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Abstract—The spatial Sigma-Delta architecture can be used
to reduce the quantization noise and thus improve the effective
resolution of few-bit analog-to-digital converters (ADCs) for
certain spatial frequencies of interest. This paper proposes a
novel data detection scheme based on the variational Bayes (VB)
inference framework for multiple-input multiple-output (MIMO)
systems that utilize first-order spatial Sigma-Delta ADCs. We
derive a closed-form expression to approximate the posterior
distributions of the transmitted data symbols, which are then
used for their estimation. Simulation results show that the
proposed detection scheme achieves a detection performance
comparable to unquantized systems and has a lower symbol
error rate (SER) than the conventional quantized VB and linear
minimum mean-squared error (LMMSE) methods. The effects
of the azimuth range, and the antenna spacing and wavelength
on the SER performance of all detection algorithms are also
extensively analyzed.

Index Terms—Data detection, few-bit ADCs, MIMO detection,
Σ∆ ADCs, variational Bayesian inference.

I. INTRODUCTION

The next generation of wireless networks will require
substantial bandwidth in both the millimeter (mmWave) and
terahertz bands to deliver high data throughput [1]. Signals
at these frequencies are hindered by low penetration capabili-
ties and high propagation loss, which restrict their practical
communication range [2]. Massive multiple-input multiple-
output (MIMO) arrays have been used to compensate for
the propagation loss while simultaneously achieving high
capacity through spatial multiplexing [3]. However, exploiting
the full benefits of beamforming and multiplexing in massive
MIMO can be challenging due to the need for dedicated
high-resolution analog-to-digital converters (ADCs)/digital-to-
analog converters (DACs) for each antenna element [4], [5].
This results in high hardware complexity and increased power
consumption, especially with larger bandwidths and sampling
rates [6]. To address these concerns, the use of low-resolution
ADCs with, e.g., 1–3 bits of precision, has emerged as
an energy-efficient and low-complexity solution for massive
MIMO systems [7]–[9].

Low-resolution ADCs have recently become an important
feature in massive MIMO systems due to their simple design
and low power consumption. However, the inherent high
nonlinearity of low-resolution ADCs degrades the performance

of MIMO systems such as achievable rate and symbol er-
ror rate (SER), especially at medium-to-high signal-to-noise
ratios (SNRs) [10]–[12]. However, this negative impact can
be mitigated by increasing the number of antennas, which
indicates that massive MIMO can be effectively operated with
few-bit ADCs. However, attaining a good tradeoff between
the system performance and the number of quantization bits
requires advanced signal processing algorithms and architec-
tural innovations tailored for the specific characteristics of the
quantized signals [9], [13].

Spatial Sigma-Delta (Σ∆) quantization is used in such
systems to improve the effective resolution of low-resolution
ADCs [14]. In spatial Σ∆ architecture, the difference between
the input and the quantized output represents the quantization
noise at each antenna, which is fed back and compared
with an adjacent antenna. This feedback stage enables more
aggressive noise-shaping, wherein the spatial spectrum of the
quantization noise is pushed beyond the angular sector of the
signal of interest [14]. In [15], the spectral efficiency of 1-
bit Σ∆ massive MIMO was analyzed, revealing that one-bit
Σ∆ scales down the quantization noise power proportionally
to the square of the spatial oversampling rate. Spatial few-bit
Σ∆ ADCs have also been used in massive MIMO to shape the
quantization noise away from users in certain angular sectors
for improved channel estimation [16].

Most of the existing works on MIMO detection have fo-
cused on Gaussian channel models with conventional few-bit
quantization [9], [10]. Moreover, achieving optimal MIMO
detection with spatial Σ∆ ADCs under the maximum-a-
posteriori (MAP) probability criterion may not be feasible.
These observations prompt the development in this paper of
novel data detection algorithms based on the VB inference
framework for MIMO systems with spatial Σ∆ ADCs.

The contributions of the paper are summarized as follows:

• We develop a 1st-order Sigma-Delta Variational Bayes
(SD-VB) detection algorithm, where few-bit Σ∆ quan-
tizers are employed in a massive MIMO system. Using
the VB framework, variational distributions of latent
variables are derived to enable efficient updates for the
developed algorithm. We also present an LMMSE detec-
tor for MIMO detection with 1st-order Σ∆ quantization.



• We demonstrate through simulation results that the 1st-
order SD-VB algorithm achieves the lowest SER com-
pared with state-of-the-art detection algorithms such as
the matched-filter quantized VB (MF-QVB) and linear
minimum mean-squared error (LMMSE) detectors for
certain angular sectors.

Notation: Boldface lowercase and boldface uppercase variables
denote vectors and matrices, respectively. The symbols C and
R stand for the sets of complex and real numbers, respectively.
The L2-norm and the absolute value are indicated by ∥ · ∥
and | · |, respectively. Real and imaginary parts are denoted
by R{·} and I{·}, respectively, with j =

√
−1. A circularly

symmetric complex Gaussian (CSCG) distribution with mean
η and covariance matrix Z is indicated by CN (η,Z). The
identity matrix is denoted by I, the trace operator by Tr(·),
and the expectation operator by E{·}. The transpose, complex
conjugate, and complex conjugate transpose operators are
denoted by (·)T , (·)∗, and (·)H , respectively.

II. SYSTEM MODEL

We consider an uplink MIMO system with K single-antenna
users and a base station (BS) with N antennas, where the
received data at the BS before quantization is expressed as

x = Hs+ n, (1)

where H = [h1, . . . ,hN ]T ∈ CN×K is the uplink channel
matrix, s = [s1, . . . , sK ]T ∈ CK×1 is the uplink data symbol
vector, and n ∼ CN (0, N0IN ) denotes a zero-mean Gaussian
noise vector at the BS, with variance N0.

We assume a geometric channel model typical of mmWave
communications systems in which the channel for each user
is composed of a linear combination of L propagation paths
[2], [17], i.e.,

h̄k =

√
βk

L
Akgk, (2)

where h̄k is the kth column of H and the uplink channel
from user-k, the columns of Ak ∈ CN×L represent the
array response for L propagation paths, gk ∼ CN (0, IL)
represents the small-scale fading, and βk models the geometric
attenuation and slow fading. We assume that Ak is a full
rank matrix whose ℓ-th column is the array steering vector
corresponding to the angle of arrival (AoA) θkℓ of the ℓ-th
path, as given by

a(θkℓ) =
[
1, e−j2π d

λ sin θkℓ , . . . , e−j(N−1)2π d
λ sin θkℓ

]T
, (3)

where d is the inter-antenna spacing of the ULA and λ denotes
the wavelength. For simplicity, we denote ωkℓ = 2π d

λ sin θkℓ
as the spatial frequency of the ℓ-th path from user-k. We
assume that the AoAs for all users are situated within a specific
angular sector Sθ0 ≜ [θ0 − Θ/2, θ0 + Θ/2], where θ0 is the
center angle of the sector and Θ is the azimuth angular spread.

The first-order spatial Σ∆ quantization architecture is de-
picted in Fig. 1, where a few-bit quantizer is used in each step.

Fig. 1: A first-order spatial Σ∆ architecture at an N -antenna receiver.

Fig. 2: The Bayesian network for the 1st-order Σ∆ receiver.

The pre-quantized signal at stage i (i.e., antenna i), denoted by
ri, which consists of the unquantized received signal xi and
the difference between the input and output of the previous
quantizer, is given by [16]

ri = xi + e−jϕ(ri−1 − yi−1), ∀i = 1, . . . , N, (4)

where xi ≜ hT
i s+ni. At the BS, the quantized observation at

antenna i is yi = Qb(ri), where Qb(.) denotes the b-bit ADC.
Here, r0 and y0 are set to 0. Considering the input-output re-
lationship of the Σ∆ quantizer in (4), the conditional distribu-
tions between the observed quantized signal yi and latent vari-
ables, i.e., ri, xi, s, are given by p(ri|ri−1, yi−1, s;H, N0) =
CN (ri; hT

i s + e−jϕ(ri−1 − yi−1), N0) and p(yi|ri) = 1(ri ∈
[ylowi , yupi ]), with 1 representing the indicator function, ylowi

and yupi are the lower and upper bounds of the bins to which
ri belongs, respectively.

III. VARIATIONAL BAYES FOR DATA DETECTION

We consider the residual interference-plus-noise as an un-
known parameter Npost

0 , which must be estimated using the
VB method. The dependency between random variables under
spatial Σ∆ processing can be graphically modeled through the
Bayesian network in Fig. 2, where we denote γ ≜ 1/Npost

0 as
the precision that is floated as an unknown random variable.
The main goal is to infer the distribution of data s given the
observation y. To accomplish this, we employ the mean-field
variational distribution q(s, r, γ) to optimize the variational



distribution q(s, r, γ) such that:

p(s, r, γ|y;H) ≈ q(s, r, γ) =
K∏

k=1

q(sk)
N∏
i=1

q(ri)q(γ). (5)

Based on VB framework, to obtain the optimal solution of
the variational densities in (5), we need the joint distribution
p(y, r, s, γ;H) which can be factorized as

p(y, r, s, γ;H) = p(s)
N∏
i=1

p(yi|ri)p(ri|ri−1, yi−1, s, γ;H)p(γ),

(6)

where p(ri|ri−1, yi−1, s, γ;H) = CN (ri; hT
i s + e−jϕ(ri−1 −

yi−1), γ
−1).

By applying the VB framework, all the considered varia-
tional densities can be derived in closed form as follows:

1) Updating ri: For i = 1, . . . , N − 1, the variational
distribution q(ri) can be obtained by taking the expectation
of the conditional in (6) w.r.t. q(s, γ) as

q(ri) ∝ exp
{〈

ln p(yi|ri) + ln p(ri+1|ri, yi, s, γ;H)

+ ln p(ri|ri−1, yi−1, s, γ;H)
〉}

∝ 1(ri ∈ [ylowi , yupi ]) exp
{
− ⟨γ⟩

(
|ri − ai|2 + |ri − bi|2

)}
∝ 1(ri ∈ [ylowi , yupi ])CN

(
ri; (ai + bi)/2, 1/(2⟨γ⟩)

)
, (7)

where ai ≜ hT
i ⟨s⟩ + e−jϕ(⟨ri−1⟩ − yi−1) and bi ≜

yi + ejϕ⟨ri+1⟩ − ejϕhT
i+1⟨s⟩. Here, ⟨x⟩ denotes the vari-

ational mean of a variable x. Let vi ≜ (ai + bi)/2,
so that the variational distribution q(ri) in (7) is the
truncation of ri ∼ CN

(
vi, 1/(2⟨γ⟩)

)
onto the in-

terval [ylowi , yupi ]. Thus, the mean and variance of ri
can be calculated as ⟨ri⟩ = Fr(vi, 2⟨γ⟩, ylowi , yupi ) and
τri = Gr(vi, 2⟨γ⟩, ylowi , yupi ), respectively, where Fr(.) and
Gr(.) were calculated as (66) and (67) in [9].

For i = N , while the factor p(rN+1|rN , yN , s, γ;H) does
not exist, the variational distribution q(rN ) can be computed
similarly to (7) and is given by

q(rN ) ∝ 1(rN ∈ [ylowN , yupN ]) CN
(
rN ; aN , 1/⟨γ⟩

)
. (8)

2) Updating sk: The variational distribution q(sk) is ob-
tained by taking the expectation of the conditional in (6) w.r.t.
q(r, γ):

q(sk) ∝ exp

{〈
ln p(sk) +

N∑
i=1

ln p(ri|ri−1, yi−1, s, γ;H)
〉}

∝ p(sk) exp
(
− ⟨γ⟩

N∑
i=1

|zi,k − hi,ksk|2
)

∝ p(sk)
N∏
i=1

CN
(
zi,k;hi,ksk, ⟨γ⟩−1

)
, (9)

where

zi,k = ⟨ri⟩ − e−jϕ(⟨ri−1⟩ − yi−1)− hT
i ⟨s⟩+ hi,k⟨sk⟩, (10)

using the current estimate ⟨sk⟩, ∀k. The variational dis-
tribution q(sk) is equivalent to the posterior distribution
p(sk|zk, ⟨γ⟩;hk) of sk in a decoupled single-input multiple-
output (SIMO) system as below:

zk = hksk + CN (0, ⟨γ⟩−1IN ). (11)

The variational mean and variance of sk can be updated
as ⟨sk⟩ = Fs(zk,hk, ⟨γ⟩) and τsk = Gs(zk,hk, ⟨γ⟩), respec-
tively, and their computations can be obtained by the same
steps in Appendix B of [18].

3) Updating γ: We assume a conjugate prior Gamma
distribution Gamma(α, β) for the precision γ, where α and
β present the shape and rate parameters of the distribution,
respectively. The variational distribution q(γ) is obtained by
taking the expectation of the conditional distribution in (6)
w.r.t. q(s, r):

q(γ) ∝ exp

{〈 N∑
i=1

ln p(ri|ri−1, yi−1, s, γ;H) + ln p(γ)

〉}

∝ exp

{
− γ

N∑
i=1

〈
|ri − hT

i s− e−jϕ(ri−1 − yi−1)|2
〉

+N ln γ + (α− 1) ln γ − βγ

}
∝ exp

{
− γ

N∑
i=1

(〈
|ri − hT

i s|2
〉
+

〈
|ri−1 − yi−1|2

〉
− 2ℜ

{〈
(ri − hT

i s)
∗(ri−1 − yi−1)e

−jϕ
〉})

+ (N + α− 1) ln γ − βγ

}
. (12)

Using the expansion
〈
|ri − hT

i s|2
〉
= |⟨ri⟩ − hT

i ⟨s⟩|2 + τri +
hT
i Σshi, we arrive at

q(γ) ∝ exp

{
− γ

N∑
i=1

[
|⟨ri⟩ − hT

i ⟨s⟩ − (⟨ri−1⟩ − yi−1)e
−jϕ|2

+ τri+ hH
i Σshi + τri−1

]
+ (N + α− 1) ln γ − βγ

}
∝ exp

{
− γ

N∑
i=1

[
|ui|2 + τri + hH

i Σshi + τri−1

]
+ (N + α− 1) ln γ − βγ

}
∝ exp

{
− γ

[
β + ∥u∥2 + 2Tr{Σr} − τrN

+Tr
{
HΣsH

H
}]

+ (N + α− 1) ln γ
}
, (13)

where ui ≜ ⟨ri⟩ − hT
i ⟨s⟩ − e−jϕ(⟨ri−1⟩ − yi−1), u =

[u1, . . . , uN ]T , and Σr = diag(τr1 , . . . , τrN ) and Σs =
diag(τs1 , . . . , τsK ) are the covariance matrices of r and s, re-
spectively, α and β are the parameters of the prior distribution
of p(γ) that was assumed to be a Gamma distribution with
parameters α and β. Here, ui denotes the residual term at
antenna i, which reconciles with the noise term ni when ri,
ri−1, and s are perfectly estimated.



Algorithm 1 – VB Algorithm for MIMO Detection with 1st-
Order Σ∆ Quantization

1: Input: y,H
2: Output: ŝ
3: Initialize r̂1i = y1

i , τ1
ri = 0, ∀i, ŝ1k = 0, τ1

sk = Varp(sk)[sk], ∀k,
u = r̂1 −Hŝ1.

4: for t = 1, 2, . . . do
5: γ̂t ← (N+α)/

(
β+∥u∥2+2Tr{Σr}−τ t

rN +Tr{HΣsH
H}

)
6: for i = 1, . . . , N do
7: if i = N then
8: vti = r̂tN − uN , ϵ = 1
9: else

10: vti ← r̂ti − (ui − ejϕui+1)/2, ϵ = 2
11: end if
12: r̂t+1

i ← Fr(v
t
i , ϵγ̂

t, ylow
i , yup

i )
13: τ t+1

ri ← Gr(v
t
i , ϵγ̂

t, ylow
i , yup

i )
14: ui ← ui − r̂ti + r̂t+1

i

15: ui+1 ← ui+1 + e−jϕ(r̂ti − r̂t+1
i ) only for i < N

16: end for
17: for k = 1, . . . ,K do
18: ztk ← hkŝ

t
k + u

19: st+1
k ← Fs(z

t
k,hk, γ̂

t)
20: τ t+1

sk ← Gs(z
t
k,hk, γ̂

t)
21: u← u+ hk(ŝ

t
k − ŝt+1

k )
22: end for
23: end for
24: ∀k : ŝk ← argmaxa∈S paCN

(
ztk;hka, (1/γ̂

t)IM
)

The variational distribution q(γ) is Gamma with mean

⟨γ⟩ = N + α

β + ∥u∥2 + 2Tr{Σr} − τrN +Tr
{

HΣsHH
} . (14)

The proposed VB method for MIMO detection with 1st-
order Σ∆ quantization is summarized in Algorithm 1, where
the parameter ϵ is the numerator of γ̂ in the variational distri-
butions of (7) and (8) for updating ri and rN , respectively.

IV. SIMULATION RESULTS

This section presents illustrative numerical results for the
performance of the proposed SD-VB algorithm based on
the 1st-order Σ∆ architecture compared with state-of-the-
art data detection methods such as the MF-QVB in [9] and
LMMSE-based detection for various scenarios. We implement
all VB-based algorithms with a maximum of 50 iterations and
consider scenarios with 100 transmitted data symbols. The
noise variance N0 is set based on the SNR, which is defined as
SNR = E[∥Hs∥2]/E[∥n∥2] = K/(NN0). Unless otherwise
stated, all cases assume the number of paths as L = 20, the
width of the angular sector as Θ = 40◦ and assume it is
centered at θ0 = 0◦. We assume all users lie within the same
azimuth angular range, with AoAs drawn uniformly from the
interval [−20◦, 20◦].

To highlight the effectiveness of the proposed approach,
we compare the performance of the SD-VB algorithm with
that of three benchmark approaches: (i) The LMMSE re-
ceiver implemented with the 1st-order Σ∆ architecture and
1-bit quantizers, (ii) the MF-QVB algorithm developed in [9]
implemented with conventional few-bit quantizers, and (iii)

Fig. 3: SER performance vs. SNR with 1-bit and 3-bit quantizers,
azimuth angular spread Θ = 400, ϕ = 200, N = 128, and K = 16.

the MF-VB algorithm developed in [19] implemented with
ideal/infinite quantizers.

The data detection performance of the proposed SD-VB
algorithm is shown in Fig. 3. The SERs of MF-QVB, proposed
in [19], and LMMSE are evaluated based on the conventional
quantizer and the linearized model of the Σ∆ quantizer,
respectively. The SER of the proposed SD-VB is closest to
the unquantized system, i.e., MF-VB, and outperforms MF-
QVB and LMMSE in both 1-bit and 3-bit quantization. MF-
QVB is inefficient for the channels with relatively few paths
that are confined to some angular sector since the quantization
noise in a conventional quantizer is uniform across all spatial
frequencies. LMMSE is based on the approximation of the
Σ∆ quantizing output. The Σ∆ receiver shapes the quanti-
zation noise and pushes it out of the spatial frequencies of
interest. A proper signal processing algorithm, e.g., SD-VB,
can help improve SER performance without linearizing the
Σ∆ quantized output as in LMMSE.

Fig. 4 shows the effect of the azimuth angular spread on
SER performance. For narrow azimuth ranges, all approaches
experience high SER due to the extreme channel correlation
that results in K = 16 users densely packed together. The 3-bit
SD-VB implementation performs best among all the quantized
approaches for sectors smaller than 80◦. The SD-VB imple-
mentation achieves its best performance for Θ ∈ [60◦, 80◦],
but its SER degrades as the sectors become wider since the
noise-shaping effect is limited. MF-VB and MV-QVB have
the best performance for large sectors since the Σ∆-based
approaches have reduced spatial correlation to exploit. The
advantage of using VB, in general, is evident in the superior
performance of the VB algorithms compared with LMMSE in
all cases.

Fig. 5 presents the effect of antenna spacing and wave-
length on the SER performance of all detection algorithms
for an array with a fixed number of antennas (N = 128).
Observations similar to those in the previous example can



Fig. 4: SER performance vs. azimuth angular spread Θ, with 3-bit
quantizers, SNR = 5 dB, θ0 = 0◦, and d = λ/6.

Fig. 5: SER performance vs. d/λ, with 3-bit quantizers, N = 128,
Θ = 40◦, θ0 = 0◦, and SNR = 5 dB.

be made here. In particular, when d is very small, the array
aperture is significantly reduced and none of the methods are
able to counteract the extreme channel correlation that results
from the narrow angular sector of Θ = 40◦. The SER of all
algorithms improves with increasing d, although the proposed
SD-VB algorithm provides the best performance for values of
d around 1/4 to 1/3, and degrades for larger d since the benefit
of oversampling is lost. As the antenna spacing increases, the
reduced channel correlation benefits MF-VB and MF-QVB.

V. CONCLUSION

In this paper, we have developed a MIMO detection algo-
rithm based on the VB inference framework in massive MIMO
systems with few-bit Σ∆ ADCs. The variational distributions
of the latent variables were obtained in closed form, based
on which an iterative algorithm was developed for MIMO
detection with efficient updates. Simulation results showed

that the proposed SD-VB algorithm achieved higher detection
performance than the MF-QVB and LMMSE under 1-bit and
3-bit quantization. Moreover, the SD-VB achieved its best
MIMO detection performance when the users are confined
to angular sectors less than 80◦ wide. The consideration of
second-order Σ∆ ADCs and additional numerical results are
given in the extended version of this work in [18].
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