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Abstract—We consider a scenario whereby the state of a
common source is being updated at multiple distributed devices.
We are particularly interested in the tradeoff that exists between
the freshness of the updates at the distributed devices and
the synchrony of the updates across them. In this paper, we
explore this tradeoff in a wireless downlink setting whereby
the transmitter can choose between unicast transmissions (with
given success probabilities) to particular users and broadcast
transmissions (with a smaller success probability) to all users.
After discussing the Linear Programming (LP)-based optimal
design and extreme choices of “always-unicasting” and “always-
broadcasting” policies, we note that the optimal design is not
scalable and the extreme policies are inefficient. This motivates
us to develop two classes of policies, namely a “mixed randomized
policy” and a “feature-based learning policy”, which have desir-
able performance and computational-complexity characteristics.
Additionally we manage to provide complete analysis for the
mixed randomized policy under the two-user case, which provides
interesting insights and can be partially extended to general
cases. We perform extensive numerical studies to compare the
performance of these designs over the benchmarks to reveal their
gains.

Index Terms—Age asynchrony, age-of-information, broadcast-
ing channels, wireless downlink system, linear programming,
renewal process.

I. INTRODUCTION

IN RECENT years, the exponential growth of connected
devices for the next-generation wireless networks and the

advent of latency-sensitive applications, such as industrial
automation, vehicular networks, and the Internet of Things
(IoT), have shifted the focus from traditional communica-
tion metrics like throughput to more nuanced performance
indicators. Age of Information (AoI) is one such metric that
quantifies the freshness of information by measuring the time
elapsed since the generation of the most recent update received
by a user (see, for example, [1], [2], [3]).

Since the introduction of the AoI metric, numerous related
studies emerged in various networking scenarios, including
wireless random access networks (e.g., [4], [5]), content distri-
bution networks (e.g., [6], [7]), scheduling (e.g., [8], [9], [10])
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and queuing networks (e.g., [11], [12]). More recently, various
extensions and variants of the AoI metric have been proposed
to address different aspects of information freshness. Peak
Age of Information (PAoI in [13]) is one such metric that
captures the worst-case AoI by considering the maximum
value of AoI over a time window and is especially important
in applications where information staleness could lead to
severe consequences. The AoI violation rate metric (see [14])
describes the time ratio of AoI violating a fixed level and
is used in scenarios where the AoI for each source can
tolerate occasional violations. The Age of Synchronization
(AoS) metric (see [15]) describes the age difference between
the source and the destination for the same source, which
is totally different from the synchronization we are going to
introduce.

In this paper, we will introduce and study the measure of
age asynchrony among distributed users in a wireless downlink
system, which measures how similar the age (and hence the
freshness) levels are at the users. In particular, we explore
the trade-off between the freshness and the synchrony of the
updates under different transmission policies. Synchronization
is a critical aspect of future wireless communication systems
since accurate synchronization is essential for coordinating
time-sensitive operations among different users (see [16]).
There are many scenarios where synchronization among users
takes precedence over AoI, such as in distributed control
systems, cooperative communication networks ([17]) and so
on (e.g., Vehicular Networks [18], Wireless Sensor Networks
[19] and Precision Agriculture [20]). For example, in industrial
automation and process control applications, distributed con-
trol systems involve multiple sensors, actuators, and controllers
that need to coordinate their actions in real-time. Accurate
synchronization among these users is critical for maintaining
the stability and efficiency of the system, while the AoI may
be of secondary importance (see [21]).

Thus, achieving a balance between AoI and synchroniza-
tion is therefore of paramount importance for the effective
functioning of these systems. The remainder of this paper is
organized as follows:

• In Section II, we build our system model in a discrete-
time wireless downlink setting whereby the transmitter
can choose between unicasting and broadcasting with
different transmission success probabilities. We formulate
our problem as minimizing the weighted sum of the AoI
and Age Asynchrony to study the trade-off between the
freshness and the synchrony.

• In Section III, we study the optimal solutions via Linear
programming for small number of users n due to the
computational complexity of the optimal solution for
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large n. In Section IV, we analyze the performance
of two extreme policies: always unicasting and always
broadcasting, and make comparisons.

• In Section V and Section VI, we propose a mixed ran-
domized policy and a feature-based learning policy, both
with good scalability characteristics and non-negligible
performance gains compared with extreme policies with
meaningful success probabilities. Additionally, in Sec-
tion V we managed to overcome the difficulties that
arise in the analysis of the mixed randomized policy
to obtain: (i) complete results on the average age and
age asynchrony for the two-user setting, and (ii) gave a
procedure of extending average age analysis to general
n−user case.

• In Section VII, we execute simulations and compare all
the mentioned policies. We observe that, with different
number of users, success probability and weights, we
may prefer different policies for optimizing the tradeoff.
Counter-intuitively, we note that unicasting can be more
preferable to broadcasting when aiming to minimize
the age asynchrony under an unreliable communication
environment. And in Section VIII, we conclude the paper
and mention the potential future works.

In related literature, many works (e.g., [22], [23], [24])
have studied different types of the clock synchronization
in a decentralized system, such as reference-broadcast syn-
chronization (RBS) and time-stamp synchronization (TSS),
but they focus on the structure of the protocols instead of
considering transmission successes and failures. In [25] and
[26] and many other works, the authors have aimed to decrease
the synchronization and other metrics with time-sensitive 5G
networks, but by the means of improving the transmission
architecture and mechanisms to provide ultra-reliability and
low-latency communications (URLLC). More recently, [27]
have presented an efficient window-based resource allocation
method for the end-to-end time-sensitive network scheduling
problem under the uncertainty of the channel. This work aims
to reduce large-scale fading correlation across the devices
which is different from our scope. There are other works that
aim at minimizing other AoI metrics under fading channels
which is different from our focus. To our best knowledge,
there is no prior work considering the trade-off between the
freshness and the synchrony among the users in an unreli-
able communication environment under different transmission
strategies.

II. SYSTEM MODEL

In this paper, we will consider the operation of a discrete-
time wireless communication system, whereby a Base Station
(BS) sends information updates to n users at the beginning of
every time slot t ∈ {1, 2, 3, · · · } either by broadcasting the
information to all the users with a relatively lower individual
success probability (that are generated independently for each
user) or by unicasting the information to a specific user with
a relatively higher success probability.

We assume that the BS refreshes its status and creates a
new packet at the beginning of every time slot t. Accordingly,
the BS always sends the freshest status to all the users. This
assumption is especially reasonable for the scenarios where
the state of the source is observable or accessible at the BS.
More complicated models, such as randomly generated new

packets, add more complexity and can be considered in the
future extensions. Our goal is to find an effective strategy
that can keep the information at the users fresh as well as
the age of information amongst the users as synchronized as
possible. We describe the key terminology and the essential
system dynamics in the rest of this section. Then, in the
following sections we formulate the problem and propose
different strategies with different performance and complexity
characteristics for its solution.

A. AoI and Age Asynchrony Metrics

First, define the Age-of-Information (AoI) of User i as Ui[t],
which is the number of time slots elapsed at time t since User
i last received a successful update from the station. The AoI
is updated as follows:

Ui[t+ 1] =

{
0, if transmission of source i succeeds
Ui[t] + 1, otherwise.

Define A[t] as the average AoI of all the users at time t,
A[t] = 1

n

∑
Ui[t]. To study the information freshness dif-

ference between users, we will additionally define the metric
S1[t] as the 1st−order average Age Asynchrony1,

S1[t] =
1(
n
2

)∑
i6=j

|Ui[t]− Uj [t]| .

For example, consider a group of autonomous drones per-
forming a coordinated task and the control system requires
up-to-date location information from all drones with a maxi-
mum AoI difference to avoid potential collisions. The goal of
the Age Asynchrony is to measure such age differences.

B. Broadcast/Unicast Model

We assume that in our model the base station will choose
one of the actions x[t] ∈X at every time slot t, where X =
{0, 1, · · · , n}, x[t] = 0 represents that the station chooses to
broadcast to all n users and x[t] = i means that the station
chooses to unicast with the ith user.

Under the broadcasting model, we let P{Ui[t + 1] = 0} =
pb be the probability of success, whereby the success/failure
outcomes of each user is independently determined. 2 Under
the unicasting model, when x[t] = i, P{Ui[t + 1] = 0} =
pd, P{Uj [t + 1] = 0} = 0 for j 6= i. Broadcasting success
probability is likely to be smaller than the unicast success
probability in our setting since the PHY-layer signalling that
is needed to perform a simultaneous broadcast transmission
to n users over independently fading channels is significantly
more difficult than the signalling that can be optimized for an
individual unicast channel.

1All the theoretical results that we will obtain on S1[t] can be
extended to rth−order average Age Asynchrony cases Sr[t] =∑

i6=j |Ui[t]− Uj [t]|r /
(
n
2

)
, r ∈ N , by using the Faulhaber’s formula

and Arithmetico-geometric sequence formula. Here, we focus on the case of
r = 1 in order to keep the results cleaner.

2In reality, users may have different success probabilities under the broad-
casting model due to user locations, which can be discussed in future works.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on September 18,2025 at 19:27:44 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: ACHIEVING SYNCHRONIZED FRESH COMMUNICATION OVER BROADCAST CHANNELS 3

C. Objective
In this paper, we focus on minimizing the weighted sum

of the long-term average of Age Asynchrony and Age-of-
Information, which allows us to study the trade-off between
the information freshness of the users and the information
synchronization between users. Define the cost at t to be a
function of the weight α ∈ [0, 1):

Cα[t] , (1− α)A[t] + αS1[t].

Notice that α is not allowed to be 1 in our model, since
only minimizing Age Asynchrony can push the system into
an unstable operating mode where none of the users wants
to get updates when their Age Asynchrony is small. We will
study the optimal solution to the problem of minimizing the
long-term average:

lim
T→∞

1

T

T∑
t=1

E [Cα[t]]

via Linear Programming in Section III, extreme policies with
either always broadcasting or always unicasting with the oldest
users in Section IV, a mixed randomized policy in Section V,
and feature-based learning policies in Section VI. We will
compare the theoretical and simulation performance of these
designs in Section VII.

III. OPTIMAL DESIGN

In this section, we formulate the minimization problem
under the Markov Decision Process (MDP) setup. Let the
state be the current age of n users: U = [Ui[t]]

n
i=1 ∈ [0, D]n

where D is an upper bound on the ages 3 and P (X ) is the
probabilistic policy on set X . Then, the MDP problem for n
users can be formulated as:

min
x[t]∈P (X )

lim
T→∞

(1− α)
1

T

T∑
t=1

E [A[t]] + α
1

T

T∑
t=1

E
[
S1[t]

]
Theoretically, this problem can be solved by transforming the
MDP in an appropriate Linear Program (LP). However, this
approach is not scalable due to the exponential growth of the
problem size the n. Nevertheless, using this solution for small
n values will allow us to use it as a benchmark for our designs
to compare against. As such, for completeness, we provide the
optimal solution LP for n = 2 users, which can be generalized
to n > 2 with increasing notational complexity.

Theorem 1: The solution to the 2 users minimization
problem can be obtained by solving the following linear
programming problem:

min
yka1,a2

D∑
a1,a2=0

2∑
k=0

[
1− α

2
(a1 + a2) + α|a1 − a2|

]
yka1,a2

s.t: 0 ≤ yka1,a2 ≤ 1 ∀0 ≤ a1, a2 ≤ D, 0 ≤ k ≤ 2,

D∑
a1,a2=0

2∑
k=0

yka1,a2 = 1,

Qy = 0,

3In reality, D can be viewed as an upper bound where ages older than
D make no difference to the system. Theoretically, as D approaches infinity,
the solution approaches the solution of the infinite CMDP where ages are
unbounded ([28]).

where y is a column vector of size 3(D + 1)2 with y =
(y0

0,0, y
1
0,0, y

2
0,0, · · · , y0

D,D, y
1
D,D, y

2
D,D)T as its components, D

is an upper bound on the age state in the system which can
be set sufficiently large so that the probability of reaching D
is vanishing. And Qy = 0 is the matrix representation of
the (Markov balance) equations that describes the probability
flux associated with the Markov chain in and out of states
(a1, a2) ∈ [0, D]2, which can specified based on the transition
probabilities in Appendix A. If this LP is feasible and y is
an optimal solution, where yka1,a2 represents the stationary
probability of being in state (a1, a2) and choosing the action
k, then the optimal policy is a probabilistic policy P (X ),
whereby the probability fka1,a2 of choosing x[t] = k given the
age is at state (a1, a2) equals:

fka1,a2 =


yka1,a2∑2

k=0 y
k
a1,a2

, if
∑2
k=0 y

k
a1,a2 6= 0

1
3 , if

∑2
k=0 y

k
a1,a2 = 0

for (a1, a2) ∈ [0, D]n.
Proof: The proof follows directly from the equivalency

between MDP and LP problem and is omitted here (refer
to [28]). �

Since our solution vector y is a column vector of size
(n + 1)(D + 1)n for n user scenario, eventually the time
complexity of implement LP solution 4 can be approximated
as O((D + 1)3.5n) which will increase exponentially as the
number of users n increases and makes the LP solution not
implementable for large n. Thus, We will study more policies
with better scalability in following sections.

IV. EXTREME POLICIES

To develop an understanding of the broadcasting and uni-
casting decisions, in this section, we study the performance
of age and synchronization metrics for two extreme policies
as a function of n for different pb and pd, and compare
the theoretical results at the end of this section. The related
simulation performance can be found in Section VII.

A. Always-Broadcasting Policy
In this section, we study the policy that selects x[t] = 0

for all t, i.e., the BS always chooses to broadcast the current
information to n users. We will analyze the long-term average
of A[t] in Theorem 2 and the long-term average of S1[t] in
Theorem 3.

Theorem 2: The long-term average of A[t] for always-
broadcasting equals to:∑∞

k=0 (1− pb)k · 1
2k(k + 1)∑∞

k=0 (1− pb)k (k + 1)
=

(1− pb)
pb

which remains constant as n increases.
Proof: Since each user is statistically identical with respect

to age and user successes are independent, it is sufficient to
calculate the long-term average of U1[t]. The result follows
from the characteristics of the associated geometric distribu-
tion. Details are omitted due to limited space. �

4In our paper, we implemented the LP solution through the MATLAB
‘linprog’ function, which uses the interior-point method and the time com-
plexity can be approximated as O(N3.5), where N is the dimensionality of
the solution vector.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on September 18,2025 at 19:27:44 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NETWORKING

Theorem 3: The long-term average of S1[t] for always-
broadcasting equals to:

lim
T→∞

1

T

T∑
t=1

E{S1[t]} = lim
t→∞

E{S1[t]}

=
∞∑
k=0

2pb(1− pb)
1− (1− pb)2

pb(1− pb)k(k + 1) =
2(1− pb)

1− (1− pb)2
.

Proof: Since each user pairs are identical, it is sufficient
to calculate the long-term average of the absolute age gap
between any two users. Details are omitted due to space. �

B. Always-Unicasting Policy
In this section, we study the policy that selects x[t] =

arg maxi Ui[t] for all time slots t, i.e., the BS always chooses
to unicast information to the user with the oldest age. We will
analyze the long-term average of A[t] in Theorem 4 and the
long-term average of S1[t] in Theorem 5. This policy will be
more complex than the previous always-broadcasting policy
since this is a state-dependent policy.

Theorem 4: The long-term average of A[t] for always-
unicasting equals to:

lim
T→∞

1

T

T∑
t=1

E{A[t]} = lim
t→∞

E{A[t]} =

∑∞
k=0 p

n
d (1− pd)k

(
n+ k − 1
n− 1

)
1
2 (n+ k)(n+ k − 1)

∑∞
k=0 p

n
d (1− pd)k

(
n+ k − 1
n− 1

)
(n+ k)

=
1
2 · −np

−n−2
d (−n+ 2pd − 1)

np−n−1
d

=
n− 2pd + 1

2pd
.

Note that the average AoI is linear in n for a fixed success
probability pd.

Proof: By symmetry, we only need to calculate the long-
term average of User 1. Since the Markov Chain U1[t] is
positive recurrent, thus the sequence of entry times to state
U1[t] = 0 can be viewed as the arrival epochs of a renewal
process. Define TN as the time of the N th entries to state 0
with T0 = 0, N ∈ N and define ∆N = TN+1 − TN to be
the time interval between two entries.

Since we always perform direct transmission, after a success
at User 1, U1[t] will keep increasing by one until another
success happens at User 1, and since we always choose the
user with the oldest age to transmit, between two successes at
User 1, all the other n − 1 users must succeed once. Based
on the above description, independent of the starting points,
the steady-state probability distribution of the interarrival time
P (∆N = k) = 0 when k = 0, 1, · · · , n−1; P (∆N = n+k) =

pnd (1 − pd)
k

(
n+ k − 1
n− 1

)
, when k = 0, 1, · · · . And when

∆N = n+ k, U1[t+ τ ] = τ for τ = 0, · · · , n+ k− 1 in this
renewal, so by the Wald’s identity ([29]), we get the claimed
formula of the average age. �

Theorem 5: The long-term average of S1[t] equals to:
limT→∞

1
T

∑T
t=1 E{S1[t]} = limt→∞ E{S1[t]} = n+1

3pd
,

which is linear in n for a fixed probability pd.
Proof: The proof is more involved and is moved

to Appendix B to avoid disrupting the flow of the
main text. �

C. Discussion on the Performance of Extreme Policies
By comparing the long-term average of the average AoI A[t]

of always-broadcasting and always-unicasting policies, we can
see that when the broadcasting success probability pb >
2pd
n+1 , always-broadcasting policy provides better average AoI
performance. Assume that the expected number of successes
is unchanged for always-broadcasting when n increases, i.e.,
assume that pb = µ

n ∈ [0, 1] where µ is a positive constant,
then the average Age Asynchrony under the broadcasting
policy will become:

lim
T→∞

1

T

T∑
t=1

E
{
S1[t]

}
=

2 (1− pb)
(1− pb)2 =

2(n− µ)n

(2n− µ)µ

Recall that for always unicasting policy, the average Age
Asynchrony equals n+1

3pd
. Therefore, asymptotically speaking,

average Age Asynchrony approaches n
µ and n

3pd
respectively

for always-broadcasting and always-unicasting. Combining
both metrics together to minimize the long-term average of
C(α) = (1 − α)A[t] + αS[t] for a given α, we get for
alwaysbroadcasting policy:

lim
n→∞

1

n
lim
T→∞

1

T

T∑
t=1

E {Cα[t]} = (1− α)
1

µ
+ α

1

µ
=

1

µ

and for always-unicasting policy:

lim
n→∞

1

n
lim
T→∞

1

T

T∑
t=1

E {Cα[t]} =
(1− α)

2pd
+

α

3pd
(1)

Hence, when (1) is larger than 1
µ or pb decays slower than

µ
n , we would prefer always-broadcasting eventually, otherwise,
always-unicasting policy eventually becomes better, see Sec-
tion VII for simulation results. We also observe that, when one
of the success probabilities pb and pd is large enough so that
the average performance of one extreme policies is much better
than the other one, extreme policies perform good enough
compared to LP solutions. It is because this case implies that
broadcasting or unicasting dominates the other on most of the
age states. However, when 2pd ≤ npb ≤ 3pd (from (1)), the
average performance of the extreme policies are comparable,
in which case we need to find other policies to achieve better
performance. This motivates us to develop new policies in the
following sections.

V. MIXED RANDOMIZED POLICY

In the previous section, we were able to provide a complete
analysis of two extreme policies of always-broadcasting and
always-unicasting to the user with the oldest age. An important
weakness of these policies is their limitation in trading-off
the age and synchronization performances. In this section, we
introduce a mixed randomized policy that can explore this
tradeoff by employing a randomization parameter to decide
between broadcasting or unicasting the oldest age user. This
policy is more capable by encapsulating the previous two cases
as extremes, but is also far more difficult to analyze, even
for a two-user setting, due to the mixture of unicasting and
broadcasting decisions made in its operation.

In this section, we are able to overcome these difficulties
for the two-user setting to obtain complete results on the
average age and synchronization performance of this policy in
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terms of the system parameters and the algorithm parameter
p. These, subsequently, allow us to characterize and optimize
the tradeoff between the two opposing metrics. Finally, we
discuss the extension of the analysis to the general case of n
users, whereby the analysis is still possible but becomes more
complex due to the emergence of growing number of cases in
the recursive process.

A. Average Age and Age Asynchrony Analysis for Two Users
The next theorem provides the average age performance of

the mixed randomized policy for the two-user case.
Theorem 6: The long-term average AoI performance under

the mixed randomized policy for n = 2 is given by∑∞
i=1

i(i−1)
2 ρ(i)∑∞

i=1 ρ(i) · i
, (2)

where ρ(1) = βpηp + γpθp, and for i ≥ 2,

ρ(i) = βp

(
ζi−1
p ηp + µpλp

ψi−1
p − ζi−1

p

p · pb(1− pb)

)

+γp

(
ζi−1
p θp + ξpλp

ψi−1
p − ζi−1

p

p · pb(1− pb)

)
,

where the definitions of the terms in the expression are
provided in Appendix C.

Proof: Same as in Theorem 4, the sequence of entry times
to state 0 for U1[t] can be viewed as the arrival epochs of a
renewal process. In this section, define TN as the time of the
N th entries to state 0 with T0 = 0, N ∈ N for User 1 and
define ∆N = TN+1−TN to be the time interval between two
entries. For simplicity, use ∆ to denote the inter-arrival times
under the steady-state distribution.

Under the event where ∆ = i, there are two cases,
U2[t] = 0 and U2[t] 6= 0. Then P (∆ = i) = βpP (∆ =
i|U2[t] = 0) + γpP (∆ = i|U2[t] 6= 0). Since the relationship
between the age of the two users will affect the success
probability of each user, in each case, there are two sub-
cases: User 2 never succeeds in time slots t+ 1 to t+ ∆− 1
and User 2 succeeds at least once in time slots t + 1 to
t + ∆ − 1 (the probability of the second sub-case equals 0
when i = 1). So, P (∆ = 1) = βpηp + γpθp. And for i ≥ 2,
P (∆ = i|U2[t] = 0) = ζi−1

p ηp + µpλp
∑i−2
j=0 ζ

j
pψ

i−2−j
p ,

where
∑i−2
j=0 ζ

j
pψ

i−2−j
p =

ψi−1
p −ζi−1

p

ψp−ζp =
ψi−1

p −ζi−1
p

p·pb(1−pb) . Simi-
larly, we can calculate P (∆ = i|U2[t] 6= 0) = ζi−1

p θp +

ξpλp
∑i−2
j=0 ζ

j
pψ

i−2−j
p for i ≥ 2. And finally, since when

∆ = i, i = 1, 2, · · · , we will have U2[t + τ ] = τ for
τ = 0, 1, · · · , i − 1 in this renewal, so the long-term average
AoI equals to (2) followed by the Wald’s identity ([29]), where
ρ(i) denotes P (∆ = i). �

The performance of the policy can be seen in Figure 4 and
Figure 7. Notice that all the terms in (2) are in the form
of arithmetico-geometric series (see [30]), so the result can
be simplified as an explicit expression without summations.
This is omitted here due to the complex form that they will
result in.

Having provided the average age performance, we now turn
to the synchronization performance, which is an even more
complex metric under the mixed randomized policy. Next, we
are able to obtain the result for the two-user case. To that end,

Fig. 1. Base Station updates its status to n users by either broadcasting or
unicasting to keep the age levels at users low and synchronized.

Fig. 2. The trade-off between average age and Age Asynchrony for mixed
randomized policy under simulation and by theorem when n = 2, pb =
0.32, pd = 0.4.

Fig. 3. The trade-off between average age and Age Asynchrony for mixed
randomized policy under simulation and by theorem with other channel
successful probabilities.

Fig. 4. The trade-off between average age and Age Asynchrony for all policies
when n = 2, pb = 0.32, pd = 0.4.

let us define TN as the time of the N th ∈ N visit to the
subset of states [u1, u2] such that u1 · u2 = 0, with T0 = 0.
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Fig. 5. Performance comparison against increasing n when
pd = 0.3, pb = 0.7/n, α = 0.9.

Fig. 6. Performance comparison against increasing n when pd = 0.6,
pb = 1.5/n, α = 0.5.

Fig. 7. Performance comparisons between mixed randomized policy, feature-
based learning and Optimal solution for given n.

Also let ∆N = TN+1 − TN to be the time interval between
two such visits. Same as in Theorem 4, the sequence of visits
to those states can be viewed as the arrival epochs of a renewal
process.

For the long-term average of Age Asynchrony performance
when n = 2, we utilize the steady-state distribution of S1[TN ].
Through the steady-state balance equation, it is possible to
find a recursive formula of P (S1[TN ] = i), i ∈ N and get
the general formulas by induction as shown in the following
theorem. Since the time interval between two entries are inde-
pendently and identically distributed, and the value of S1[t]
does not change in one renewal interval, the long-term average
of the Age Asynchrony equals the mean of the steady-state
distribution of S1[TN ], i.e., limT→∞

1
T

∑T
t=1 E{S1[t]} =

limN→∞ E[S1[TN ]] and thus can be calculated after we

get the steady-state distribution S1 given in the next
theorem.

Theorem 7: The steady-state distribution of the average Age
Asynchrony under n = 2 will be,

P (S1 = i) =
p · p2

b

PR
,

when i = 0,

P
(
S1 = i

)
=

2µp
(
p · p2

b + ξp
)

PR
(ζp + φp)

i−1

when i ≥ 1, where PR = p · p2
b + 2p · pb (1− pb) + (1− p)pd

denotes the steady-state probability of the event U1[t]U2[t] =
0. Thus, the long-term average of Age Asynchrony will be:

lim
T→∞

1

T

T∑
t=1

E{S1[t]} =
2µp

PR(p · pb + (1− p)pd)
. (3)

Other definitions of the notations are available in Appendix C.
Proof: First, it is easy to calculate that:

P (S1 = 0) = P (S1[TN ] = 0)

= P (U1[TN ] = 0, U2[TN ] = 0|U1[TN ]U2[TN ] = 0)

=
p · p2

b

p · p2
b + 2p · pb(1− pb) + (1− p)pd

.

For i = 1, we separate the events into two sub-events since the
relationship between U1[t] and U2[t] will affect their own suc-
cessful probabilities: {S1[TN ] = 1, S1[TN−1] = 0, TN−1 =
TN − 1} and {S1[TN ] = 1, S1[TN−1] > 0, TN−1 = TN −
1}. Since we have limt→∞ P (S1[t] = 0) = p · p2

b and
limt→∞ P (S1[t] > 0, U1[t]U2[t] = 0) = 2p · pb(1 − pb) +
(1− p)pd. So,

P (S1 = 1)

=
2p · p2

bµp
PR

+
(2p · pb(1− pb) + (1− p)pd)ξp

PR

=
2µp(p · p2

b + ξp)

PR

For i ≥ 2, we need to separate the events into three sub-
events: {S1[TN ] = i} = {S1[TN ] = i, TN−1 = TN −
i, S1[TN−1] = 0}∪{S1[TN ] = i, TN−1 = TN−i, S1[TN−1] >
0, U1[TN−1] + U1[TN ] > 0, U2[TN−1] + U2[TN ] > 0} ∪
{S1[TN ] = i, TN−1 = TN − i, S1[TN−1] > 0, (U1[TN−1] +
U1[TN ])(U2[TN−1]+U2[TN ]) = 0}. Specifically, the first sub-
event represents those cases where U1[TN−1] = U1[TN−1] =
0; the second sub-event represents those cases where a differ-
ent user succeeds at the N −1th entry from the user succeeds
at the N th entry; the third sub-event represents those cases
where at the N th entry and N − 1th entry, the same user
succeeded. So,

P (S1 = i) =
p · p2

bζ
i−1
p 2µp

PR

+
(2p · pb(1− pb) + (1− p)pd)ζi−1

p ξp

PR

+
PR
∑i−1
k=1 ζ

i−k−1
p φpP (S1 = k)

PR

=
2µpζ

i−1
p

PR

(
p · p2

b + ξp
)
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+ φp

i−1∑
k=1

ζi−k−1
p P (S1 = k)

= P (S1 = 1)ζi−1
p + φp

i−1∑
k=1

ζi−k−1
p P (S1 = k).

Based on the observation in the last equality, we can prove by
induction that for i ≥ 1,

P (S1 = i) =
2µp(p · p2

b + ξp)

PR
(ζp + φp)

i−1.

The probability sums up to one since p · p2
b + ξp = 1− (ζp +

φp) = p·pb+(1−p)pd and 2µp+p·p2
b = PR. Finally, since for

i ≥ 1, the steady-state distribution is a geometric progression,
so the long-term average Age Asynchrony can be calculated
explicitly as:

lim
T→∞

1

T

T∑
t=1

E{S1[t]} =
∞∑
i=0

iP (S1 = i)

=
2µp(p · p2

b + ξp)

PR

∞∑
i=1

i(ζp + φp)
i−1

=
2µp(p · p2

b + ξp)

PR
· 1

(1− ζp − φp)2

=
2µp(p · p2

b + ξp)

PR(p · pb + (1− p)pd)2
=

2µp
PR(p · pb + (1− p)pd)

.

�
The complete performance analysis of the mixed policy for

two-users allows us to study their tradeoff from a theoretical
standpoint. In the next subsection, we make such an excursion.

B. Discussion on the Average AoI Vs. Age Asynchrony
Tradeoff

Based on Theorems 6 and 7, for fixed channel suc-
cessful probabilities pb and pd, both the long-term average
AoI and Age Asynchrony can be expressed explicitly as
a function of p where both numerator and denomina-
tor are polynomials. Thus, by finding the derivative of
limT→∞

1
T

∑T
t=1 E{Cα[t]}, we can get the value of the opti-

mal p∗ = arg minp∈[0,1] limT→∞
1
T

∑T
t=1 E{Cα[t]} that lead

to the following three different cases based on the value of
pb and pd: i) p∗ = 0 and d

dp limT→∞
1
T

∑T
t=1 E{Cα[t]} ≥ 0,

which means that broadcasting dominates unicasting under this
α; ii) p∗ = 1 and d

dp limT→∞
1
T

∑T
t=1 E{Cα[t]} ≤ 0, which

means that unicasting dominates broadcasting under this α;
(iii) p∗ ∈ (0, 1), which means that neither unicasting nor
broadcasting is always better and thus we can benefit from
applying the mixed-randomized policy under this α. Given
different weights α, mixed randomized policy benefits under
different channel successful probability ranges of pb and pd.

In Figure 2 and Figure 3, we compare the simulation results
and the theoretical results of the mixed randomized policy
under different channel successful probabilities to validate
Theorem 6 and Theorem 7 as well as to show the impact
of pb and pd on the mixed randomized policy. As can be
seen in all three figures, the simulation results align with the
theoretically results for both long-term average AoI and Age
Asynchrony. Figure 3 shows the cases where either unicasting
or broadcasting dominates the other when minimizing only the
Age Asynchrony S1[t] while in Figure 2 the mixed randomized

policy can provides non-negligible improvements on Age
Asynchrony compared to two extreme policies. More specif-

ically, theoretically we have p∗ =
600
√

2
43

11 − 125
11 ≈ 0.3999

when pb = 0.32, pd = 0.4 by setting the derivative of the
long-term average of Age Asynchrony in (3) to 0 with respect
to p, which perfectly matches the numerical results in Figure 2.

C. Discussion on the Extension to General n-User Case
In Theorems 6 and 7 provide complete results of the mixed

randomized policy for two-users. While their calculation is
relatively straight-forward, even these results have fairly intri-
cate expressions to be stated fully. The general case of n
users are increasingly more involved to expressed, and thereby
not feasible for complete statements. In this subsection, we
provide a partial discussion on how the above results can be
extended to the general case or what challenges exist in such
an extension.

We first start by noting that, the results of Theorem 6 can
still be calculated for general n as in (2) where ρ(i) = P (∆ =
i) are in the form of the sum of finitely many geometric
progressions. To clarify this extension, we take n = 3 as an
example to explain the procedure with which the two-user case
approach can be extended, albeit with increasing notational
complexity.

The difficulty for higher dimensions comes from the
fact that, conditioned on the case where U1[t] = 0 and
U2[t], U3[t] 6= 0, we cannot easily calculate the probability
of the sub-cases of U2[t] 6= U3[t] or U2[t] = U3[t]. And
whether U2[t] = U3[t] or not will affect the success probability
of User 2 and 3 under the unicasting model and further
affects the success probability of User 1. However, by carefully
calculating the conditional probabilities, we find that whether
U2[t] = U3[t] or not will not affect the probability distribution
of the slots until User 1 succeeds next time, so the same
methods can be applied to higher dimensions as well. Next
we explain the major steps to calculate the probability ρ(i)
for n = 3.
• First of all, we will explicitly calculate P (Z[t] =

z|U1[t] = 0) for z = 1, · · · , n based on the Bayesian
rule, where random variable Z[t] denotes the number
of users with age Ui[t] = 0 in i = 1, · · · , n at
time t. Under n users case, P (Z[t] = n) = p · pnb ,
P (Z[t] = 1) = p · npb(1 − pb)

n−1 + (1 − p) · pd, for

z = 2, · · · , n− 1, P (Z[t] = z) = p

(
n
z

)
pz
b(1− pb)n−z;

• Next we will illustrate that, given U1[t] = 0 and Z[t] = 1
in n = 3 case, the probability of both User 2 and
User 3 succeeded before t + ∆ (i.e., User 1 succeeded
at time slot t + ∆ as the oldest user with successful
probability p · pb + (1 − p) ∗ pd) are the same under
U2[t] = U3[t] and U2[t] 6= U3[t] conditions, so without
knowing P (U2[t] = U3[t]|U1[t] = 0, Z[t] = 1) or
P (U2[t] 6= U3[t]|U1[t] = 0, Z[t] = 1), P (∆ = i|U1[t] =
0, Z[t] = 1) can be calculated by discussing whether
U1 succeeded at time slot t + ∆ as the oldest, one of
the oldest, or non-oldest users. Particularly, P (U2 and
U3 succeeded before t + ∆|U2[t] = U3[t]) = P (U2

and U3 first succeeded together at one slot before t +
∆|U2[t] = U3[t]) + 2

∑
k 6=r,k<r<∆ P (one of two users

succeeded first at slot k as one of the oldest user)P (the
other user succeeded first at slot r as the only oldest
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user). P (U2 and U3 succeeded before t + ∆|U2[t] 6=
U3[t]) = P (U2 and U3 first succeeded together at one
slot before t + ∆|U2[t] = U3[t]) +

∑
k 6=r,k<r<∆ {P(the

older user succeeded first at slot k as the only oldest
user)P (the other user succeeded first at slot r as the only
oldest user) + P (the smaller succeeded first at slot k
as the non-oldest user)P (the other user succeeded first
at slot r as the only oldest User)}. Notice the fact that
2
(
p(1− pb)2pb + 1

2 (1− p)pd
)

= (p(1 − pb)2pb + (1 −
p)pd)+(p(1−pb)2pb), the above two probabilities are the
same with each other. Similar equalities hold in general
cases for n ≥ 3 and Z[t] = 1, · · · , n;

• Based on that, we can calculate P (∆ = i) =∑n
z=1 P (Z[t] = z|U1[t] = 0)P (∆ = i|Z[t] = z), where

P (∆ = i|Z[t] = z) can be calculated in the form of the
sum of finitely many geometric progressions in the same
way as in Theorem 6.

However, the results of Theorem 7 are difficult to extend for
general n even for n = 3. In the two-user case, we calculated
the average Age Asynchrony by conditioning on whether the
same user succeeds at both TN and TN−1, or not. In the
three-user scenario, under the case U1[TN ] = 0, we do not
only care about whether U1[TN−1] = 0 or not, but also care
about whether U2[TN−1] = 0 or U3[TN−1] = 0 or both.
Furthermore, we also need to know the time slot that User
3 last succeeded if U2[TN−1] = 0. There are many different
cases to cover even in three user scenarios, which makes it
impossible to give a clear procedure to calculate average Age
Asynchrony for higher dimensional cases.

VI. FEATURE-BASED LEARNING POLICY

Since formulating the Linear Programming problem in
Theorem 1 is very complicated even for n > 2, in Figure 5 and
Figure 6, we perform first visit Monte Carlo tabular reinforce-
ment learning method on state space U = [Ui[t]]

n
i=1 ∈ [0, D]n

for n = 3, 4 cases to compute the performance of the
optimal solution that minimizes the discounted total cost. For
higher dimension n > 4, as Monte Carlo tabular learning
algorithm becomes much slower, we next introduce a feature-
based learning algorithm which is based on the feature state
(A[t], S1[t]) and compare the performance with other policies.

Before we start with the feature-based learning algorithm,
we would like to mention that one popular method to handle
high-dimensional state/action space MDP problems is the
value approximation and Deep Reinforcement Learning (DRL)
methods. However, such pure data-driven methods are best-
suited when there is a lack of knowledge about the critical
features or the essential characteristics of the system. Accord-
ingly, implementing them will prevent us from understanding
the system better. As such, the feature states have physical
meanings and the feature-based learning algorithm provides
a more interpretable model, making it easier to understand
the underlying decision-making process. Additionally, as the
number of users n increases, the state space grows exponen-
tially as (D + 1)n. This exponential growth in state space
can make it challenging for DRL algorithms to converge
within a sufficiently small time horizon (days). Feature-based
learning, on the contrary, is less computationally intensive
and can provide quicker insights, allowing us to conduct
extensive experiments. As such, we have considered feature-
based methods in our comparisons, instead of DRL methods.

Algorithm 1 Feature-Based Monte Carlo Learning
1: Initialize Q(y, x) arbitrarily for all feature state-action

pairs (y, x)
2: Initialize the empty list for all (y, x)
3: Initialize policy π0 randomly
4: for i = 0, 1, . . ., number of episode do
5: Generate an episode following the current policy πi,

observe sequence of states {U}0:T , actions {x}0:T ,
costs {Cα}0:T and extract the feature {Y }0:T from
{U}0:T

6: Calculate the first visit discounted total cost G with
a discounted factor close to 1

7: Calculate Qi(y, x) as the average of all discounted
total costs G

8: Update policy greedily for all feature states by
πi+1(y) = arg minQi(y, x)

9: end for
10: for Sufficiently many episodes do // Evaluation of the

policy π
11: Initialize and evaluate the average cost in a new

environment
12: end for

A. Feature-Based Learning Policy
Intuitively speaking, when one of the users Ui[t] is much

higher, and all the other users are at a much lower age level,
the Age Asynchrony is relatively high and the average AoI is
relatively low. Then, to reduce the Age Asynchrony metric,
we would intuitively unicast with User i. In contrast, when
all the users have relatively high age levels, but their age is
closer to each other, we would prefer broadcasting to all of
the users. This observation implies that the average AoI and
Age Asynchrony might be able to guide the broadcasting or
unicasting decisions well. Thus, we define the feature state
Y [t] , (A[t], S1[t]) and then perform the following first visit
Monte Carlo feature-based learning algorithm.

In the next section, we will see that when n is small,
the feature-based learning policy provides near-optimal per-
formance, for moderate n, the feature-based learning policy
still performs better than the mixed randomized policy.

VII. SIMULATION

First of all, we compare the AoI and Age Asynchrony
performance trade-off of all policies (optimal solutions via
LP, two extreme policies, mixed randomized policy, and the
feature-based learning policy) under a two-user scenario in
Figure 4. In this simulation, we set the broadcasting success
probability to pb = 0.32 and the unicasting success probability
to pd = 0.4. The ends of the mixed randomized policy
represent the performance of two extreme policies (the left end
is always-broadcasting). The black dots are the feature-based
learning results with different α values, since the feature state
Z[t] and age state U[t] is a one-to-one mapping in the two-user
case, the black dots are very close to the optimal solutions.
Through the figure, the minimum long-term average of C(α)
can be easily found by finding the lowest line intersects with
the policy curve with the slope being − 1−α

α .
Secondly, we plot C(α) the weighted sum of long-term

average AoI and Age Asynchrony under different policies
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against an increasing number of users n. In Figure 5, we
set α = 0.9, pd = 0.3 and pb = 0.7/n with different n.
In Figure 6, we set α = 0.5, pd = 0.6 and pb = 1.5/n
with different n. In figures, the performance of the mixed
randomized policy is with the best choice of p for different n,
and the optimal solutions are solved via LP for n = 2, and
from the Monte Carlo Tabular learning algorithm for n = 3, 4.

Before making observations about these two figures, notice
that in both cases, we set npb in the range of 2pd to 3pd
in order to make a meaningful comparison for large n as
explained in Section IV-C after (1). For this range of values,
the performances of optimal solutions, mixed randomized
policy, and feature-based learning policy overlap with the
broadcasting policy when n is small. This choice of probabili-
ties also makes the performances of policies to be comparable,
because in those cases the performance of two extreme policies
does not differ significantly from each other. See Figure 7 as
a reference. Figure 7(a) shows that the feature-based learning
policy outperforms the mixed randomized policy by 10% and
is much closer to the optimal level while mixed randomized
policy outperforms always-broadcasting by 2.5% when n = 4.
Figure 7(b) shows that the feature-learning based policy can
outperform the mixed randomized policy (left ends of blue
curve is p = 1) for n = 10 where the optimal solution is
unknown.

With the comparison of the weighted sum against n, we
find: (i) Matched with our finding in Section IV-C, when
α = 0.9, pd = 0.3 and pb = 0.7/n, (1) = 7/6 < 10/7 = 1/µ,
we see in Figure 5 that unicasting eventually performs better
than broadcasting. In constrast, when α = 0.5, pd = 0.6 and
pb = 1.5/n, (1) = 25/36 > 2/3 = 1/µ, Figure 6 illustrates
that broadcasting eventually performs better than unicasting.
(ii) From the theoretical results of extreme policies, the AoI
and Age Asynchrony trade-off comparison for mixed random-
ized policy, the action learned from feature-based learning
policy for different α values, and Figure 5, 6, we can see
that unicasting is more preferable than broadcasting if we
are more focused on minimizing the Age Asynchrony (i.e.,
α is closer to 1) when npb is in the range of 2pd to 3pd.
This is somewhat counter-intuitive as without careful thinking
we may expect broadcasting to help synchronization more
than unicasting. (iii) For a moderate number of users n in
the system, the feature-based learning policy performs non-
negligibly better than the mixed randomized policy. However,
the advantage of feature-based learning will be diminishing
with n since when the number of users is large, two features
A[t] and S1[t] cannot accurately distinguish which action is
better anymore. So, for moderate n and under the case that
the computational power is enough, we can apply a feature-
based learning policy to achieve better performance while for
larger n, the mixed randomized policy has good scalability
as well as a gain compared with extreme policies that grow
linearly with n. (iv) We also notice that when the success
probabilities of broadcasting and unicasting are both small, the
gains for mixed randomized policy and feature-learning policy
are more obvious, which implies that in a bad communication
environment, we should act more carefully to benefit more.

VIII. CONCLUSION

In this paper, we considered a time-sensitive scenario
whereby the state of a common source is being updated at

n distributed devices over unreliable channels. We studied
the tradeoff between the Age of Information (AoI) and the
Age Asynchrony whereby the transmitter can choose between
unicast transmissions and broadcast transmissions for the
updates.

We first posed and solved the optimal solution of the
associated constrained MDP problem via Linear Programming,
which is tractable only for small n values. Then, we analyzed
the AoI and Age Asynchrony performance under two extreme
policies (i.e., always-unicasting and always-broadcasting),
where we pointed out how the success probabilities for
unicasting and broadcasting along with n would affect the
performance of both extreme policies. Motivated by the obser-
vations from the extreme policies, we proposed a mixed
randomized policy and a feature-based learning policy, both
with good scalability characteristics and non-negligible per-
formance gains compared with the extreme policies. We
successfully obtained complete results for average age and
Age Asynchrony for the mixed randomized policy under the
two-user case. Based on that, we were able to find the exact
value of p∗ for a given objective function Cα[t], which also
reveals the range of α, pb, pd that the mixed randomized
policy can outperform the extreme policies. Subsequently, we
performed extensive numerical studies and observe that, for
different number of users, success probabilities, and weights,
we prefer different policies for optimizing the AoI- Age Asyn-
chrony tradeoff. Counter-intuitively, we noted that unicasting
is preferable to broadcasting when aiming to minimize the Age
Asynchrony under an unreliable communication environment.

Throughout the study, we noticed that the synchronization
between users in an unreliable communication environment is
a very complicated but interesting metric. We proposed several
different classes of policies with desired properties. Yet, the
optimal structure of state-dependent choice to minimize the
Age Asynchrony and stabilize the system with increasingly
large n is still unknown and requires further investigation.

APPENDIX A
THE BALANCE EQUATION OF LP IN THM 1

For i = 1, · · · , D − 1,
2∑
k=0

yk0,i =
D∑

a1=0

y0
a1,i−1pb (1− pb) + y1

a1,i−1pd,

2∑
k=0

yki,0 =
D∑

a2=0

y0
i−1,a2pb (1− pb) + y2

i−1,a2pd,

2∑
k=0

yki,D = (y0
i−1,D + y0

i−1,D−1) (1− pb)2
+ (y1

i−1,D

+ y1
i−1,D−1 + y2

i−1,D + y2
i−1,D−1) (1− pd) ,

2∑
k=0

ykD,i = (y0
D,i−1 + y0

D−1,i−1) (1− pb)2
+ (y1

D−1,i

+ y1
D−1,i−1 + y2

D−1,i + y2
D−1,i−1) (1− pd) ,

for i, j = 1, · · · , D − 1,
2∑
k=0

yki,j = y0
i−1,j−1 (1− pb)2
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+
2∑
k=1

yki−1,j−1 (1− pd) ,
2∑
k=0

ykD,D

=
(
y0
D−1,D−1 + y0

D−1,D + y0
D,D−1 + y0

D,D

)
(1− pb)2

+
2∑
k=1

(
y1
D−1,D−1 + y1

D−1,D + y1
D,D−1 + y1

D,D

)
(1− pd) .

APPENDIX B
PROOF OF THM 5

Based on the symmetry,

lim
t→∞

E
{
S1[t]

}
= lim
t→∞

E

 1

n− 1

n∑
j=2

|U1[t]− Uj [t]|


Define function f (i, pd) as the expectation of the number of
slots until the next ith successes happen among all users under
steady state when the success probability for unicasting is pd.
In the following analysis, we use f(i) instead of f (i, pd) for
simplification. Similarly as in Theorem 4, define Ti as the time
of the ith successes among all the users with T0 = 0, i ∈ N
and define ∆i = Ti − Ti−1 to be the time interval between
two successes. Then,

f(i) = E [Ti] = E

 i∑
j=1

∆j

 =
i∑

j=1

E [∆j ] = iE [∆1] =
i

pd
,

where the last step is by the Blackwell renewal theorem.
Similarly as in Theorem 4, the sequence of entry times to

state 0 for User 1 can be viewed as the arrival epochs of a
renewal process. In each such renewal period, each of the other
users will succeed once sequentially. Based on the elementary
renewal theorem for renewal reward processes, the expected
long-term average of the age difference between U1 and Uj
(for j 6= 1) equals the ratio of the expected summation of the
age difference between U1 and Uj over a renewal period to
the expected length of a renewal interval. Then,

lim
t→∞

E{S1[t]} =
1

n− 1

n∑
j=2

E |U1 − Uj |

=
1

n− 1

n−1∑
j=1

f(j)× f(n− j) + f(n− j)× f(j)

f(j) + f(n− j)

=
2

n− 1
·
n−1∑
j=1

f(j)× f(n− j)
f(n)

=
2

n− 1
×
∑n−1
j=1

j
pd
× n−j

pd
n
pd

=
2

n− 1
×
∑n−1
j=1 j(n− j)

npd

=
2

n− 1
× 1

npd
× 1

6
n · (n− 1)(n+ 1) =

n+ 1

3pd
. (4)

The equation (4) follows from the facts that: (i) Before User
j succeeds in the renewal interval, the age difference between
User 1 and User j equals the number of time slots from the last
success of User j to the beginning of the current renewal when
User 1 succeeds and the age difference between User 1 and
User j remains unchanged until User j succeeds in this renewal;
(ii) After User j succeeds, the age difference equals the number
of time slots from the beginning of this renewal to the success
of User j, and the age difference between these two users

remains unchanged until the end of this renewal; (iii) Due to
the behavior of Always-Unicasting Policy, all users succeed
sequentially, then the time slots from the last success of User
j to the success of User 1 equals to the number of time slots the
system takes for n− j + 1 successes happen among all users,
the number of time slots from the beginning of this renewal
to the success of User j equals to the number of time slots the
system takes for j− 1 successes happen among all users; (iv)
the number of time slots until the next success is independent
of the successes happened before. Thus, for j = 2, · · · , n,
E |U1 − Uj | = f(j−1)f(n−j+1)+f(n−j+1)f(j−1)

f(j−1)+f(n−j+1) .
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Let us use βp to denote P (U1[t] = 0|U2[t] = 0) under
the steady-state values of Ui[t] under the above policy.5
Similarly, all the probability notations below are under the
steady state distribution of (U1[t], U2[t]). Let γp denotes
P (U1[t] 6= 0|U2[t] = 0). Since P (U1[t] = 0, U2[t] = 0) =
p · p2

b , P (U1[t]U2[t] = 0, U1[t] + U [t]2 6= 0) = 2p · pb(1 −
pb) + (1 − p)pd, by symmetry, P (U1[t] 6= 0, U2[t] = 0) =
p · pb(1− pb) + 1

2 (1− p)pd. Then,

βp =
p · p2

b

p · p2
b + p · pb(1− pb) + 1

2 (1− p)pd
;

γp =
p · pb(1− pb) + 1

2 (1− p)pd
p · p2

b + p · pb(1− pb) + 1
2 (1− p)pd

.

Additionally, denote ζp = P (U1[t] 6= 0, U2[t] 6= 0), ηp =
P (U1[t] = 0|U1[t− 1] = U2[t− 1]), θp = P (U1[t] = 0|U1[t−
1] < U2[t− 1], λp = P (U1[t] = 0|U1[t− 1] > U2[t− 1], then,

ζp = p(1− pb)2 + (1− p)(1− pd);

ηp = p · pb +
1

2
(1− p)pd;

θp = p · pb;
λp = p · pb + (1− p)pd.

Denote µp = P (U1[t] = 0, U2[t] 6= 0|U1[t − 1] = U2[t −
1]), ξp = P (U1[t] = 0, U2[t] 6= 0|U1[t − 1] > U2[t − 1]),
φp = P (U1[t] = 0, U2[t] 6= 0|U1[t− 1] < U2[t− 1])P:,+|La =
P (U2[t] 6= 0|U2[t− 1] > U1[t− 1]), then,

µp = p · pb(1− pb) +
1

2
(1− p)pd;

ξp = p · pb(1− pb) + (1− p)pd;
φp = p · pb(1− pb);
ψp = p · (1− pb) + (1− p)(1− pd).
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