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ABSTRACT
Spectral analysis of light is one of the oldest and most versatile scientific methods and the basis of countless techniques and instruments. Minia-
turized spectrometers have recently seen great advances, but challenges remain before they are widely deployed. We report an integrated
photonic spectrometer that achieves high performance with minimal component complexity by combining imaging of light propagation
patterns in multi-mode interference waveguides with machine learning analysis. We demonstrate broadband operation in the visible and
near-infrared, 0.05 nm spectral resolution, and an array of four spectrometers on a single chip. Two canonical applications are imple-
mented: spectral analysis of the solar spectrum with neural network reconstruction and detection of Rayleigh scattering from microbeads
on an optofluidic chip using principal component classification. These results illustrate the potential of this approach for high-performance
spectroscopy across disciplines.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0222100

I. INTRODUCTION

Spectroscopic analysis of electromagnetic radiation dates back
to the days of Newton and has been an invaluable cornerstone of
scientific inquiry and a plethora of applications ever since. One
major area of inquiry is astronomy where spectral analysis reveals
the composition and movement of extraterrestrial objects, such as
the Doppler shift analysis of exoplanets.1,2 Biochemical analysis
and medical diagnostics comprise another broad area that exten-
sively utilizes spectral techniques involving continuous spectra (e.g.,
Raman spectroscopy3) or distinct and discretely colored labels that
enable multiplexed analysis. Example applications of the latter type
include fluorescence imaging of cells4 and molecular biomarker
detection techniques, e.g., barcode assays,5 nucleic acid labeling,6
and antibody labeling.7 More broadly, spectroscopy touches every
human industry and intellectual pursuit, from telecommunications
to food inspection to art restoration.

The most fundamental performance characteristic of a spec-
trometer is its spectral resolution  λ or resolving power λ/ λ, i.e.,

the ability to distinguish signals at different wavelengths. For cen-
turies, these quantities have been optimized by maximizing the
spatial separation between wavelengths with dispersive elements
such as prisms and diffraction gratings. Long beam paths result
in larger separations, and, thus, high-performance spectrometers
tended to be benchtop-size or larger. However, there are power-
ful reasons for miniaturizing spectrometers, including size, cost,
portability, and elimination of moving parts. In addition, chip-scale
integration enables the creation of spectrometer arrays and com-
bining spectral analysis with other functionalities, for example, in
a lab-on-chip context.

Arguably, the miniaturization of optical spectrometers is enter-
ing a golden age.8 While early attempts focused on scaling down
the traditional dispersion-based approach,9,10 with correspondingly
compromised performance, a number of novel and creative ideas
have surfaced in the past two decades, fueled by developments
in fabrication technology and computational methods and push-
ing toward advanced system integration such as smartphone-based
spectrometers.11–13 These ideas have resulted in completely new
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categories of spectrometers with a broad range of physical imple-
mentations. These include narrowband filters,14,15 Fourier transform
spectrometers,16,17 and optoelectronic devices with a spectrum-
specific response.18 Reconstructive spectrometers have received the
biggest attention and have shown tremendous promise.8 Here, spec-
tral analysis is based on computational analysis of an image to extract
the desired information. These image-generating features are often
already designed with micro- and nanofabrication in mind. More-
over, the reliance on computational techniques to determine a spec-
trum takes advantage of signal processing and continuously improv-
ing machine learning algorithms, which can be capable of handling
the complications due to low signal-to-noise ratios and fabrica-
tion imperfections that are inherent to miniaturization. Examples
of this emerging approach include the generation of speckle pat-
terns from disordered waveguide structures,19 transmission through
a plasmonic nanohole array,20 scattering from multi-mode spi-
ral waveguides,21 cascaded Mach–Zehnder interferometers,22 long
fibers,23 or tapered multi-mode fibers.24,25

Here, we introduce a new kind of reconstructive integrated
spectrometer for high-performance applications. It is based on
imaging the wavelength-dependent light propagation patterns in
multi-mode interference (MMI) waveguides26,27 and analyzing the
spectral content of these images with suitable machine learning (ML)
techniques. The approach can be implemented in any integrated
photonic format with wide latitude in device materials, dimen-
sions, fabrication processes, and targeted spectral range. Moreover,
it is well suited for integration into a larger analytical system. The
reliance on post-imaging, ML-based analysis allows for strongly
relaxed design tolerances, thus ensuring low complexity and cost.
We demonstrate highly accurate spectral reconstruction of both nar-
row and broadband spectra in both the visible and near-IR range
with a spectral resolution of  λ = 0.05 nm and resolving power
16 000. We also report a 4 × 4 array in which four MMI waveguide
spectrometers analyze light from four independent fiber-coupled

sources simultaneously and with uncompromised performance,
demonstrating the scalability of this approach. We illustrate the cur-
rent performance and future potential of the MMI spectrometer with
two canonical applications: The first is the use of the device as an
astrophotonic instrument. Sunlight captured by a telescope is intro-
duced into a silicon-based spectrometer chip at the nanowatt power
level, and the continuous, broadband spectrum is identified using a
convolutional neural network. Second, we demonstrate the incorpo-
ration of the spectrometer into a lab-on-chip device for optofluidic
particle analysis. Here, an MMI waveguide section is integrated with
a microfluidic channel on a PDMS (polydimethylsiloxane) chip, and
the Raleigh scattering from single microbeads flowing through the
channel is spectrally classified by MMI imaging and principal com-
ponent analysis. These representative implementations highlight the
versatility of the approach and point to its highly customizable use
in numerous application settings.

The integrated MMI spectrometer consists of two components:
a photonic chip to visualize a spectrum and a machine learning pro-
cess for spectral reconstruction. The concept and its incorporation
into a complete workflow are shown in Fig. 1(a).

The light spectrum to be analyzed is fed into a single-mode
waveguide on a chip. The light from remote sources can be coupled
into the chip via free-space optics or optical fiber, and we will focus
on this arrangement for most of this paper. An alternative approach
is to couple light that is generated on the chip itself into the single-
mode input waveguide of the spectrometer. This implementation is
discussed in the second application to illustrate the seamless inte-
gration of the spectrometer in a lab-on-chip device. The light then
enters a wider, multi-mode interference waveguide section where
the light propagation pattern varies strongly with wavelength. The
pattern is imaged with a camera that is typically, but not necessarily,
placed over the chip, and the recorded waveguide pattern image is
then translated into a spectrum by a machine learning algorithm that
can be chosen depending on the application. In this work, we discuss

FIG. 1. MMI spectrometer. (a) Schematic overview of the approach. A continuous or discrete spectral signal is coupled into a chip with a multi-mode interference (MMI)
waveguide. The wavelength-dependent propagation in the MMI section is imaged by a camera and analyzed by an appropriate machine learning algorithm to reconstruct
the spectrum. (b) Visualization of the MMI propagation patterns at two different wavelengths. (c) Microscope image of SU-8 waveguide on silicon. (d) SEM close-up shows
roughened surface to enhance out-of-plane light scattering for top-down imaging.
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the use of a convolutional neural network (CNN) for the analysis of
both narrow and broadband continuous spectra and principal com-
ponent analysis (PCA) for spectral classification of a finite number
of distinct wavelengths.

II. MMI SPECTROMETER PRINCIPLE AND DEVICE
IMPLEMENTATION

Figure 1(b) illustrates the physical concept behind the MMI
spectrometer. Briefly, a single-mode (SM) input waveguide sustains
a single lateral mode with a profile given by Ψ0(x). At z = 0, the
SM waveguide expands into a wider MMI section in which multi-
ple lateral modes Ψm(x) exist. The input field is distributed among
the multiple mode with amplitude coefficients cm given by

cm ∝ � Ψ0(x)Ψm(x)dx. (1)

The signal then propagates along the multi-mode waveguide
according to

Ψ(x, z) =�
m

cmΨm(x).e−iβmz , (2)

where βm is the propagation constant of the mth mode. Because
all the βm values are different from each other, the phase rela-
tion between different modes changes along the waveguide, and
characteristic field and intensity patterns ensue. In addition, βm is
wavelength dependent, and as a result, the propagating interfer-
ence patterns vary deterministically with wavelength as described
by Eq. (2). Simulations of these patterns for two representative
wavelengths are shown in Fig. 1(b) and illustrate how spectral
information is mapped deterministically into the spatial domain.

We developed a standalone, silicon-based spectrometer chip
that implements this principle using SU-8 polymer waveguides on
silicon dioxide. Figure 1(c) shows a microscope image with a top-
down view of the intersection area between the input and MMI
waveguide sections. Both waveguides are fabricated in the same
lithography step and have a height of 5 �m. The input waveguide
is 4 �m wide, while the MMI spectrometer section is 100 �m wide.
To facilitate efficient out-of-plane scattering of light out of the MMI
waveguide for easy observation from the top, we perform a shallow
etch on the MMI section using an oxygen plasma in a reactive-
ion-etch chamber that creates a rough top layer with ∼300 nm tall
nanoscale features (“nanograss”). A magnified view of the MMI sur-
face is shown in the scanning electron microscope (SEM) image in
Fig. 1(d). The details of the full fabrication process are provided in
the supplementary material.

It is important to note that the spectral analysis is not car-
ried out analytically, i.e., by directly calculating the input spectrum
from the observed scattered interference pattern using Eq. (2) as this
would require precise knowledge of and control over all fabrication
and material parameters. Instead, we use machine learning algo-
rithms that pick up on differences between patterns and that can be
trained with signals at known wavelengths. Consequently, our fabri-
cation tolerances are very relaxed, i.e., high accuracy for waveguide
height, width, and etch depth is not required, minimizing the com-
plexity of this approach and making it easy to implement in different
waveguide systems.

III. MMI SPECTROMETER OPERATION
AND PERFORMANCE

The performance of the MMI spectrometer chip was first tested
in the infrared wavelength range of around 800 nm. This regime
is very attractive for many applications (e.g., astronomy and chem-
istry) and allowed us to explore the performance limit of the current
device. We used a femtosecond Ti:sapphire laser (Trestles 100M,
Del Mar Photonics) to create the training images for the neural
network. The laser is tunable with 0.05 nm steps and has narrow
linewidths when operated in the cw mode. To explore the resolu-
tion limit of this configuration, we created training images between
793.8 and 795.6 nm with 0.05 nm step size in several wavelength
groups that were determined by the tuning capabilities of the laser.
The FWHM of each wavelength is 0.05 nm, ensuring some over-
lap between the training signals for continuous coverage of the
entire bandwidth. The details of this setup and training process
are provided in the supplementary material. Each wavelength was
fiber-coupled ten times into the MMI chip to create slightly differ-
ent mode excitation conditions for a total of 250 scatter images. A
952 × 95 �m2 area of the image near the end of the MMI section
was selected to define 1200 × 120 pixels whose amplitudes were
used as input to train a 2D convolutional neural network (CNN).
In addition to the single-wavelength images, we created broadband
spectra from linear combinations with randomly generated ampli-
tudes at each wavelength. This produced an additional 6000 training
images; 90% of these images were used for training, while 10% of
the images were withheld for testing. After training was completed
[see supplementary material for details and Fig. S2(B) for a visual-
ization of the convergence of the process], we first tested the ability
of the device to recognize the narrowband spectra. To this end, the
CNN was exposed to previously unseen images from the test set, and
the predicted amplitudes at each of the possible wavelengths were
determined. A representative result for a spectrum with a peak at
794.75 nm is shown in Fig. 2(a).

The gray line represents the spectrum as measured with a
conventional, commercial optical spectrum analyzer (OSA). It is vir-
tually indistinguishable from the CNN analysis of the MMI scatter
image (red line), showing an excellent agreement of both the peak
wavelength and the FWHM. We repeated this experiment at each
of the 26 wavelengths in our test interval and found an excellent
wavelength in every case as seen in Fig. 2(b), where every CNN-
determined wavelength falls within a 0.05 nm band (blue area).
Thus, we find a spectral resolution of 0.05 nm and equivalently a
resolving power of R = λ/ λ = 16 000 in this wavelength range.
The resolution and bandwidth are limited by the setup, specifically
the finite width of the training spectra and the tuning range of the
Ti:sapphire laser (see supplementary material for details). We note
that, in the telecom wavelength range, this resolving power corre-
sponds to a resolution of 0.1 nm, well below the 0.8 nm (100 GHz)
spacing between wavelength division multiplexing channels.

We then assessed the ability to analyze broad, continuous spec-
tra. To this end, a test image was generated using a new, linear
combination of the test spectra with randomly generated weights.
Figure 2(c) shows that the CNN was able to extract the spectrum
from this single, composite scatter image with excellent qualitative
agreement in recognizing the spectral features and confirming the
0.05 nm resolution with a continuous spectrum. Finally, we fed light
from a different source than was used for generating the training
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FIG. 2. MMI spectrometer chip performance. (a) Comparison of laser spectrum determined from optical spectrum analyzer (OSA, gray line) and neural network analysis of
MMI scatter pattern (red line). (b) Reconstructed vs true peak wavelength of tunable laser spectra, showing a spectral resolution of 0.05 nm as indicated by the blue band. (c)
Comparison of NN-reconstructed broadband spectrum (red line) with broad spectrum composed of a linear combination of single-wavelength spectra with different weights
(gray line). (d) NN reconstruction (red line) of unseen DBR laser line and OSA reference (gray line).

images into the chip. Specifically, we used light from a distributed
Bragg reflector (DBR) diode laser (Vescent Photonics). Again, the
spectrum was first recorded with a conventional OSA (gray line in
Fig. 2(d). Both the peak wavelength at 795.2 nm and the width of the
spectrum are identified correctly by the CNN algorithm.

Figures 2(a)–2(d) represent the core capabilities of a spectrom-
eter. We repeated this assessment in the visible range with a different
test source and found comparable performance with a (test source
limited) resolution of 0.1 nm over a 10 nm bandwidth. A detailed
discussion of the results in the visible spectrum is given in the
supplementary material.

A. MMI spectrometer array
Next, we turn our focus toward the advantages that the chip-

scale photonic integration offers to open new avenues for applica-
tions. The planar and linear nature of the MMI waveguide architec-
ture naturally suggests the addition of multiple waveguides to form
highly compact spectrometer arrays. We demonstrate this concept
with a 4 × 4 (four inputs, four MMI sections) spectrometer array
that is designed to interface with off-the-shelf photonic compo-
nents. Figure 3(a) shows a commercial 4x single-mode fiber (SMF)

coupler array (OzOptics SM fiber V-groove assembly) commonly
used with planar lightwave circuit (PLC) splitters and wavelength
division multiplexing (WDM) components in fiber-optic networks.
Here, it is aligned to the 4 × 4 spectrometer chip and its four inde-
pendent fibers are simultaneously excited with four laser signals
(red arrows).

The commercial fiber coupler terminates in four single-mode
fibers that are arranged on an array of V-groove slots with 127.5 �m
spacing on a silicon chip. Consequently, we designed and fabricated
an MMI spectrometer chip in which four input waveguides have
the same spacing, each leading to a separate MMI section as seen
in the photograph in Fig. 3(b). All four MMI sections were then
simultaneously excited by four independent input signals and a sin-
gle camera image was taken to record all four spectra in one image
[Fig. 3(c)]. We note that the scatter patterns differ between the MMIs
due to random variations in surface roughness and slight alignment
differences. However, this is not an issue as each MMI spectrome-
ter was trained individually over a region of interest (ROI) marked
with red rectangles in Fig. 3(b). When CNN analysis was carried
out with unseen images at different wavelengths similar to Fig. 2(b),
all four MMI spectrometers showed the same, uncompromised per-
formance as seen in Figs. 3(d)–3(g) because each spectrometer was
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FIG. 3. 4 × 4 MMI spectrometer array. (a) Schematic view of four independent signals fed into MMI spectrometer chip via commercial fiber coupler. (b) Photograph of
4 × 4 MMI spectrometer array. The red rectangles denote the image areas used for individual CNN training and testing. (c) Camera image of scatter image from all four MMI
spectrometers. (d)–(g) Accuracy and resolution of the four spectrometers after being individually trained by neural networks.

capable of correctly identifying the peak wavelength of the input sig-
nal across a 40 nm bandwidth (1 nm steps). These data also indicate
that there is no cross-talk between these narrowly spaced spectrome-
ters during image acquisition. These results show that the expansion
of the MMI spectrometer device into highly multiplexed arrays is
straightforward as no additional fabrication step is required. Here,
we have demonstrated a 4 × 4 array on a chip area of 0.5 × 5 mm2,
and numerous implementations of this concept can be envisioned.
These include feeding signals from different sources into an N× N array or building 1 × N arrays in which a single input signal is
distributed into N spectrometer sections that could be lithograph-
ically integrated with active photonic components on a photonic
integrated circuit (PIC) and functionalized for different purposes.
For the device dimensions used in this experiment, N can exceed 750
across the diameter of a 4-in. wafer. While the training images for
all waveguides were recorded simultaneously [Fig. 3(c)], a CNN was
trained separately for each waveguide. To minimize training time
and scale to large array sizes, the fabrication can be optimized to
produce more uniform waveguides. Alternatively, more advanced
neural network training techniques (e.g., transfer learning) can be
employed.28

B. Application: Broadband astronomical observation
We now illustrate the versatility of the MMI spectrometer and

its potential for use in a wide range of research and technology areas.
The first of these is astronomy, which has relied on spectral analy-
sis for centuries.29 The field is now moving toward the collection of
vast numbers (109) of spectra30,31 and an increased incorporation of
photonics32 for studies of stars, galaxies, and dark matter.33–35 For a
proof-of-principle demonstration of the suitability of our integrated
spectrometer, we set up a solar observation experiment as shown in
Fig. 4(a).

The sunlight collected with a small 72 mm telescope (Astro-
Tech AT72ED) was captured with a multimode fiber (MMF) placed
in the focal plane of the instrument. Approximately 100 m of MMF
was used to guide the sunlight to the MMI spectrometer labora-
tory setup where it is recoupled into a single-mode fiber (SMF)
both with and without a 50 nm bandpass (BP) filter centered at
775 nm. The SMF was then coupled into an OSA or the MMI chip
for spectral analysis of the solar spectrum. Figure 4(b) shows the
OSA recording, showing characteristic Fraunhofer absorption lines
in the solar spectrum. The red bar shows the portion of the spectrum
that is transmitted through the bandpass filter. The neural network

APL Photon. 9, 100802 (2024); doi: 10.1063/5.0222100 9, 100802-5

© Author(s) 2024

 18 Septem
ber 2025 18:49:36

https://pubs.aip.org/aip/app


APL Photonics ARTICLE pubs.aip.org/aip/app

FIG. 4. Solar spectrum analysis with MMI spectrometer. (a) Schematic view of setup to analyze solar spectrum on MMI-spectrometer chip. (b) Full solar spectrum recorded
with OSA at SMF output (labels: Fraunhofer lines; red bar: spectral range selected by bandpass filter). (c) MMI scatter pattern of sunlight recorded with 50 nm bandpass filter.
(d) CNN-reconstructed solar spectrum (red line) and bandpass-filtered OSA reference spectrum (gray line) around the Fraunhofer A line.

was trained with MMI scatter images [Fig. 4(c)] and a combina-
tion of laser peaks at 1 nm spacing from a supercontinuum white
light source (NKT) and the continuous sunlight training spectra (see
supplementary material for more details). The network was then
exposed to an unseen scatter image of the pure sunlight spectrum
shown in Fig. 4(d) (gray line), and the resulting spectrum (red line)
reproduced the solar spectrum and the Fraunhofer A line (absorp-
tion from terrestrial oxygen) very well. Figure 4(d) shows that the
MMI spectrometer has the potential for integration with larger tele-
scopes where starlight can be successfully coupled into single-mode
fiber for further analysis.36 This demonstrated that the capability of
identifying spectra from remote sources can be applied in numerous
other scenarios, including environmental monitoring of pollutant
gases37 or the chemical analysis of aerosols.

C. Application: Classification of single-particle
scattering in lab-on-chip device

The second application case is the optofluidic detection of
single particles on a chip. The incorporation of miniaturized spec-
trometers in a lab-on-chip format has been identified as a highly
desirable and impactful way to leverage the reduced device size8 and
enable on-chip chemical and biological analysis such as Raman spec-
troscopy or multiplex detection of fluorescent molecules. Over the
past years, optofluidic devices that combine photonic waveguides
with microfluidic channels have been developed,38–40 providing an
ideal platform for adding a dedicated spectrometer section. Here,
our goals are to demonstrate that the MMI spectrometer can be
seamlessly incorporated into an optofluidic device for single-particle
analysis, and to show that the spectrometer works with different
waveguide materials and that other machine learning techniques can
be applied, depending on the purpose.

We use a polydimethylsiloxane (PDMS) platform that has been
previously used for fluorescence detection of single biomolecules
in combination with microfluidic sample preparation and on-chip
laser excitation.41–43 The device layout used in this study and a
photograph of a complete device are shown in Figs. 5(a) and 5(b),
respectively, while more details regarding the fabrication and the full
experimental setup are described in the supplementary material.

The device consists of a fluidic channel (cross-section
6 × 15 �m2) through which particles suspended in liquid can be
moved by applying vacuum pressure at the outlet reservoir of the
channel. These particles are optically excited by a perpendicularly
intersecting waveguide whose core consists of high refractive index
PDMS.41 Fluorescent or scattered light from the target particle is
collected through the fluidic channel into a collection waveguide
that then widens into an MMI section as shown. All waveguide
types are located in the same layer and created in the same lithog-
raphy step, ensuring that the addition of the spectrometer does
not add any fabrication steps. For imaging of the scatter patterns,
we rely on natural defects in the PDMS without adding surface
roughness. As individual gold microbeads flow through the chan-
nel, they are excited with red laser light, blue laser light, and a
combination of both while the MMI section is imaged from the
top to analyze the Rayleigh scattered light signals. Camera frames
from blue, red, and red & blue signals are shown in Fig. 5(c), and
they exhibit clear differences. A detailed description of the cam-
era frame analysis and their independent confirmation as scatter
events is provided in the supplementary material. We recorded a
total of 45 MMI images, each corresponding to a single-particle
Raleigh scattering event. Distinguishing the scattering events repre-
sents a classification task with three distinct categories (red, blue, and
red & blue), which is fundamentally different from the regression
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FIG. 5. Particle classification with lab-on-chip MMI spectrometer. (a) Schematic view of PDMS optofluidic chip with integrated MMI spectrometer. Light coupled into solid-core
waveguide excites metallic microbeads moving through a microfluidic channel (blue). The Rayleigh scattered signal from a bead is guided into an MMI section by a collection
waveguide for spectral analysis. (b) Photograph of lab-on-chip devices. (c) Average MMI scatter patterns for bead scattering of red (R), blue (b), and red & blue (R & B) light,
respectively. (d) Principal component analysis of scatter images reveals clearly separated clusters for error-free detection of all three spectral signals.

algorithm used above to determine a continuous spectrum. Conse-
quently, a different machine learning algorithm that is better suited
for this task can be chosen. We use principal component analy-
sis (PCA)—an unsupervised learning algorithm that transforms the
information contained in the pixel intensities of a 28 × 120 pix-
els image (equivalent to a 3360-dimensional feature space) into a
reduced two-dimensional space.44 First, a 45 × 3360 feature matrix is
formed by flattening and stacking the standardized (zero mean and
unit variance) MMI images. From this, the 3360 × 3360 elements
covariance matrix is then calculated, which, upon eigenvalue decom-
position, gives the orthogonal principal components of the data. The
two 3360 × 1 eigenvectors corresponding to the two largest eigen-
values are selected and multiplied with the feature matrix. Each row
in the resulting 45 × 2 matrix represents the two principal compo-
nents (PC1, PC2) with the highest variances for each MMI image
and are displayed in Fig. 5(d). Three strongly distinct groups are
observed and each single-particle scatter signal is correctly classi-
fied in the corresponding group. This demonstrates that different
machine learning methods can be used to analyze the MMI scat-
ter images to handle the most common spectroscopy tasks. The
waveguide-based spectrometer is fully compatible with established
optofluidic device architectures, and the ability to implement both
classification and continuous spectral analysis will enable numerous
analytical functions such as multiplexed fluorescence detection and
Raman spectroscopy.

IV. DISCUSSION AND CONCLUSION
We have introduced a new waveguide-based miniaturized spec-

trometer that combines high performance with planar photonic
integration. By imaging wavelength-dependent light propagation
patterns in multi-mode interference waveguides and analyzing them
with different machine learning techniques, both continuous and
discrete spectra can be analyzed on-chip with the performance of
commercial dispersive spectrometers. The reported performance of
the device was achieved without maximizing the stability of the
experiment, e.g., via active temperature control of the chip. Exter-
nal factors such as mechanical and temperature stability can be
addressed to further improve the device performance. The intrin-
sic advantages of this planar photonic approach were demonstrated

with a 1 × 4 spectrometer array and the incorporation of a spec-
tral analysis section in an optofluidic lab-on-chip device for single
particle analysis. This architecture offers numerous future integra-
tion possibilities, including placing the MMI waveguide directly
with an image sensor, e.g., in a cellphone or on the same chip, and
the creation of a standardized input interface by direct attachment
of optical fibers with the chip. Doing so will create spectrometers
for a broad array of use cases, especially for portable and remote
operations in the field.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details on the
waveguide fabrication process, design details, and training process
of the convolutional neural network; optical setups for spectrometer
characterization; performance evaluation in the visible wavelengths;
sunlight spectral analysis; and biosensing application principle and
experiments.
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