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Abstract—The spatial Sigma-Delta (Σ∆) architecture can be
leveraged to reduce the quantization noise and enhance the
effective resolution of few-bit analog-to-digital converters (ADCs)
at certain spatial frequencies of interest. Utilizing the variational
Bayesian (VB) inference framework, this paper develops novel
data detection algorithms tailored for massive multiple-input
multiple-output (MIMO) systems with few-bit Σ∆ ADCs and
angular channel models, where uplink signals are confined to a
specific angular sector. We start by modeling the corresponding
Bayesian networks for the 1st- and 2nd-order Σ∆ receivers. Next,
we propose an iterative algorithm, referred to as Sigma-Delta
variational Bayes (SD-VB), for MIMO detection, offering low-
complexity updates through closed-form expressions of the vari-
ational densities of the latent variables. We also study the impact
of mutual coupling on the performance of the proposed SD-VB
algorithms when the antenna spacing is reduced. Simulation re-
sults show that the proposed 2nd-order SD-VB algorithm delivers
the best symbol error rate (SER) performance while maintaining
the same computational complexity as in unquantized systems,
matched-filtering VB with conventional quantization, and linear
minimum mean-squared error (LMMSE) methods. Moreover, the
1st- and 2nd-order SD-VB algorithms achieve their lowest SER
at an antenna separation of one-fourth wavelength for a fixed
number of antenna elements. The effects of mutual coupling,
the steering angle of the Σ∆ architecture, the number of ADC
resolution bits, and the number of antennas and users are also
extensively analyzed.

Index Terms—Few-bit quantization, MIMO detection, spatial
Sigma-Delta ADCs, variational Bayesian inference.

I. INTRODUCTION

Beyond-5G wireless systems will require substantial band-
width in both the millimeter (mmWave) and terahertz (THz)
bands to deliver high data throughput [2]. Signals at these
frequencies, however, are hindered by low penetration capa-
bilities and high propagation loss, which restrict their practical
communication range [3]. Massive multiple-input multiple-
output (MIMO) arrays have been used to compensate for
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the propagation loss while simultaneously achieving high
capacity through spatial multiplexing [4]. However, exploiting
the full benefits of beamforming and multiplexing in massive
MIMO can be challenging due to the need for dedicated
high-resolution analog-to-digital converters (ADCs)/digital-to-
analog converters (DACs) for each antenna element [5], [6].
This results in high hardware complexity and increased power
consumption, especially with larger bandwidths and sampling
rates [7]. To address these concerns, the use of low-resolution
ADCs with, e.g., 1–3 bits of precision, has emerged as
an energy-efficient and low-complexity solution for massive
MIMO systems [8]–[10].

Low-resolution ADCs provide low-complexity and low-
power designs for massive MIMO systems, but present chal-
lenges due to their non-linear nature [11]. The impact of
low-resolution ADCs on MIMO systems has been explored,
including analyses of the resulting capacity limits and achiev-
able rates [11]–[15]. These studies show that low-resolution
ADCs degrade system performance metrics such as achievable
rate and symbol error rate (SER), especially at medium-to-
high signal-to-noise ratios (SNRs), but this negative impact
can be mitigated by increasing the number of antennas. This
observation indicates that massive MIMO can be effectively
operated with few-bit ADCs. However, attaining a good
tradeoff between the system performance and the number of
quantization bits requires advanced signal processing algo-
rithms and architectural innovations tailored for the specific
characteristics of the quantized signals [10], [16].

Sigma-Delta (Σ∆) modulation is a well-established method
for time-domain signal processing that encodes analog signals
into low-bit-depth digital signals at a very high sampling
rate. By combining oversampling and noise shaping, Σ∆
modulation can achieve high resolution despite using low-bit
quantizers [17], [18]. In temporal Σ∆, oversampling involves
sampling a signal at a rate higher than the Nyquist rate. A
negative feedback loop is employed to quantize the difference
between the input signal and the quantized output to effectively
shape the quantization noise to higher frequencies [17]. A
low-pass filter is then used to remove the high-frequency
quantization noise while preserving the desired low-frequency
signals [19]. The 1st-order temporal Σ∆ approach is widely
favored in data-driven applications that demand high precision
and low noise, such as audio recording, medical imaging
and diagnostics, industrial sensor systems, as well as mobile
devices used for signal processing [17]. In massive MIMO,
spatial Σ∆ quantization has been used to enhance channel
estimation and spectral efficiency [18], [20]. In spatial Σ∆,



2

the difference between the input and the quantized output
represents the quantization noise at each antenna, which is
fed back and compared with the input to an adjacent antenna.
This feedback enables more aggressive noise shaping, where
the spatial spectrum of the quantization noise is pushed away
from the spatial frequencies of interest [21].

A. Related Works
Communications in the mmWave and THz bands typi-

cally require large antenna arrays at the base stations (BS).
Here, the implementation of one-bit ADCs for every antenna
element can reduce radio-frequency complexity, cost, and
power consumption [22], [23]. In [24], a likelihood function
learning method for data detection was proposed with one-
bit ADCs using an approach based on reinforcement learning.
In [16], [25], a support vector machine (SVM)-based channel
estimation and data detection method was exploited for one-
bit massive MIMO systems, yielding a data detection perfor-
mance close to that of maximum-likelihood detection. Data
detection based on supervised learning was proposed for few-
bit MIMO systems in [26], whereas an approach based on deep
neural networks was developed in [27]. These learning-based
methods necessitate a significant training load, and the neural
network must be retrained with new channel realizations [27],
thereby increasing the computational complexity. To reduce
computational complexity, zero-forcing-based data detection
was studied in uplink massive MIMO systems with few-bit
ADCs in [28].

Generalized approximate message passing (GAMP)-based
algorithms, such as generalized orthogonal approximate mes-
sage passing (GOAMP) [29] and generalized memory ap-
proximate message passing (GMAMP) [30], have also been
proposed for generalized linear models with few-bit ADCs.
These algorithms can be applied to any discrete input signals
and achieve Bayesian optimality when the transformation
matrix is high-dimensional and is unitarily invariant. A state
evolution framework was used in these works to analyze
the performance of GAMP-based algorithms in the large-
system limit. However, for mmWave channel models with non-
unitarily invariant channel structures and highly non-linear,
non-separable spatial Σ∆ quantization, there is no guarantee
that GOAMP and GMAMP will converge or achieve Bayesian
optimality, motivating the need for alternative detection ap-
proaches. The use of analog comparator networks prior to 1-
bit quantization was introduced in [31] to effectively create
virtual channels whose outputs can enhance the performance
of MIMO receivers. To further reduce the effect of non-linear
quantization, the authors of [32] studied the integration of
pre-ADC comparators and deep learning detection in orbital
angular momentum systems with 1-bit spatial oversampling.

To efficiently balance the performance and complexity for
systems with few-bit ADCs, variational Bayesian (VB) infer-
ence, inspired by machine learning, was proposed for data
detection and channel estimation in [10]. The goal of VB is
to find an approximation for the true posterior distribution of
latent variables given the observed data [33]. In [34], the VB
method was applied for gridless channel estimation in antenna
array systems with low-resolution ADCs.

Recently, spatial Σ∆ ADCs in massive MIMO systems have
attracted growing interest in terms of channel estimation [18],
[21], performance analysis [18], [20], [35], and precoding de-
sign [36]. In [20], the spectral efficiency of 1-bit Σ∆ massive
MIMO was analyzed, revealing that one-bit Σ∆ scales down
the quantization noise power proportionally to the square of
the spatial oversampling rate. Spatial few-bit Σ∆ ADCs have
also been used in massive MIMO to shape the quantization
noise away from users in certain angular sectors for improved
channel estimation [18]. In [35], a parallel Σ∆ ADC was
designed for mmWave receivers to achieve high-resolution
outputs; however, the bit-error-rate performance of this design
with 3-bit quantization was not significantly improved at high
SNRs. 1st- and 2nd-order Σ∆ quantization was employed for
wide-band systems in [37] without considering the angle steer-
ing mechanism. A reconfigurable intelligent surface controlled
by a single-antenna base station equipped with 1st-order Σ∆
modulation was investigated in [38]. Mutual coupling effects
for phase quantization were considered for dense Σ∆ phased
arrays in [39]. A VB algorithm for optimal detection in MIMO
systems using spatial Σ∆ ADCs was recently developed in [1].
This approach leverages the noise-shaping properties of the
1st-order Σ∆ architecture to improve detection performance
in angularly constrained scenarios. However, the study remains
limited to 1st-order Σ∆ ADCs, which do not fully capitalize
on the potential performance gains offered by higher-order Σ∆
architectures.

B. Motivations and Contributions

A common approach in the aforementioned works on Σ∆
ADCs is to exploit the Bussgang decomposition, which re-
formulates the nonlinear quantization as a linear function,
followed for example by standard linear data detection and
channel estimation methods [11], [18], [36]. However, the
Bussgang decomposition relies on the assumption of Gaussian
signals, which results in a diagonal Bussgang gain matrix. At
high SNR with specular channels [40] and relatively few users,
the Gaussian assumption does not hold and the Bussgang gain
matrix becomes non-diagonal, leading to correlated distortion
terms across users or spatial dimensions [18], [41], [42].
For example, this effect is manifested when the nonlinear
quantization generates harmonics for sparse specular inputs,
as observed in [43].

The VB method has been proposed as an alternative to
the Bussgang approach to effectively address the non-linear
quantization operation. It is considered superior to linear
methods, bilinear GAMP [44], and other approaches based
on deep learning [45]. However, these studies are limited
to conventional few-bit ADCs. More importantly, achieving
optimal MIMO detection with spatial Σ∆ ADCs under the
maximum-a-posteriori (MAP) probability criterion may not be
feasible due to the complex noise-shaping effects that disrupt
the posterior distribution. Building on our initial exploration
of MIMO detection with 1st-order Σ∆ ADCs in [1], this
paper develops a comprehensive VB framework for MIMO
detection that incorporates both 1st- and 2nd-order Σ∆ ar-
chitectures. This framework addresses key limitations of prior
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VB studies, such as their focus on conventional ADCs and
lack of support for higher-order noise shaping. Moreover, we
consider a narrowband channel model typical of mmWave
systems, where the signal bandwidth is smaller than the
coherence bandwidth. This model is relevant to applications
such as short-range indoor communications [46], mmWave
MIMO integrated sensing and communication systems, and
low-mobility IoT networks [47], where LoS paths or narrow
angular sectors dominate over frequency selectivity. The VB
inference is used to develop novel detection algorithms tailored
for such scenarios.

The contributions of the paper are summarized as follows:

• We develop 1st- and 2nd-order Sigma-Delta Variational
Bayes (SD-VB) detection algorithms for massive MIMO
systems with few-bit Σ∆ quantizers. To support this, we
employ a Bayesian network to model the Σ∆ receiver,
capturing insightful dependencies between the observed
and latent variables for effective inference.

• We develop the 1st- and 2nd-order SD-VB algorithms
for the 1st- and 2nd-order Σ∆ ADC architectures with
efficient updates based on the analysis of the variational
densities. Considering mutual coupling (MC) in Σ∆
architectures, we also present an LMMSE detector for
MIMO detection with 1st-order Σ∆ quantization [20].
The results show that the 1st- and 2nd-order SD-VB
algorithms have the same computational complexity as
the matched-filter quantized VB (MF-QVB) algorithm
[10], and significantly lower complexity than the LMMSE
detector.

• We demonstrate through simulation results that the 2nd-
order SD-VB algorithm achieves the lowest SER com-
pared with state-of-the-art detection algorithms such as
MF-QVB and LMMSE for certain angular sectors. We
also examine the impact of mutual coupling on the detec-
tion performance of all considered algorithms. Moreover,
the 1st-order SD-VB algorithm is more efficient than 2nd-
order SD-VB for 1-bit ADCs.

The rest of the paper is organized as follows. Section II in-
troduces the system model as well as the model for few-bit Σ∆
ADCs. The optimal solution for the LMMSE detector based
on the linearized model is derived in Section II-C. Section III
analyzes and discusses the VB framework for detection in a
1st-order Σ∆ MIMO system. Then, Section IV extends the
VB framework to the 2nd-order Σ∆ case. Numerical results
are provided in Section V and Section VI concludes the paper.

Notation: Boldface lowercase and boldface uppercase vari-
ables denote vectors and matrices, respectively. The i-th el-
ement of a vector x is represented by [x]i and the (i, j)-th
element of a matrix X is denoted by [X]i,j . The symbols
C and R stand for the sets of complex and real numbers,
respectively. The L2-norm and the absolute value are indicated
by ∥ · ∥ and | · |, respectively. Real and imaginary parts are
denoted by R{·} and I{·}, respectively, with j =

√
−1. The

identity matrix is denoted by I, the trace operator by Tr(·),
and the expectation operator by E{·}. The transpose, complex
conjugate, and complex conjugate transpose operators are
denoted by (·)T , (·)∗, and (·)H , respectively. The symbols ∝

Fig. 1: Diagram of the considered system model where K single-
antenna users are transmitting to an N -antenna base station employ-
ing Σ∆ quantization.

and ∼ stand for “is proportional to” and “distributed according
to”, respectively. The prior distribution function and variational
distribution function of a random variable x are denoted as
p(x) and q(x), respectively. The notation CN (µ,Σ) stands
for a Gaussian random vector with mean µ and covariance Σ,
whereas CN (x;µ,Σ) = 1

πK |Σ| exp
(
−(x−µ)HΣ−1(x−µ)

)
denotes the probability density function of x ∼ CN (µ,Σ).
The bracket ⟨.⟩ denotes the expectation with respect to all
latent variables except the one under consideration. The cosine
and sine integrals are denoted as Ci(x) ≜ γ + log(x) +∫ x

0
cos(t)−1

t dt, and Si(x) ≜
∫ x

0
sin(t)

t dt, where γ is the Euler-
Mascheroni constant.

II. SYSTEM MODEL AND PRIOR ART

A. Channel Model

We consider an uplink massive MIMO system with single-
carrier spatial-division multiple access as shown in Fig. 1,
where K single-antenna users transmit their signals simul-
taneously to a BS equipped with a uniform linear array
(ULA) of N antennas. The received signal x at the BS before
quantization can be expressed as

x = Hs+ n, (1)
where H = [h1, . . . ,hN ]T ∈ CN×K is the uplink channel ma-
trix, with hi ∈ CK×1 denoting the channel vector from the K
users to the i-th antenna at the BS, s = [s1, . . . , sK ]T ∈ CK×1

is the uplink data symbol vector, and n ∼ CN (0, N0IN )
represents additive Gaussian noise at the BS with variance N0.
We assume that the channel H is known at the BS. The symbol
sk transmitted from user k is drawn from a complex-valued
discrete constellation S , e.g., quadrature amplitude modulation
(QAM) or phase-shift keying (PSK), with E[sk] = 0 and
normalized such that E[|sk|2] = 1. The prior distribution of
sk can be expressed as

p(sk) =
∑
a∈S

paδ(sk − a), (2)

where pa is the known prior probability of the constellation
point a and δ(sk − a) indicates the point mass function at a.
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TABLE I: List of main notations.

Symbol Description

K Number of users
N Number of antennas at the BS
x Received signal vector before quantization
H Uplink channel matrix, CN×K

s Uplink data symbol vector, CK×1

n Additive Gaussian noise, CN (0, N0IN )
N0 Noise variance
S Discrete constellation set (e.g., QAM, PSK)
L Number of propagation paths per user
Ak Array response matrix for user k, CN×L

gk Small-scale fading vector, CN (0, IL)
βk Geometric attenuation and slow fading
θkℓ AoA of the ℓ-th path from user k
ωkℓ Spatial frequency, 2π d

λ
sin θkℓ

d Inter-antenna spacing of the ULA
λ Wavelength
Sθ0 Angular sector, [θ0 −Θ/2, θ0 +Θ/2]
θ0 Center angle of the angular sector
Θ Azimuth angular spread
T Mutual coupling matrix, CN×N

R Covariance matrix of colored noise
b Number of bits in ADC quantization
Qb(·) b-bit quantization function
Λ Quantization step size
dm Quantization threshold, m ∈ {1, . . . , 2b − 1}
ri Pre-quantized signal at antenna i
ϕ Phase shift between adjacent antennas
yi Quantized observation at antenna i
q Effective quantization noise vector
U Lower triangular matrix for Σ∆ linearization
τqi Variance of quantization noise at antenna i
W LMMSE receiver matrix
Σs Covariance matrix of s
Σq Covariance matrix of q
γ Precision parameter, 1/N post

0

⟨ri⟩ Variational mean of ri
τri Variational variance of ri

We assume a geometric channel model typical of mmWave
communications systems in which the channel for each user
is composed of a linear combination of L propagation paths
[3], [42], i.e.,

h̄k =
√
βk/LAkgk, (3)

where h̄k is the kth column of H and the uplink channel
from user k, the columns of Ak ∈ CN×L represent the
array response for L propagation paths, gk ∼ CN (0, IL)
represents the small-scale fading, and βk models the geometric
attenuation and slow fading. We assume that Ak is a full
rank matrix whose ℓ-th column is the array steering vector
corresponding to the angle of arrival (AoA) θkℓ of the ℓ-th
path, as given by
a(θkℓ) =

[
1, e−j2π d

λ sin θkℓ , . . . , e−j(N−1)2π d
λ sin θkℓ

]T
, (4)

where d is the inter-antenna spacing of the ULA and λ denotes
the wavelength. For simplicity, we denote ωkℓ = 2π d

λ sin θkℓ
as the spatial frequency of the ℓ-th path from user k.

We assume that the AoAs for all users are situated within a
specific angular sector Sθ0 ≜ [θ0 − Θ/2, θ0 + Θ/2], where
θ0 is the center angle of the sector and Θ is the azimuth
angular spread. This constraint frequently arises in practice
because cell sectoring limits service to users within a specific

angular sector of the BS coverage. Additionally, the high
frequency and directional nature of mmWave signals produce
narrow beam patterns and substantial attenuation of distant
reflections, making nearby reflections of users more dominant
and resulting in narrower angular spreads for users. Note that
the channel model considered in (3) is narrowband, meaning
the signal bandwidth is smaller than the coherence bandwidth.
This model is relevant to applications such as short-range
indoor communications [48] and low-mobility IoT networks
[49], where LOS paths or narrow angular sectors dominate
over frequency selectivity. This work leverages variational
Bayesian inference to develop novel detection algorithms
tailored for such scenarios.

1) Mutual Coupling: To take mutual coupling between
antennas into account, the channel vector from user k to the
BS can be modeled as

h̄k =
√

βk/LTAkgk, (5)
where the coupling matrix T ∈ CN×N is given by

T =
(
I+R−1Z

)−1
(6)

and R denotes the low-noise amplifier (LNA) input impedance.
Assuming thin half-wavelength dipoles, the elements of Z are
expressed as [18], [50]
[Z]ij = 30

(
2Ci(2πdij)− Ci(ξij + π)− Ci(ξij − π)

+ j (−2Si(2πdij) + Si(ξij + π) + Si(ξij − π))
)
, i ̸= j

[Z]ii = 30
(
γ + log(2π)− Ci(2π) + jSi(2π)

)
, (7)

where dij denotes the distance between antennas i and j

normalized by the wavelength, and ξij = π
√
1 + 4d2ij .

Mutual coupling between antenna elements influences not
only the channel characteristics but also the statistical proper-
ties of the noise at the receiver. Unlike traditional quantization
schemes, the Σ∆ architecture leverages spatial oversampling
or users confined to narrow angular regions to shape the quan-
tization noise away from desired signal directions. However,
mutual coupling introduces colored noise, denoted as nc ∼
CN (0,R), with covariance matrix R. When considering Σ∆-
based MIMO systems with less than half-wavelength-spaced
antennas, it is important to consider the potential impact of
mutual coupling. Based on the above electromagnetic coupling
model, R can be expressed as [18], [50]
R = T

(
σ2
i (ZZ

H +R2
cI− 2RcR(ρ∗Z)) + 4kTBR(Z)

)
TH ,

(8)
where E{iciHc } = σ2

i I, E{ucu
H
c } = σ2

uI, Rc = σu

σi
,

E{uci
H
c } = ρ

σuσi
I, ic and uc represent the equivalent noise

current and voltage of the LNA, and k, T , and B denote the
Boltzmann constant, environment temperature, and bandwidth,
respectively. The received analog signals are then quantized
using few-bit ADCs. The mathematical models for both con-
ventional and Σ∆ quantizers in these few-bit ADCs will be
presented in the following subsection.

B. MIMO Receiver with Few-Bit ADCs

1) Few-Bit ADCs with Conventional Quantizers: The re-
ceived analog signal at each BS antenna is sampled to produce
a discrete-time signal, which is then quantized by a pair of b-
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Fig. 2: Illustration of the spatial 1st-order Σ∆ architecture at an N -
antenna receiver.

bit ADCs to one of a set of discrete quantized levels. Thus,
the quantized signal y = Qb(x) can be modeled as

R{y} = Qb(R{x}), I{y} = Qb(I{x}), (9)
where Qb(.) denotes the b-bit ADC operation applied
element-wise to its vector argument. The uniform quan-
tizer Qb(.) performs b-bit scalar quantization, which pro-
duces 2b − 1 quantized output levels belonging to the
set {d1, . . . , d2b−1}. Without loss of generality, we assume
−∞ = d0 < d1 . . . < d2b−1 < d2b = +∞. The quantization
thresholds are given by [10]
dm=

(
− 2b−1 +m

)
Λ, ∀m ∈ M = {1, . . . , 2b − 1}, (10)

where Λ denotes the quantization step size of Qb(.). The
quantized output qi at the i-th antenna of the BS is defined as

qi = Qb(xi) =

{
dm − Λ

2 , if xi ∈ (dm−1, dm),

(2b − 1)Λ2 , if xi ∈ (d2b−1, d2b).
(11)

We also define by qupi and qlowi the upper and lower thresholds
of the quantization bin to which qi belongs.

2) Few-Bit ADCs with Sigma-Delta Quantizers: The Σ∆
quantization process is illustrated in Fig. 2, where a few-
bit quantizer is used in each quantization block. The pre-
quantized signal at stage i, denoted by ri, which consists of the
unquantized received signal xi and the difference between the
input and output of the previous quantizer, can be represented
as [18], [20]

ri = xi + e−jϕ(ri−1 − yi−1), ∀i = 1, . . . , N, (12)
where xi ≜ hT

i s + ni is the unquantized received signal at
antenna i, r0 and y0 are set to 0, and ϕ denotes a phase shift
applied to the signal between two adjacent antennas. After
quantization, the observation at the i-th antenna element can
be expressed as

yi = Qb(ri). (13)

Using spatial oversampling with antenna elements spaced
closer than one-half wavelength, and feedback of the quanti-
zation error between adjacent antennas, the Σ∆ architecture
shapes the quantization noise to higher spatial frequencies,
thereby significantly reducing it for signals arriving from
angles closer to the broadside of the ULA (when ϕ = 0).
However, there is a practical limit to using spatial oversam-
pling due to the physical dimensions of the antennas and

mutual coupling. For this reason, the Σ∆ architecture is best
suited for scenarios where two conditions are met: the array
incorporates spatial oversampling and the users of interest are
confined within a specific angular sector [18].

In the following, we present prior art on the linearized
model for spatial 1st-order Σ∆ ADCs and corresponding
linear minimum mean-squared error (LMMSE) receiver to
estimate s. Subsequent developments will include the design
of efficient VB-based MIMO detection algorithms for 1st- and
2nd-order Σ∆ ADCs.

C. Linear Detection with Spatial Σ∆ Quantized Observations

Using the Bussgang decomposition [51], the output of the
Σ∆ array in (13) in vector form is linearized as

y = x+U−1q, (14)
where q = [q1, . . . , qN ]T represents the effective quantization
noise, and U is given in (56). A detailed derivation of (14)
is provided in Appendix A. In (14), the unquantized signal x
is separated from the shaped quantization noise U−1q, which
enables the use of linear detection methods for the Σ∆ array.
For the special case of one-bit Σ∆ quantization, the variance
of qi is given by [20, Eq. (33)]

τqi =
(π
2
− 1

)1− (π/2− 1)i

2− π/2
ps, (15)

where ps is the power of the received signal at the i-th antenna.
Based on the linearized model in (14), an LMMSE receiver

W that minimizes the mean squared error E
[
∥s−Wy∥2

]
in

estimating s can be expressed as
W = ΣsH

H(HΣsH
H +N0IN +U−1ΣqU

−H)−1, (16)
where Σs and Σq = diag(τq1 , . . . , τqN ) are the covariance
matrices of s and q, respectively.

If we take the mutual coupling effect into account, the
LMMSE solution for estimating s can be obtained as

WMC = ΣsH
H(HΣsH

H +R+U−1ΣMC
q U−H)−1y,

(17)
where the covariance matrix of the quantization noise ΣMC

q

can be approximated as [52]
ΣMC

q ≃ diag(pq), (18)
and

pq =
(π
2
ζ − 1

)
Πpx, (19)

px =
[
E
[
|x1|2

]
,E

[
|x2|2

]
, · · · ,E

[
|xN |2

]]T
, (20)

Π =

1 0 . . . 0 0(
π
2 ζ − 1

)
1 0 . . . 0

...
. . . 1

...(
π
2 ζ − 1

)m . . . . . . . . .
...

. . . . . . . . . . . .(
π
2 ζ − 1

)M−1 · · ·
(
π
2 ζ − 1

)m · · ·
(
π
2 ζ − 1

)
1


,

(21)
where ζ = 1.13 is a correction factor.

As mentioned earlier, the accuracy of the Bussgang de-
composition depends on the Gaussianity of the input to
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the quantization non-linearity, which does not always hold,
particularly when the input symbol is discrete. To overcome
this challenge, in the next section, we introduce an alternative
MIMO detection approach based on VB inference to handle
the nonlinear Σ∆ receiver architecture.

III. VARIATIONAL BAYES FOR FEW-BIT 1st-ORDER Σ∆
MIMO DETECTION

In this section, we first provide background on VB inference
and then develop a new data detection method based on the
VB framework in few-bit Σ∆ MIMO systems with known
channel H.

A. Background on VB Inference

We denote the set of all observed variables as ȳ and the
set of V latent variables as x̄. To find a Bayes estimate of x̄,
one would need to determine the posterior distribution p(x̄|ȳ),
which is often computationally intractable. To overcome this
challenge, the VB method aims to find a distribution q(x̄)
characterized by variational parameters within a predefined
family Q of densities, such that q(x̄) closely approximates
p(x̄|ȳ). To this end, VB defines an optimization problem
leveraging the Kullback-Leibler (KL) divergence from q(x̄)
to p(x̄|ȳ):
q⋆(x̄) = arg min

q(x̄)∈Q
KL

(
q(x̄)∥p(x̄|ȳ)

)
, (22)

=arg min
q(x̄)∈Q

{
Eq(x̄)

[
ln q(x̄)

]
− Eq(x̄)

[
ln p(x̄|ȳ)

]}
,

where q⋆(x̄) denotes the optimal variational distribution. To
approximate the posterior, we adopt the mean-field VB in-
ference method, for which the variational distribution q(x̄) is
drawn from a mean-field variational family [53], such that

q(x̄) =

V∏
i=1

qi(xi), (23)

where the latent variables are mutually independent, with each
being governed by a distinct factor in the variational density.
The optimal value of qi(xi) is obtained as [53, Chapter 10]

q⋆i (xi) ∝ exp
{〈

ln p(ȳ, x̄)
〉}

, (24)
where ⟨·⟩ is computed utilizing the currently fixed variational
density q−i(x̄−i) =

∏V
j=1,j ̸=i qj(xj). To optimize (22), we

use the Coordinate Ascent Variational Inference algorithm,
which is an iterative method that ensures convergence to at
least a locally optimal solution [54].

B. VB Inference for Few-bit Σ∆ MIMO Detection

Considering the input-output relationship of the 1st-order
Σ∆ quantizer in (12), the conditional distributions between
the observed quantized signal yi and latent variables, i.e., ri,
xi, s, are given by p(ri|ri−1, yi−1, s;H, N0) = CN (ri;h

T
i s+

e−jϕ(ri−1 − yi−1), N0) and p(yi|ri) = 1(ri ∈ [ylowi , yupi ]),
where 1 is the indicator function which equals one if the
argument holds, or zero otherwise. The optimal MAP detector

Fig. 3: The Bayesian network for the 1st-order Σ∆ receiver.

ŝMAP = argmaxs∈SK p(y, s;H, N0) with spatial Σ∆ ADCs
can be written as

ŝMAP = arg max
s∈SK

∫
p(y, r, s;H, N0)dr (25)

=argmax
s∈SK

p(s)

∫ N∏
i=1

p(yi|ri)p(ri|ri−1, yi−1, s;H, N0)dr.

This integral is intractable to evaluate in closed-form due to
the high-dimensional integration and the intricate correlation
between r and s. This challenge motivates us to explore a
novel VB inference method to solve the data detection problem
with Σ∆ arrays.

We consider the residual interference-plus-noise as an un-
known parameter Npost

0 , which must be estimated using the
VB method. The dependency between random variables under
spatial Σ∆ processing can be graphically modeled through
the Bayesian network in Fig. 3, where γ ≜ 1/Npost

0 denotes
the precision that is floated as an unknown random variable
and the arrows indicate the conditional probability between
variables. The main goal is to infer the distribution of data
s given the observation y. To accomplish this, we employ
the mean-field VB inference method, which derives the mean-
field variational distributions q(ri), q(sk), and q(γ), from the
factorized family to approximate the posterior for individual
variables, such that

p(s, r, γ|y;H) ≈ q(s, r, γ) =
K∏

k=1

q(sk)
N∏
i=1

q(ri)q(γ). (26)

According to (24), to obtain the optimal solution of the
variational densities in (26), we need the joint distribution
p(y, r, s, γ;H) which can be factorized as
p(y, r, s, γ;H) = p(s)p(γ)

×
N∏
i=1

p(yi|ri)p(ri|ri−1, yi−1, s, γ;H), (27)

where
p(ri|ri−1, yi−1, s, γ;H)

= CN
(
ri;h

T
i s+ e−jϕ(ri−1 − yi−1), γ

−1
)
. (28)

To this end, we present the update process for each latent
variable through the derived closed-form expression of each
variational density.

1) Updating ri: For i = 1, . . . , N − 1, the variational
distribution q(ri) can be obtained by taking the expectation
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of the conditional in (27) w.r.t. q(s, γ) as

q(ri) ∝ exp
{〈

ln p(yi|ri) + ln p(ri+1|ri, yi, s, γ;H)

+ ln p(ri|ri−1, yi−1, s, γ;H)
〉}

∝ p(yi|ri) exp
{
−
〈
γ|ri − hT

i s− e−jϕ(ri−1 − yi−1)|2
〉

−
〈
γ|ri+1 − hT

i+1s− e−jϕ(ri − yi)|2
〉}

∝ p(yi|ri) exp
{
− ⟨γ⟩

(
|ri − ai|2 + |ri − bi|2

)}
∝ 1(ri ∈ [ylowi , yupi ]) CN

(
ri; (ai + bi)/2, 1/(2⟨γ⟩)

)
,
(29)

where ai ≜ hT
i ⟨s⟩ + e−jϕ(⟨ri−1⟩ − yi−1) and bi ≜ yi +

ejϕ⟨ri+1⟩ − ejϕhT
i+1⟨s⟩.

Defining vi ≜ (ai + bi)/2, we see that the varia-
tional distribution q(ri) in (29) is a truncated complex
Gaussian distribution obtained by pruning the distribution
CN

(
vi, 1/(2⟨γ⟩)

)
onto the interval [ylowi , yupi ]. In Appendix

B we show that the mean and variance of the resulting
distribution are given by ⟨ri⟩ = Fr(vi, 2⟨γ⟩, ylowi , yupi ) and
τri = Gr(vi, 2⟨γ⟩, ylowi , yupi ), respectively.

For i = N , while the factor p(rN+1|rN , yN , s, γ;H) does
not exist, the variational distribution q(rN ) can be computed
similarly to (29) and is given by

q(rN ) ∝ 1(rN ∈ [ylowN , yupN ]) CN
(
rN ; aN , 1/⟨γ⟩

)
. (30)

2) Updating sk: The variational distribution q(sk) is ob-
tained by taking the expectation of the conditional in (27)
w.r.t. q(r, γ):

q(sk) ∝ exp

{〈
ln p(sk) +

N∑
i=1

ln p(ri|ri−1, yi−1, s, γ;H)

〉}

∝ p(sk) exp

{
− ⟨γ⟩

N∑
i=1

〈
|ri − hT

i s

− e−jϕ(ri−1 − yi−1)|2
〉}

. (31)

Expanding hT
i s = hi,ksk +

∑K
j ̸=k hi,jsj leads to

q(sk) ∝ p(sk) exp

{
− ⟨γ⟩

N∑
i=1

∣∣∣∣⟨ri⟩ − K∑
j ̸=k

hi,j⟨sj⟩

− e−jϕ(⟨ri−1⟩ − yi−1)− hi,ksk

∣∣∣∣2}
∝ p(sk) exp

{
− ⟨γ⟩

N∑
i=1

|zi,k − hi,ksk|2
}

∝ p(sk)
N∏
i=1

CN
(
zi,k;hi,ksk, ⟨γ⟩−1

)
, (32)

where

zi,k =⟨ri⟩ − e−jϕ(⟨ri−1⟩ − yi−1)−
K∑
j ̸=i

hi,j⟨sj⟩

=⟨ri⟩ − e−jϕ(⟨ri−1⟩ − yi−1)− hT
i ⟨s⟩+ hi,k⟨sk⟩, (33)

using the current estimate ⟨sk⟩ for all k = 1, . . . ,K. Inter-
estingly, the variational distribution q(sk) is equivalent to the
posterior distribution p(sk|zk, ⟨γ⟩;hk) of sk in a single-input

multiple-output (SIMO) system:
zk = hksk + ñk, (34)

where ñk ∼ CN (0, ⟨γ⟩−1IN ) and zk = [z1,k, . . . , zN,k]
T .

The variational mean and variance of sk can be expressed
as ⟨sk⟩ = Fs(zk,hk, ⟨γ⟩) and τsk = Gs(zk,hk, ⟨γ⟩), respec-
tively, as shown in Appendix C.

3) Updating γ: We assume a Gamma distribution p(γ) =
Gamma(α, β), as a conjugate prior for the precision parameter
γ, where α and β are the shape and rate parameters, respec-
tively. This enables the derivation of the variational distribution
q(γ) in closed form. The choice of a Gamma distribution
for γ is motivated by its role as a conjugate prior for the
precision of a Gaussian likelihood in the noise model (1), and
this conjugate prior is proportional to the product of a power of
γ and the exponential of a linear function of γ [53, Chapter
2, Section 2.3.6]. Taking the expectation of the conditional
distribution in (27) w.r.t. q(s, r), q(γ) can be obtained as

q(γ) ∝ exp

{〈 N∑
i=1

ln p(ri|ri−1, yi−1, s, γ;H) + ln p(γ)

〉}

∝ exp

{
− γ

N∑
i=1

〈
|ri − hT

i s− e−jϕ(ri−1 − yi−1)|2
〉

+N ln γ + (α− 1) ln γ − βγ

}
∝ exp

{
− γ

N∑
i=1

(〈
|ri − hT

i s|2
〉
+

〈
|ri−1 − yi−1|2

〉
− 2ℜ

{〈
(ri − hT

i s)
∗(ri−1 − yi−1)e

−jϕ
〉})

+ (N + α− 1) ln γ − βγ

}
. (35)

Using the expansion
〈
|ri − hT

i s|2
〉
= |⟨ri⟩ − hT

i ⟨s⟩|2 + τri +
hT
i Σshi, we arrive at

q(γ) ∝ exp

{
− γ

N∑
i=1

[
|⟨ri⟩ − hT

i ⟨s⟩ − (⟨ri−1⟩ − yi−1)e
−jϕ|2

+ τri+ hH
i Σshi + τri−1

]
+ (N + α− 1) ln γ − βγ

}
∝ exp

{
− γ

N∑
i=1

[
|ui|2 + τri + hH

i Σshi + τri−1

]
+ (N + α− 1) ln γ − βγ

}
∝ exp

{
− γ

[
β + ∥u∥2 + 2Tr{Σr} − τrN

+Tr
{
HΣsH

H
}]

+ (N + α− 1) ln γ
}
, (36)

where ui ≜ ⟨ri⟩ − hT
i ⟨s⟩ − e−jϕ(⟨ri−1⟩ − yi−1), u =

[u1, . . . , uN ]T and Σr = diag(τr1 , . . . , τrN ) is the covariance
matrix of r. Here, ui denotes the residual term at receive
antenna i, which would equals the noise term ni if ri, ri−1,
and s were perfectly known.

Given that we have assigned a conjugate Gamma prior
p(γ) = Gamma(α, β), the resulting variational distribution
follows a Gamma distribution. Specifically, after computing
the expectation and simplifying the exponent, q(γ) is a Gamma
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distribution with mean

⟨γ⟩ = N + α

β + ∥u∥2 + 2Tr{Σr} − τrN +Tr
{
HΣsHH

} , (37)

where N + α reflects the updated shape parameter, and the
denominator incorporates the residual noise ∥u∥2, the trace
of the variance of r, and the channel-data covariance term,
consistent with the noise model and dependencies in the 1st-
order Σ∆ architecture.

By iteratively optimizing q(ri), q(sk), and q(γ) through
the updates of ⟨xi⟩, ⟨sk⟩, and ⟨γ⟩, we derive the CAVI
algorithm, as presented in Algorithm 1, for the 1st-order Σ∆
quantization. We designate this algorithm as the 1st-order SD-
VB algorithm, where the parameter ϵ is the numerator of γ̂ in
the variational distributions of (29) and (30) for updating ri
and rN , respectively.

Remark 1: In Algorithm 1, we denote the estimates of the
variational means ⟨ri⟩, ⟨sk⟩, ⟨γ⟩ at iteration t as r̂ti , ŝ

t
k, γ̂

t,
respectively, and each iteration includes a round of updating
the estimates of r, s, and γ. These estimates, computed via
closed-form updates, represent the mean values of q(ri), q(sk),
and q(γ), driving the algorithm toward convergence. Recalling
ui = ⟨ri⟩ − e−jϕ(⟨ri−1⟩ − yi−1) − hT

i ⟨s⟩, ai = hT
i ⟨s⟩ +

e−jϕ(⟨ri−1⟩−yi−1) and bi = yi+ejϕ⟨ri+1⟩− ejϕhT
i+1⟨s⟩, ai

and bi can be rewritten as ai = r̂ti −ui and bi = r̂ti +ejϕui+1

using the current estimates
{
r̂ti
}

and
{
ŝt
}

, where {r̂ti} de-
notes the set of estimated pre-quantized signals r̂ti , across all
antennas (i = 1, ..., N ) at iteration t. Thus, we have

vti =

{
ai+bi

2 = r̂ti −
ui−ejϕui+1

2 , for i = 1, . . . , N − 1,
aN = r̂tN − uN , for i = N,

in step 7 of Algorithm 1.
Remark 2: The residual noise term u, initialized as u =

r̂1 − Hŝ1, is introduced in lines 14, 15, and 21 of Al-
gorithm 1 to reduce the computational complexity. Due to
the sequential nature of VB, vti and ztk are calculated us-
ing the updated values of r̂ and ŝ. Instead of computing
ui = ⟨ri⟩ − hT

i ⟨s⟩ − e−jϕ(⟨ri−1⟩ − yi−1) for all elements
of u, incurring a complexity of O(NK), the current value of
the residual noise term u is used. The update of u reflects
any update for the estimates of r̂i or ŝk, and only incurs a
complexity of O(N).

IV. EXTENSION TO MIMO DETECTION WITH 2nd-ORDER
Σ∆ QUANTIZATION

The 2nd-order Σ∆ architecture provides more aggressive
noise shaping, further reducing the quantization noise in the
desired angular sector compared to the 1st-order case [19]. In
this section, we develop a VB approach for MIMO detection
with 2nd-order Σ∆ quantization based on the approach of
the previous section. The 2nd-order spatial Σ∆ architecture
is illustrated in Fig. 4. The phase difference applied between
antennas i and (i+1) is ϕ, while that between antenna i and
(i+ 2) is 2ϕ. The input-output relationship for the 2nd-order
Σ∆ approach is given by
ri = xi + 2e−jϕ(ri−1 − yi−1)− e−j2ϕ(ri−2 − yi−2), (38)
yi = Qb(ri). (39)

Algorithm 1 – VB Algorithm for MIMO Detection with 1st-
Order Σ∆ Quantization

1: Input: y,H
2: Output: ŝ
3: Initialize r̂1i = y1

i , τ1
ri = 0, ∀i, ŝ1k = 0, τ1

sk = Varp(sk)[sk], ∀k,
u = r̂1 −Hŝ1.

4: for t = 1, 2, . . . do
5: γ̂t ← (N+α)/

(
β+∥u∥2+2Tr{Σr}−τ t

rN +Tr{HΣsH
H}

)
6: for i = 1, . . . , N do
7: if i = N then
8: vti ← r̂tN − uN , ϵ = 1
9: else

10: vti ← r̂ti − (ui − ejϕui+1)/2, ϵ = 2
11: end if
12: r̂t+1

i ← Fr(v
t
i , ϵγ̂

t, ylow
i , yup

i )
13: τ t+1

ri ← Gr(v
t
i , ϵγ̂

t, ylow
i , yup

i )
14: ui ← ui − r̂ti + r̂t+1

i

15: ui+1 ← ui+1 + e−jϕ(r̂ti − r̂t+1
i ) only for i < N

16: end for
17: for k = 1, . . . ,K do
18: ztk ← hkŝ

t
k + u

19: st+1
k ← Fs(z

t
k,hk, γ̂

t)
20: τ t+1

sk ← Gs(z
t
k,hk, γ̂

t)
21: u← u+ hk(ŝ

t
k − ŝt+1

k )
22: end for
23: end for
24: ∀k : ŝk ← argmaxa∈S paCN

(
ztk;hka, (1/γ̂

t)IM
)

Fig. 4: Illustration of the 2nd-order spatial Σ∆ architecture for a
multi-antenna receiver.

A. Proposed SD-VB Approach for Data Detection

Based on (38), the dependency between random variables
under spatial 2nd-order Σ∆ processing can be illustrated
through the graphical Bayesian network model in Fig. 5. The
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Fig. 5: Bayesian network for the 2nd-order Σ∆ receiver.

joint distribution p(y, r, s, γ;H) can be factored as
p(y, r, s, γ;H) (40)

= p(s)p(γ)
N∏
i=1

p(yi|ri)p(ri|ri−1, yi−1, ri−2, yi−2, s, γ;H),

where the conditional probability
p(ri|ri−1, yi−1, ri−2, yi−2, s, γ;H) = (41)

CN
(
ri;h

T
i s+ 2e−jϕ(ri−1−yi−1)−e−j2ϕ(ri−2−yi−2), 1/γ

)
.

This conditional probability follows a complex Gaussian dis-
tribution, driven by the input-output relationship of the 2nd-
order Σ∆ approach in (38), where the fact that the noise ni

is Gaussian implies that (41) is Gaussian. The mean-field VB
inference method aims to optimize the variational distribution
q(s, r, γ) such that

p(s, r, γ|y;H) ≈ q(s, r, γ) =
K∏

k=1

q(sk)
N∏
i=1

q(ri)q(γ). (42)

1) Updating ri: For i = 1, . . . , N − 2, the variational
distribution q(ri) can be obtained by taking the expectation
of the conditional in (40) w.r.t. q(s, γ) as
q(ri) ∝ exp

{〈
ln p(ri|ri−1, yi−1, ri−2, yi−2, s, γ;H)

+ ln p(yi|ri) + ln p(ri+1|ri, yi, ri−1, yi−1, s, γ;H)

+ ln p(ri+2|ri+1, yi+1, ri, yi, s, γ;H)
〉}

, (43)
which is expanded as in (44) on the next page, where
ci ≜ hT

i ⟨s⟩+2e−jϕ(⟨ri−1⟩−yi−1)− e−j2ϕ(⟨ri−2⟩ − yi−2),

di ≜ 2yi + ejϕ⟨ri+1⟩ − ejϕhT
i+1⟨s⟩+e−jϕ(⟨ri−1⟩ − yi−1),

fi ≜ yi − ej2ϕ⟨ri+2⟩+ ej2ϕhT
i+2⟨s⟩+ 2ejϕ(⟨ri+1⟩ − yi+1).

Similarly, we can obtain the variational distribution q(rN−1)
as
q(rN−1) ∝ 1(rN−1 ∈ [ylowN−1, y

up
N−1])

× CN
(
rN−1; (cN−1 + 2dN−1)/5, 1/(5⟨γ⟩)

)
, (45)

and q(rN ) as
q(rN ) ∝ 1(rN ∈ [ylowN , yupN ]) CN

(
rN ; cN , 1/⟨γ⟩

)
. (46)

Defining the residual term ui as
ui =⟨ri⟩ − hT

i ⟨s⟩ − 2e−jϕ(⟨ri−1⟩ − yi−1)

+ e−j2ϕ(⟨ri−2⟩ − yi−2), (47)
we have ci = ⟨ri⟩ − ui, di = 2⟨ri⟩ + ejϕui+1, and fi =
⟨ri⟩− ej2ϕui+2. We then denote variable vi as in (48), shown
at the top of the next page.

2) Updating sk: The variational distribution q(sk) is ob-
tained by taking the expectation of the conditional in (40)

w.r.t. q(r, γ):

q(sk) ∝ exp

{〈
ln p(sk)

+
N∑
i=1

ln p(ri|ri−1, yi−1, ri−2, yi−2, s, γ;H)

〉}
,

∝ p(sk) exp

{
− ⟨γ⟩

N∑
i=1

〈
|ri − hT

i s

− 2e−jϕ(ri−1 − yi−1) + e−j2ϕ(ri−2 − yi−2)|2
〉}

∝ p(sk)
N∏
i=1

CN
(
zi,k;hi,ksk, ⟨γ⟩−1

)
, (49)

where zi,k is defined as
zi,k = ⟨ri⟩ − 2e−jϕ(⟨ri−1⟩ − yi−1) + e−j2ϕ(⟨ri−2⟩ − yi−2)

− hT
i ⟨s⟩+ hi,k⟨sk⟩

= ui − hi,k⟨sk⟩. (50)
The variational mean ⟨sk⟩ and variance τsk then can be
obtained accordingly.

3) Updating γ: The variational distribution q(γ) can be ob-
tained by taking the expectation of the conditional distribution
in (40) w.r.t. q(s, r) as

q(γ) ∝ exp

{〈
ln p(γ)

+
N∑
i=1

ln p(ri|ri−1, yi−1, ri−2, yi−2, s, γ;H)
〉}

, (51)

which is expanded as in (52) on the next page, where ui

denotes the residual term at receive antenna i. The variational
distribution q(γ) is Gamma with mean

⟨γ⟩ = N + α

β+ ∥u∥2+ 6Tr{Σr}− 5τrN − τrN−1
+Tr

{
HΣsHH

} .
(53)

The proposed VB method for MIMO detection with 2nd-
order Σ∆ quantization is summarized in Algorithm 2, where
the parameter ϵ is the numerator of γ̂ in the variational
distributions of (43), (45), and (46) for updating ri, rN−1,
and rN , respectively. We refer this algorithm as the 2nd-order
SD-VB algorithm.

Remark 3: The 1st- and 2nd-order SD-VB algorithms are
designed to address the nonlinear quantization effects of
spatial Σ∆ ADCs in massive MIMO systems, particularly for
discrete constellations such as PSK and QAM in angularly
sectored mmWave channels. The SD-VB algorithms are not
optimal for Gaussian input signals because they approximate
the posterior of the discrete latent variables and rely on mean-
field factorization, which does not fully capture the continuous
statistical properties of Gaussian signals.

The 1st- and 2nd-order SD-VB algorithms, based on CAVI,
factorize ri, sk, and γ, iteratively updating q(sk), q(ri),
and q(γ) until they converge to a locally optimal solution.
This efficient approach suits massive MIMO systems with
highly non-linear SD quantization, where local optima yield
acceptable SER. We will show through simulations in Section
V that these algorithms achieve low SER, outperforming state-
of-the-art methods, especially with optimized antenna spacing,
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q(ri) ∝ p(yi|ri) exp
{
−
〈
γ|ri − hT

i s− 2e−jϕ(ri−1 − yi−1) + e−j2ϕ(ri−2 − yi−2)|2
〉
−
〈
γ|ri+1 − hT

i+1s

− 2e−jϕ(ri − yi) + e−j2ϕ(ri−1 − yi−1)|2
〉
−

〈
γ|ri+2 − hT

i+2s− 2e−jϕ(ri+1 − yi+1) + e−j2ϕ(ri − yi)|2
〉}

∝ p(yi|ri) exp
{
− ⟨γ⟩

〈
|ri − hT

i s− 2e−jϕ(ri−1 − yi−1) + e−j2ϕ(ri−2 − yi−2)|2
〉
− ⟨γ⟩

〈
|2(ri − yi)− ejϕri+1

+ ejϕhT
i+1s− e−jϕ(ri−1 − yi−1)|2

〉
− ⟨γ⟩

〈
|ri − yi + ej2ϕri+2 − ej2ϕhT

i+2s− 2ejϕ(ri+1 − yi+1)|2
〉}

∝ 1(ri ∈ [ylowi , yupi ]) exp
{
−⟨γ⟩(|ri − ci|2 + |2ri − di|2 + |ri − fi|2)

}
∝ 1(ri ∈ [ylowi , yupi ]) exp

{
− 6⟨γ⟩

∣∣ri − (ci + 2di + fi)/6
∣∣2}

∝ 1(ri ∈ [ylowi , yupi ]) CN
(
ri; (ci + 2di + fi)/6, 1/(6⟨γ⟩)

)
(44)

vi =


ci+2di+fi

6 = ⟨ri⟩ − ui−2ejϕui+1+ej2ϕui+2

6 for i = 1, . . . , N − 2,
cN−1+2dN−1

5 = ⟨rN−1⟩ − uN−1−2ejϕuN

5 for i = N − 1,
cN = ⟨rN ⟩ − uN for i = N.

(48)

q(γ) ∝ exp

{
(N + α− 1) ln γ − βγ − γ

N∑
i=1

〈
|ri − hT

i s− 2e−jϕ(ri−1 − yi−1) + e−j2ϕ(ri−2 − yi−2)|2
〉}

∝ exp

{
(N + α− 1) ln γ − βγ − γ

N∑
i=1

[
|ui|2 + τri + hH

i Σshi + 4τri−1
+ τri−2

]}
∝ exp

{
(N + α− 1) ln γ − γ(β + ∥u∥2 + 6Tr{Σr}+Tr

{
HΣsH

H
}
− 5τrN − τrN−1

)
}
, (52)

Algorithm 2 – VB Algorithm for MIMO Detection with 2nd-
Order Σ∆ Quantization

1: Input: y,H
2: Output: ŝ
3: Initialize r̂1i = y1

i , τ1
ri = 0, ∀i, ŝ1k = 0, τ1

sk = Varp(sk)[sk], ∀k,
u = r̂1 −Hŝ1.

4: for t = 1, 2, . . . do
5: γ̂t ← (N + α)/

(
β + ∥u∥2 + 6Tr{Σr} − 5τ t

rN − τ t
rN−1

6: +Tr{HΣsH
H}

)
7: for i = 1, . . . , N do
8: if i = N then
9: vtN ← r̂tN − uN , ϵ = 1

10: else if i = N − 1 then
11: vtN−1 ← r̂tN−1 − (uN−1 − 2ejϕuN )/2, ϵ = 5
12: else
13: vti ← r̂ti − (ui − 2ejϕui+1 + ej2ϕui+2)/6, ϵ = 6
14: end if
15: r̂t+1

i ← Fr(v
t
i , ϵγ̂

t, ylow
i , yup

i )
16: τ t+1

ri ← Gr(v
t
i , ϵγ̂

t, ylow
i , yup

i )
17: ui ← ui − r̂ti + r̂t+1

i

18: ui+1 ← ui+1 + 2e−jϕ(r̂ti − r̂t+1
i ) only for i < N

19: ui+2 ← ui+2 − e−j2ϕ(r̂ti − r̂t+1
i ) only for i < N − 1

20: end for
21: for k = 1, . . . ,K do
22: ztk ← hkŝ

t
k + u

23: st+1
k ← Fs(z

t
k,hk, γ̂

t)
24: τ t+1

sk ← Gs(z
t
k,hk, γ̂

t)
25: u← u+ hk(ŝ

t
k − ŝt+1

k )
26: end for
27: end for
28: ∀k : ŝk ← argmaxa∈S paCN

(
ztk;hka, (1/γ̂

t)IM
)

with the 2nd-order SD-VB enhancing detection by reaching
a better local optimum under various scenarios and mutual
coupling effects.

TABLE II: Algorithm Computational Complexity

Algorithm Complexity

MF-VB in [33] O(NKT + |S|KT )
MF-QVB in [10] O(NKT + |S|KT )

LMMSE O(N3 + |S|K)
1st-order SD-VB O(NKT + |S|KT )

2nd-order SD-VB O(NKT + |S|KT )

B. Computational Complexity Analysis

The computational complexity of the proposed algorithms is
analyzed here assuming N ≥ K. For iterative algorithms, the
complexity order is given per iteration. For LMMSE, the com-
putation of HΣsH

H for the linear detector in (16) requires
a complexity of O(NK2), while calculating U−1ΣqU

−H

requires O(N3) operations due to the matrix inversion. In
addition, the denoiser for K users contributes a complexity
of O(|S|K). Thus, the overall computational burden of the
LMMSE detector is dominated by the matrix inversion, result-
ing in an overall complexity of order O(N3 + |S|K). For the
1st- and 2nd-order SD-VB algorithms in Algs. 1 and 2, respec-
tively, the cost to compute Tr{HΣsH

H} =
∑K

k=1 τsk∥h̄k∥2
in step 5 is O(NK), which dominates that for computing
the residual vector ∥u∥2 which is O(N). The computation in
step 18 of Algorithm 1 and step 22 of Algorithm 2 adds a
complexity of O(|S|) for each user. The overall per-iteration
complexity of Algs. 1 and 2 is thus O(NK + |S|K), and
we see that the 1st- and 2nd-order SD-VB algorithms have
the same complexity as that for the MF-VB and MF-QVB
approaches, although the Σ∆ methods can provide a signifi-
cant improvement in MIMO detection performance under the
given assumptions of spatial oversampling or sectored users.
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Note that the complexity of the VB-based algorithms listed
in Table I also reflects the number of iterations T needed for
convergence. Numerical simulations suggest that T is typically
below 20.

V. NUMERICAL RESULTS

In this section, we present illustrative numerical results
for the performance of the proposed 1st- and 2nd-order SD-
VB algorithms compared with state-of-the-art data detection
methods such as the matched-filter quantized VB (MF-QVB)
in [10] and LMMSE-based detection for various scenarios.
We implement all VB-based algorithms with a maximum of
50 iterations and consider scenarios with 100 transmitted data
symbols. The channel matrix H is normalized such that each
column has unit norm, i.e., E

[
∥h̄k∥2

]
= 1,∀k [33]. The SNR

is defined as

SNR =
E
[
∥Hs∥2

]
E
[
∥nc∥2

] =
K

Tr{R}
. (54)

If the system is without mutual coupling, the noise co-
variance matrix R reduces to N0I, and the SNR becomes
SNR = K/(NN0). Unless otherwise stated, all cases assume
the number of paths as L = 20, the width of the angular
sector as Θ = 40◦ and assume it is centered at θ0 = 0◦. We
assume all users lie within the same azimuth angular range,
with AoAs drawn uniformly from the interval [−20◦, 20◦].
We also assume the number of BS antennas is N = 128, the
number of users is K = 16, the phase shift of the Σ∆ array
is ϕ = 2π d

λ sin(θ0), d = λ/6, and the users employ QPSK
signaling. Taking the mutual coupling effect into account, we
set the circuit parameters in (6) and (7) as σ2

i = 2kTB/R, and
σ2
u = 2kTBR, leading to the noise ratio RN =

√
σ2
u/σ

2
i = R

where R = 50 Ω, T = 290 K, ρ = 0, and B = 20 MHz. The
factor of 2 in the relationship σ2

n = 2kTBR appears because
we are accounting for noise in both the antennas and the LNAs.

To highlight the effectiveness of the proposed approach, we
compare the performance of the SD-VB algorithms with that
of the following benchmark approaches:

1) The LMMSE receiver presented in Section II-C imple-
mented with the 1st-order Σ∆ architecture and 1-bit
quantizers,

2) The MF-QVB algorithm developed in [10] implemented
with conventional few-bit quantizers,

3) The MF-VB algorithm developed in [33] implemented
with ideal/infinite quantizers.

We first study the convergence of all iterative algorithms
with 3-bit quantization, as shown in Fig. 6. All algorithms
are observed to converge in less than 20 iterations, which
demonstrates the effectiveness of using CAVI in our VB
framework.

We show the data detection performance improvement of the
proposed SD-VB algorithms using 1-bit and 3-bit ADCs with
QPSK in Fig. 7, and using 3-bit ADCs with 16-QAM and MC
effects in Fig. 8. The SD-VB algorithms outperform MF-QVB
for both 1-bit and 3-bit ADCs since the Σ∆ receivers shape
the quantization noise away from the spatial frequencies of
interest. The SD-VB algorithms also significantly outperform
the LMMSE-based receiver because the latter’s reliance on

Fig. 6: Convergence of the iterative algorithms with SNR= 12 dB,
θ0 = 20◦, d = λ/6, Θ = 40◦, 3-bit quantization, and QPSK
signaling. The plots are obtained by averaging over 200 trials.

Fig. 7: SER performance vs. SNR with θ0 = 20◦, Θ = 40◦, d = λ/4,
QPSK, and without mutual coupling. For the quantized system, solid
lines represent results with 3-bit ADCs; dashed lines represent results
with 1-bit ADCs.

linear processing makes it ineffective at separating users with
highly correlated channels. The 1st- and 2nd-order SD-VB
algorithms with 1-bit quantization and QPSK exhibit higher
SER than MF-VB since the latter operates as an unquantized
(full-precision) system. We note that coarse quantization (e.g.,
1-bit or 3-bit ADCs) introduces quantization noise that cannot
be reduced and persists even at high SNR. As a result,
the symbol error rates (SERs) of all algorithms processing
quantized signals converge to their error floors at high SNR,
since quantization noise becomes the dominant source of error.

The performance of 2nd-order SD-VB significantly im-
proves when the ADC resolution is increased from 1 to 3
bits, achieving the best SER among the considered algorithms,
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Fig. 8: SER performance vs. SNR with 3-bit quantizer, θ0 = 20◦,
Θ = 40◦, d = λ/4, 16-QAM. Solid lines represent results without
mutual coupling; dashed lines represent results with mutual coupling
effects.

while MF-QVB performs the worst. This advantage is due
to the more aggressive noise shaping of the 2nd-order Σ∆
architecture, greatly reducing the quantization noise in lower
spatial frequency ranges. Although MF-QVB shows some
improvement with 3-bit quantization for both QPSK and 16-
QAM, it remains inefficient for cases with users confined to an
angular sector since the quantization noise is uniformly spread
across all spatial frequencies. While the MF-VB algorithm
employs ideal/infinite quantization, it also experiences an error
floor due to the channel correlation [33]. The 2nd-order SD-
VB with only 3-bit quantizers outperforms MF-VB since it
implicitly exploits knowledge of the angular sector to which
the users are confined and the resulting spatial correlation.
While the LMMSE receiver provided in (16) is designed for
1-bit quantization, it shows considerable SER improvement
when the quantization resolution is increased to 3 bits. Thus,
in subsequent simulations we will only show results for the
3-bit LMMSE implementation.

The effect of MC is shown in Fig. 8 for 16-QAM signaling,
illustrating that the SER performance of LMMSE and MF-
QVB degrades considerably with MC, while the proposed SD-
VB algorithms have only a slight decrease at high SNRs. This
is due to two reasons. First, since spatial Σ∆ techniques rely
on the correlation between signals at adjacent antennas, the
correlation introduced by MC actually provides some benefit
for Σ∆ that counteracts the corresponding loss due to channel
correlation. In addition, when MC introduces colored noise,
the Σ∆ noise-shaping effect treats it similarly to quantization
noise, pushing it outside the signal bandwidth. The LMMSE
detector is implemented using (17), which incorporates the
known colored noise covariance matrix R induced by MC.
Despite this, the LMMSE approach still exhibits SER degra-
dation compared to SD-VB. This is due to the limitations of
the Bussgang decomposition, which assumes Gaussian inputs,

Fig. 9: SER performance vs. azimuth angular spread Θ, with 3-bit
quantizers, SNR = 5 dB, θ0 = 0◦, d = λ/6, and QPSK.

Fig. 10: SER performance vs. d/λ, with 3-bit quantizers, N = 128,
Θ = 40◦, θ0 = 0◦, QPSK, SNR = 5 dB, and without MC.

and the approximation of the quantization noise covariance
ΣMC

q as diagonal [50], [52].
Fig. 9 shows the effect of the azimuth angular spread on

SER performance. For narrow azimuth ranges, all approaches
experience high SER due to the extreme channel correla-
tion that results in K = 16 users densely packed together.
The 3-bit SD-VB implementation has the best performance
among all the approaches for sectors smaller than 80◦. Both
SD-VB implementations achieve their best performance for
Θ ∈ [60◦, 80◦], but their SERs degrade as the sectors become
wider since the noise-shaping effect is limited. MF-VB and
MV-QVB have the best performance for large sectors since
the Σ∆-based approaches have reduced spatial correlation to
exploit. The advantage of using VB, in general, is evident in
the superior performance of the VB algorithms compared with
LMMSE in all cases.
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Fig. 10 presents the effect of antenna spacing and wave-
length on the SER performance of all detection algorithms for
an array with a fixed number of antennas (N = 128) without
considering MC. Observations similar to those in the previous
example can be made here. In particular, when d is very small,
the array aperture is significantly reduced and none of the
methods are able to counteract the extreme channel correlation
that results from the narrow angular sector of Θ = 40◦. The
SER of all algorithms improves with increasing d, although
the 1st- and 2nd-order SD-VB algorithms provide the best
performance for values of d around 1/4 to 1/3, and degrade
for larger d since the benefit of oversampling is lost. As
the antenna spacing increases, the reduced channel correlation
benefits MF-VB and MF-QVB. Although reducing the antenna
spacing to around 1/3 to 1/4 wavelength can enhance the SER
for the SD-VB algorithms, it reduces the achievable data rate
due to the reduced array aperture [18], [52]. Similarly, lower
quantization resolutions (e.g., 1-bit or 3-bit) improve power
efficiency but limit the amount of information per sample.
As studied in [18], spectral efficiency in Σ∆ MIMO systems
scales with the oversampling rate, highlighting a trade-off
between noise reduction and capacity. In future works, we
will analyze the capacity of MIMO systems with 2nd-order
Σ∆ ADCs, leveraging the probabilistic modeling capabilities
of the VB framework.

Fig. 11: SER performance vs. (d/λ, N ), with mutual coupling effects,
a fixed array d0 = 14 cm, 3-bit quantizers, QPSK, K = 16, Θ = 40◦,
θ0 = 0◦, and SNR = 18 dB.

In Fig. 11 we study the impact of the antenna spacing d in
the presence of MC, but in this case, we fix the array aperture
d0 = Nd so that as d decreases, the number of antennas N
increases. For example, if the aperture is set at d0 = Nd = 14
cm, the wavelength is λ = c/f = 6.7 mm at f = 45 GHz,
and as d decreases from λ/2 to λ/14, N increases from 42
to 294. As shown in the figure, in this case there is much
less degradation for small d since the larger array aperture
maintains a more constant level of channel correlation. The
SD-VB algorithms maintain superior SER performance over
the other algorithms under MC due to their ability to exploit

Fig. 12: SER performance vs. number of users with 3-bit quantizers,
SNR = 8 dB, QPSK, N = 80, d = λ/6, θ0 = 0◦, and Θ = 40◦.

the MC-induced spatial correlation, and because their noise-
shaping process treats colored noise introduced by MC sim-
ilarly to quantization noise, pushing it away from the spatial
frequencies of interest. In this case, the best trade-off between
the number of observations and the channel correlation for
the SD-VB algorithms occurs for d = λ/6. LMMSE struggles
with high channel correlation under MC since its linear
processing cannot effectively de-correlate the users, leading to
higher SER. The MF-VB benefits from infinite precision but
is still limited by channel correlation, performing worse than
the SD-VB algorithms when d > λ/6 and for narrow sectors.
The spatial Σ∆ architecture achieves its best performance with
small antenna spacings and confined angular sectors but this
potentially limits its real-world application. Nonetheless, these
constraints enable compact, power-efficient array designs, e.g.,
an aperture of 14 cm can fit 126 elements at d = λ/6.

In Fig. 12, we show the effects of the number of users K on
the SER performance. When K decreases, the lower spatial
channel correlation enhances the data detection performance
of all algorithms. The 2nd-order SD-VB algorithm achieves
the lowest SER among the considered algorithms when K ≤
20, including MF-VB with infinite precision ADCs. On the
other hand, MF-VB has the best performance for large K,
but in these cases the SER is already quite high. MF-QVB
performs the worst due to its use of matched filtering to handle
multiuser interference, which is suboptimal with high channel
correlation, even with relatively few users. LMMSE excels
with a small number of users since it is able to more effectively
eliminate inter-user interference, achieving a lower SER than
MF-VB, 1st-order SD-VB, and MF-QVB when K = 10.

In Fig. 13 we present results for data detection with different
numbers of antennas. As N increases, the 1st- and 2nd-order
SD-VB algorithms show significant SER improvement, while
the improvement is marginal for LMMSE and MF-QVB. The
SER performance gap between 2nd-order SD-VB and the
other detection algorithms becomes wider as the number of
antennas increases. Note that MF-VB outperforms 1st-order
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Fig. 13: SER performance vs. number of antennas with 3-bit quantiz-
ers, SNR= 8 dB, QPSK, K = 30, d = λ/6, θ0 = 0◦, and Θ = 40◦.

Fig. 14: SER performance vs. Σ∆ ADC resolution b bits with SNR=
12 dB, QPSK, θ0 = 0, d = λ/6, and Θ = 40◦.

SD-VB since it is implemented under the assumption of zero
quantization noise.

Fig. 14 displays the SER for the Σ∆ algorithms as a
function of the ADC resolution b for d = λ/8 and d = λ/6.
While the SER decreases as b increases to 3, there is relatively
little improvement for higher ADC resolutions. The 1st-order
SD-VB approach offers better data detection performance than
2nd-order SD-VB for 1-bit quantization. This can occur when
the 1-bit ADCS in a 2nd-order Σ∆ architecture becomes
overloaded, a condition that occurs when where the input
signals combined with the quantization noise exceed the full-
scale range of the 1-bit quantizer leading to instability [19].

Fig. 15 shows the SER of the LMMSE, 1st-order SD-VB,
and 2nd-order SD-VB algorithms for 3-bit Σ∆ architectures
implemented with different steering angles ϕ = 2π d

λ sin(θ).

The steering angles are varied while the center angle of the
sector is set as θ0 = 0◦, 30◦, and 60◦ in Figs. 15(a), 15(b),
and 15(c), respectively. Results for MF-VB are included as
a reference, although its performance does not depend on ϕ
since it does not use the Σ∆ implementation. As expected, the
lowest SER for the 1st- and 2nd-order SD-VB architectures is
obtained when the steering angle is chosen to match the center
angle of the sector, i.e., θ = θ0. The SER performance of all
algorithms degrades as the center angle of the sector increases,
since the ability of the array to spatial separate the signals
decreases. LMMSE performs best without a phase offset, and
degrades significantly as the angular sector of the users moves
away from broadside.

VI. CONCLUSIONS

In this paper, we have developed two MIMO detection
algorithms based on the VB inference framework in massive
MIMO systems with few-bit Σ∆ ADCs. We first modeled the
Bayesian networks for the 1st- and 2nd-order Σ∆ receivers,
based on which the variational distributions of the latent
variables were obtained in closed form. We then proposed
two iterative algorithms for MIMO detection with efficient
updates and low-complexity implementation. Simulation re-
sults showed that the proposed 1st- and 2nd-order SD-VB
algorithms achieve their best data detection performance when
the users are confined to angular sectors less than 80◦ wide and
with antenna spacings on the order of 1/4 to 1/6 a wavelength.
Under these conditions, a 2nd-order SD-VB approach with 3-
bit ADCs can outperform the MF-VB algorithm implemented
with infinite resolution quantization, since SD-VB directly
exploits the users’ spatial correlation. The 2nd-order SD-VB
maintained superior SER performance under MC due to the
fact it exploits correlation between signals at adjacent antennas
for noise shaping and hence partially offsets the negative
effects of channel correlation. The simulation results also sug-
gest there are benefits to using 1st-order SD-VB rather than the
2nd-order SD-VB implementation with 1-bit quantization due
to potential ADC overloading and unstable performance. In
future work, we will explore joint grid-less channel estimation
and data detection using VB-based techniques for massive
MIMO systems with few-bit Σ∆ ADCs.

APPENDIX A
LINEAR MODEL FOR THE 1st-ORDER Σ∆ ARCHITECTURE

From (12), the input to the quantizers of the 1st-order Σ∆
architecture is expressed as

r = Ux−Vy, (55)
where V = U− IN and the matrix U is given by

U =


1 0 . . . 0 0

e−jϕ 1 . . . 0 0
e−j2ϕ e−jϕ . . . 0 0

...
...

...
. . .

...
e−j(N−1)ϕ e−j(N−2)ϕ . . . e−jϕ 1

 . (56)

We model the 1st-order Σ∆ quantization operation as
y = Q(r) = Γr+ q, (57)

where Γ is an N × N matrix, and q = y − Γr represents
the effective quantization noise corresponding to the choice of
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(a) θ0 = 0◦ (b) θ0 = 30◦ (c) θ0 = 60◦

Fig. 15: SER performance vs. steering angles ϕ = 2π d
λ
sin(θ) of Σ∆ ADCs with 3-bit quantizers, SNR at 12 dB, QPSK, and d = λ/6.

Γ. Following the approach in [18], [20], we design Γ using
the Bussgang decomposition such that E[riq∗i ] = 0 for the
corresponding pairs of elements in r and q. This results in
a diagonal Γ whose i-th diagonal element ξi given by ξi =
E[riy∗i ]/E[|ri|2]. Substituting (55) into (57), we obtain

y = ΓUx− ΓVy + q,

⇔ y = (I+ ΓV)−1ΓUx+ (I+ ΓV)−1q. (58)
Based on [18], [20], the quantization step size can be chosen
such that ξi = 1, ∀i, implying Γ = I. Using the identity
U = V + I, (58) can be simplified as

y = (I+V)−1Ux+ (I+V)−1q = x+U−1q. (59)

APPENDIX B
CALCULATION OF Fr(µ, γ, a, b) AND Gr(µ, γ, a, b)

Define α =
√
2γ(a − µ) and β =

√
2γ(b − µ). For an

arbitrary complex random variable CN (µ, γ−1) whose real
and imaginary parts are both truncated on the interval (a, b),
the mean Fr(µ, γ, a, b) and variance Gr(µ, γ, a, b) are given
by [10]

Fr(µ, γ, a, b) = µ− 1√
2γ

f(β)− f(α)

F (β)− F (α)
, (60)

Gr(µ, γ, a, b)=
1

2γ

[
1− βf(β)−αf(α)

F (β)− F (α)
−
(
f(β)− f(α)

F (β)− F (α)

)2]
,

(61)
where F (x) and f(x) are respectively the cumulative distri-
bution function and probability density function of a logistic
random variable x with zero mean and unit variance, defined
as F (x) = 1/(1 + e−3x/

√
π) and p(x) = 3√

π
F (x)(1−F (x)).

For the case of 1-bit quantizers, the three quantization
thresholds are: {−∞, 0,∞}, simplifying the computation of
Fr(µ, γ, a, b) and Gr(µ, γ, a, b). Denoting ζ = sign(y)

√
2γµ

with quantization level y, we have

Fr(µ, γ, a, b) = µ+
sign(y)√

2γ

f(ζ)

F (ζ)
,

Gr(µ, γ, a, b) =
1

2γ

[
1− ζf(ζ)

F (ζ)
−
(
f(ζ)

F (ζ)

)2
]
.

APPENDIX C
CALCULATION OF Fs(zk,hk, γ) AND Gs(zk,hk, γ)

Given zk in (34), the posterior distribution of sk given zk
is

p(sk|zk;hk, γ) ∝ p(sk)
N∏
i=1

CN
(
zi,k;hi,ksk, γ

−1
)
. (62)

For a ∈ S, we have

p(sk=a|zk;hk, γ) =
pa
Z

exp

{
−γ

N∑
i=1

|zi,k−hi,ka|2
}
, (63)

where Z =
∑

b∈S pb exp
{
− γ

∑N
i=1 |zi,k − hi,kb|2

}
. The

variational mean and variance of the posterior distribution in
(62) can be calculated as

Fs(zk,hk, γ) =
∑
a∈S

a p(sk = a|zk;hk, γ), (64)

Gs(zk,hk, γ) =
∑
a∈S

|a|2 p(sk = a|zk;hk, γ)

− |Fs(zk,hk, γ)|2. (65)
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