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Abstract—Massive multiple-input multiple-output (MIMO)
stands as a key technology for advancing performance metrics
such as data rate, reliability, and spectrum efficiency in the fifth
generation (5G) and beyond of wireless networks. However, its
efficiency depends greatly on obtaining accurate channel state
information (CSI). This task becomes particularly challenging
with increasing user mobility. In this paper, we focus on an uplink
scenario in which a massive MIMO base station serves multiple
high-mobility users. We leverage variational Bayesian (VB) in-
ference for joint channel estimation and data detection (JED),
tailored for time-varying channels. In particular, we use the
VB framework to provide approximations of the true posterior
distributions. To cover more real-world scenarios, we assume the
time correlation coefficients associated with the channels are un-
known. Our simulations demonstrate the efficacy of our proposed
VB-based approach in tracking these unknown time correlation
coefficients. We present two processing strategies within the VB
framework: online and block processing strategies. The online
strategy offers a low-complexity solution for a given time slot,
requiring only the knowledge of the parameters/statistics within
that time slot. In contrast, the block processing strategy focuses
on the entire communication block and processes all received
signals together to reduce channel estimation errors. Additionally,
we introduce an interleaved structure for the online processing
strategy to further enhance its performance. Finally, we conduct
a comparative analysis of our VB approach against the linear
minimum mean squared error (LMMSE), the Kalman Filter
(KF), and the expectation propagation (EP) methods in terms of
symbol error rate (SER) and channel normalized mean squared
error (NMSE). Our findings reveal that our VB framework
surpasses these benchmarks across the performance metrics.

Index Terms—Bayesian inference, detection, estimation, mas-
sive MIMO, time-varying channels, variational Bayesian.

I. INTRODUCTION

The International Telecommunication Union (ITU) esti-
mates that by 2030, over 17 billion devices, such as mobile
phones, unmanned aerial vehicles (UAVs), Internet of Things
(IoT) devices, etc., will be supported via the fifth generation
(5G) and beyond of wireless networks [2]. Consequently, there
is a pressing need to enhance key performance indicators like
data rates, reliability, and spectrum efficiency in 5G networks.
To meet these requirements, a widely recognized solution is
massive multiple-input multiple-output (MIMO) [3]–[6]. This
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involves deploying an array of antennas at the base station
(BS), enabling the simultaneous transmission of multiple data
streams to multiple users, thereby vastly increasing spectral
efficiency and network capacity.

To achieve the aforementioned potential gains, accurate
channel state information (CSI) is essential for both users,
aiding in signal detection, and the BS, facilitating effective
beamforming. This imperative underscores the need for ef-
fective algorithms for channel estimation and data detection.
However, the adoption of massive MIMO results in large chan-
nel matrices, posing a significant challenge in obtaining CSI.
In uplink scenarios, CSI acquisition is typically performed
via known pilot signals, but this method faces scalability
issues as it requires numerous orthogonal pilot signals equal
to or greater than the number of users. Such constraints can
lead to excessive overhead, consequently diminishing spectral
efficiency as the number of users increases.

A. State-of-the-art

To tackle the scalability challenge of channel estimation,
previous studies have proposed blind channel estimation al-
gorithms [7], [8], which rely solely on received signals.
Nevertheless, these approaches are vulnerable to phase am-
biguities present in the demodulated symbols. Semi-blind
channel estimation offers an alternative method to mitigate the
reliance on orthogonal pilot signals. This approach integrates
a limited number of known pilot signals with received signals
to refine the accuracy of the estimation process. In [9], the
research presented Cramer-Rao bounds (CRBs) for channel
estimation methods using semi-blind, blind, and training se-
quence approaches in a single-input multiple-output (SIMO)
network. Next, in [10], the authors investigated two semi-blind
channel estimation techniques based on maximum likelihood
(ML) estimation under deterministic and Gaussian models.
Thereafter, in [11], the emphasis was on semi-blind channel
estimation for multi-user MIMO systems and the authors
proposed two methods based on the expectation maximiza-
tion (EM) framework to estimate the channels. Subsequently,
in [12], the focus was placed on channel estimation within
an uplink multi-cell massive MIMO network. The authors
presented a method that first detects the data from the target
cell and then computes the least square channel estimate by
treating the detected data as pilot signals.

While individual methods for channel estimation and data
detection can yield promising results, joint channel estimation
and data detection (JED) is often preferred in practical settings.
The JED approach achieves lower channel estimation error and
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improved spectral efficiency compared to individual channel
estimation methods. Traditional approaches rely solely on pilot
signals, where longer pilot signals are desirable to reduce
estimation error. However, the long sequence of known pilot
signals degrades spectral efficiency. The JED approach over-
comes this by generating long semi-pilot signals through the
combination of short pilot signals with detected unknown data
symbols. The JED approach leverages the interdependency
between channels and data to continuously refine the perfor-
mance of the channel estimation and data detection processes,
improving overall system performance while maintaining high
spectral efficiency. Thus, the research conducted in [13] delved
into the challenge of JED in hybrid massive MIMO systems.
It introduced two iterative algorithms employing a low-rank
matrix completion method. Next, the study in [14] focused on
a massive MIMO system with generalized spatial modulation
(GSM). It assumed the angular channel model with double
sparsity in both the channels and signals, and developed two
methods, blind and semi-blind, based on message passing to
jointly perform user activity estimation and JED. Then, the
authors in [15] studied the JED problem in an orthogonal
frequency division multiplexing (OFDM) system. They con-
sidered the extended vehicular A (EVA) channel model and
proposed a method based on the EM technique. This approach
identifies reliable data tones from both desired and interfering
users, which are then used as pilots for channel re-estimation.

The above algorithms assume that channels remain un-
changed over the communication time, which holds true
only if users are stationary or have low mobility. However,
5G networks are anticipated to support high-mobility users,
e.g., UAVs and high-speed trains, causing the communica-
tion channels to fluctuate over time due to Doppler spread.
Therefore, efficient channel estimation protocols are essential
for promptly updating channel coefficients throughout the
communication time. In [16]–[18], the authors focused on
time-varying channels as a model that reflects channel aging
in massive MIMO networks. They introduced various channel
estimation techniques based on linear minimum mean squared
error (LMMSE). Then, the work in [19] introduced an EM-
based sparse Bayesian learning (SBL) method for time-varying
channels, tailored for both uplink and downlink communi-
cations. It reformulated time-varying channels as a sparse
signal model using the virtual channel representation and then
followed the SBL method to estimate the time-varying chan-
nels. Subsequently, [20], [21] presented interpolation-based
strategies for channel estimation. The effectiveness of these
methods heavily depends on the number of missing channel
coefficients between pilot signals as well as the length of the
pilot signals. Hence, in [22], the authors proposed a first-order
Taylor expansion channel prediction (FIT-CP) method, which
utilizes the first-order Taylor expansion to predict the missing
channel coefficients in the interpolation-based framework. The
authors demonstrated in [22] that their approach outperforms
interpolation methods as well as traditional channel estimation
approaches. Additionally, [23], [24] used Kalman Filter (KF)
for channel estimation in time-varying channels. Later, [25],
[26] proposed deep learning-based approaches for training
neural networks tailored to the dynamics of time-varying chan-

nels. Recently, [27] proposed a reinforcement learning (RL)-
based data-aided channel estimator for time-varying channels
by formulating the channel estimation problem as a Markov
decision process (MDP) and developing an RL algorithm to
optimize its policy.

In the above algorithms, channel estimation relies solely
on pilot signals, while JED techniques enhance performance
by leveraging both pilots and data symbols. Therefore, [28]
focused on time-varying channels in the uplink of multi-
cell massive MIMO systems and proposed a semi-blind
JED technique, based on the expectation propagation (EP)
algorithm. The EP algorithm is an iterative approach that
uses the factorization structure of the true distributions in
order to approximate the joint a-posteriori distribution of the
unknown channel matrix and data symbols [29], [30]. The
authors in [28] assumed that the time correlation coefficients
associated with the channels are known and fixed. However,
in practice, these coefficients could be unknown and may
even vary slowly during the communication time. As a re-
sult, in this paper, we study an uplink scenario in massive
MIMO systems under time-varying channels with unknown
time correlation coefficients. We introduce a technique based
on variational Bayesian (VB) inference, enabling JED for
time-varying channels. The VB method serves as a statistical
inference framework, tackling the challenge of approximating
the posterior distribution of latent variables by optimizing
simpler distributions from a known family to replace the in-
tractable true posterior distributions. VB inference, originating
from machine learning, has also gained attention in wireless
communications [31]–[36]. The research in [33] applied the
VB method for performing joint carrier frequency offset (CFO)
estimation and JED in an underwater acoustic OFDM system.
Then, in [34], the authors introduced a quantized version of
VB to tackle the channel estimation problem in millimeter-
wave (mmWave) MIMO systems, where each antenna element
is equipped with a low-resolution analog-to-digital converter
(ADC). Furthermore, in [35], the authors studied two-way
relaying time-invariant mmWave channels and proposed a VB-
based approach for channel estimation. Additionally, the study
in [36] investigated massive MIMO systems with orthogonal
time-frequency space (OTFS) modulation and adopted an
EM-based VB framework to estimate uplink sparse channel
parameters.

In this manuscript, we leverage the VB framework to
address the JED problem in time-varying channels and show
via simulations that our VB-based method outperforms state-
of-the-art benchmarks.

B. Contribution

We provide more details about our contributions below:
• We devise a JED technique using VB inference for uplink

scenarios in massive MIMO systems, suited for high-
mobility users experiencing time-varying channels.

• We consider that the BS does not possess knowledge of
the noise variance, emphasizing the impact of residual
inter-user interference in our calculations. Additionally, to
better reflect real-world conditions, we assume the time
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correlation coefficients corresponding to the communica-
tion channels are unknown and let the VB framework
estimate them. Our simulations demonstrate that the pro-
posed VB method yields nearly identical performance in
terms of symbol error rate (SER) compared to a scenario
where the time correlation coefficients are known.

• As the computational complexity could lead to a delay
in the channel estimation process, and thus the risk of
outdated CSI, we design an online VB processing strategy
using only the parameters/statistics of each time slot. We
also develop an interleaved structure to further improve
its performance.

• Since CSI accuracy is essential in massive MIMO sys-
tems, we offer a block processing strategy based on VB
inference, which analyzes all received signals together to
enhance the channel estimation performance.

• We compare the performance of our proposed VB method
with the LMMSE, KF, and EP methods in terms of SER
and channel normalized mean squared error (NMSE). We
show that our VB method outperforms the benchmarks
in all performance metrics.

The rest of this paper is organized as follows. In Section II,
we provide the system model. Then, in Sections III and IV, we
explain the details of our proposed online and block processing
strategies. Section V includes the simulation results of this
work, and Section VI concludes this paper.

C. Notation

In this paper, we use italic, bold lowercase, and bold
uppercase font styles to signify scalars, vectors, and matrices,
respectively. We utilize the notation CN (µ,Σ) to denote a
complex Gaussian random vector with a mean vector µ and
a covariance matrix Σ. Γ(a, b) implies a Gamma distribution
parametrized by a and b. The space of x × y dimensional
complex-valued matrices is denoted by Cx×y . We use ∼ and
∝ to convey the notations of “distributed according to” and
“proportional to,” respectively. diag{a} is a diagonal matrix
based on a. |A|, ∥A∥, ∥A∥F, A⊤, and AH represent the
determinant, Euclidean norm, Frobenius norm, transpose, and
conjugate transpose of A, respectively. The notation [X]ij
denotes the element located at the ith row and jth column of
X. Tr (·) is the trace function, exp {·} denotes the exponential
function, log10 (·) is the logarithmic function with base 10,
and IM stands for the identity matrix of size M . We use x⋆

and ℜ{x} to indicate the complex conjugate and the real part
of x, respectively. The probability density function (PDF) of
a length-K complex-valued random vector x ∼ CN (µ,Σ) is
given by: CN (x;µ,Σ) = 1

πK |Σ|exp
(
−(x−µ)HΣ−1(x−µ)

)
.

Ep(x)[x] and Varp(x)[x] represent the mean and variance of x
according to its distribution p(x). Similarly, ⟨x⟩, ⟨|x|2⟩, and
τx represent the mean, second moment, and variance of x
based on a variational distribution q(x). The subscript t|t− 1
denotes predicted statistics at time t utilizing data from time
t− 1, whereas t|t denotes the posterior estimated statistics at
time t derived from observations made at time t.

Fig. 1. The uplink scenario in a massive MIMO network supporting K single-
antenna users, which could be high-mobility users.

II. SYSTEM MODEL

In this work, we focus on an uplink scenario in a mas-
sive MIMO network, as illustrated in Fig. 1, where a BS
with multiple antennas aims to communicate with multiple
users simultaneously. Specifically, we address a JED problem
within this network, which supports high-mobility users such
as UAVs and high-speed trains that experience time-varying
channels. To tackle the JED problem, we propose a method
based on VB inference to approximate the true posterior
distributions. We begin this section by explaining the channel
model, followed by a quick introduction to VB inference, and
then proceed to formulate the problem.

A. Channel Model

We use hi,t = [h
[1]
i,t, h

[2]
i,t, . . . , h

[M ]
i,t ]⊤ ∈ CM×1 to denote

the communication channel between the ith user and the BS
at time t, where M is the number of antenna elements at
the BS, i ∈ {1, 2, . . . ,K}, and K is the number of users.
We assume each user has a single antenna. In this work, we
utilize the first-order Gauss-Markov model to characterize hi,t

as follows [37]:

hi,t = ηihi,t−1 +
√

1− η2iR
1
2
i gi,t, t = 1, . . . , T, (1)

where hi,0 = R
1
2
i gi,0, T is the communication time, and

gi,t models small-scale fading, which is independent of hi,t−1

and assumed to be Rayleigh fading (i.e., gi,t ∼ CN (0, IM )).
Further, ηi denotes the time correlation coefficient of the
channels corresponding to the ith user, which is given by [37]:

ηi = J0(2πf
d
i Ts), (2)

in which J0(·) denotes the zero-order Bessel function of the
first kind, fd

i is the maximum Doppler frequency correspond-
ing to the channels of the ith user, and Ts is the sampling
period. Moreover, in (1), Ri represents the covariance of hi,t

(i.e., E
[
hi,th

H
i,t

]
= Ri), which is equal to:

Ri = β−1
i R, (3)

where βi is the large-scale fading for the propagation channel
from the ith user, and R denotes the spatial correlation at the
BS. We assume that Ri is known at the BS and use it to
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compute the autocovariance between hi,t−1 and hi,t, which
follows E

[
hi,t−1h

H
i,t

]
= ηiRi. Then, we have:

p(hi,t|hi,t−1, ηi;Ri) = CN
(
hi,t; ηihi,t−1, (1− η2i )Ri

)
.
(4)

We also assume a channel independence among users,
implying that E[hih

H
j ] = 0, 1 ≤ i, j ≤ K and i ̸= j.

Received signal: In our massive MIMO network, the BS
captures ym,t, 1 ≤ m ≤ M, as the received signal through its
mth antenna element at time t, which can be modeled as:

ym,t =
K∑
i=1

h
[m]
i,t xi,t + nm,t, (5)

where h
[m]
i,t is the mth element of hi,t, xi,t is the transmitted

signal from the ith user, and nm,t ∼ CN (0, N0) denotes the
independent and identically distributed (i.i.d.) additive white
Gaussian noise (AWGN) at the mth antenna element during
time t. Subsequently, we arrange the received signals, transmit-
ted signals, communication channels, and noise components
into a vector format to establish a linear model for the received
signals as below:

yt = Htxt + nt, (6)

where yt = [y1,t, y2,t, . . . yM,t]
⊤ ∈ CM×1, xt =

[x1,t, x2,t, . . . , xK,t]
⊤ ∈ CK×1, Ht = [h1,t,h2,t, . . . ,hK,t] ∈

CM×K , and nt = [n1,t, n2,t, . . . nM,t]
⊤ ∈ CM×1.

In this paper, we concentrate on time-varying channels with
the aim of jointly estimating Ht and detecting xt using the
received signal yt. To accomplish this, we propose a method
based on VB inference. Before delving into the details, we
provide a brief overview of VB.

B. An Overview of VB inference

Variational Bayesian (VB) inference stands as a robust
statistical framework derived from machine learning, devised
to address the challenge of approximating the posterior dis-
tribution of latent variables. Here, we denote the set of all
observed variables as y and the set of V latent variables
as x. To detect x, it is crucial to determine the posterior
p(x|y), which often proves computationally intractable. To
tackle this challenge, the VB method endeavors to identify
a distribution q(x) characterized by variational parameters
within a predefined family Q of densities, such that q(x)
closely approximates p(x|y). To this end, VB defines an
optimization problem leveraging the Kullback-Leibler (KL)
divergence from q(x) to p(x|y):

q⋆(x) = arg min
q(x)∈Q

KL
(
q(x)∥p(x|y)

)
, (7)

where q⋆(x) denotes the optimal variational distribution, and

KL
(
q(x)∥p(x|y)

)
= Eq(x)

[
ln q(x)

]
−Eq(x)

[
ln p(x|y)

]
. (8)

The minimization of (7) occurs when q(x) = p(x|y). How-
ever, because obtaining the true posterior distribution is often
infeasible, it is more practical to employ a restricted family of

distributions q(x). Thus, the literature [38] commonly focuses
on the mean-field variational family, defined as:

q(x) =
V∏
i=1

qi(xi), (9)

where the latent variables are assumed to be mutually inde-
pendent, each governed by a distinct factor in the variational
density. In this case, the optimal value of qi(xi) is equal to [31,
Chapter 10]:

q⋆i (xi) ∝ exp
{〈

ln p(y,x)
〉}

, (10)

where ⟨·⟩ is the expectation across all latent variables ex-
cluding xi, utilizing the currently fixed variational density
q−i(x−i) =

∏V
j=1,j ̸=i qj(xj). Then, to optimize (7), we use

the Coordinate Ascent Variational Inference (CAVI) algorithm,
which is an iterative method that ensures convergence to at
least a locally optimal solution [39]. In particular, the CAVI
algorithm updates q⋆i (xi) sequentially for all latent variables
to monotonically enhance the objective function in (7).

C. Problem Formulation

According to (10), in order to apply the VB framework, it
is necessary to compute the joint distribution. Unlike previous
studies [31], [40], we assume that the time correlation ηi and
the noise variance N0 are i.i.d. random variables and unknown
a-priori at the BS. We denote the precision of the noise at time
t as γt = 1/N0. Utilizing these assumptions, we derive the
joint distribution p(yt,Ht,Ht−1,xt, γt,η; R̄) as follows:

p(yt,xt,Ht,Ht−1, γt,η; R̄) = p(yt|xt,Ht, γt)p(xt) (11)
× p(Ht|Ht−1)p(Ht−1|η; R̄)︸ ︷︷ ︸

p(Ht|η;R̄)

p(γt)p(η),

where p(Ht|η; R̄) =
∏K

i=1 p(hi,t|hi,t−1)p(hi,t−1|ηi;Ri),
η = [η1, η2, . . . , ηK ], R̄ = [R1,R2, . . . ,RK ], p(xt) =∏K

i=1 p(xi,t), and p(η) =
∏K

i=1 p(ηi).
In this paper, we utilize the VB framework to approximate

the posterior distribution p(xt,Ht,η, γt|yt). There are two
possible strategies for processing time-varying channels: one
that utilizes information available at time t, which we refer to
as the online processing strategy, and another that processes
all observed signals yt’s together, which we call the block
processing strategy. Each of these strategies has its own
advantages and drawbacks. We explain the details of these
strategies in the next two sections.

III. ONLINE PROCESSING STRATEGY

In this section, we explain the details of our proposed VB-
based online processing strategy designed to address the JED
problem in time-varying channels. The primary objective of
the online processing strategy is to achieve a low-complexity
low-latency solution. To do so, we propose a method that
only requires the parameters and statistics corresponding to the
given time t. Since estimating the channel and detecting data
based on the limited statistics available at time t is challenging,
we introduce a two-phase online processing strategy consisting
of a prediction phase and an estimation phase.
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The prediction phase aims to provide a dynamic prior
distribution for p(hi,t|ηi,Ri) instead of assuming a fixed prior
distribution. To achieve this, we continuously update the prior
distribution for (hi,t|ηi,Ri) using the information available
at time t − 1. Following the prediction phase, the estimation
phase is employed to complete the online processing strategy
by estimating the corresponding channel Ht and detecting the
data symbol xt at a given time t. The details of these two
phases are presented below.”

Phase I - Prediction: In (11), we need to find the prob-
ability p(hi,t|ηi;Ri) = p(hi,t|hi,t−1)(hi,t−1|ηi;Ri) in order
to compute the desired joint distribution. In this phase, our
goal is to find a predictive distribution for p(hi,t|ηi;Ri) at
time t, using the statistics available at time t − 1, which
will later be used in Phase II. To this end, we calculate the
posterior distribution of p(hi,t−1|ηi;Ri) at time slot t−1 using
the Gauss-Markov model in (1), and then consider it as the
prior distribution for p(hi,t|ηi;Ri) at time slot t. Moreover,
according to the VB framework, the prior distributions of the
channels are necessary to obtain their posterior distributions.
In this case, we assume the prior distribution p(hi,t−1) =
CN
(
hi,t−1; ĥi,t−1|t−1, Σ̂i,t−1|t−1

)
. If ηi is known, we use

the prior distribution p(hi,t−1) and the Gauss-Markov model
in (1) to derive the predictive distribution p(hi,t|ηi,Ri) as
below:

p(hi,t|ηi,Ri) = CN (hi,t; ĥi,t|t−1, Σ̂i,t|t−1), (12)

where

ĥi,t|t−1 = ηiĥi,t−1|t−1. (13)

Σ̂i,t|t−1 = η2i Σ̂i,t−1|t−1 + (1− η2i )Ri. (14)

Remark 1. In this work, we assume ηi is an unknown
random variable, and the prior distribution p(ηi) is a con-
jugate probability. To achieve this, we assume p(ηi) =
N
(
ηi; η̂i,t−1, τ

η
i,t−1

)
. However, this assumption may result in

ηi being less than 0 or exceeding 1, even though it must always
lie within the range 0 ≤ ηi ≤ 1. On the other hand, after a few
iterations of the CAVI algorithm, we expect the variance τηi,t−1

to decrease progressively, causing the algorithm to concentrate
around the mean η̂i,t−1. Therefore, it is crucial to select the
initial value of η̂i,t−1 carefully, ensuring it is close to the true
value. As a result, we reset the initial value of η̂i,t−1 if it is
less than 0 or exceeds 1, which ensures that ηi always remains
within its acceptable range.

In statistical models, when it is challenging to obtain an
accurate closed-form distribution of a random variable, that
variable is typically approximated by its mean value. This is
based on the expectation that its variance will become progres-
sively smaller throughout the statistical process. Therefore, in
this paper, we update (14) by approximating the predictive
covariance Σ̂i,t|t−1 using the second moment of ηi at time slot
t−1. In particular, we replace η2i with E(η2i ) = η̂2i,t−1+τηi,t−1.
Here, we have:

Σ̂i,t|t−1 ≈ (η̂2i,t−1 + τηi,t−1)Σ̂i,t−1|t−1

+ (1− η̂2i,t−1 − τηi,t−1)Ri. (15)

TABLE I
THE PRIOR DISTRIBUTION ASSUMPTIONS FOR THE UNKNOWN RANDOM

VARIABLES IN THE ONLINE PROCESSING VB STRATEGY

Probability Prior Distribution Assumption

p(hi,t−1) CN
(
hi,t−1; ĥi,t−1|t−1, Σ̂i,t−1|t−1

)
p(ηi) N

(
ηi; η̂i,t−1, τ

η
i,t−1

)
p(γt) Γ(a0, b0)

p(xi,t)(pilot transmission) δ(xi,t − x̄i,t)
p(xi,t)(data transmission)

∑
a∈S paδ(xi,t − a)

Phase II - Estimation: In this phase, our objective is to
derive Bayesian optimal estimates for both the data symbol
xt and the channel matrix Ht. To accomplish this, we require
the posterior distribution p(xt,Ht,η, γt|yt), which could be
challenging to obtain. Consequently, we employ the mean-
field variational distribution q(xt,Ht,η, γt) proposed within
the VB framework in the following manner:

p
(
xt,Ht,η, γt|yt

)
≈ q(xt,Ht,η, γt) (16)

=

[
K∏
i=1

qi(xi,t)q(hi,t)q(ηi)

]
q(γt).

According to (10), in order to get the optimal solution of
the variational densities in (16), we need the joint distribution
p(yt,xt,Ht,η, γt), which is equal to:

p(yt,xt,Ht, γt) = p(yt|xt,Ht,η, γt)

×

[
K∏
i=1

p(xi,t)p(hi,t|ηi;Ri)p(ηi)

]
p(γt). (17)

In (17), besides considering p(hi,t|ηi;Ri) and p(ηi), we
also need to specify the prior distributions for γt and xi,t.

Remark 2. In MIMO systems, γt is typically assumed to be a
known and fixed parameter [23], [28]. However, recent studies
[32], [33] have considered γt as an unknown parameter and
applied statistical methods to estimate it. Specifically, [33]
utilized the EM method to approximate γt, while [32] assumed
it follows a Gamma distribution and leveraged the VB method
to obtain γt. In this paper, motivated by these works, we
assume γt ∼ Γ(a0, b0) to capture both the impact of noise
and the estimation error in our process, and we then use the
CAVI algorithm to find its local optimum solution.

Assumptions about the prior distribution of xi,t vary de-
pending on whether we are in the pilot transmission phase
or data transmission phase. In this study, we divide the total
communication time T into two parts: the pilot transmission
phase with duration Tp followed by the data transmission
phase with duration Td, where Tp + Td = T . If 1 ≤ t ≤ Tp,
the prior distribution of xi,t is simply p(xi,t) = δ(xi,t− x̄i,t),
where x̄i,t represents the pilot data symbol from the ith

user at time t and δ(·) is the Dirac delta function. For
Tp < t ≤ T , the prior distribution of xi,t is expressed
as p(xi,t) =

∑
a∈S paδ(xi,t − a), where pa denotes the

probability of the constellation point a ∈ S and S represents
the signal constellation.

In Table I, we summarize the prior distribution assumptions
for the desired unknown random variables p(ht−1), p(ηi),
p(γt), and p(xi,t).
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As previously discussed in Section II, the CAVI algorithm
iteratively converges to local optimum solutions q⋆(hi,t),
q⋆(ηi), q⋆(xi,t), and q⋆(γt) by optimizing one latent variable
at a time while keeping the others fixed. In the subsequent
parts, we illustrate the update process for each latent variable.

1) Updating hi,t: By computing the expectation of (17) for
all latent variables except for hi,t, we express the variational
distribution q(hi,t) as (18) (at the top of the next page), which
shows that q(hi,t) is Gaussian with the subsequent covariance
matrix and mean:

Σi,t =
[
⟨γt⟩⟨|xi,t|2⟩IM + Σ̂

−1

i,t|t−1

]−1

, (19)

⟨hi,t⟩ = Σi,t

[
⟨γt⟩

(
yt −

K∑
j ̸=i

⟨hj,t⟩⟨xj,t⟩
)
⟨x∗

i,t⟩

+ ⟨ηi⟩Σ̂
−1

i,t|t−1ĥi,t−1|t−1

]
. (20)

2) Updating ηi: If we take the expectation of (17) with
respect to all latent variables except for ηi, we obtain the
variational distribution q(ηi) as (21) (on the next page), which
is Gaussian. In this case, the variance and mean of q(ηi) are
given by:

τηi,t =
(
ĥH
i,t−1|t−1Σ̂

−1

i,t|t−1ĥi,t−1|t−1 + 1/τηi,t−1

)−1

, (22)

⟨ηi⟩ = τηi,t

(
ℜ
{
ĥH
i,t−1|t−1Σ̂

−1

i,t|t−1⟨hi,t⟩
}
+

η̂i,t−1

τηi,t−1

)
. (23)

We utilize the following lemma to compute the variational
posterior mean of several random variables. We employ this
lemma later in this section to update xi,t and γt.

Lemma 1. [32] Let A ∈ Cm×n and x ∈ Cn×1 be
two independent random matrices (vectors) with respect to
a variational density qA,x(A,x) = qA(A)qx(x). Suppose
A is column-wise independent and ⟨ai⟩ and Σ̂ai are the
variational mean and covariance matrix of the ith column of
A. Let ⟨x⟩ and Σ̂x be the variational mean and covariance
matrix of x. Consider y ∈ Cm×1 is an arbitrary vector. Here,〈
∥y −Ax∥2

〉
, the expectation of ∥y −Ax∥2 with respect to

qA,x(A,x), is given by:〈
∥y −Ax∥2

〉
= ∥y − ⟨A⟩⟨x⟩∥2 + ⟨x⟩HD⟨x⟩
+Tr

{
Σ̂xD

}
+Tr

{
Σ̂x⟨AH⟩⟨A⟩

}
, (24)

where D = diag
(
Tr{Σa1}, . . . ,Tr{Σan}

)
.

Proof: We first expand
〈
∥y −Ax∥2

〉
as follows:〈

∥y −Ax∥2
〉
= ∥y∥2 − 2ℜ

{
yH⟨Ax⟩

}
+ ⟨xHAHAx⟩

= ∥y − ⟨A⟩⟨x⟩∥2 − Tr
{
⟨AH⟩⟨A⟩⟨x⟩⟨xH⟩

}
+Tr

{
⟨AHA⟩⟨xxH⟩

}
. (25)

We know that ⟨xxH⟩ = ⟨x⟩⟨xH⟩+Σ̂x. Moreover, we have:

[⟨AHA⟩]ij =

{
⟨∥ai∥2⟩, i = j
⟨aHi aj⟩, i ̸= j

=

{
⟨aHi ⟩⟨ai⟩+Tr{Σai}, i = j
⟨aHi ⟩⟨aj⟩, i ̸= j,

(26)

which results in:

⟨AHA⟩ = ⟨A⟩H⟨A⟩+D. (27)

Then, we use (26) and (27) to obtain the following expres-
sion:

Tr
{
⟨AHA⟩⟨xxH⟩

}
= Tr

{
⟨AH⟩⟨A⟩⟨x⟩⟨xH⟩

}
+ ⟨x⟩HD⟨x⟩

+Tr
{
Σ̂xD

}
+Tr

{
Σ̂x⟨AH⟩⟨A⟩

}
. (28)

Finally, we apply (28) to (25) and remove the duplicated
terms to prove (24).

Corollary 1. Given x is deterministic,
〈
∥y − Ax∥2

〉
is

simplified to:〈
∥y −Ax∥2

〉
= ∥y − ⟨A⟩x∥2 +

n∑
i=1

|xi|2Tr{Σ̂ai
}. (29)

Proof: We derive (29) by setting Σ̂x = 0 and xHDx =∑n
i=1 |xi|2Tr{Σ̂ai

} in Lemma 1.
3) Updating xi,t: We only use this update when Tp < t ≤

T . In this part, we take the expectation of (17) with respect
to all latent variables except for xi,t to find the variational
distribution qi(xi,t) as below:

qi(xi,t)

∝ exp
{〈

ln p(yt|xt,Ht, γt) + ln p(xi,t)
〉}

∝ p(xi,t) exp
{〈

− γt
∥∥yt −Htxt

∥∥2〉}
∝ p(xi,t) exp

{
−⟨γt⟩

〈∥∥∥∥yt − hi,txi,t −
K∑
j ̸=i

hj,txj,t

∥∥∥∥2〉}
∝ p(xi,t) exp

{
−⟨γt⟩

[〈
∥hi,t∥2

〉
|xi,t|2

− 2ℜ
{〈

hH
i,t

〉(
yt −

K∑
j ̸=i

〈
hj,t

〉
⟨xj,t⟩

)
x∗
i,t

}]}
∝ p(xi,t) exp

{
−⟨γt⟩

〈
∥hi,t∥2

〉
|xi,t − zi,t|2

}
, (30)

where

zi,t ≜
⟨hH

i,t⟩〈
∥hi,t∥2

〉(yt −
K∑
j ̸=i

⟨hj,t⟩⟨xj,t⟩

)
, (31)

acts as a linear estimate of xi,t. In (31), we use Corollary 1
to compute

〈
∥hi,t∥2

〉
as follows:〈

∥hi,t∥2
〉
= ∥⟨hi,t⟩∥2 +Tr{Σ̂i,t}. (32)

Since the prior distribution p(xi,t) is discrete, the variational
distribution qi(xi,t) is also discrete. Therefore, we need to
normalize it such that:

qi(a) =
pa exp

{
−⟨γt⟩

〈
∥hi,t∥2

〉
|a− zi,t|2

}∑
b∈S pb exp

{
−⟨γt⟩

〈
∥hi,t∥2

〉
|a− zi,t|2

} , ∀a ∈ S.

(33)

As a result, the variational mean and variance of xi,t are
equal to:

⟨xi,t⟩ =
∑
a∈S

aqi(a), (34)

τxi,t =
∑
a∈S

|a|2qi(a)− |⟨xi,t⟩|2. (35)
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q(hi,t) ∝ exp
{〈

ln p(yt|xt,Ht, γt) + ln p(hi,t|ηi;Ri)
〉}

∝ exp
{
−
〈
γt
∥∥yt −Htxt

∥∥2〉−〈(hi,t − ηiĥi,t−1|t−1)
HΣ̂

−1

i,t|t−1(hi,t − ηiĥi,t−1|t−1)

〉}
∝ exp

{
−
〈
γt

∥∥∥∥yt − hi,txi,t −
K∑
j ̸=i

hj,txj,t

∥∥∥∥2〉−
〈
(hi,t − ηiĥi,t−1|t−1)

HΣ̂
−1

i,t|t−1(hi,t − ηiĥi,t−1|t−1)

〉}
∝ exp

{
− hH

i,t

[
⟨γt⟩⟨|xi,t|2⟩IM + Σ̂

−1

i,t|t−1

]
hi,t

+ 2ℜ
{
⟨γt⟩hH

i,t

(
yt −

K∑
j ̸=i

⟨hj,t⟩⟨xj,t⟩
)
⟨x∗

i,t⟩+ ⟨ηi⟩hH
i,tΣ̂

−1

i,t|t−1ĥi,t−1|t−1

}}
. (18)

q(ηi) ∝ exp
{〈

ln p
(
hi,t|ηi;Ri

)
+ ln p

(
ηi
)〉}

∝ exp
{
−
〈(

hi,t − ηiĥi,t−1|t−1

)H
Σ̂

−1

i,t|t−1

(
hi,t − ηiĥi,t−1|t−1

)〉
− ∥ηi − η̂i,t−1∥2/τηi,t−1

}
∝ exp

{
− η2i

(
ĥH
i,t−1|t−1Σ̂

−1

i,t|t−1ĥi,t−1|t−1 + 1/τηi,t−1

)
+ 2ηi

(
ℜ
{
ĥH
i,t−1|t−1Σ̂

−1

i,t|t−1⟨hi,t⟩
}
+

η̂i,t−1

τηi,t−1

)}
, (21)

4) Updating γt: In the last part of the CAVI algorithm,
we compute q(γt). To achieve this, we take the expectation
of (17) with respect to all latent variables except for γt, to
derive the variational distribution q(γt) as follows:

q(γt) ∝ exp
{〈

ln p(yt|xt,Ht, γt) + ln p(γt)
〉}

∝ exp
{
M ln γt − γt

〈
∥yt −Htxt∥2

〉
+ (a0 − 1) ln γt − b0γt

}
. (36)

Based on (36), q(γt) is Gamma distribution with mean

⟨γt⟩ =
a0 +M

b0 +
〈
∥yt −Htxt∥2

〉 , (37)

where
〈
∥yt − Htxt∥2

〉
= ∥yt − ⟨Ht⟩⟨xt⟩∥2 +

K∑
i=1

[
τxi,t∥⟨hi,t⟩∥2 + ⟨|xi,t|2⟩Tr{Σi,t}

]
using Lemma 1.

The block diagram of the online processing strategy is
shown in Fig. 2(a), where we use solid gray circles to denote
variables (parameters) that are either known or can be obtained
through prior distribution. Additionally, we use dashed orange
circles to denote variables that need to be estimated.

Note that the Gaussian variational distributions of hi,t and
ηi, along with the Gamma variational distribution of γt, justify
the three assumptions made earlier in Table I. In Algorithm 1,
we demonstrate the details of our online processing strategy
using the CAVI algorithm. Here, we use Y = [y1,y2, . . . ,yT ],
X = [x1,x2, . . . ,xT ], and H = [H1,H2, . . . ,HT ]. We
define the convergence condition to occur when the number
of iterations reaches its maximum value Itr.

As discussed, the online processing strategy focuses only
on the information available at time t, which leads to a low-
complexity low-latency JED approach. However, due to its
limited information, it cannot fully eliminate errors in channel
estimation and data detection, resulting in error propagation
in the JED process. To mitigate JED errors, we propose block
processing, which is explained in detail in the next section.

Algorithm 1: The Online Processing Strategy

1 Input: Y, ĥi,0|0, Σ̂i,0|0, prior distribution pa, ∀a ∈ S , prior
distribution p(ηi) (i.e., η̂i,0 and τη

i,0), prior distribution
p(γt) (i.e., a0 and b0), and Itr;

2 Output: X, H, η, and γt;
3 for t = 1, 2, . . . , T do
4 if Tp < t ≤ T then
5 Initialize ⟨xt⟩ = 0;
6 for i = 1, 2, . . . ,K do
7 Use (13) and (14) to predict the prior distribution of

hi,t;
8 Set ⟨hi,t⟩ = ĥi,t|t−1, Σi,t = Σ̂i,t|t−1;
9 Compute ⟨ηi⟩ and ⟨γt⟩ based on the prior

distributions of ηi and γt;
10 repeat
11 for i = 1, 2, . . . ,K do
12 Find the distribution q(hi,t) using (18);
13 Obtain Σi,t and ⟨hi,t⟩ using (19) and (20);
14 for i = 1, 2, . . . ,K do
15 Attain the distribution q(ηi) as in (21);
16 Determine τη

i,t and ⟨ηi⟩ using (22) and (23);
17 if Tp < t ≤ T then
18 for i = 1, 2, . . . ,K do
19 Get the distribution qi(xi,t) as in (30);
20 Calculate ⟨xi,t⟩ and τx

i,t based on (34)
and (35);

21 Compute ⟨γt⟩ as in (37);
22 until convergence;
23 Set ĥi,t|t = ⟨hi,t⟩, Σ̂i,t|t = Σi,t, η̂i,t = ⟨ηi⟩, and γt = ⟨γt⟩;
24 Calculate x̂i,t = arg maxa∈S qi(a).

IV. BLOCK PROCESSING STRATEGY

In real-world massive MIMO systems, the BS typically
estimates uplink channels and uses them for downlink beam-
forming to enhance data rates and quality of service (QoS),
making accurate channel estimation essential. In this section,
we propose a block processing strategy to reduce channel
estimation errors. The concept of block processing originates
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Fig. 2. Block diagram of (a) online processing and (b) block processing strategies.

from estimation theory, where the estimation error decreases
as more observed signals become available. We first formulate
the problem, where the communication block spans the entire
communication time, stacking all received signals from time
1 to T and processing them together. Next, we introduce a
scheme for acquiring Bayesian optimal estimates of Ht and
xt, and then apply the CAVI algorithm to sequentially update
variables to obtain a local optimal solution.

A. Problem Formulation

Similar to the online strategy in Section III, we assume ηi
and γt are i.i.d. unknown variables. Then, we compute joint
distribution p(Y,X,H1, . . . ,HT ,γ,η; R̄) as below:

p(Y,X,H1, . . . ,HT ,γ,η; R̄) =

[
T∏

t=1

p(Ht|Ht−1,η;Ri)

]

×

[
T∏

t=1

p(yt|xt,Ht, γt)p(xt)p(γt)

]
p(η)p(H0), (38)

where γ = [γ1, γ2, . . . , γT ] and p(H0) =
∏K

i=1 p(hi,0) is
the prior channel distribution. In this case, to compute the
conditional probability p(hi,t|hi,t−1, ηi;Ri), we use (4) and
rewrite it as:

p(hi,t|hi,t−1, ηi;Ri) = CN
(
hi,t; ηihi,t−1, ν

−1
i Ri

)
, (39)

where νi
△
= (1−η2i )

−1. In the following subsection, we apply
the VB framework to estimate νi.

B. Estimation phase

In this part, we focus on the entire communication block
for JED. Unlike online processing, we simplify the process by
bypassing the prediction phase, and then we solely rely on the
estimation phase to derive the Bayesian optimal estimates for
Ht and xt. We achieve this through the posterior distribution
p (X,H1, . . . ,HT ,γ,η|Y). Although (39) shows that νi and
ηi are dependent, in the estimation process, we assume these
two variables are independent and hope to estimate νi such
that ⟨νi⟩ =

(
1− ⟨ηi⟩2

)−1
. Our simulation results in Section

V will validate this assumption. Therefore, we replace
the posterior distribution p (X,H1, . . . ,HT ,γ,η|Y) by
p (X,H1, . . . ,HT ,γ,η,ν|Y), where ν = [ν1, ν2, . . . , νK ].

Then, we use the mean-field variational distri-
bution q (X,H1, . . . ,HT ,γ,η,ν) to approximate
p (X,H1, . . . ,HT ,γ,η,ν|Y), which is given by:

p (X,H1, . . . ,HT ,γ,η,ν|Y) ≈ q (X,H1, . . . ,HT ,γ,η,ν)

=
K∏
i=1

T∏
t=1

qi(xi,t)q(hi,t)q(ηi)q(νi)q(γt). (40)

Further, referring to (10), the optimal solution for the
variational densities in (40) requires the joint distribution
p(Y,X,H1, . . . ,HT ,γ,η,ν; R̄). To obtain this, one can fac-
torize p(Y,X,H1, . . . ,HT ,γ,η,ν; R̄) as follows:

p(Y,X,H1, . . . ,HT ,γ,η,ν; R̄) =

[
K∏
i=1

p(ηi)p(hi,0)

]

×

[
K∏
i=1

p(νi)

][
K∏
i=1

T∏
t=1

p(hi,t|hi,t−1, ηi, νi;Ri)

]

×

[
T∏

t=1

p(yt|xt,Ht, γt)

[
K∏
i=1

p(xi,t)

]
p(γt)

]
. (41)

In this strategy, we need the prior probabilities p(ηi),
p(γt), p(hi,t|hi,t−1, ηi, νi;Ri), p(xi,t), and p(νi) to attain the
variational distributions in (40), which are outlined in Table II.
We show the block diagram of the block processing strategy
in Fig. 2(b).

TABLE II
THE PRIOR DISTRIBUTION ASSUMPTIONS FOR THE UNKNOWN RANDOM

VARIABLES INVOLVED IN q (X,H1, . . . ,HT ,γ,η,ν)

Probability Prior Distribution Assumption

p(hi,t|hi,t−1, ηi, νi;Ri) CN
(
hi,t; ηihi,t−1, ν

−1
i Ri

)
p(γt) Γ(a0,b, b0,b)
p(ηi) N

(
ηi; η̂i,b, τ

η
i,b

)
p(νi) Γ(āi,b, b̄i,b)

p(xi,t)(pilot transmission) δ(xi,t − x̄i,t)
p(xi,t)(data transmission)

∑
a∈S paδ(xi,t − a)

C. The CAVI algorithm

Here, akin to the approach used in online processing, we
apply the iterative CAVI algorithm to determine the local
optimal solutions for q⋆(xi,t), q⋆(hi,t), q⋆(ηi), q⋆(γt), and
q⋆(νi). It is important to note that the updating process for
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xi,t and γt closely resembles the procedure employed in the
online processing strategy. Thus, we only provide the specifics
of updating hi,t, ηi, and νi in this subsection.

1) Updating hi,t: In Section III, we compute q(hi,t) based
on the predictive distribution and the conditional probability
p(yt|Ht,xt, γt) at time t. However, as shown in (41), the
block processing strategy requires three conditional prob-
abilities that have hi,t as a factor, i.e., p(yt|Ht,xt, γt),
p(hi,t|hi,t−1, ηi, νi;Ri), and p(hi,t+1|hi,t, ηi, νi;Ri) to de-
rive q(hi,t). By taking the expectation of the conditional
probability in (41) with respect to all latent variables except
for hi,t, the variational distribution q(hi,t) is given in (44) (at
the top of the next page), which is Gaussian with covariance
Σi,t and mean ⟨hi,t⟩, as outlined below:

Σi,t =
[
⟨γt⟩⟨|xi,t|2⟩IM +

(
1 + ⟨η2i ⟩

)
⟨νi⟩R−1

i

]−1

, (42)

⟨hi,t⟩ = Σi,t

[
⟨γt⟩

(
yt −

K∑
j ̸=i

⟨hj,t⟩⟨xj,t⟩
)
⟨x∗

i,t⟩ +

⟨ηi⟩⟨νi⟩R−1
i (hi,t+1 + hi,t−1)

]
. (43)

2) Updating ηi: Taking the expectation of the conditional
probability in (41) with respect to all latent variables except
for ηi, we obtain the variational distribution q(ηi) as presented
in (45) (on the next page). Specifically, to derive q(ηi), we
require the conditional channel probabilities throughout the
entire block and the prior probability of p

(
ηi; η̂i,b, τ

η
i,b

)
. Notice

η̂i,b = η̂i,0 and τηi,b = τηi,0 in (45). Here, the variational
distribution q(ηi) is Gaussian with the following variance and
mean:

τηi,t =
(
⟨νi⟩

T∑
t=1

⟨hi,t−1⟩HR−1
i ⟨hi,t−1⟩+ 1/τηi,t−1

)−1

,

(46)

⟨ηi,t⟩ = τηi,t

(
ℜ
{
⟨νi⟩

T∑
t=1

⟨hi,t−1⟩HR−1
i ⟨hi,t⟩

}
+

η̂i,t−1

τηi,t−1

)
.

(47)

3) Updating νi: In this case, we assume νi is independent
of ηi and subsequently employ the VB framework to estimate
the variational distribution q(νi). To derive q(νi), the following
lemma is essential:

Lemma 2. [41] Let A ∈ Cm×n, x ∈ Cn×1, and y ∈ Cm×1

be three independent random matrices (vectors) with respect
to a variational density qA,x,y(A,x,y) = qA(A)qx(x)qy(y).
Suppose A is column-wise independent and let ⟨ai⟩ and Σai

denote the variational mean and covariance matrix of the ith

column of A. Let ⟨x⟩ and Σx represent the variational mean
and covariance matrix of x, respectively. Further, assume
⟨y⟩ and Σy are the variational mean and covariance matrix
of y, respectively. Then, for an arbitrary Hermitian matrix
R, we define

〈
(y −Ax)

H
R (y −Ax)

〉
as the expectation

of (y −Ax)
H
R (y −Ax) with respect to qA,x,y(A,x,y).

Here, we have:〈
(y −Ax)

H
R (y −Ax)

〉
= ⟨x⟩HD⟨x⟩+Tr

{
ΣxD

}
+
(〈
y
〉
− ⟨A⟩⟨x⟩

)H
R (⟨y⟩ − ⟨A⟩⟨x⟩)

+ Tr
{
RΣy

}
+Tr

{
Σx⟨AH⟩R⟨A⟩

}
, (48)

where D = diag
(
Tr{RΣa1}, . . . ,Tr{RΣan}

)
.

Proof: We omit the proof of this lemma since it is similar
to the proof of Lemma 1.

By taking the expectation of the probability in (41) with
respect to all latent variables except for νi, we have:

q(νi) ∝ exp
{〈 T∑

t=1

ln p
(
hi,t|hi,t−1, ηi, νi;Ri

)
(49)

+ ln p
(
νi; āi,t−1, b̄i,t−1

)〉}
∝ exp

{
TM ln νi + (āi,t−1 − 1) ln νi − b̄i,t−1νi

− νi

〈 T∑
t=1

(
hi,t − ηihi,t−1

)H
R−1

i

(
hi,t − ηihi,t−1

)〉}
.

Thus, the variational distribution q(νi) is Γ(āi,t, b̄i,t),
where:

āi,t = āi,t−1 + TM, (50)

and b̄i,t is given in (51) (on the next page). Here, ⟨νi⟩ is equal
to āi,t/b̄i,t. In Algorithm 2, we explain the details of how
our block processing strategy utilizes the CAVI algorithm to
optimize q(hi,t), qi(xi,t), q(ηi), q(νi), and q(γt).

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
VB-based approaches in time-varying channels. We consider
a JED problem in a massive MIMO network supporting
K = 4 high-mobility users. Initially, we focus on the online
processing strategy and compare its performance with three
baselines (i.e., the LMMSE, KF, and EP methods) in terms of
SER under two cases: (i) when ηi is fixed and (ii) when it is a
random variable. Furthermore, we compare the computational
complexity and channel NMSE of our proposed online strategy
with the benchmarks, where NMSE is given by:

NMSE (dB) = 10 log10

(
∥H− Ĥ∥2F

∥H∥2F

)
. (52)

Subsequently, we use an interleaved structure to enhance the
SER performance of the VB-based online strategy. Finally, we
assess the performance of both our online and block processing
strategies in terms of SER and channel NMSE.

Throughout this section, we use Itr = 50, Tp = 8, and
Td = 128 to represent the maximum number of iterations
for the CAVI algorithm and the KF and EP methods, the pilot
transmission time, and the data transmission time, respectively.

We normalize the covariance matrix Ri ∀i such that its
diagonal elements are all set to 1/M , resulting in E[|hi|2] = 1.
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q(hi,t) ∝ exp

{〈
ln p(yt|xt,Ht, γt) + ln p(hi,t|hi,t−1, ηi, νi;Ri) + ln p(hi,t+1|hi,t, ηi, νi;Ri)

〉}
∝ exp

{
−
〈
γt
∥∥yt −Htxt

∥∥2〉−〈(hi,t − ηihi,t−1)
HνiR

−1
i (hi,t − ηihi,t−1)

〉
−
〈
(hi,t+1 − ηihi,t)

HνiR
−1
i (hi,t+1 − ηihi,t)

〉}
∝ exp

{
−
〈
γt

∥∥∥∥yt − hi,txi,t −
K∑
j ̸=i

hj,txj,t

∥∥∥∥2〉−
〈
(hi,t − ηihi,t−1)

HνiR
−1
i (hi,t − ηihi,t−1)

〉
−
〈
(hi,t+1 − ηihi,t)

HνiR
−1
i (hi,t+1 − ηihi,t)

〉}
∝ exp

{
− hH

i,t

[
⟨γt⟩⟨|xi,t|2⟩IM +

(
1 + ⟨η2i ⟩

)
⟨νi⟩R−1

i

]
hi,t

+ 2ℜ
{
⟨γt⟩hH

i,t

(
yt −

K∑
j ̸=i

⟨hj,t⟩⟨xj,t⟩
)
⟨x∗

i,t⟩+ ⟨ηi⟩⟨νi⟩hH
i,tR

−1
i (hi,t+1 + hi,t−1)

}}
. (44)

q(ηi) ∝ exp
{〈 T∑

t=1

ln p
(
hi,t|hi,t−1, ηi, νi;Ri

)
+ ln p

(
ηi; η̂i,t−1, τ

η
i,t−1

)〉}
(45)

∝ exp
{
−
〈 T∑

t=1

(
hi,t − ηihi,t−1

)H
νiR

−1
i

(
hi,t − ηihi,t−1

)〉
− ∥ηi − η̂i,t−1∥2/τηi,t−1

}
∝ exp

{
− η2i

(
⟨νi⟩

T∑
t=1

⟨hi,t−1⟩HR−1
i ⟨hi,t−1⟩+ 1/τηi,t−1

)
+ 2ηi

(
ℜ
{
⟨νi⟩

T∑
t=1

⟨hi,t−1⟩HR−1
i ⟨hi,t⟩

}
+

η̂i,t−1

τηi,t−1

)}
,

b̄i,t = b̄i,t−1 +
〈 T∑

t=1

(
hi,t − ηihi,t−1

)H
R−1

i

(
hi,t − ηihi,t−1

)〉
= b̄i,t−1 +

T∑
t=1

(
⟨hi,t⟩ − ⟨ηi⟩⟨hi,t−1⟩

)H

R−1
i

(
⟨hi,t⟩ − ⟨ηi⟩⟨hi,t−1⟩

)
+

T∑
t=1

Tr
{
R−1

i Σi,t

}
+

T∑
t=1

τηi,t⟨hi,t−1⟩HTr{R−1
i }⟨hi,t−1⟩+

T∑
t=1

Tr
{
τηi,tΣi,t−1Tr{R−1

i }
}
+

T∑
t=1

Tr
{
Σi,t−1⟨ηi,t⟩R−1

i ⟨ηi,t⟩
}}

, (51)

Subsequently, the noise variance N0 is determined using the
signal-to-noise ratio (SNR), given by:

SNR =
E[∥Hx∥2]
E[∥n∥2]

=

∑K
i=1 Tr(Ri)

MN0
=

K

MN0
. (53)

To model the correlated channels, we consider the exponen-
tial spatial correlation model [42] for each column of Ht, in
which the covariance matrix Ri is set to:

[Ri]kℓ =

{
1
M αk−ℓ, if k ≥ ℓ,
1
M

(
αℓ−k

)∗
, if k < ℓ,

(54)

where 1 ≤ k, ℓ ≤ M , and α is the (complex) correlation
coefficient between neighboring receive antennas.

Further, we use the LMMSE channel estimation method to
find ĥi,0|0 and Σ̂i,0|0. We also initialize pa = 1/|S|, η̂i,0 =
0.95, τηi,0 = 10−3, āi,0 = 10−4, b̄i,0 = 10−4, a0 = 10−4, and
b0 = 10−4, where |S| denotes the cardinality of S . Ultimately,
we evaluate the simulation results across 1000 trials.

A. Performance of Online Processing VB

In this part, we evaluate the effectiveness of the proposed
online strategy within the VB framework. To accomplish this,
we use the LMMSE, KF, and EP methods [28] as benchmarks
and compare them with our approach. Also, to gain deeper
insights into the performance of the online VB method, we
employ another benchmark where the VB method knows ηi.

We first focus on the SER metric and examine two cases:
one where ηi remains constant and another where it varies as
a random variable with minor fluctuations.

Case I – ηi is fixed: We assume correlated channels with
α = 0.5+j0.5 when M = 32, K = 4, and ηi = 0.985, where
ηi is unknown at the BS. Notice that ηi = 0.985 signifies the
Doppler frequency of the ith high-mobility user traveling at a
velocity of 158 Km/h [28]. Then, we let the VB framework
estimate and track this parameter. Fig. 3 illustrates the SER
versus SNR using quadrature phase-shift keying (QPSK). As
depicted in Fig. 3, both VB-based approaches, with known and
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Algorithm 2: The Block Processing Strategy

1 Input: Y, ĥi,0|0, Σ̂i,0|0, prior distribution pa, ∀a ∈ S , prior
distribution p(ηi) (i.e., η̂i,0 and τη

i,0), prior distribution
p(νi) (i.e., āi,0 and b̄i,0), prior distribution p(γt) (i.e., a0

and b0), and Itr;
2 Output: X, H, η, ν, and γt;
3 for t = 1, 2, . . . , T do
4 if Tp < t ≤ T then
5 Initialize ⟨xt⟩ = 0;
6 for i = 1, 2, . . . ,K do
7 Compute ⟨ηi⟩, νi, and ⟨γt⟩ based on the prior

distributions of ηi, νi, and γt;
8 repeat
9 for t = 1, 2, . . . , T do

10 for i = 1, 2, . . . ,K do
11 if t = 1 then
12 Set hi,t−1 = ĥi,0|0;
13 Follow Algorithm 1 to compute hi,t+1;
14 else if t = T then
15 Set hi,t+1 = ⟨ηi⟩ĥi,0|0;
16 else
17 Follow Algorithm 1 to compute hi,t+1;
18 Find the distribution q(hi,t) using (44);
19 Obtain Σi,t and ⟨hi,t⟩ using (42) and (43);
20 for t = 1, 2, . . . , T do
21 for i = 1, 2, . . . ,K do
22 Attain the distribution q(ηi) as in (45);
23 Determine τη

i,t and ⟨ηi⟩ using (46) and (47);
24 for t = 1, 2, . . . , T do
25 for i = 1, 2, . . . ,K do
26 Find the distribution q(νi) as in (49);
27 Compute āi,t and b̄i,t using (50) and (51);
28 for t = 1, 2, . . . , T do
29 if Tp < t ≤ T then
30 for i = 1, 2, . . . ,K do
31 Get the distribution qi(xi,t) as in (30);
32 Calculate ⟨xi,t⟩ and τx

i,t based on (34)
and (35);

33 Compute ⟨γt⟩ as in (37);
34 until convergence;
35 Set hi,t = ⟨hi,t⟩, ηi = ⟨ηi⟩, νi = ⟨νi⟩, and γt = ⟨γt⟩;
36 Get x̂i,t = arg maxa∈S qi(a).

unknown ηi, exhibit nearly identical performance. This obser-
vation validates the efficacy of the proposed VB-based method
in successfully tracking and estimating ηi. Further, despite the
VB method with unknown ηi estimating the parameter over the
air, its performance surpasses that of the LMMSE, KF, and EP
methods, while these benchmarks require knowing ηi before
communication. This is due to the fact that LMMSE does not
take the time correlation into account, and the KF method is a
one-shot approach, which only passes over the frame once, and
thus cannot improve its performance during the process. More-
over, in Fig. 3, our proposed online VB method demonstrates
superior performance compared to the EP method because it
treats γt as an unknown variable, whereas the EP method in
[28] assumes it is a fixed known component. This variable
nature of γt grants the VB framework greater flexibility in
estimating Σi,t in (19), leading to its enhanced performance
relative to the EP method.

Then, Fig. 4 illustrates the SER performance of our method
in comparison to three benchmark approaches, with M = 32,

Fig. 3. An SER comparison between LMMSE, KF, EP, and our online
VB using QPSK under correlated channels when α = 0.5 + j0.5, ηi =
0.985, Tp = 8, Td = 128, and SNR ∈ [0, 20] dB.

Fig. 4. The SER performance comparison between LMMSE, KF, EP, and
our online processing VB-based strategy utilizing QPSK modulation, when
ηi = 0.97, Tp = 8, Td = 128, SNR = 15 dB, and K ∈ [3, 8].

SNR = 15 dB, ηi = 0.97, Ri = 1
M IM , and K ∈ [3, 8].

It is evident that the performance of all methods declines as
K increases. This occurs as we can treat a network with K2

users similarly to one with K1 users, where K1 < K2, by
setting K2 − K1 of the K2 users to be inactive. However,
when these K2−K1 users become active, they contribute ad-
ditional interference, further complicating channel estimation
and data detection. This is exacerbated by the fact that the
VB framework, which tends to converge to local optimums,
cannot perfectly eliminate errors during the JED process. As
a result, as the number of users increases, the probability of
errors in estimation and detection rises, leading to a higher
SER. Next, in Fig. 5, we compare the performance of our
online VB method with the LMMSE, KF, and EP methods
for various values of ηi ∈ [0.94, 0.98] when M = 32,
K = 4, Ri = 1

M IM , and SNR = 15 dB. The results
indicate that the SER performance of all methods improves
as ηi increases. This happens because, as ηi approaches 1,
the variation in the channels in the Gauss-Markov model in
(1) between consecutive time slots decreases. This leads to
improved accuracy in channel estimation and, consequently,
better SER performance.

Case II – ηi is a random variable: To cover a more
realistic scenario, we consider a situation where ηi is a random
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Fig. 5. Comparison of SER performance for LMMSE, KF, EP, and the
proposed online VB-based strategy using QPSK modulation, with ηi ∈
[0.94, 0.98], Tp = 8, Td = 128, and SNR = 15 dB.

Fig. 6. A comparison of SER among LMMSE, KF, EP, and our online
processing VB-based approach employing QPSK modulation where ηi ∼
N (0.97, 5×10−5), Tp = 8, Td = 128, and SNR ranging from 0 to 20 dB.

variable with minor fluctuations. This assumption is motivated
by the fact that the Doppler frequency of the ith user could
change slowly over the communication time due to changes
in its velocity and direction. Thus, in this context, we model
ηi ∼ N (0.97, 5×10−5), while M = 32, K = 4, Ri =

1
M IM ,

and ηi = 0.97. As illustrated in Fig. 6, the observed trend
closely mirrors that of the scenario where ηi is fixed, indicating
the effectiveness of the proposed online processing approach
in accurately estimating and tracking the variable correlation
coefficient ηi, consequently showcasing superior performance
over the baseline methods in terms of SER.

Secondly, since the channel estimation process plays a cru-
cial role in system performance, we study the channel NMSE
performance of our online processing method alongside other
benchmarks here. The simulation setup mirrors that depicted
in Fig. 3. According to Fig. 7, our proposed online method,
based on VB, yields the lowest NMSE results compared to
the baselines. This observation elucidates that the superior
channel NMSE performance of our method comes from its
more precise data detection process compared to the other
benchmarks. Furthermore, as shown in Fig. 7, all methods
exhibit an error floor. This phenomenon arises from two
primary sources of error in the channel estimation process:
(1) weak signals relative to noise, which occurs at low SNRs,

Fig. 7. The channel NMSE performance comparison between LMMSE, KF,
EP, and our online VB utilizing QPSK modulation under correlated channels,
where the parameters are set to α = 0.5 + j0.5, ηi = 0.985, Tp = 8,
Td = 128, and SNR ∈ [0, 20] dB.

Fig. 8. The SER performance of the proposed online processing using the
VB framework with and without interleaved structure under the QPSK signal
constellation when ηi = 0.97, Tp = 8, Td = 128, and SNR ∈ [0, 20] dB.

and (2) the time-varying nature of the channels. The figure
demonstrates that increasing SNR (i.e., receiving a stronger
signal) improves estimation performance up to SNR = 10
dB with the online VB method. Beyond this point, however,
further improvement is minimal because the channels continue
to vary over time, making it difficult for the approximated
statistical model of the channel at one time slot to remain
accurate in the next time slot, even with stronger signals.

Finally, it is crucial to assess the computational com-
plexity of our approach in comparison to the bench-
marks. The computational complexity of LMMSE is
O
(
MK2 + |S|K

)
, while for both KF and EP methods, it is

O
(
Itr
(
M3K3 +M2K2 + |S|K

))
[40]. However, our online

processing VB strategy has a computational complexity of
O(Itr(M

3K+|S|K)). This complexity corresponds to finding
a local optimum solution using the CAVI algorithm within the
VB method [32]. As a result, our online processing strategy
within the VB framework has lower computational complexity
than the KF and EP methods and higher complexity than the
LMMSE method.

B. Enhancing the Performance of the Online VB Strategy

As mentioned earlier in Section III, the online processing
strategy involves two phases of prediction and estimation,
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Fig. 9. The SER and channel NMSE performance of the proposed online and block processing strategies using the VB framework with 16QAM when
M = 64, ηi = 0.985, Tp = 8, Td = 128, and SNR ∈ [0, 20] dB.

where the channel information at time t − 1 serves as prior
knowledge for time t. However, if the predicted channels
at time t − 1 fail to provide accurate prior knowledge for
estimating the channel at time t, it can lead to error propaga-
tion in the estimation process. More precisely, by increasing
Tp and Td, although we expect to receive more signals and
thus improve the SER performance, the predicted channels
from the prediction phase become more and more deviated
from the actual channel due to the time correlation between
the channels. Therefore, increasing Tp and Td alone cannot
lead to performance improvement. To address this issue,
we propose an interleaved structure that divides the entire
communication time into L sections, each with its own pilot
and data signals. This way, our VB-based method leverages
the interleaved structure to stop the error propagation and re-
tune the estimated parameters based on the new pilot signals.
Here, we have:

L∑
ℓ=1

T [ℓ]
p = Tp,

L∑
ℓ=1

T
[ℓ]
d = Td, (55)

where T [ℓ]
p and T

[ℓ]
d represent the pilot and data communication

times for the ℓth section, respectively.
In Fig. 8, we incorporate an interleaved structure with L = 2

sections into the online processing strategy and compare its
performance with a scenario where the structure is not utilized.
We employ the same assumptions as in Fig. 3. The results
show that the interleaved structure enhances the SER com-
pared to the non-interleaved scenario. This improvement arises
because the interleaved structure prevents error propagation
and enables the BS to adjust parameters using new pilot signals
at the beginning of each interleaving section.

C. Online Strategy versus Block Processing Strategy

In Fig. 9, we compare the performance of the block pro-
cessing strategy with the online processing strategy in terms of
SER and channel NMSE. We assume M = 64 and ηi = 0.985
using the 16-quadrature amplitude modulation (16QAM) sig-
nal constellation. Fig. 9 depicts that the block processing strat-
egy slightly enhances SER performance. Moreover, it signifi-
cantly reduces channel NMSE, especially at high SNRs. These
improvements stem from stacking the entire received signals
together and processing them together. On the other hand, the

block processing strategy increases delay and computational
complexity compared to the online processing strategy. In
particular, the complexity of the block processing VB method
is expressed as O(Itr

[
T (3M2+M3)K+M3K+ |S|K

]
), due

to the matrix inversion in (42) and the matrix multiplications
required to compute τηi,t, ⟨ηi,t⟩, and b̄i,t in (46), (47), and
(51), respectively. As we can see, this complexity exceeds
that of the online VB method, which explains the trade-off
between higher complexity and enhanced performance in the
block processing strategy.

To highlight the applications of the online and block pro-
cessing strategies, we note that the online strategy is useful in
latency-sensitive scenarios, such as voice and video calls, as
well as in environments with limited computational resources,
such as IoT networks. In contrast, block processing is prefer-
able when lower error rates are required (e.g., for control
signaling communication in cellular networks) and sufficient
computational power is available.

VI. CONCLUSION

In this study, we focused on the uplink scenario within
a massive MIMO network. We introduced approaches based
on VB inference to tackle the JED problem, particularly for
high-mobility users experiencing time-varying channels. We
developed two processing strategies using VB: (i) a low-
complexity low-latency online processing strategy suitable for
scenarios with unknown time correlation coefficients at the
BS; (ii) a block processing strategy that further enhances
performance by reducing channel NMSE. Moreover, we in-
corporated an interleaved structure into the online processing
strategy to prevent error propagation during the JED process,
thereby improving its effectiveness. We numerically compared
the performance of the VB-based online strategy against three
well-known benchmarks (LMMSE, KF, and EP) in terms of
SER and channel NMSE. Our simulation results consistently
demonstrated the superiority of our VB framework across
the performance metrics. One potential direction for future
exploration involves extending these findings to networks
integrating reconfigurable intelligent surfaces (RISs) with mas-
sive MIMO systems, considering RIS’s emerging role as a
promising, low-complexity, and power-efficient solution in 5G
and beyond networks [43], [44].
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