

{(b, k2) : b < −1, k2 > b+1
2b−7 }

and

{(b, k2) : b > 7
2 , k2 > b+1

2b−7 }

persion relation may harbor an infinite number of potentially unstable eigenvalues.

Tracking the locations of these eigenvalues further adds to the complexity, requiring

the computation of the Taylor expansion of the corresponding eigen-matrix to an arbi-

trarily high order. The difficulties involved in these computationsmake it exceptionally

challenging to achieve a comprehensive spectral analysis. What we are able to con-

clude in this case is a characterization of the spectra under long wavelength transverse

perturbations. While a complete spectral analysis remains elusive, our findings align

well with the spectral stability observed in the context of small-amplitude CH-KP-II

solitary waves, corresponding to b = 2 and k → 0 formally; see [9, Theorem 2.8].

Theorem 1.1 [Informal statement of transverse stability for periodic perturbation] Let

b �= −1. Consider a 2π/k-periodic traveling wave solution of (1.1) constructed in

Lemma 2.1.

(a) For σ = −1 (b-KP-I) and the amplitude of the wave is sufficiently small, such a

wave is transversely spectrally unstable with respect to co-periodic perturbations

in the x-direction and periodic in the y-direction, when the parameters (b, k2)

lie outside the shaded region showed in Fig. 1. This wave is transversely spec-

trally stable otherwise, provided that the wave is spectrally stable with respect to

longitudinal perturbations.

(b) For σ = 1 (b-KP-II) and the amplitude of the wave is sufficiently small, such a

wave is transversely spectrally unstable with respect to co-periodic perturbations

in the x-direction and periodic in the y-direction, when the parameters (b, k2)

lie inside the shaded region showed in Fig. 1. Otherwise this wave is transversely

spectrally stable under long-wave transverse perturbation, provided that the wave

is spectrally stable with respect to longitudinal perturbations.

For non-periodic perturbations in the direction of propagation, the linearized opera-

tor has bands of continuous spectra. Since the coefficients of the operator are periodic,
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we will use the classical Floquet–Bloch theory to replace the study of the invertibility

of the original linearized operator by the invertibility of a family of Bloch operators in

parameterized by the Floquet exponent (see Lemma 5.1). Through a detailed calcula-

tion of the spectrum of the linearized operator at the trivial solution (zero-amplitude

solution), a perturbation argument is performed, which allows one to derive instability

criterion for the b-KP-I case. We would like to point out that, a complete understand-

ing of the Floquet analysis for the linearized operator is exceedingly difficult due to

the appearance of the terms corresponding to the smoothing operator in the dispersion

relation. Instead, when focused on the regimewhere the transverse perturbations are of

finite wavelength, we manage to track the location where there is exactly one collision

between a pair of eigenvalues of the linearized operator at the trivial solution from the

imaginary axis, which results in the bifurcation of the unstable eigenvalues of the full

linearized problem. The exact statement of the results is given in Theorem 5.1. For

long-wavelength transverse perturbations, an additional condition on the longitudinal

wavelength is needed in order to eliminate the eigenvalue collisions. The detailed

discussion is provided in Sect. 5.5.

The remainder of this paper is organized as follows. InSect. 2,weuse theLyapunov–

Schmidt reduction to construct the family of the one-dimensional small-amplitude

periodic traveling waves of the b-KP equation and provide a parameterization of

these waves. In Sect. 3, we formulate the spectral problem for the b-KP equation and

introduce the definition of spectral stability in various function space settings. In Sects.

4 and 5, we discuss the spectra of the resulting linear operators, and investigate the

transverse spectral stability/instability of the small periodic waves of the b-KP-I and

b-KP-II equation for periodic and non-periodic perturbations.

1.2 Notations

Throughout this paper, we will use the following notations. The space L2(R) denotes

the set of real or complex-valued, Lebesgue measurable functions over R such that

‖ f ‖L2(R) =
(∫

R

| f (x)|2 dx
)1/2

< +∞,

and L2(T) denotes the space of 2π -periodic, measurable, real or complex-valued

functions over R such that

‖ f ‖L2(T) =
(

1

2π

∫ 2π

0
| f (x)|2 dx

)1/2

< +∞.
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The space Cbdd(R) contains all bounded continuous functions on R, normed with

‖ f ‖ = sup
x∈R

| f (x)|.

For s ∈ R, let Hs(R) consist of tempered distributions such that

‖ f ‖Hs (R) =
(∫

R

(
1 + |t |2

)s | f̂ (t)|2 dt
)1/2

< +∞,

where f̂ is the Fourier transform of f , and

Hs(T) = {
f ∈ Hs

loc(R) : f is 2π -periodic
}
.

We define the L2(T)-inner product as

〈 f , g〉 = 1

2π

∫ 2π

0
f (z)ḡ(z)dz =

∑
n∈Z

f̂n ĝn, (1.3)

where f̂n are Fourier coefficients of the function f defined by

f̂n = 1

2π

∫ 2π

0
f (z)einzdz.

We denote 	(λ) the real part of λ ∈ C.

2 Existence of small periodic traveling waves

One-dimensional traveling waves of the b-KP Eq. (1.2) are solutions of the form

u(x, y, t) = u(x − ct),

where c > 0 is the speed of propagation, and u satisfies the ODE

[−c
(
u′ − u′′′) + (b + 1)uu′ + κu′ − bu′u′′ − uu′′′]′ = 0.

Integrating this equation twice, and writing x instead of x − ct , we obtain the second

order ODE

(κ − c)u + cu′′ + b + 1

2
u2 − uu′′ − b − 1

2

(
u′)2 = Ax − m(c − κ)2,
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in which A and m are arbitrary integration constants. Considering periodic solutions,

we set A = 0 and the equation reduces to

(κ − c)u + cu′′ + b + 1

2
u2 − uu′′ − b − 1

2

(
u′)2 = −m(c − κ)2. (2.1)

Since this equation does not possess scaling and Galilean invariance, we may not

simply assume that c = 1,m = 0.

Let u be a 2π/k-periodic function of its argument, for some k > 0. Then, w(z) :=
u(x) with z = kx , is a 2π -periodic function in z, satisfying

(κ − c)w + ck2wzz + b + 1

2
w2 − k2wwzz − b − 1

2
k2w2

z = −m(c − κ)2. (2.2)

Let F : H2
2π (T) × R+ × R × R → L2(T) be defined as

F(w; k, c,m) = (κ − c)w + ck2wzz + b + 1

2
w2 − k2wwzz

−b − 1

2
k2w2

z + m(c − κ)2. (2.3)

We seek a solution w ∈ H2(T) of

F(w; k, c,m) = 0. (2.4)

Noting that (2.3) remains invariant under z �→ z + z0, z �→ −z for any z0 ∈ R, we

may assume that w is even. Clearly F is analytic on its arguments.

It is easy to see that a constant solution w0 of Eq. (2.4) satisfies

b + 1

2
w2
0 + (κ − c)w0 + m(c − κ)2 = 0.

Thus for any k > 0, c > 0, κ,m ∈ R and |m| sufficiently small, we may expand to

get

w0(c,m, κ) = m(c − κ) + O
(
m2

)
(2.5)

It follows from the implicit function theorem that if non-constant solutions of (2.4)

(and hence (2.2)) bifurcate from w = w0 for some c = c0 then necessarily,

L0 := ∂wF (w0; c0, k,m) : H2(T) → L2(T)

is not an isomorphism, where

L0 = k2 (c0 − w0) ∂2z + (κ − c0) + (b + 1)w0.
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Further calculation reveals that L0einz = 0, n ∈ Z, if and only if

c0 = κ

1 + k2n2
+ w0

(b + 1) + k2n2

1 + k2n2
, (2.6)

which, when plugging in the form of w0, would lead to a solution

c0 = c0(k,m),

at least for m sufficiently small.

Without loss of generality, we restrict our attention to |n| = 1. For |m| sufficiently
small, (2.5) and (2.6) become, respectively,

w0 = κm

(
1

1 + k2
− 1

)
+ O

(
m2

)
,

c0 = κ

1 + k2
+ κm

(
1

1 + k2
− 1

)(
(b + 1) + k2

1 + k2

)
+ O

(
m2

)
. (2.7)

In this case it is straightforward to verify that, for any κ, k > 0,m ∈ R and |m|
sufficiently small, the kernel of L0 : H2(T) → L2(T) is two-dimensional and spanned

by e±i z .Moreover, the co-kernel of L0 is two-dimensional. Therefore, L0 is aFredholm

operator of index zero.Onemay then follow an idea similar to that of [19, 20] to employ

a Lyapunov–Schmidt reduction and construct a one parameter family of non-constant,

even and smooth solutions of (2.1) near w = w0(k,m) and c = c0(k,m). The small-

amplitude expansion of these solutions is given as follows and the details are provided

in Appendix A.

Lemma 2.1 For each κ, k > 0,m ∈ R and |m| sufficiently small, there exists a family
of small amplitude 2π/k-periodic traveling waves of (1.2)

w(k, a,m) := u (k (x − c(k, a,m)t)) (2.8)

for |a| sufficiently small; w and c depend analytically on k and a, w is smooth, even

and 2π -periodic in z, and c is even in a. Furthermore, as a → 0,

w(z; k, a,m) = w0(k,m) + a cos z + a2 (A0 + A2 cos 2z)

+ a3A3 cos 3z + O
(
a(a3 + m)

)
, (2.9)

c(k, a,m) = c0(k,m) + a2c2 + O
(
a(a3 + m)

)
, (2.10)
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with

A0 =
(
1 + k2

)

4κk2

(
(b − 3)k2 − (b + 1)

)
, A2 = (b + 1)

(
1 + k2

)2
12κk2

,

A3 = (b + 1)
(
k2 + 1

)3
192κ2k4

(
(2b + 3)k2 + (b + 1)

)
,

c2 = 1

κ

(−2b2 + 11b − 11

24
k2 + 5b2 − 11b − 16

24
− 5(b + 1)2

24k2

)
,

(2.11)

and w0, c0 being given in (2.7).

To further simplify the analysis, we take the constant m = 0, and consider the

constant solution w0 = 0 and c0 = κ
1+k2

.

3 Formulation of the spectral problem

Linearizing the b-KP Eq. (1.2) about its one-dimensional periodic traveling wave

solution w given in (2.9), and considering the perturbations to w of the form w +
εv(t, z, y), we arrive that the equation

k
[(

1 − k2∂2z
)

(vt − kcvz) + κkvz + (b + 1)k (wv)z

−k3 (wvzz + (b − 1)wzvz + wzzv)z

]
z
+ σvyy = 0.

Using change of variables and abusing notation t → kt , y → ky, we obtain

[(
1 − k2∂2z

)
(vt − cvz) + κvz + (b + 1) (wv)z

−k2 (wvzz + (b − 1)wzvz + wzzv)z

]
z
+ σvyy = 0.

For v(z, y, t) = eλt+i�yV (z), we have

[(
1 − k2∂2z

)
(λV − cVz) + κVz + (b + 1)(wV )z

−k2 (wVzz + (b − 1)wzVz + wzzV )z

]
z
− σ�2V = 0.

The left-hand side of this equation defines the differential operator

Ta(λ, �)V :=
(
1 − k2∂2z

)
∂z

[
λV − cVz +

(
1 − k2∂2z

)−1
∂z
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(
κ + (b + 1)w − k2wzz − k2(b − 1)wz∂z − k2w∂2z

)
V
]

− σ�2V ,

(3.1)

where the subscript a in Ta addresses the dependence ofw, c on the expansion parame-

ter a as in Lemma 2.1. Clearly, the spectral stability problem concerns the invertibility

of Ta(λ, �).

The longitudinal problem corresponds to perturbations with � = 0. In the particular

cases of CH (b = 2) equation and Degasperis–Procesi (DP) equation (b = 3), the

spectral and orbital stability for smooth periodic waves were obtained via inverse

scattering [27] or by exploiting the variational characterization of the waves [10, 11].

This variational argument was further extended to treat the nonlinear orbital stability

of periodic waves to the general b-CH family [8] for all b �= 1. The first approach

relies substantially on the structure implication from the special values of b: Eq.

(1.1) is completely integrable only for b = 2, 3. On the other hand, the variational

approach utilizes the Hamiltonian structures. It turns out that the standard Hamiltonian

formulation of the DP equation is amenable to the usual spectral stability theory [11],

whereas one needs to resort to the non-standard Hamiltonian formulation involving

momentum density for the CH [10] and for the general b-family [8] to deduce the

stability criterion for periodic waves.

We consider in this paper two dimensional transverse perturbations which require

� �= 0. Specifically, three types of perturbations will be addressed:

• periodic (in z) perturbations, where Ta(λ, �) is considered to be H4(T) → L2(T),

• localized perturbations, where Ta(λ, �) is considered to be H4(R) → L2(R), and

• bounded perturbations, where Ta(λ, �) is considered to be C4
bdd(R) → Cbdd(R).

The precise definition of the transverse spectral stability is given as follows.

Definition 3.1 [Transverse spectral stability] For a 2π/k-periodic travelingwave solu-

tion u(x, y, t) = w(k(x − ct)) of (1.2) where w and c are as in (2.9) and (2.10),

we say that the periodic wave w is transversely spectrally stable with respect to

two-dimensional periodic perturbations (resp. non-periodic (localized or bounded per-

turbations)) if the b-KP operator Ta(λ, �) acting in L2(T) (resp. L2(R) or Cbdd(R) )

with domain H4(T) (resp. H4(R) or C4
bdd(R)) is invertible, for any λ ∈ C,	(λ) > 0

and any � �= 0.

4 Periodic perturbations

In this section we study the transverse spectral stability of the periodic waves w with

respect to periodic perturbations for the b-KP equation. More precisely, we study
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the invertibility of the operator Ta(λ, �) acting in L2(T) with domain H4(T) for

λ ∈ C,	(λ) > 0 and � ∈ R\{0}. Following the general strategy of [16], let’s first

reformulate the spectral problem for this particular case, as in the proposition below.

Proposition 4.1 The following statements are equivalent:

(1) Ta(λ, �) acting in L2(T) with domain H4(T) is not invertible.

(2) The restriction of Ta(λ, �) to the subspace L2
0(T) of L2(T) is not invertible, where

L2
0(T) =

{
f ∈ L2(T) :

∫ 2π

0
f (z)dz = 0

}
.

(3) λ belongs to the spectrum of the operator Aa(�) acting in L2
0(T) with domain

H1(T) ∩ L2
0(T) where Aa(�) is defined as follows:

Aa(�) := ∂z

[
c −

(
1 − k2∂2z

)−1

(
κ + (b + 1)w − k2wzz − k2(b − 1)wz∂z − k2w∂2z − σ�2∂−2

z

)]

= ∂z

(
1 − k2∂2z

)−1 [
c
(
1 − k2∂2z

)

−
(
κ + (b + 1)w − k2wzz − k2(b − 1)wz∂z − k2w∂2z − σ�2∂−2

z

)]
.

The proof of the above result follows along similar lines as [16, Lemma 4.1, Corollary

4.2], together with the fact that 1−k2∂2z : Hs+2(T) → Hs(T) is invertible. Therefore

it suffices to analyze the spectrum of Aa(�). Since it has a compact resolvent, the

spectrum consists of isolated eigenvalues with finite algebraic multiplicity. Moreover,

the evenness ofw leads to the following symmetry of the spectrum ofAa(�), the proof

of which follows along the same line as [16, Lemma 4.3], and hence we omit it.

Lemma 4.1 The spectrum of Aa(�) is symmetric with respect to both the real and

imaginary axes.

The operator A0(�) has constant coefficients, and a straightforward calculation

reveals that

A0(�)e
inz = iωn,�e

inz for all n ∈ Z
∗ := Z\{0},

where

ωn,� = n

(
c0 − κ

1 + k2n2
− σ�2

n2
(
1 + k2n2

)
)
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= n

(
κ

1 + k2
− κ

1 + k2n2
− σ�2

n2
(
1 + k2n2

)
)

= n

1 + k2n2

(
κ
k2(n2 − 1)

1 + k2
− σ�2

n2

)
.

Consequently, the L2
0(T)-spectrum ofA0(�) consists of purely imaginary eigenvalues

of finite multiplicity. On the other hand, we write

Aa(�) = A0(�) + Ãa,

with

A0(�) = ∂z

(
1 − k2∂2z

)−1 (−c0k
2∂2z + c0 − κ + σ�2∂−2

z

)
(4.1)

and

Ãa = Aa(�) − A0(�)

= ∂z

(
1 − k2∂2z

)−1 [
(c − c0)

(
1 − k2∂2z

)

−
(
(b + 1)w − k2wzz − k2(b − 1)wz∂z − k2w∂2z

)]
.

A direct calculation shows that

‖Ãa‖H1(T)→L2(T) = O(|a|) as a → 0. (4.2)

A standard perturbation argument ensures that the spectra of Aa(�) and A0(�) stay

close for |a| small [18]. Due to the symmetry in Lemma 4.1, it follows that for |a|
sufficiently small the bifurcation of eigenvalues of Aa(�) from the imaginary axis

happens in pairs, and is completely due to the collisions of eigenvalues of A0(�) on

the imaginary axis.

Note that the operator Aa(�) admits a natural decomposition

Aa(�) = JKa(�),

where J := ∂z
(
1 − k2∂2z

)−1
is skew-adjoint and invertible in L2

0(T), and

Ka(�) := c
(
1 − k2∂2z

)
− [

κ + (b + 1)w − k2wzz − k2(b − 1)wz∂z

−k2w∂2z − σ�2∂−2
z

]
.
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However, it can be checked that, except for b = 2, the operator Ka(�) fails to be

self-adjoint. Therefore the standard index counting for Hamiltonian system does not

immediately apply to Aa(�).

The way to go around this issue is to investigate the spectrum of the operator

A0(�), and then use perturbation method to transfer the spectral information toAa(�).

It turns out that we can decompose the operator A0(�) into a composition of J and a

self-adjoint operator K0(�):

A0(�) = JK0(�),

where

K0(�) = c0 − c0k
2∂2z − κ + σ�2∂−2

z

and c0 is given in (2.7) with m = 0.

Standard linear Hamiltonian theory suggests to track the Krein signature to detect

the onset of instability bifurcation (see [25, Sect. 7], for instance). Specifically, the

Krein signature Kn of an eigenvalue iωn,� of A0(�) is defined as

Kn := sgn
(〈
K0(�)e

inz, einz
〉)

= sgn

(
κ
k2(n2 − 1)

1 + k2
− σ�2

n2

)
. (4.3)

A necessary condition for a pair of eigenvalues to leave imaginary axis after collision

is that they carry opposite Krein signatures (see [25, Proposition 7.1.14], for instance).

4.1 b-KP-I equation

We first consider the case σ = −1. For this we compute to get

specL2
0(T) (K0(�)) =

{
κ
k2(n2 − 1)

1 + k2
+ �2

n2
; n ∈ Z

∗
}

.

4.1.1 Finite and short wavelength transverse perturbations

It’s easy to see from the above that when σ = −1, the Krein signatures of all eigen-

values remain the same, which implies that for |a| sufficiently small, the eigenvalues

will not bifurcate from the imaginary axis even if there is a collision away from the

origin. On the other hand, the only possible scenario when eigenvalues split into the

complex plane as unstable eigenvalues is when � is small and the collision occurs at

the origin. Therefore we have the following lemma.
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Lemma 4.2 For any given �∗ > 0 there exists |a| sufficiently small such that for all

|�| > �∗, the spectrum of Aa(�) is purely imaginary.

4.1.2 Long wavelength transverse perturbations

The discussion above leaves possible the onset of instability due to eigenvalue coales-

cence at the origin, for small �. This corresponds to the transverse perturbations being

of long wavelength.

Different from how we obtain Lemma 4.2, now we will perform a double pertur-

bation by regarding Aa(�) as a perturbation of the constant-coefficient operator

A0(0) = ∂z
(
1 − k2∂2z

)−1
K0(0) = ∂z

(
1 − k2∂2z

)−1 (−c0k
2∂2z + c0 − κ

)

acting in L2
0(T). A direct calculation shows that the spectrum of A0(0) is given by

specL2
0(T) (A0(0)) = {

inr∗(n); n ∈ Z
∗} , where

r∗(n) := κ

(
1

1 + k2
− 1

1 + k2n2

)
. (4.4)

In particular, zero is a double eigenvalue ofA0(0), and the remaining eigenvalues are

all simple, purely imaginary, and located outside the open ball B (0; r∗(2)). Besides,
letting

Âa(�) := Aa(�) − A0(0) = Ãa + ∂z
(
1 − k2∂2z

)−1
(σ�2∂−2

z ),

from (4.2), we get

∥∥Âa(�)
∥∥
H1→L2 = O

(
�2 + |a|

)
.

We proceed similarly to the proof in [16, Lemma 4.7] to get the following lemma.

Lemma 4.3 The following properties hold, for any � and a sufficiently small.

(a) The spectrum of Aa(�) decomposes as

specL2
0(T) (Aa(�)) = spec0 (Aa(�)) ∪ spec1 (Aa(�)) ,

with

spec0 (Aa(�)) ⊂ B

(
0; r∗(2)

2

)
, spec1 (Aa(�)) ⊂ C\B (0; r∗(2)),

where r∗(n) is defined in (4.4).
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(b) The spectral projection 
a(�) associated with spec0 (Aa(�)) satisfies
∥∥
a(�) −


0(0)
∥∥ = O

(
�2 + |a|).

(c) The spectral subspace Xa(�) = 
a(�)
(
L2
0(T)

)
is two dimensional.

This lemma ensures that for sufficiently small � and a, bifurcating eigenvalues from the

origin are uniformly separated from the rest of the spectrum. In the following theorem,

we show that for sufficiently small � and a, the two eigenvalues in spec0 (Aa(�)) leave

imaginary axes.

Theorem 4.2 Assume |�|, |a| are sufficiently small. Denote

�2a :=
[
(b + 1) + (7 − 2b)k2

] (b + 1)
(
1 + k2

)2
12κk2

a2. (4.5)

If �2a > 0, then there exists some

�2∗ := �2a + O(a4) > 0

such that

(i) for any �2 > �2∗, the spectrum of Aa(�) is purely imaginary.

(ii) for any �2 < �2∗, the spectrum of Aa(�) is purely imaginary, except for a pair of

simple real eigenvalues with opposite signs.

If �2a < 0, then the spectrum of Aa(�) is purely imaginary.

Proof Consider the decomposition of the spectrum of Aa(�) in lemma 4.3. We first

study spec1 (Aa(�)) for � and a sufficiently small. For n ∈ Z
∗\{±1}, as � is sufficiently

small, Kn = 1 in (4.3) for all n. This implies that even if eigenvalues in spec1 (A0(�))

collide, they remain on the imaginary axis. Then for all � and a sufficiently small,

spec1 (Aa(�)) is a subset of the imaginary axis.

The eigenvalues in spec0 (Aa(�)) are the eigenvalues of the restriction of Aa(�)

to the two-dimensional spectral subspace Xa(�). We determine the location of these

eigenvalues by computing successively a basis ofXa(�), the 2×2 matrix representing

the action of Aa(�) on this basis, and the eigenvalues of this matrix.

For a = 0, A0(�) is an operator with constant coefficients, and

spec0 (A0(�)) =
{
i

�2

1 + k2
,−i

�2

1 + k2
; n ∈ Z

∗
}

.

The associated eigenvectors are eiz and e−i z , and we choose

ξ00 (�) = sin(z), ξ10 (�) = cos(z),
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as basis of the corresponding spectral subspace. Since

A0(�)ξ
0
0 (�) = �2

1 + k2
ξ10 (�), A0(�)ξ

1
0 (�) = − �2

1 + k2
ξ00 (�),

the 2 × 2 matrix representing the action of A0(�) on this basis is given by

M0(�) =
(

0 �2

1+k2

− �2

1+k2
0

)
.

We use expansions of w and c in (2.9) and (2.10) to calculate the expansion of a

basis
{
ξ0a (z), ξ1a (z)

}
for Xa(�) for small a and � as

ξ0a (z) := − 1

a
∂zw(z; k, a, 0) = sin z + 2aA2 sin 2z + 3a2A3 sin 3z + O

(
a3
)

,

ξ1a (z) :=− (1 + k2)2

κk2
(
(b + 1) + k2

) [(∂mc) (∂aw) − (∂ac) (∂mw)] (z; k, a, 0)

= cos z + 2aA2 cos 2z + 3a2A3 cos 3z + O
(
a3
)

.

As

Aa(0) =
(
1 − k2∂2z

)−1
∂z

[
c
(
1 − k2∂2z

)
−
(
κ + (b + 1)w − k2wzz − k2(b − 1)wz∂z − k2w∂2z

)]

=
(
1 − k2∂2z

)−1
∂z

[
−k2∂z(c − w)∂z +

(
c − κ − (b + 1)w + k2wzz + (b − 2)k2wz∂z

)]
,

using expansions of w and c in (2.9) and (2.10), we obtain that the action ofAa(0) on

the basis (ξ0a (z), ξ1a (z)) is

Ma(0) =

⎛
⎜⎜⎝

0 0

A2
(b + 1) + (7 − 2b)k2

1 + k2
a2 + O

(
|a|3

)
0

⎞
⎟⎟⎠ .

Together with the expression of M0(�), we get that

Ma(�) =

⎛
⎜⎜⎜⎜⎝

0
�2

1 + k2

− �2

1 + k2
+ A2

(b + 1) + (7 − 2b)k2

1 + k2
a2 + O

(
|a|

(
�2 + a2

))
0

⎞
⎟⎟⎟⎟⎠

.
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The two eigenvalues of Ma(�), which are also the eigenvalues in spec0 (Aa(�)), are

roots of the characteristic polynomial

P(λ) = λ2 + �2

1 + k2

(
�2

1 + k2
− (b + 1) + (7 − 2b)k2

1 + k2
A2a

2
)

+ O
(|a|�2 (�2 + a2

))
.

Furthermore, since w(z + π; k, a, 0) = w(z; k,−a, 0), the two roots of this polyno-

mial are the same for a and −a, and we conclude that

λ2 = − �2

1 + k2

(
�2

1 + k2
− (b + 1) + (7 − 2b)k2

1 + k2
A2a

2
)

+ O
(
a2�2

(
�2 + a2

))

= − �2

1 + k2

(
�2

1 + k2
− (b + 1) + (7 − 2b)k2

1 + k2
(b + 1)

(
1 + k2

)2
12κk2

a2
)

+ O
(
a2�2

(
�2 + a2

))

= − �2

(1 + k2)2

[
�2 − �2a + O

(
a2

(
�2 + a2

))]
,

(4.6)

where �2a is defined in (4.5). Thus when �2a > 0, then for a sufficiently small there

exists some

�2∗ := �2a + O(a4) > 0

such that when �2 > �2∗ then the two eigenvalues are purely imaginary, whereas the

eigenvalues are real with opposite signs when �2 < �2∗. On the other hand, when

�2a < 0 then the spectrum of Aa(�) is purely imaginary for a sufficiently small.

We list the cases of �2a > 0 and �2a < 0 in the following lemma and the detail

discussion is given in the Appendix B.

Lemma 4.4 �2a > 0 is valid for the following cases:

(1) − 1 < b � 7

2
; (2) b >

7

2
, k2 <

b + 1

2b − 7
; (3) b < −1, k2 <

b + 1

2b − 7
.

On the other hand, �2a < 0 when

(1) b >
7

2
, k2 >

b + 1

2b − 7
; (2) b < −1, k2 >

b + 1

2b − 7
.

4.2 b-KP-II equation

Now let’s turn to the case when σ = 1. We begin by analyzing the spectra of the

unperturbed operators K0(�) and A0(�).
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Fig. 2 [b-KP-II equation] a Graph of the map n �→ κ
k2(n2−1)
1+k2

− �2

n2
for κ = 2, k = 1 and � = 0.8. The

eigenvalues of K0(�) are found by taking n = q, q ∈ Z
∗. b Graph of the dispersion relation n �→ ν(n) =

n
(

κ

1+k2
− κ

1+k2n2
− �2

n2(1+k2n2)

)
for κ = 2, k = 1 and � = 0.8. The imaginary parts of the eigenvalues

ofA0(�) are found by taking k = n, n ∈ Z
∗. Notice that the zeros of the two maps are the same

4.2.1 Spectrum ofK0(�)

Using Fourier series we find that the spectrum of the operator K0(�) acting in L2
0(T)

is given by (see also Fig. 2a)

specL2
0(T) (K0(�)) =

{
κ
k2(n2 − 1)

1 + k2
− �2

n2
; n ∈ Z

∗
}

.

In contrast to the b-KP-I equation, the spectrum of K0(�) contains negative eigen-

values, and the number of these eigenvalues increases with �.

4.2.2 Spectrum ofA0(�)

The spectrum of the operator A0(�) acting in L2
0(T) is given by (see also Fig. 2b)

specL2
0(T) (A0(�)) =

{
iνn(�) = in

(
κ

1 + k2
− κ

1 + k2n2
− �2

n2(1 + k2n2)

)
: n ∈ Z

∗
}

.

Notice that the dispersion relation

ν(n) := n

(
κ

1 + k2
− κ

1 + k2n2
− �2

n2(1 + k2n2)

)

is monotonically increasing on (−∞,−1] and [1,∞), so that colliding eigenvalues

correspond to Fourier modes with opposite signs. A direct calculation then shows that
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for any p, q ∈ N
∗ the eigenvalues corresponding to the Fourier modes p and −q

collide when

�2 = �2p,q := κ
pq

(
1 + k2 p2

) (
1 + k2q2

)

p
(
1 + k2 p2

) + q
(
1 + k2q2

)
(

p + q

1 + k2
− p

(
1 + k2q2

) + q
(
1 + k2 p2

)

(1 + k2 p2)(1 + k2q2)

)
.

Moreover, the corresponding eigenvalues ofK0(�) have opposite signs, so that any of

these collisions may lead to unstable eigenvalues of the operator Aa(�).

4.2.3 Long wavelength transverse perturbations

Lemma 4.5 Assume that |�| and |a| are sufficiently small. Recall the definition (4.5)

for �2a. If �
2
a < 0, then there exists some

�2∗∗ := −�2a + O(a4) > 0.

(i) for any �2 > �2∗∗, the spectrum of Aa(�) is purely imaginary.

(ii) for any �2 < �2∗∗, the spectrum of Aa(�) is purely imaginary, except for a pair

of simple real eigenvalues with opposite signs.

If �2a > 0, then the spectrum of Aa(�) is purely imaginary.

Proof Upon replacing �2 by −�2 in (4.6), we find that the two eigenvalues satisfy

λ2 = − �2

(1 + k2)2

[
�2 + �2a + O

(
a2

(
�2 + a2

))]
.

Consequently, we may process as in Theorem 4.2 to get the results.

The parameter regimes indicating the sign of �2a is given in Lemma 4.4, which

together with Lemma 4.5 provides the spectral stability for the b-KP-II case.

5 Non-periodic perturbations for b-KP-I: onset of instability

In this section, we will consider the two-dimensional perturbations which are non-

periodic (localized or bounded) in the direction of the propagation of the wave. For

non-periodic perturbations, we study the invertibility of Ta(λ, �) in (3.1) acting in

L2(R) or Cbdd(R) (with domain H4(R) or C4
bdd(R) ), for λ ∈ C, 	(λ) > 0, and

� ∈ R\{0}. The notable difference in this case is that Ta(λ, �) now has bands of

continuous spectrum.
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5.1 Reformulation andmain result

Since the coefficients of Ta(λ, �) are periodic functions, using Floquet theory, all

solutions of Ta(λ, �)V = 0 in L2(R) or Cbdd(R) are of the form V (z) = eiξ z Ṽ (z)

where ξ ∈ (− 1
2 ,

1
2

]
is the Floquet exponent and Ṽ is a 2π -periodic function; see [15]

for a similar situation. This replaces the study of invertibility of the operator Ta(λ, �)

in L2(R) or Cbdd(R) by the study of invertibility of a family of Bloch operators in

L2(T) parameterized by the Floquet exponent ξ . We present the precise reformulation

in the following lemma.

Lemma 5.1 The linear operator Ta(λ, �) is invertible in L2(R) if and only if the linear

operators

Ta,ξ (λ, �)

= (
1 − k2 (∂z + iξ)2

)
(∂z + iξ)

{
λ − c (∂z + iξ) + (

1 − k2 (∂z + iξ)2
)−1

(∂z + iξ)
[
κ + (b + 1)w − k2wzz − (b − 1)k2wz (∂z + iξ) − k2w (∂z + iξ)2

]} − σ�2

acting in L2(T) with domain H4
per(T) are invertible for all ξ ∈ (− 1

2 ,
1
2

]
.

Werefer to [15, PropositionA.1] for a detailed proof in the similar situation. The fact

that the operators Ta,ξ (λ, �) act in L2(T) with compactly embedded domain H4
per(T)

implies that these operators have only point spectrum. Noting that ξ = 0 corresponds

to the periodic perturbations which we have already investigated, we would restrict

ourselves to the case of ξ �= 0. Thus the operator ∂z + iξ is invertible in L2(T). Using

this, we have the following result.

Lemma 5.2 The operator Ta,ξ (λ, �) is not invertible in L2(T) for some λ ∈ C and
ξ �= 0 if and only if λ ∈ specL2(T) (Aa(�, ξ)), where

Aa(�, ξ)

= (∂z + iξ)

[
c −

(
1 − k2 (∂z + iξ)2

)−1

(
κ + (b + 1)w − k2wzz − k2(b − 1)wz (∂z + iξ) − k2w (∂z + iξ)2 − σ�2 (∂z + iξ)−2

)]

= (∂z + iξ)
[
1 − k2 (∂z + iξ)2

]−1 [
c(1 − k2(∂z + iξ)2)−

(
κ + (b + 1)w − k2wzz − k2(b − 1)wz (∂z + iξ) − k2w (∂z + iξ)2 − σ�2 (∂z + iξ)−2

)]
.

Note that the operator (∂z + iξ)−1 becomes singular as ξ → 0. Thus the implication

from the spectral information ofAa(�, ξ) to the invertibility ofTa,ξ (λ, �) is not uniform

in ξ . Therefore we will restrict our attention to the case when |ξ | > ε > 0, and look

to detect the onset of instability.
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Lemma 5.3 Assume that ξ ∈(− 1
2 ,

1
2

]
and ξ �=0. Then the spectrum specL2(T) (Aa(�,ξ))

is symmetric with respect to the imaginary axis, and specL2(T) (Aa(�, ξ)) =
specL2(T) (−Aa(�,−ξ)).

Proof We consider S to be defined as follows

Sψ(z) = ψ(−z),

and notice that Aa(�, ξ) anti-commutes with S,

(Aa(�, ξ)Sψ) (z)=Aa(�,ξ)
(
ψ(−z)

)
= −(Aa(�,ξ)ψ)(−z)=− (SAa(�,ξ)ψ) (z),

where we have used the fact that w is an even function. Assume μ is the eigenvalue

of Aa(�, ξ) with an associated eigenvector ϕ,

Aa(�, ξ)ϕ = μϕ.

then we have

Aa(�, ξ)Sϕ = −SAa(�, ξ)ϕ = −μSϕ.

Consequently, −μ is an eigenvalue of Aa(�, ξ). This implies that the spectrum of

Aa(�, ξ) is symmetric with respect to imaginary axis.

Consider R to be the reflection as follows

Rψ(z) = ψ(−z),

then we have

(Aa(�, ξ)R) ψ(z) = Aa(�, ξ) (ψ(−z)) = − (Aa(�,−ξ)ψ) (−z)

= − (RAa(�,−ξ)ψ) (z).

This gives the second property.

From the above lemma, we can without loss of generality assume that ξ ∈ (
0, 1

2

]
.

We will study the L2(T)-spectra of the linear operators Aa(�, ξ) for |a| sufficiently
small. It is straightforward to establish the estimate

‖Aa(�, ξ) − A0(�, ξ)‖H1(T)→L2(T) = O(|a|)
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as a → 0 uniformly for ξ ∈ (
0, 1

2

]
in the operator norm. Therefore, in order to locate

the spectrum of Aa(�, ξ), we need to determine the spectrum of A0(�, ξ). A simple

calculation yields that

A0(�, ξ)einz = iωn(�, ξ)einz, n ∈ Z, (5.1a)

where

ωn(�, ξ) = (n + ξ)

(
κ

1 + k2
− κ

1 + k2(n + ξ)2
− σ�2

(n + ξ)2
(
1 + k2(n + ξ)2

)
)

.

(5.1b)

As in the previous section, the linear operator A0(�, ξ) can be decomposed as

A0(�, ξ) = JξK0(�, ξ),

where

Jξ := (∂z + iξ)
(
1 − k2 (∂z + iξ)2

)−1
,

and

K0(�, ξ) :=
(
c0(1 − k2(∂z + iξ)2) − κ + σ�2 (∂z + iξ)−2

)
.

The operator Jξ is skew-adjoint, whereas the operator K0(�, ξ) is self-adjoint. As

defined in (4.3), theKrein signature, Kn,ξ of an eigenvalue iωn(�, ξ) in spec (A0(�, ξ))

is

Kn,ξ = sgn

(
μn(�, ξ) := κk2

(
(n + ξ)2 − 1

)

1 + k2
− σ�2

(n + ξ)2

)

for n ∈ Z. Note that we have

ωn(�, ξ) = n + ξ

1 + k2(n + ξ)2
μn(�, ξ). (5.2)

As explained in the previous section, the b-KP-II case is very difficult to analyze, and

hence we will mainly focus on the b-KP-I equation (σ = −1).

The main result of this section is the following theorem showing the finite-

wavelength transverse spectral instability of the periodicwaves for the b-KP-I equation

under perturbations which are non-periodic in z.
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Theorem 5.1 [Instability under finite-wavelength transverse perturbation] Consider

σ = −1. Assume that ξ ∈ (
0, 1

2

]
and define

�20 := κk2(1 − ξ2)ξ2(
1 + k2

) ,

�2c := κk2(1 − ξ)2ξ2(
1 + k2

) · (1 + ξ)
[
1 + k2(1 − ξ)2

] + (
1 + k2ξ2

)
(2 − ξ)

(1 − ξ)
[
1 + k2(1 − ξ)2

] + (
1 + k2ξ2

)
ξ

,

(5.3)

which satisfy l20 � l2c and

B :=
[
k2ξ2 + (1 − b)k2ξ + k2 + (b + 1)

]
[
k2ξ2 + (b − 3)k2ξ + (3 − b)k2 + (b + 1)

]
. (5.4)

Then for �2 � �20, we have

(I) In the case of B > 0, for any |a| sufficiently small, there exists εa(ξ) > 0 with

εa(ξ) := ξ
3
2 (1 − ξ)

3
2

(1 + k2ξ2)
1
2
(
1 + k2(1 − ξ)2

) 1
2

(1 − ξ)
[
1 + k2(1 − ξ)2

] + ξ(1 + k2ξ2)
B

1
2 |a| (5.5)

such that

(i) for
∣∣�2 − �2c(ξ)

∣∣ > εa(ξ), the spectrum of Aa(�, ξ) is purely imaginary;

(ii) for
∣∣�2 − �2c(ξ)

∣∣ < εa(ξ), the spectrum ofAa(�, ξ) is purely imaginary, except

for a pair of complex eigenvalues with opposite nonzero real parts.

(II) In the case when B < 0, the spectrum of Aa(�, ξ) is purely imaginary.

Remark 5.2 From Lemma 5.9 we see that the transverse spectral instability holds for

−1 � b � 3, which covers the well-known examples of CH-KP-I (b = 2) and

DP-KP-I (b = 3).

The remainder of this subsection aims at proving this theorem, and the main argument

is provided in Sect. 5.4.

5.2 The Krein signature and stability under short-wavelength transverse
perturbations

We start the analysis of the spectrum of A0(�, ξ) with the values of � away from the

origin, |�| > �0, for some �0 > 0. Recall that now we take σ = −1. It is straight

forward to verify that
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Fig. 3 [b-KP-I equation] a Graph of the map n �→ �2

n2
− κk2(1−n2)

1+k2
for κ = 2, k = 1 and � = 0.8 and

� = 0.3 (from left to right). The eigenvalues of K0(�) are found by taking n = p + ξ, p ∈ Z. b Graph

of the dispersion relation n �→ n
(

κ

1+k2
− κ

1+k2n2
+ �2

n2(1+k2n2)

)
for the same values of �, κ and k. The

imaginary parts of the eigenvalues of A0(�) are found by taking n = p + ξ, p ∈ Z. Notice that the zeros

of the two maps are the same

• Kn,ξ = 1 for all n ∈ Z\{−1, 0}, k > 0, and ξ ∈ (
0, 1

2

]
, as

μn(�, ξ) >
κk2

(
(n + ξ)2 − 1

)

1 + k2
� κk2(

1 + k2
)ξ(2 + ξ);

• when n = −1, the eigenvalue

μ−1(�, ξ) =
(

�2

(1 − ξ)2
− κk2ξ(2 − ξ)(

1 + k2
)

)

is positive when �2 > �2−, where �2− := κk2ξ(2−ξ)(1−ξ)2

(1+k2)
; it is zero when �2 = �2−,

and it is negative when �2 < �2−;
• when the Fourier mode n = 0, the eigenvalue

μ0(�, ξ) =
(

�2

ξ2
− κk2(1 − ξ2)(

1 + k2
)

)

is positive when �2 > �20, where �20 is defined in (5.3); it is zero when �2 = �20,

and it is negative when �2 < �20. (see also Fig. 3a).

Here

�20 = κk2(1 − ξ2)ξ2(
1 + k2

) < �2− = κk2(1 − ξ)2ξ(2 − ξ)(
1 + k2

) ,
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for any ξ ∈ (
0, 1

2

)
, so that the unperturbed operator K0(�, ξ) has positive spectrum

for �2 > �2−, one negative eigenvalue if �20 � �2 < �2−, and two negative eigenvalues

if �2 < �20. The following result is an immediate consequence of these properties and

we refer to [16, Lemma 5.4] for a detailed proof in a similar situation.

Lemma 5.4 [Stability under short-wavelength transverse perturbation] Assume that

ξ ∈ (
0, 1

2

]
. For any ε∗ > 0 there exists a∗ > 0, such that the spectrum of Aa(�, ξ) is

purely imaginary, for any � and a satisfying �2 � �2− + ε∗ and |a| � a∗.

It remains to determine the spectrum ofAa(�, ξ) for 0 < �2 < �2−+ε∗. We proceed

as in Sect. 4.1 to decompose the spectrum ofAa(�, ξ) into σ0 (Aa(�, ξ)) containing a

minimal number of eigenvalues, and σ1 (Aa(�, ξ)) for which we argue as in Theorem

4.2 to show that it is purely imaginary.

5.3 Spectral decomposition ofA0(�, �) for �20 � �2 < �2− + "∗

Recall that the spectrum ofA0(�, ξ) is given in (5.1). The distribution of these eigen-

values on the imaginary axis can be inferred from the study of the dispersion relation

(see Fig. 3b). The discussion preceding Lemma 5.4 implies that the eigenvalues of

A0(�, ξ) that might lead to instability under perturbations are

iω−1(�, ξ), if �20 � �2��2−,

iω−1(�, ξ), iω0(�, ξ), if 0 < �2 < �20.

The next step is to separate these eigenvalues from the remaining point spectra, which

correspond to the ones with positive Krein signature. Such a separation is possible as

long as there are no collisions between these eigenvalues and other ones. The following

lemma confirms this lack of collision for transverse perturbations in the finite wave

length regime.

Lemma 5.5 Assume that ξ ∈ (
0, 1

2

]
. The eigenvalues of A0(�, ξ) satisfy

ω−1(�, ξ) = ω0(�, ξ) only when �2 = �2c,

ω−1(�, ξ) �= ωn(�, ξ) for all n �= 0,−1, 1.
(5.6a)

When �20 � �2��2− it further holds that

ω−1(�, ξ) �= ωn(�, ξ) for all n �= 0,−1. (5.6b)

Proof Define the collision function

Fn(�
2, ξ) := ωn(�, ξ) − ω−1(�, ξ) = 1 − ξ

1 + k2(1 − ξ)2
μ−1(�, ξ)
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+ n + ξ

1 + k2(n + ξ)2
μn(�, ξ)

= κk2

1 + k2

[
(1 − ξ)

[
(1 − ξ)2 − 1

]

1 + k2(1 − ξ)2
+ (n + ξ)

[
(n + ξ)2 − 1

]

1 + k2(n + ξ)2

]

+ �2

[
1

(1 − ξ)
[
1 + k2(1 − ξ)2

] + 1

(n + ξ)
[
1 + k2(n + ξ)2

]
]

=: Gn(ξ) + �2Hn(ξ).

Clearly Fn is linear in �2. From the previous discussion we see that

ω−1(�, ξ)�0, if �2 � �2−, and ωn(�, ξ)

{
� 0, for n � 0,

< 0, for n � −2.

Thus only ωn(�, ξ) with n � 0 is possible to collide with ω−1(�, ξ).

When n = 0, we consider solving

F0(�
2) = 1 − ξ

1 + k2(1 − ξ)2
μ−1(�, ξ) + ξ

1 + k2ξ
μ0(�, ξ) = 0

for �2. Since both μ−1(�, ξ) and μ0(�, ξ) are linear increasing functions in �2, so is

F0(�2, ξ). Also we have F0(�20, ξ) < 0 and F0(�2−, ξ) > 0 for ξ ∈ (
0, 1

2

)
. Hence

for any given ξ ∈ (
0, 1

2

)
there exists a unique �2c ∈ (�20, �

2−) such that F(�2c, ξ) = 0.

Explicit computation reveals that �2c is given in (5.3). For the case ξ = 1
2 , we have

�2c = �20 = �2−, and hence ω−1(�
2
c, ξ) = ω0(�

2
c, ξ) = 0. This proves the first part of

(5.6).

Now for n � 1, the function Gn(ξ) is related to the function

f (x) = (1 − ξ)
[
(1 − ξ)2 − 1

]

1 + k2(1 − ξ)2
+ (x + ξ)

[
(x + ξ)2 − 1

]

1 + k2(x + ξ)2
,

which is increasing for |x + ξ | > 1√
3
. Moreover,

f (2) =
(
6 + 9ξ + 9ξ2

) + 3k2
(
1 − ξ − ξ2

)
(2 + ξ) (1 − ξ)(

1 + k2(2 + ξ)2
) (
1 + k2(1 − ξ)2

) > 0.

Therefore ω−1(�, ξ) does not collide with ωn(�, ξ) for n � 2, and hence it suffices to

consider the case when n = 1. Direct computation shows that

G1(ξ) = κk2

1 + k2
2ξ2

[
3 − k2(1 − ξ2)

]
[
1 + k2(1 − ξ)2

] [
1 + k2(1 + ξ)2

] ,
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and

G1(ξ) < 0 only if k2 >
3

1 − ξ2
.

In this case, solving F1(�2, ξ) = 0 we find that the unique solution for �2 is

�2 = κk2(1 − ξ2)ξ2(
1 + k2

) · k2(1 − ξ2) − 3

1 + k2
(
1 + 3ξ2

) <
κk2(1 − ξ2)ξ2(

1 + k2
) = �20.

Therefore the second part of (5.6) is proved.

From the above lemma it follows that

Lemma 5.6 Given ξ ∈ (
0, 1

2

]
, there exist ε∗ > 0 and c∗ > 0 such that

(i) for any � satisfying �2c+ε∗ < �2 < �2−+ε∗, the spectrumofA0(�, ξ) decomposes

as

σ (A0(�, ξ)) = {iω−1(�, ξ)} ∪ σ1 (A0(�, ξ)) ,

with dist (iω−1(�, ξ), σ1 (A0(�, ξ))) � c∗ > 0;

(ii) for any � satisfying �20 � �2 � �2c + ε∗, the spectrum ofA0(�, ξ) decomposes as

σ (A0(�, ξ)) = {iω−1(�, ξ), iω0(�, ξ)} ∪ σ1 (A0(�, ξ)) ,

with dist ({iω−1(�, ξ), iω0(�, ξ)} , σ1 (A0(�, ξ))) � c∗ > 0.

Continuity arguments show that for sufficiently small a, this decomposition persists

for the operator Aa(�, ξ), and we argue as in Sect. 4.1.2 to locate the spectrum of

Aa(�, ξ).

5.4 Spectrum ofAa(�, �) for �20 � �2 < �2− + "∗

Let us start with the case �2c + ε∗ < �2 < �2− + ε∗. The following lemma asserts that

for � in this range the spectrum ofAa(�, ξ) is purely imaginary. The argument follows

in a similar way as that of [16, Lemma 5.6], and hence we omit the proof here.

Lemma 5.7 Assume that ξ ∈ (
0, 1

2

]
. There exist ε∗ > 0 and a∗ > 0 such that the

spectrum of Aa(�, ξ) is purely imaginary, for any � and a satisfying �2c + ε∗ < �2 <

�2− + ε∗ and |a| � a∗.

Next we consider the spectrum of Aa(�, ξ) for �20 � �2 � �2c + ε∗. From Sect.

5.3 we know that the two eigenvalues ofA0(�, ξ) corresponding to the Fourier modes
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n = −1 and n = 0 collide at �2 = �2c . Using perturbation arguments we prove in

the following that for a sufficiently small and � close to the value �c, the linearized

operatorAa(�, ξ) will continue to accommodate a pair of unstable eigenvalues. This,

together with the definition of instability, proves Theorem 5.1.

Lemma 5.8 Assume that ξ ∈ (
0, 1

2

]
and recall B in (5.4). In the case of B > 0, there

exist constants ε∗, a∗ > 0, and εa(ξ) as defined in (5.5) with εa(ξ) < ε∗, such that if

�20 � �2 � �2c + ε∗ and

(i)
∣∣�2 − �2c

∣∣ > εa(ξ), then the spectrum of Aa(�, ξ) is purely imaginary;

(ii)
∣∣�2 − �2c

∣∣ < εa(ξ) then the spectrum of Aa(�, ξ) is purely imaginary, except for

a pair of complex eigenvalues with opposite nonzero real parts.

In the case B < 0, the spectrum ofAa(�, ξ) is purely imaginary for �20 � �2 � �2c+ε∗.

Proof The spectrum of Aa(�, ξ) can be decomposed as

σ (Aa(�, ξ)) = σ0 (Aa(�, ξ)) ∪ σ1 (Aa(�, ξ)) ,

whereσ1 (Aa(�, ξ)) is purely imaginary, andσ0 (Aa(�, ξ)) consists of two eigenvalues

which are the continuation of the eigenvalues iω−1(�, ξ) and iω0(�, ξ) for small a.

Choosing ε∗ and a∗ sufficiently small, such decomposition persists for any �20 � �2 �
�2c + ε∗ and |a| � a∗. Therefore what remains to check are the location of the two

eigenvalues in σ0 (Aa(�, ξ)).

From Lemma 5.5 we know that for any �20 � �2 � �2c + ε∗ such that � outside

a neighborhood of �c, the two eigenvalues iω−1(�, ξ) and iω0(�, ξ) are simple and

there exists c0 > 0 such that

|iω−1(�, ξ) − iω0(�, ξ)| � c0.

For a sufficiently small, the simplicity of this pair of eigenvalues continues to hold

into the spectrum ofAa(�, ξ). As the spectrum ofAa(�, ξ) is symmetric with respect

to the imaginary axis, each of these eigenvalues of Aa(�, ξ) is purely imaginary for

any � outside some neighborhood of �c.

We will proceed as in the proof of Theorem 4.2 to locate σ0 (Aa(�, ξ)) for � close

to �c. We compute successively a basis for the two-dimensional spectral subspace

associated with σ0 (Aa(�, ξ)), the 2 × 2 matrix Ma(�, ξ) representing the action of

Aa(�, ξ) on this basis, and the eigenvalues of this matrix.

At a = 0, the basis vectors are chosen to be the two eigenvectors associated with

the eigenvalues iω0(�, ξ) and iω−1(�, ξ),

ξ00 (�, ξ) = 1, ξ10 (�, ξ) = e−i z
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At order a, we take � = �c, and proceed as the computation in the proof of Theorem

4.2 to find

Ma (�c, ξ) =
⎛
⎝ iω0 (�c, ξ) − i

2
(ξ−1)

(
k2ξ2+(1−b)k2ξ+k2+(b+1)

)
1+k2(ξ−1)2

a

− i
2

ξ
(
k2ξ2+(b−3)k2ξ+(3−b)k2+(b+1)

)
1+k2ξ2

a iω−1 (�c, ξ)

⎞
⎠

+ O
(
a2
)
.

Together with the expression of M0(�, ξ), this yields that

Ma (�, ξ) =

⎛
⎜⎜⎝

iω0 (�c, ξ) + i ε
ξ(1+k2ξ2)

− i
2

(ξ−1)
[
k2ξ2+(1−b)k2ξ+k2+(b+1)

]
1+k2(ξ−1)2

a

− i
2

ξ
[
k2ξ2+(b−3)k2ξ+(3−b)k2+(b+1)

]
1+k2ξ2

a iω−1 (�c, ξ) + i ε
(ξ−1)[1+k2(ξ−1)2]

⎞
⎟⎟⎠

+ O
(
a2 + |aε|) ,

with ε = �2 − �2c . Recall the definition of �2c in (5.3), and the colliding eigenvalues

ω0 (�c, ξ) = ω−1 (�c, ξ) = 2κk2ξ(1 − ξ)(1 − 2ξ)(
1 + k2

) {
(1 − ξ)

[
1 + k2(1 − ξ)2

] + (
1 + k2ξ2

)
ξ
}

=: ω∗(ξ).

Seeking eigenvalues λ of the form

λ = iω∗(ξ) + i X ,

we find that X is root of the polynomial

P(X) = X2 − X

(
ε

ξ(1 + k2ξ2)
+ ε

(ξ − 1)
(
1 + k2(ξ − 1)2

) + O
(
a2 + |aε|

))

− a2

4

(
(ξ − 1)

(
k2ξ2 + (1 − b)k2ξ + k2 + (b + 1)

)

1 + k2(ξ − 1)2

)

·
(

ξ
(
k2ξ2 + (b − 3)k2ξ + (3 − b)k2 + (b + 1)

)

1 + k2ξ2

)

+ ε2

ξ(ξ − 1)(1 + k2ξ2)
(
1 + k2(ξ − 1)2

) + O
(
a2|ε| + |a|ε2 + |a|3

)
.
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A direct computation shows that the discriminant of this polynomial P(X) is

�a(ε, ξ) = ε2

[
1

ξ(1 + k2ξ2)
+ 1

(1 − ξ)
[
1 + k2(1 − ξ)2

]
]2

− ξ(1 − ξ)B

(1 + k2ξ2)
[
1 + k2(1 − ξ)2

]a2 + O
(
|ε|a2 + ε2|a| + |a|3

)
,

where B is defined in (5.4).

In the case when B > 0, we can define

εa(ξ) := ξ
3
2 (1 − ξ)

3
2

(1 + k2ξ2)
1
2
(
1 + k2(1 − ξ)2

) 1
2

(1 − ξ)
[
1 + k2(1 − ξ)2

] + ξ(1 + k2ξ2)
B

1
2 · |a| > 0.

Therefore for any a sufficiently small we have �a(ε, ξ) � 0 when |ε| > εa(ξ) and

�a(ε, ξ) < 0 when |ε| < εa(ξ). This implies that, for �20 � �2 � �2c + ε∗, the two
eigenvalues of Aa(�, ξ) are purely imaginary when

∣∣�2 − �2c

∣∣ > εa(ξ), and complex,

with opposite nonzero real parts when
∣∣�2 − �2c

∣∣ < εa(ξ).

In the case when B < 0, we have �a(ε, γ ) > 0, and this implies that the two

eigenvalues of Aa(�, ξ) are purely imaginary for �20 � �2 � �2c + ε∗.

For ξ ∈ (0, 1
2 ], we list the cases of B > 0 and B < 0 in the following lemma and

the detailed discussion is given in the Appendix B.

Lemma 5.9 B > 0 is valid for the following cases:

(1) −1 � b � 3;

(2) b < −1, ξ = 1
2 , k

2 �= −4(1+b)
7−2b ;

(3) b < −1, ξ ∈ (0, 1
2 ), k

2 >
−(1+b)

ξ2+(1−b)ξ+1
or k2 <

−(1+b)
ξ2+(b−3)ξ+(3−b)

;

(4) b > 3, k2 � 4
b−3 ;

(5) 3 < b � 7
2 , ξ = 1

2 , k
2 > 4

b−3 ;

(6) b > 7
2 , ξ = 1

2 , k
2 > 4

b−3 and k2 �= −4(1+b)
7−2b ;

(7) 3 < b � ξ2−3ξ+3
1−ξ

, ξ ∈ (0, 1
2 );

(8) 3 <
ξ2−3ξ+3

1−ξ
< b � ξ2+ξ+1

ξ
, ξ ∈ (0, 1

2 ),
4

b−3 < k2 <
−(1+b)

ξ2+(b−3)ξ+(3−b)
;

(9) b >
ξ2+ξ+1

ξ
> 3, ξ ∈ (0, 1

2 ), k2 >
−(1+b)

(ξ2+(1−b)ξ+1)
or 4

b−3 < k2 <

−(1+b)
ξ2+(b−3)ξ+(3−b)

.

B < 0 when one of the following cases occurs:

(1) b < −1, ξ ∈ (0, 1
2 ),

−(1+b)
ξ2+(1−b)ξ+1

< k2 <
−(1+b)

ξ2+(b−3)ξ+(3−b)
;

(2) 3 <
ξ2−3ξ+3

1−ξ
< b � ξ2+ξ+1

ξ
, ξ ∈ (0, 1

2 ), k
2 >

−(1+b)
ξ2+(b−3)ξ+(3−b)

;

(3) b >
ξ2+ξ+1

ξ
> 3, ξ ∈ (0, 1

2 ),
−(1+b)

ξ2+(b−3)ξ+(3−b)
< k2 <

−(1+b)
(ξ2+(1−b)ξ+1)

.
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5.5 Discussion for long-wavelength transverse perturbations 0 < �2 < �20

In contrast to case when �2 � �20, for long-wavelength transverse perturbations 0 <

�2 < �20, the collision dynamics of the eigenvalues become much harder to track. In

fact, it is possible that infinitely many pairs of eigenvalues collide with each other.

What we find is that, in order to eliminate these collisions, an additional condition on

the longitudinal wavelength is needed. The detailed discussion is provided below.

The collision between ω−1 and ωn is studied in Lemma 5.5. So we consider the

collision between ω0 and ωn described by the function

F̃n(�
2, ξ) := ωn(�, ξ) − ω0(�, ξ)

= κk2

1 + k2

[
ξ
(
1 − ξ2

)

1 + k2ξ2
+ (n + ξ)

[
(n + ξ)2 − 1

]

1 + k2(n + ξ)2

]

+ �2

[
− 1

ξ
(
1 + k2ξ2

) + 1

(n + ξ)
[
1 + k2(n + ξ)2

]
]

=: G̃n(ξ) + �2 H̃n(ξ).

(5.7)

We can also write F̃n(�2, ξ) as

F̃n(�
2, ξ) = �20 − �2

ξ
(
1 + k2ξ2

) + α(n + ξ)2
[
(n + ξ)2 − 1

] + �2

(n + ξ)
[
1 + k2(n + ξ)2

] , (5.8)

where α := κk2

1+k2
. The first term in the right-hand side of (5.8) is positive in the range

of � considered here. For n � 1, the second term is clearly positive. So we consider

the case when n � −2. Define the function

g(x) := �2 + αx2(x2 − 1)

x(1 + k2x2)
for x � −3

2
.

Then from the estimate that

�2 < �20 = αξ2(1 − ξ2), and ξ2(1 − ξ2) <
1

4
,

we have

g′(x) = α
(
k2x6 + k2x4 + 3x4 − x2

) − �2(3k2x2 + 1)

x2(1 + k2x2)2

�
α
[
k2x6 + k2x4 + 3x4 − x2 − ξ2(1 − ξ2)(3k2x2 + 1)

]

x2(1 + k2x2)2
> 0, for x � −3

2
.
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Therefore we see that the second term in the last equality of (5.8) is increasing in n

for n � −2, that is, F̃n(�2, ξ) � F̃−2(�
2, ξ) for n � −2.

Looking at (5.7) we find the H̃n(ξ) < 0when n � −2. Explicit computation reveals

that

G̃−2(ξ) = 2α(1 − ξ)2
[
k2ξ(2 − ξ) − 3

]

(1 + k2ξ2)
[
1 + k2(ξ − 2)2

] .

In fact we have

1

2
F̃−2(�

2, ξ) =
(
1 + k2

[
1 + 3(1 − ξ)2

])
�2 − [

k2ξ(2 − ξ) − 3
]
�2−

ξ(ξ − 2)(1 + k2ξ2)
[
1 + k2(ξ − 2)2

] .

Therefore we have

k2ξ(2 − ξ) − 3 � 0 ⇒ F̃−2(�
2, ξ) < 0 ⇒ F̃n(�

2, ξ) < 0 for all n � −2.

Thus we find that for

k2 � 3

ξ(2 − ξ)
, ⇒ ω0(�, ξ) �= ωn(�, ξ) for all n �= 0,−1. (5.9)

To summarize, we have the following

Lemma 5.10 Assume that ξ ∈ (
0, 1

2

]
and 0 < �2 < �20. For k

2 � 4wehaveω0(�, ξ) �=
ωn(�, ξ) for all n �= 0 and for k2 � 3 we have ω−1(�, ξ) �= ωn(�, ξ) for all n �= −1.

Proof The above discussion leads to (5.9). Since 0 < ξ � 1
2 , we know that 3

ξ(2−ξ)
� 4

and 3
1−ξ2

> 3. Moreover, the calculation in Lemma 5.5 indicates that ω0(�, ξ) =
ω−1(�, ξ) only for �2 = �2c � �20 and for 0 < �2 < �20 and k2 � 3

1−ξ2
, ω−1(�, ξ) �=

ωn(�, ξ) for all n �= −1. Thus the proof of the lemma is complete.

From this lemma we may extend the stability part of Theorem 5.1 to the regime of

long-wavelength transverse perturbation, provided that the longitudinal wavelength is

bounded below.

Proposition 5.3 If k2 � 3, then the results in (I) and (II) parts of Theorem 5.1 hold

for all �2 > 0.

6 Conclusion

We have provided a detailed spectral analysis of the linearized operators arising from

small-amplitude waves of a family of quasilinear dispersive models under transverse
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perturbations. Similar to the generalized KP theory, a rather complete spectral infor-

mation can be obtained for the b-KP-I equation, whereas only the spectra under long

wavelength transverse perturbations can be determined for the b-KP-II equation.

We want to address that considering the whole b-family of equations leads to a

richer spectral picture in the transverse problem. For instance, a periodic wave of b-

KP-I can be transversely stable for b < −1 or b > 7/2, as depicted in Fig. 1. This is in

sharp contrast to the gKP case, where long-wave transverse instability always persists

under KP-I perturbations.

We conclude the paper with a brief outlook. A natural next step is toward nonlinear

analysis. We expect that the nonlinear instability for spectrally unstable waves can be

achieved by adapting the method of [32, 33] in the frame of periodic waves. Another

direction to go is the transverse problem for longitudinal periodic waves with singular-

ities. It is a remarkable feature that the b-family Eq. (1.1) admits periodic waves with

cornered singularity when κ = 0. An understanding of the stability property of these

peaked profiles under transverse perturbations would be a very interesting problem to

study.

Appendix A. Small-amplitude expansion

In this section, we give the details on small-amplitude expansion of (2.1). We assume

thatm = 0. Sincew and c depend analytically on a for |a| sufficiently small and since

c is even in a, we write that

w(k, a,m)(z) := w0(k,m) + a cos z + a2w2(z) + a3w3(z) + O
(
a4
)

and

c(k, a,m) := c0(k,m) + a2c2 + O
(
a4
)

as a → 0, where w2, w3, . . . are even and 2π -periodic in z. Substituting these into

(2.2), at the order of a2, we gather that

(κ − c0) w2 + κ

1 + k2
k2∂2z w2 + (b + 1)

2
cos2 z + k2 cos2 z − (b − 1)

2
k2 sin2 z = 0,

which is equivalent to

κk2

1 + k2
w2 + κk2

1 + k2
∂2z w2 = (b − 1)

2
k2 sin2 z −

(
(b + 1)

2
+ k2

)
cos2 z
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= (b − 1)

4
k2(1 − cos 2z) −

(
(b + 1) + 2k2

4

)
(cos 2z + 1) .

Then we get that

κk2

1 + k2
(w2 + ∂2z w2) = − (b + 1) + (3 − b)k2

4
− (b + 1)(1 + k2)

4
cos 2z. (A.1)

A straightforward calculation then reveals that

w2 =
(
1 + k2

)

4κk2

[
(b + 1)(k2 + 1)

3
cos 2z +

(
(b − 3)k2 − (b + 1)

)]
. (A.2)

At the order of a3,

(κ − c0) w3 − c2 cos z + c0k
2∂2z w3 − c2k

2 cos z + (b + 1) cos zw2

− k2
(
cos z∂2z w2 − w2 cos z

)
+ (b − 1)k2 sin z∂zw2 = 0,

which is equivalent to

κk2

1 + k2

(
w3 + ∂2z w3

)
= − (b + 1) cos zw2 + c2

(
1 + k2

)
cos z

+ k2 cos z
(
∂2z w2 − w2

)
− (b − 1)k2 sin z∂zw2.

(A.3)

From (A.2), we get that

∂2z w2 − w2 = 1 + k2

4κk2

[
−5(b + 1)

3

(
k2 + 1

)
cos 2z +

(
(3 − b)k2 + (b + 1)

)]
,

which helps us to get that

k2 cos z
(
∂2z w2 − w2

)
− (b − 1)k2 sin z∂zw2

= k2
1 + k2

2κk2

[
−5(b + 1)

6

(
k2 + 1

)
cos 2z cos z +

(
(3 − b)k2 + (b + 1)

2

)
cos z

+b2 − 1

3

(
k2 + 1

)
sin z sin 2z

]

= 1 + k2

2κ

[
b2 − 1

3

(
k2 + 1

)
cos(2z − z) − (b + 1)(2b + 3)

6

(
k2 + 1

)
cos 2z cos z

+
(

(3 − b)k2 + (b + 1)

2

)
cos z

]
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= 1 + k2

2κ
[k

2(2b2 − 3b + 7) + (2b + 1)(b + 1)

6
cos z

− (b + 1)(2b + 3)

6

(
k2 + 1

)
cos 2z cos z].

Then the right hand side of (A.3) equals to

1 + k2

2κ

[
k2(2b2 − 3b + 7) + (2b + 1)(b + 1)

6
cos z

− (b + 1)(2b + 3)

6

(
k2 + 1

)
cos 2z cos z

− (b + 1)2

6k2

(
k2 + 1

)
cos 2z cos z

− (b + 1)
(
(b − 3)k2 − (b + 1)

)

2k2
cos z + 2κc2 cos z

]

= −1 + k2

2κ

[
b + 1

6

(
(2b + 3) + (b + 1)

k2

)(
k2 + 1

)
cos 2z cos z

−
(
k4(2b2 − 3b + 7) − k2(b + 1)(b − 10) + 3(b + 1)2

6k2
+ 2κc2

)
cos z

]
.

Noting that

cos 3α = 2 cos 2α cosα − cosα,

we choose

c2 = 1

κ

(−2b2 + 11b − 11

24
k2 + 5b2 − 11b − 16

24
− 5(b + 1)2

24k2

)
. (A.4)

Then (A.3) gives

κk2

1 + k2

(
w3 + ∂2z w3

)
= −1 + k2

κ

(
k2 + 1

)
(b + 1)

24

(
(2b + 3) + b + 1

k2

)
cos 3z,

which is equivalent to

(
w3 + ∂2z w3

)
= − (b + 1)

(
k2 + 1

)3 (
(2b + 3)k2 + (b + 1)

)

24κ2k4
cos 3z.

A straightforward calculation then reveals that

w3 = (b + 1)
(
k2 + 1

)3
192κ2k4

(
(2b + 3)k2 + (b + 1)

)
cos 3z. (A.5)
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Appendix B. Proof of Lemma 4.4 and Lemma 5.9

Proof of Lemma 4.4 Note that

�2a =
(
(b + 1) + (7 − 2b)k2

) (b + 1)
(
1 + k2

)2
12κk2

a2.

Now we discuss b in detail.

(1) (b + 1) > 0

(1a) If b � 7
2 , i.e. −1 < b � 7

2 , we have �2a > 0.

(1b) If b > 7
2 , we have �2a > 0 for k2 < b+1

2b−7 and �2a � 0 for k2 � b+1
2b−7 .

(2) (b + 1) < 0

(2a) If k2 < b+1
2b−7 , we have �2a > 0.

(2b) If k2 � b+1
2b−7 , we have �2a � 0.

(3) (b + 1) = 0, �2a = 0.

Proof of Lemma 5.9 We can rewrite B as

B = [
k2ξ2 + (1 − b)k2ξ + k2 + (b + 1)

] [
k2ξ2 + (b − 3)k2ξ + (3 − b)k2 + (b + 1)

]

=
[
k2

(
ξ + (1 − b)

2

)2

+ (1 + b)

(
k2

4
(3 − b) + 1

)]

·
[
k2

(
ξ + (b − 3)

2

)2

+ (1 + b)

(
k2

4
(3 − b) + 1

)]
.

(I) In the case of −1 � b � 3, (1 + b)
(
k2
4 (3 − b) + 1

)
� 0 and thus

B > 0.

(II) In the case of b < −1, we have (1 + b)
(
k2
4 (3 − b) + 1

)
< 0. Then

(II-1) for ξ = 1
2 , we have B =

(
(7−2b)

4 k2 + (1 + b)
)2
, then

(II-1-i) for k2 = −4(1+b)
7−2b , we have B = 0.

(II-1-ii) for k2 �= −4(1+b)
7−2b , we have B > 0.

(II-2) for ξ ∈ (0, 1
2 ), we have |ξ + (1−b)

2 | < |ξ + (b−3)
2 |, and thus

(II-2-i) for k2 >
−(1+b)

(
k2
4 (3−b)+1

)
(
ξ+ (1−b)

2

)2 or k2 <
−(1+b)

(
k2
4 (3−b)+1

)
(
ξ+ (b−3)

2

)2 , i.e. k2 >

−(1+b)
ξ2+(1−b)ξ+1

or k2 <
−(1+b)

ξ2+(b−3)ξ+(3−b)
, we have B > 0.

(II-2-ii) for −(1+b)
ξ2+(1−b)ξ+1

< k2 <
−(1+b)

ξ2+(b−3)ξ+(3−b)
, we have B < 0.

(III) In the case of b > 3, we have

(III-1) for k2 � 4
b−3 , we have (1 + b)

(
k2
4 (3 − b) + 1

)
� 0 and thus B > 0.

(III-2) for k2 > 4
b−3 , we have (1 + b)

(
k2
4 (3 − b) + 1

)
< 0, and thus we can

proceed a similar discussion as in (II).
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(III-2-i) for ξ = 1
2 , we have B =

(
(7−2b)

4 k2 + (1 + b)
)2
, then

(III-2-i-a) for 3 < b � 7
2 , we have B > 0.

(III-2-i-b) for b > 7
2 , we have B = 0 for k2 = −4(1+b)

7−2b > 4
b−3 and B > 0 for

k2 > 4
b−3 and k2 �= −4(1+b)

7−2b .

(III-2-ii) for ξ ∈ (0, 1
2 ), we have

ξ2+ξ+1
ξ

>
ξ2−3ξ+3

1−ξ
> 3, then

(III-2-ii-a) for 3 < b � ξ2−3ξ+3
1−ξ

, we have

0 �
(
ξ2 + (b − 3)ξ + (3 − b)

)
<
(
ξ2 + (1 − b)ξ + 1

)
,

then B > 0.

(III-2-ii-b) for ξ2−3ξ+3
1−ξ

< b � ξ2+ξ+1
ξ

, we have

(
ξ2 + (b − 3)ξ + (3 − b)

)
< 0 �

(
ξ2 + (1 − b)ξ + 1

)
,

then we have B > 0 for 4
b−3 < k2 <

−(1+b)
ξ2+(b−3)ξ+(3−b)

and B < 0 for

k2 >
−(1+b)

ξ2+(b−3)ξ+(3−b)
.

(III-2-ii-c) for b >
ξ2+ξ+1

ξ
, we have

(
ξ2 + (b − 3)ξ + (3 − b)

)
<
(
ξ2 + (1 − b)ξ + 1

)
< 0,

then we have B > 0 for k2 >
−(1+b)

(ξ2+(1−b)ξ+1)
or 4

b−3 < k2 <
−(1+b)

ξ2+(b−3)ξ+(3−b)
, and

B < 0 for −(1+b)
ξ2+(b−3)ξ+(3−b)

< k2 <
−(1+b)

(ξ2+(1−b)ξ+1)
.
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