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Abstract—We propose a “fresh” learning-based caching
framework for content distribution networks (CDNs) with
distributed front-end local caches and a dynamic back-end
database. Users prefer the latest versions of dynamically
updated content, while local caches lack knowledge of item
popularity and refresh rates. We first explore scenarios with
Poisson arrivals at the local cache and characterize the optimal
policy’s structure. Building on this, we introduce a model-based
learning algorithm for caching dynamic content, demonstrat-
ing near-optimal costs and strong performance with limited
cache sizes in simulations. For more general environments,
we present a model-free Reinforcement Learning (RL) caching
policy without prior statistical assumptions. Although model-
free RL caching outperforms the model-based approach in
high-variance arrival scenarios, it requires significantly longer
training times due to its exploration phase. Model-based
learning’s quick adaptability to environmental changes and
fast convergence rate make it a desirable approach for dynamic
network environments, offering efficient fresh caching solutions
for CDNs.

Index Terms—Content Distribution Networks, Caching, Dy-
namic Content, Learning

I. INTRODUCTION

Content distribution networks (CDNs) are essential for
delivering content efficiently, improving performance, and
reducing network congestion [1]. In the era of 5G, caching
at the wireless edge accelerates content downloads and
enhances network performance. However, new services like
video on demand, augmented reality, and online gaming gen-
erate constantly changing data, making traditional caching
methods less efficient [2]. The importance of content fresh-
ness has grown, as users prefer the latest data, especially in
real-time applications. This necessitates the implementation
of effective caching strategies to maintain the freshness of
cached content [3].

Numerous works study the dynamic content delivery in
caching systems such as [4]-[9] and effective strategies have
been proposed. Despite the traditional caching paradigms,
for content with varying generation dynamics, regular up-
dates of cached content are crucial [10]-[13], preventing
caches from becoming outdated due to aging content. The
widespread deployment of edge caches necessitates a decen-
tralized approach, with each cache independently managing
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its content freshness to avoid becoming outdated [14], [15].
These edge caches face the challenge of balancing update
costs to ensure cost-effective operations. However, they often
lack access to vital network parameters, requiring them to
learn and adapt strategies for efficient cache management.
Rapid changes in system parameters further demand contin-
uous observation and dynamic adjustment of strategies based
on user behavior to maintain overall cost-effectiveness [16],
[17].

Machine Learning (ML) techniques have been widely
utilized in network environments to achieve optimal caching
performance [18]-[20]. Notably, Reinforcement Learning
(RL) proves to be a viable option for edge caches, allowing
them to learn user behavior through observation and interac-
tion [20]-[22]. The rate at which users generate requests can
significantly impact the time required for the RL policy to
gather sufficient data and accurately learn the environment.
Additionally, when the environment undergoes changes, such
as shifts in popularity or refresh rates, retraining a new
policy becomes necessary as the older policy may no longer
be suitable for the new environment. This can demand
substantial computational resources at the edge caches that
exceed their capacity [23]. These challenges highlight the
need for adaptive and efficient learning algorithms that
can quickly adjust to changing conditions and ensure high
caching performance in dynamic network environments.

In this study, we address the challenge of caching dynamic
content efficiently by developing both model-based and
model-free policies to manage fetching and freshness costs.
We start by investigating scenarios with Poisson arrivals
and characterize the structure of the optimal policy. Using
insights from this optimal policy, we create a model-based
algorithm that minimizes the need for resource-intensive
training. To handle more diverse arrival processes, we in-
troduce a model-free RL policy that adapts to any scenario
without prior knowledge of request arrival distribution but
requires longer training times compared to the model-based
approach.

Our simulation results demonstrate that the model-based
approach achieves near-optimal costs for unconstrained
caches and significantly reduces training time compared
to RL policies by eliminating the need for an exploration
phase. By utilizing moving average filters, the model-based
method adapts quickly to environmental changes, offering
a practical and efficient alternative to model-free RL. This
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Fig. 1: Setting of Fresh Caching for Dynamic Content

study underscores the advantages of understanding the so-
Iution structure, enabling faster and more efficient caching
strategies that match RL performance while requiring far
less time and computational resources for training.

Our contributions, along with the organization of the
paper, are as follows.

o In Section II, we introduce a practical caching model
focused on efficiently serving dynamic content from a
back-end source. The model addresses the challenge of
front-end edge caches with limited knowledge of item
popularity and refresh rates, aiming to minimize long-term
average costs.

o In Section III, we explore a scenario where requests
follow Poisson processes. With knowledge of popularity
profiles, refresh rates, and demand intensity, we identify
the optimal, threshold-based caching policy and provide
a benchmark for evaluating our proposed algorithms.

e In Section IV, we present a model-based learning al-
gorithm for dynamic content caching that achieves near-
optimal costs without prior knowledge of item popularity
and refresh rates, demonstrating its effectiveness in sim-
ulations with constrained cache space.

o In Section V, we extend our analysis to non-exponential
interarrival times, proposing a model-free RL approach.
Our simulations show that the RL policy achieves near-
optimal costs, particularly as content becomes more dy-
namic.

o In Section VI, we compare the model-based learning and
RL policies, noting that the RL policy slightly outperforms
the model-based approach under high interarrival time
variance but requires retraining when the environment
changes, whereas the model-based policy adapts automat-
ically. Finally, we conclude the work in Section VII.

II. SYSTEM MODEL

We consider a hierarchical caching system, as illustrated
in Fig. 1, where a user population is served a set ' of N
data items with content that dynamically changes over time.
Next, we provide a detailed explanation of the its underlying
dynamics.

Demand Dynamics: The local cache within the system
experiences incoming requests at a rate 5 > 0 requests per

second, which represents the intensity of requests from the
user population. We also assume that the vector (b,))_;
represents the size of the data items. For the model-based
scenario, we assume that requests follow a Poisson pro-
cess'; however, the popularity of individual items remains
unknown. On the other hand, for the model-free scenario, we
make the assumption that both the request arrival distribution

and the popularity distribution are unknown.

Generation Dynamics: We consider the possibility of up-
dates for each data item within the database, where the previ-
ous content of an item is replaced. We assume that data item
n undergoes updates at an average rate of A\, > 0 updates
per second. It is worth noting that when \,, = 0, it represents
the traditional case of static content that remains unchanged.
To conveniently represent the collection of update rates for
the entire database, we use the vector A = (\,)2_;.

Age Dynamics: As the data items in the local cache are
subject to updates in the back-end database, it is possible
for the cached items to be older versions of the content. To
quantify the freshness of the local content, we use Age-of-
Version (AoV). Specifically, we define the AoV A, (t) €
{0,1,...} of a cached content for item n at time ¢ as the
number of updates that item n has received in the back-
end database since it was most recently cached. This metric
allows us to measure the difference in versions between the
database and the local cache.

With the dynamics now established, we can proceed
to discuss the operational and performance costs that are
essential to our caching system.

Fetching and Aging Costs: On the operational side, we
denote the cost of fetching an item from the back-end
database to the local cache by b, ¢y > 0 where b, is the
size of the item. On the performance side, we assume that
serving an item n from the local cache with age A, (t)
incurs a freshness/age cost of ¢, X A, (t) for some ¢, > 0,
which grows linearly? with the AoV metric. This aging cost
measures the growing discontent of the user for receiving
an older version of the content she/he demands. For each
data item n, we define the binary action u,(t) € {0, 1}, to
capture the decision of fetching the most recent version of
content n to the edge-cache at time ¢, i.e., u,,(t) = 1. On the
other hand, u,(t) = 0 captures the case when the request
will be served from the edge-cache incurring the freshness
cost.

Problem Statement: Our main goal is to develop efficient
caching strategies that strike the right balance between the
costs of frequently updating local content and providing
aged content to users. Specifically, we seek a policy that
minimizes the long-term average cost by making decisions
on cache updates and request serving from the edge-cache.

IConsequently, we consider the system to evolve in continuous time.

2While this linearity assumption is meaningful as a first-order approxi-
mation to the aging cost and facilitates simpler expressions in the analysis,
it can also be generalized to convex forms to extend this basic framework.
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This objective can be formulated as follows:

/ Zlcn (su(t) Pa(t) () |

st up(t) €{0,1}, VneN,t>0,

min lim —]E“
u T—oo 1

where u,(t) € {0,1} and s,(t) represent the action and
state of the system at time ¢ for data item n, respectively.
The state is defined as s,(t) = {t =1 : | = max(t’ <
t:u,(t')=1)} > 0,Vn € N and it captures the elapsed
time since the last time item n was updated in the cache.
Moreover, 7,(t) € {0,1} is an indicator variable for the
presence of a request for item n at time ¢. The cost of the
system for data item n at time ¢, given the state s, (¢) and
action uy,(t) is denoted as C,, and given by:

ES [Crn(sn(t), rn(t), un(t))] = un(t)bncs
+ 7 () sn () Anca (1 — upy (b)),

where the first term captures the cost of fetching the freshest
version from the database and the second term captures the
freshness cost due to serving a potentially aged item from
the cache. The operator EY captures the expected value over
the system state s for a given action u. Our aim is to find
the optimal policy w that minimizes this long-term average
cost.

Here, the local cache is responsible for deciding when
to request the most recent version of locally cached item n
from the back-end database represented by u,(t) € {0, 1},
at a fetching cost of cy. Additionally, while the local cache
has complete knowledge of the request arrival times, it does
not have information regarding the exact age of the cached
content. Therefore, the optimal policy aims to determine
action vector u, which dictates when to pull the item from
the database, based on the known request arrival times.

The general problem expressed in 1 falls under the
scope of Partially Observable Markov Decision Processes
(POMDP), and quickly becomes intractable. Even formulat-
ing the problem explicitly, let alone solving it, becomes prac-
tically impossible. Therefore, a more productive approach is
needed to attack this problem in order to develop algorithms
and principles with performance guarantees. In this work, we
first focus on a specific scenario where requests arrive at the
local cache following a Poisson Process. Additionally, we
assume that the local cache has knowledge of item popular-
ity, refresh rates, and demand intensity. These assumptions
enable us to analyze the optimal policy’s structure, which
will be discussed in the next section. Leveraging the insights
gained from the optimal policy’s structure, we will introduce
a model-based learning approach for caching dynamic con-
tent.

III. THE OPTIMAL POLICY

In this section, we direct our attention to the problem
introduced in the preceding section. Our objective is to
analyze the optimal policy’s structure in a scenario where
requests arrive at the local cache according to a Poisson

process with a known rate 3. Furthermore, the local cache,
which has a limited storage capacity, possesses knowledge
of the popularity profile p and refresh rate A. Given these
assumptions, we provide an explicit characterization of the
optimal policy through the following theorem.

Theorem 1: Consider a system comprising a dataset A/
of N dynamic items, where each item has a corresponding
size denoted as (b))_,. In this system, a local cache with
a constraint on its average cache occupancy B serves a
group of users that generate demand according to a Poisson
Process with a known rate 8. The local cache possesses
knowledge of the popularity profile p = (p,,)Y_; and refresh
rates A = (A\,)"_;. Under these conditions, the optimal
caching strategy is an eviction-based policy. Specifically, the
local cache assigns a constant timer to each item upon its
storage, and the item is evicted from the cache when the
timer expires. The timers for each item are determined as

follows:
Jr
\/1 +2b, - 1] , (2

where a* > 0 is selected such that the following conditions

are satisfied.
5pn =
=0, n < B
) Z BpnT + 1

BpnT,
(Z BT + 1
3)

Proof. We showed in [24] that for the general optimization
problem described in Equation 1, the optimal policy follows
a threshold-based structure. In particular, in order for an
update or fetch event to occur, two conditions must be met.
Firstly, there must be a request for the item at that particular
time. Secondly, the time elapsed since the last update of the
item must exceed a certain threshold value. Thus, the optimal
policy can be expressed as:

Bpncf —-a*
Catn

(B, P, A) = B

*
Sp > Ths

*
Sn S’rnv

W (50, 7) = { i @

Under such an eviction-based policy, the average long-term
cost and the average cache occupancy can be given as:

N 1 2
o §Ca)\npn/8 Tn + bn Cf
C(r,8,p) = Irnel,rrlﬂn;pn PO
B(Ta 6; p) = Z ﬁpnTn n (6)
1+ BpnTn

n=1

Where 7 = (7,,)]_, is the time each item will remain in
the cache before eviction. Therefore, the cost-minimization
problem with a constraint on the average cache occupancy
would be as follows:

glznol C(r) (N
st. B(t) < B.
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This is not a convex optimization problem. However, we
take the following approach to solve it. Define the feasible
BpnTn

set F5 as:
B — n>0 nSB
B {T| T, g(r Z T }

which is a non-convex set. Then the cost optimization
problem (7) can be expressed as:
nin C(T). (8)
The authors in [25] demonstrated that for any optimization
problem min,¢z C(7), if all the following hold:
1) Slater condition,
2) non degeneracy assumption for V7 € F,
3) 3’ E}' VreF,3t, L0 with 7/ +t,(+—7') € F,
4) Lo(t) = {7/ € RV : C (") < C(r }1saconvexset
then if 7 is a non trivial KKT point, it is a global minimizer.
To check that Slater condition holds for any 0 < B <N,

assume 7, = Qﬂlp N = > 0,Vn € N which gives g(1) <
B. So choose T = g5-B=(, ..., L) € Fj5 which is a

feasible point and all the inequalities are inactive.

To check the non-degeneracy assumption, we need to
show that every where that a constraint is active, it’s gradient
is nonzero. Since constraints 7, > 0,Yn € AN have
always nonzero gradient, so we only need to check this for

9(t) = Yoy /355::1119 . We have Vg(7) # 0. To
check the third condition, con51der 7 =(0,..,0) € Fp

and choose t, = £ such that cT € Fp for a given 7. Then

for this choice of 7/ and t,, we can show that condition 3
holds for all 7 € Fp. To check the last condition, notice
that Lo (1) = {7/ € RN C (') < C(7)} is sub level set
of the convex function C(7) and therefore is also itself a
convex set.

The non-trivial KKT solution to the problem 7 can be

expressed as:
n = = 1426,
Bpn \/

where &* > 0 is the Lagrange multiplier, chosen to satisfy
the conditions in Equation 3. As demonstrated in [25], such
a non-trivial KKT point is a global minimizer for the average
cost minimization, completing the proof. m

As evident from Equation 2, the timers can be explicitly
determined as a function of the system parameters, including
the popularity, refresh rate, and size of the items. The
parameter ¢ is selected such that the constraint B on the
average cache occupancy is satisfied. The optimal value
a* exhibits an inverse relationship with B. As the cache
capacity increases, a* tends to approach zero. In the specific
scenario of an unlimited cache capacity, this corresponds to
setting &* = 0.

The following proposition provides a characterization of
the optimal cost when the cache capacity is unlimited. We
will utilize this cost as a benchmark for comparing the
performance of our proposed algorithms.

+

Bpncf —a* _
Catn ’

Proposition 1: Under the conditions outlined in Theorem
1, in the scenario where the cache storage capacity is
unlimited, the optimal cost can be expressed as follows:

Bpncf
C*(B,p, A ZCO)\ < 1+2b, e ) )

Proof. In the case of unlimited cache size, the Lagrange
multiplier reduces to &* = 0. Substituting this value into
Equation 2, we can express the optimal holding times as:

1 ﬁpncf
= — ((/1+20, 1.
Tn 5}% ( * Ca)\n >

By substituting these optimal holding times into the average
cost given in Equation 5, the optimal cost under unlimited
cache capacity is obtained as presented in Equation 9. m

While Proposition 1 provides the optimal cost for un-
limited cache capacity, real-world scenarios always have
limited average cache occupancy due to the dynamic nature
of content. Cached items must be periodically updated to
maintain freshness, leading to eviction. The optimal policy’s
eviction-based structure keeps items in the cache briefly
before eviction, ensuring that average cache occupancy re-
mains bounded even with unlimited storage. Additionally,
as content becomes more dynamic, cache occupancy further
decreases.

In the next section, we build on the insights from Theorem
1 to propose a learning-based algorithm. This algorithm
avoids the exploration phase typical of RL training, saving
time and computational resources. Additionally, its use of
moving average filters ensures adaptability and robustness
to changing system parameters, making it both practical and
efficient.

IV. MODEL-BASED LEARNING

Our main goal is to design a robust caching policy that
efficiently handles dynamic content without prior knowl-
edge of its popularity, refresh rates, or demand intensity.
The caching policy must continuously learn and adapt to
changing popularity and refresh rates, ensuring the policy
effectively minimizes long-term average costs.

We introduce Algorithm 1, a model-based caching pol-
icy for dynamic content based on Theorem 1. This algo-
rithm uses the theoretical framework to guide its decisions
effectively. Inspired by Theorem 1, the policy features
an eviction-based structure, dynamically adjusting timers
to maintain average cache occupancy below the specified
threshold while minimizing average costs.

The proposed algorithm utilizes three parameters to effec-
tively manage the caching process. These parameters include
the last request time of items (5), the last fetch time of items
(%), and the corresponding age of items during the last fetch
(A). Based on these observed parameters, the algorithm uses
two moving average filters with time averaging parameter
0 to estimate refresh rates (5\) and interarrival times (eit).
These estimated values are then utilized to calculate the
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Algorithm 1 Model Based Caching for Dynamic Content

Require: c¢,c,, N, b, B,0 R
1 Initialization: o = 0, eit = [0, X = [0}, 7 = [0]",
A=, t=[0]N,5=[0V,B=0

2: while there is a request for an item do

3 n = index of the requested item

4; t = time — ¢,

5: s = time — 5,

6 5, = time

7 if ¢ > 7,, then

8 Fetch item n and read its age, &

9: Calculate current cache occupancy B
10: t,, = time

1: An = (1—0)\, + 022

12: A, =96 N
13: T = ity [\/1+ 25, S50 1]
14: end if

15: eit, = (1 —0)eit, +0s

16: BZ(I*Q)BJFQB

17: a =max (0, (B — B)/(maxy,(eit))Y_,).
18: end while

19: return 7T end

timers (7) for each item, determining how long they will
remain in the cache before eviction:

+
\/1+2bncf—Aeitn*a_1 7

CaAn ity

Tn = eit, *

(10)

The algorithm begins with o = 0 to calculate the timers.
It then monitors the difference between the current cache
occupancy and the target cache occupancy B, continuously
adjusting « to ensure the average cache occupancy stays
below the specified threshold.

To evaluate the proposed algorithm against the benchmark
cost in Proposition 1, we consider a system with N = 1000
items, each with a size of b = 10, and refresh rates A = 20.
Additionally, we assume that user requests for items follow a
Zipf popularity distribution with a parameter of z = 1, where
Py, 18 proportional to % Simulations are conducted under
various average cache occupancy constraints, denoted as B.
The fetching cost per item size is ¢y = 1, the aging cost per
single age is ¢, = 0.1, and the time averaging parameter is
0 = 0.005. These parameters will be used throughout unless
specified otherwise.

We use the percentage cost increase as our comparison
metric, defined as follows:

C]\/IB - (57 b, )‘)

MB )

¢ an

where CMB represents the average long-term cost result-

ing from the proposed model-based learning policy, and

C*(8,p, A) denotes the optimal average cost given in Equa-

tion 9, considering unlimited cache capacity and perfect
knowledge of the system parameters.

Percentage Cost Increase(%) = 100x

Unlimited Cache
B =40
B =20
B =10

Percentage Cost Increase (%)

40000 60000 80000

time (seconds)

20000

Fig. 2: Cost Comparison: Model-based vs. Optimal Policy

Fig. 2 shows the percentage cost increase of the proposed
caching policy compared to the optimal strategy. Under
the unlimited cache capacity, the proposed policy results in
only a 4% cost increase, approaching the optimal cost. This
performance is remarkable given that the proposed policy
lacks knowledge of the popularity profile, refresh rates, and
demand intensity, unlike the optimal policy. As the cache
size decreases, the performance gap between the proposed
policy and the optimal strategy widens slightly. However,
even in these constrained scenarios, the cost increase re-
mains relatively low, below 10%. This underscores the
effectiveness of the proposed policy in leveraging estimated
popularity and refresh rates to achieve a lower average cost
under limited cache constraints.

Up to now, our analysis has assumed requests arrive at
the local cache following a Poisson process, allowing us to
derive the optimal policy structure and propose Algorithm
1. However, real-world scenarios may not conform to ex-
ponential interarrival times. To address this, we propose a
model-free RL approach in the next section, enabling the
system to learn an optimal policy without assuming specific
request arrival distributions.

V. MODEL-FREE LEARNING

In this section, we extend our analysis beyond the Poisson
Process assumption and consider the scenario where arrival
requests do not follow a known distribution. We propose a
learning approach for caching dynamic content based on RL,
aiming to enhance the efficiency of content delivery in such
dynamic environments.

More specifically, we take the Q-Learning approach where
the evolution of @’s for each data item n can be expressed
as:

Q (St,ut) + Q (St ur)
(12)
+a [Rt-i-l -I-WIHELXQ (St41,u) — Q (Se,ue)|

where Sy, Siy1, and u,; represent the current state, next
state, and the action taken at time ¢, respectively. R; 1 is the
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Fig. 3: Actions Under the RL Caching Policy

reward observed at the next state. Due to the unavailability
of the probability distribution P(S;1|Sy,u:), the learning
approach we employ is considered model-free. At each time
step, there are two potential actions: cache update/fetch,
denoted as u; = 1, and no cache update, represented by
us = 0. According to [24], actions should be taken only at
the time of request arrivals and using the estimated value
for U’s, the optimal action at each state S; is given by:

uy = argmin Q(Sy,u).
u€{0,1}
Given that the state S; evolves continuously over time
[0,00), we discretize time into steps of size 0.1 seconds
before applying the Q-Learning algorithm.

Fig. 3 illustrates how the model-free RL policy decides
whether to perform an “update/fetch” (i.e., u; = 1) or take
no action (i.e., u; = 0) based on the time that has passed
since the last fetch (i.e., S; > 0). We can see that this
policy has a threshold based structure where updates/fetches
are done only when a request comes in and the elapsed
time reaches a certain threshold value. Interestingly, the time
threshold used by the model-free RL policy is exactly the
same as the one described in Theorem 1 for the optimal
policy under Poisson process arrivals (black dot on the
figure). This similarity demonstrates that the RL policy
accurately replicates the structure of the best possible policy
under the Poisson process arrivals.

Next, we want to compare the performance of the model-
free RL policy with the proposed model-based algorithm in
more general scenarios.

VI. COMPARISON: MODEL-BASED VS MODEL-FREE
LEARNING

In this section, we compare the performance of model-
based and model-free learning approaches under varying
conditions. We consider the scenario where interarrival times
of each data item n follow a Gamma distribution with param-
eters (w, ﬁpn), ensuring that the average interarrival time
is i, regardless of w. The parameter w > 0 determines
the distribution’s variance, which is m Notably, when

—20

—40

—60

Percentage Cost Increase (%)

-804 __---"
-~ —— Model-Free Reinforcement Learning
—=—=- Model-Based Learning (Algorithm 1)

10-3 10-2 10~ 100 10!
w

Fig. 4: Cost Comparison: Model-based vs. RL Policy

w = 1, this distribution becomes exponential, allowing a
meaningful performance comparison of the algorithms.

For our simulations, we assume a system with N = 1000
items, each of size b = 1, and a uniform popularity
distribution (p,, = 0.001 for all n). Each item has a refresh
rate of A = 20, and the interarrival times follow a Gamma
distribution with demand intensity 8 = 5. By varying w, we
analyze how different arrival distributions impact the caching
algorithms’ performance.

Fig. 4 shows the percentage cost increase of model-
based and model-free policies compared to the benchmark
cost given in Equation 9, as functions of the environment
parameter w over a 10% seconds duration. Surprisingly,
model-based learning, designed for Poisson arrivals (w = 1),
performs nearly as well as model-free RL in more general
environments, maintaining high gains as the variance of
interarrival times decreases (w > 1). However, when the
variance increases (w < 1), model-free RL outperforms
model-based learning.

To better demonstrate the gains and the convergence rate
of the policies, we use the following percentage cost increase
as our metric to depict Fig. 5:

C]M F _ CM B

Percentage Cost Increase(%) = 100 x —EME

where CMB and CMT represent the average long-term

costs of the proposed model-based learning policy and the
model-free RL policy, respectively.

Fig. 5 also confirms the high gains of model-free RL com-
pared to model-based learning in high-variance scenarios.
However, for w = 0.001, corresponding to high variance in
interarrival times, even though, the RL caching outperforms
the model-based approach by nearly 50%, this significant
gain is achieved after more than 10° seconds due to the
extensive training time required for the RL policy to explore
and learn the environment. Model-based learning performs
almost as well as model-free RL in many scenarios and does
not require an exploration phase. Utilizing a moving average
filter with a time averaging parameter of # = 0.005, the
model-based approach takes only % = 200 samples to adapt
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Fig. 5: Cost Comparison: Model-based vs. RL Policy

to new environments. In contrast, model-free RL must re-
explore the new environment and construct a new policy,
resulting in longer adaptation times.

Thus, model-based learning converges faster, requiring
less training time, and performs competitively in environ-
ments with manageable variance in interarrival times. Addi-
tionally, since model-based learning utilizes a moving aver-
age filter, it quickly adapts to changes in popularity, refresh
rates, and demand intensity without retraining, unlike the
model-free RL caching, which necessitates longer training
times and frequent retraining for each environmental change.

VII. CONCLUSION

In this study, we propose a model-based framework for
caching dynamic content that leverages prior assumptions to
derive a closed-form solution. We first characterize the op-
timal policy’s structure under Poisson arrivals and use these
insights to design a model-based learning algorithm. This
algorithm learns faster than RL policies, avoids resource-
intensive training, and remains robust in changing environ-
ments. It achieves near-optimal costs and manages limited
cache capacity effectively. Compared to RL policies, our
model-based approach performs equally well in most sce-
narios, offering resilience to environmental changes while
eliminating the exploration phase.
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