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Abstract—This paper proposes an adaptive user grouping
(AUG) scheme for short-packet communication (SPC) in si-
multaneous transmitting and reflecting (STAR)-reconfigurable
intelligent surface (RIS)-assisted multiple-input multiple-output
(MIMO)-non-orthogonal multiple access (NOMA) systems with
SWIPT. The information users with different channel conditions
are optimally grouped while the energy user harvests the energy
from the base station. Besides that, multiple STAR-RISs are
deployed to assist the information users in improving the quality
of received signals. We formulate the spectral efficiency (SE)
maximization of the considered system to optimize the linear
precoding matrix, phase shift of the reflection and transmis-
sion at STAR-RIS, energy beamforming matrix, and grouping
variables. The formulated problem leads to a mixed binary
integer programming which is challenging to solve optimally.
To tackle this problem, we first relax the integer variable to
be continuous and decouple the relaxed problem into two sub-
problems to alternately tackle the phase shift and beamforming
parts. We then propose bisection search and low-complexity
iterative algorithms to solve the phase shift and beamforming
subproblems with guaranteed convergence at a relative optimum
of each subproblem. Towards real-time optimization, we develop
a convolutional neural network (CNN) to achieve the optimal
solution of the relaxed problem via a quick-inference process.
Numerical results demonstrate a SE improvement of 46% in
the AUG scheme over the random user grouping one and 78%
over the non-user grouping under various settings. Furthermore,
the developed CNN model predicts optimal phase shift variables
and beamforming matrices with high accuracy compared to
conventional methods but in a shorter time.

Index Terms—Convolutional neural networks, energy har-
vesting, MIMO, NOMA, non-convex optimization, short-packet
communication, spectral efficiency, user grouping, STAR-RIS.
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I. INTRODUCTION

The challenges in the fifth generation (5G) and beyond
5G wireless communication network are not only higher
spectral efficiency (SE) but also ultra-reliable and low-latency
communications (URLLCs) for the Internet-of-Things (IoT)-
enable beyond 5G networks [1]. One of the techniques
in URLLC is short-packet communication (SPC), where
it can provide high reliability (≥ 90%) and low latency
communications (≃ 1ms) [2]. SPC applying for multiple-
input multiple-output (MIMO)-non-orthogonal multiple ac-
cess (NOMA) can improve communication reliability while
achieving high spectral efficiency and extending the network
coverage [3]. Nevertheless, communication systems function-
ing under finite block length encounter substantial challenges
concerning information-theoretic performance evaluation and
pilot transmission perspectives [4], wherein the applicability
of the Shannon capacity formula becomes invalidated.

User grouping or user pairing is one of the effective
strategies to achieve the benefits of NOMA in supporting large
connectivity and high data rates in IoT-enabling beyond 5G
networks. Nevertheless, the load of systems becomes heavier
as the number of users on the network increases. To address
this issue, recent studies have proposed various user pairing al-
gorithms to improve SE and energy efficiency (EE) of NOMA
systems, for example, scheduling algorithms [5], hybrid user
pairing [6], and adaptive user pairing [7]. Moreover, the SE
performance also improved when the reconfigurable intelligent
surfaces (RIS) were implemented in the NOMA system [7].
Thus, implementing the user pairing is a promising approach
to improve the SE performance in the system.

To meet requirements for wider coverage area and high SE,
RIS has attracted growing attention in recent years because of
its ability to flexibly configure the wireless signal propagation
environment through the amplitude and phase shift of each
element, thus improving the SE performance of wireless
systems [7]. However, the traditional RIS is only designed
with a limited reflection area (180◦), therefore, it cannot reach
users located behind the reflection area. To tackle this problem,
the authors in [8] introduced a simultaneously transmitting
and reflecting reconfigurable intelligent surface (STAR-RIS)
to achieve 360◦ wireless coverage, which improves the SE
performance by leveraging both surfaces. Consequently, re-
searchers have delved into STAR-RIS, combining it with var-
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ious multiple access techniques such as rate splitting multiple
access (RSMA) [9] or NOMA [10] to further enhance the SE
and EE of IoT and 5G systems.

A. Literature Survey

In addition to addressing bandwidth constraints and real-
izing URLLCs to support IoT-enabling beyond 5G networks,
SPC is considered as a promising approach to improve reliabil-
ity and latency communications [11]. The authors in [11] stud-
ied a novel cooperative beamforming relay selection scheme to
improve high-reliable transmission in SPC multi-hop networks
with energy harvesting (EH). Additionally, deep learning
(DL)-based optimization was proposed to improve end-to-
end throughput in the system. The authors in [12] proposed
the optimal selection scheme to improve the reliability of si-
multaneous wireless information and power transfer (SWIPT)
under power-splitting and time-switching protocols with finite
blocklength codes. In [13], the authors analyzed and optimized
the RIS-assisted SPC supported by wireless energy transfer
(WET) and wireless information transfer (WIT) phases.

Regarding the improvement of the SE performance by user
grouping, the authors in [5] studied the paired scheduling
algorithm and user grouping, which simultaneously paired the
selected user groups and scheduled suitable user groups for
data transmission in MIMO-NOMA networks. The authors
in [6] studied the hybrid user pairing scheme and devel-
oped an iterative algorithm to solve the EE and SE prob-
lems in multiple-input single-output (MISO)-NOMA networks
with SWIPT. The authors in [14] considered the cooperative
NOMA-based user pairing to provide better BLER and latency
in the URLLC. To improve SE, a DL-based adaptive user
pairing in multi-RIS-aided massive MIMO-NOMA networks
was proposed in [7].

On the other hand, RIS systems with SPC have been
extensively studied [15], [16]. The performance analysis of
RIS-aided SPC was studied in [15], focusing on the average
data rate and decoding error probability, which was potentially
applied for factory automation scenarios. Due to the traditional
RIS only having a limited reflection area, the authors in [16]
analyzed the STAR-RIS and NOMA systems, which can serve
360o wireless coverage under finite blocklength. The authors
in [17] derived the closed-form expression for the average
block error rate (BLER) and achievable rate in STAR-RIS-
enable SPC-NOMA systems with the discrete phase shift
alignment to reduce the STAR-RIS implementation cost. The
authors in [9] studied the downlink STAR-RIS-RSMA system
by considering ES and mode switching (MS) configurations
of the STAR-RIS. The joint optimization problem of phase
shift and beamforming design in multi-user MISO STAR-
RIS-assisted NOMA network was addressed to achieve the
maximum downlink energy efficiency [18]. The authors in [8]
studied the IA method and DL-based framework to improve
SE in massive MIMO-NOMA systems with STAR-RIS.

Furthermore, the number of users in the 5G and beyond
5G wireless network is growing rapidly [19]. Consequently,
several problems arise, such as channel estimation resource
allocation and channel coding [20], which are difficult to solve
using conventional methods, whereas the DL-based design

can enhance system performance in the URLLC system [21].
Moreover, applying a DL-based approach can reduce the
processing time and complexity in determining block-error
rate (BLER) to maximize throughput while ensuring link
reliability [22]. Meanwhile, Nguyen et al. in [11] developed
a convolution neural network (CNN) framework to maximize
end-to-end throughput and optimal channel uses for SPC in
the multi-hop networks with WET. However, the aforemen-
tioned works on DL in the URLLC communication have
not considered the STAR-RIS to enhance large and seamless
connectivity.

B. Motivations and Contributions

Most of the aforementioned works mainly focused on the
SPC combining with SWIPT or WET [12], [13], user group-
ing [5], [6], and STAR-RIS [9], [16], [17] in MIMO-NOMA
systems. However, the following fundamental questions still
need to be discussed and answered.

• From the practical under-deployment perspective, how
the system can effectively group users when the number
of near and far users is different?

• Considering spectral efficiency maximization (SEM)
problem for SPC in STAR-RIS-assisted MIMO-NOMA
systems with SWIPT, how to achieve the optimal solution
of beamforming design and phase shift at the STAR-RIS
when considering the users grouping?

• Regarding the number of users and STAR-RISs increasing
for SPC in STAR-RIS-assisted MIMO-NOMA system with
SWIPT, how to efficiently obtain the optimal solution to
address the SEM problem within a short time?

Against the above background, we consider SPCs in a
downlink SWIPT MIMO-NOMA system, where the direct
link is only available from the BS to energy users while the
information users are blocked from the BS because of deep
shadowing. Integrating various cutting-edge technologies such
as MIMO-NOMA, SPC, STAR-RIS, and SWIPT is pivotal for
advancing the capabilities of 5G and beyond networks. The
benefit of combining them significantly improves SE perfor-
mance, which enables massive connectivity, low latency, and
high-reliability communication, while the DL approach allows
the considered system to perform real-time resource allocation
for practical applications demanding high reliability and low
latency such as factory automation, IoT systems in hard-to-
reach environments, smart transportation systems, and health-
care monitoring systems. In addition, by applying SWIPT,
the IoT devices can harvest the energy from BS, enabling
them to maintain seamless connectivity and function reliably
over time [23]. This dual capability is especially beneficial
in IoT applications where devices are often situated in hard-
to-reach areas or are required to function over extended peri-
ods without maintenance. Multiple STAR-RISs are deployed
between BS and information users to improve the received
signal quality. Moreover, the novel adaptive user grouping
(AUG) scheme is proposed to enhance SE performance by
selecting the optimal information user for grouping. The pro-
posed scheme allows multiple users to share a single resource
block, which effectively reduces communication latency [2].
Furthermore, several challenges need to be addressed along
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with the proposed AUG scheme as follows. 1) The spectral
efficiency expression under SPCs is shown as a complicated
function of the blocklength and a non-convex [11], making
its optimization design in STAR-RIS-assisted MIMO-NOMA
system with SWIPT more challenging to solve; 2) The phase
shift of STAR-RIS and user grouping variables contain discrete
values, making the spectral efficiency maximization belong to
the class mixed-integer non-linear programming class; 3) Due
to the high non-convex characteristics, the formulated problem
is still highly non-convex even though it is divided into sub-
problems; 4) Increasing the number of users and STAR-RISs,
the adaptive user grouping approach with NOMA to achieve
optimal solutions will take a longer time due to the high
computational complexity.

To address the challenges above, we develop a low-
complexity iterative algorithm based on the inner approxima-
tion (IA) method, which solves a second-order cone (SOC)
program in every iteration, where the feasibility set in every
step contains the previous step and is part of a subset of
the feasibility set of the original formulated problem. To
effectively tackle the SE optimization problem, our approach
introduces innovative transformations that refine the problem
into a more tractable form without loss of generality. The
approach systematically navigates the complex optimization
problem by decomposing the problem into more tractable sub-
problems, specifically focusing on phase shift and beamform-
ing optimizations. The iterative algorithm based on the IA
method finds the optimal solutions of the linear precoding
matrix, the energy beamforming matrix, and the phase shifts
at STAR-RIS, ensuring convergence to maximize SE while
adhering to the constraints imposed by power budget, energy
harvesting, grouping user and phase shift of the STAR-RIS.
This method illustrates a comprehensive strategy for solving
the formulated problem with low computational complexity to
achieve optimal solutions. The main contributions of the paper
can be summarized as follows:

• We propose an AUG scheme with SPC to improve
SE performance in STAR-RIS-assisted MIMO-NOMA
systems with SWIPT, which has not been studied in [10].
Particularly, two information users in different zones are
optimally grouped, which can reduce intra-pair interfer-
ence, while the energy users harvest the energy from
the base station (BS). With the benefits of refracting
and reflecting incident waves to the desired positions of
STAR-RIS, the signal quality of information users can be
improved. We also investigate the random user grouping
(RUG) and non-user grouping (NUG) as benchmark
schemes for comparison.

• We formulate the problem of spectral efficiency maxi-
mization subject to total power, user grouping, and phase
shift at STAR-RIS constraints. This problem is non-
convex with mixed-integer constraints, which is very
challenging to solve optimally due to the problem be-
longing to the mixed-integer non-convex programming
class. By following the inner approximation method [24],
we first relax the integer (user grouping and phase shift)
variables to be continuous, then decouple the relaxed
problem into phase shift and beamforming optimization

problems. We propose a bisection algorithm to tackle
the phase shift problem, and then based on the opti-
mal solution of phase shift, we solve the beamforming
problem by transforming it into a more tractable non-
convex equivalent form. We then develop an iterative
algorithm with low computational complexity to solve
the beamforming problem and convergence at a relative
optimum.

• Towards real-time optimization, we develop a DL frame-
work based on the CNN model to predict the optimal so-
lution of the linear precoding matrix, phase shift at STAR-
RIS, energy beamforming matrix and grouping variable
based on the developed algorithm. We design the CNN
model with multiple convolutional layers connected with
structural multiscale accumulation to effectively collect
precise features to accurately predict the linear precoding
matrix, phase shift at STAR-RIS, energy beamforming
matrix, and grouping variables in real-time.

• Simulation results show the SE improvement of the
proposed AUG scheme. Furthermore, the AUG scheme
outperforms the RUG and NUG schemes due to the two
information users being optimally grouped. Moreover,
the designed CNN model can predict the same optimal
solution as the conventional method but in a very short
time so that it can enable real-time decision-making tasks
in 5G and beyond 5G wireless communication networks.

Notation: Matrices, vectors, and scalars are denoted by
bold-face upper-case, bold-face lower-case, and lower-case,
respectively. (·)H , (·)∗, | · | and ∥ · ∥ are transpose conjugate,
complex conjugate, absolute, and Frobenius norm values,
respectively. R and C are the set of real and complex num-
bers, respectively. I is MBS ×Mu matrix identity, CN (x, u)
is circularly symmetric complex Gaussian distribution with
covariance matrix u and mean x. Trace(V) is the trace of
matrix V while R denote real parts numbers. We summarize
the main variable/notations in Sections II, III, IV in Table I.

II. SYSTEM MODEL

A. System Description

Let us consider a downlink multiple user MIMO-NOMA
system assisted multiple STAR-RISs with SWIPT, where a
BS is deployed to serve simultaneously a set of energy users
Q = {Eq}Qq=1, a set of near information user N = {IDn}Nn=1

and a set of far information user F = {IDf}Ff=1 via a set
of STAR-RISs K = {Rk}Kk=1 using NOMA transmission,
as illustrated in Fig. 1. We assume the BS is equipped
with MBS > 1 antennas while energy users, near and far
information users are equipped with single, Mn > 1 and
Mf > 1 antennas. The STAR-RIS is divided into two element
parts with L = {Lr, Lt}, where Lr ≥ 1 for reflection mode
and Lt ≥ 1 for transmission mode, respectively. We assume
that the network is divided into three zones, where zone 1 is
the nearest disc with an inner radius of d1, and users in zone 1
communicate with the BS through line-of-sight (LoS) without
any obstacles. Zone 3 is an annular area with an outer radius
of d3, while zone 2 is an area located between zones 1 and
3 with a radius of d2. Users located in zones 2 and 3 cannot
communicate directly with the BS through LoS since there
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TABLE I
SUMMARY OF THE VARIABLES/NOTATIONS

variables/Notations Descriptions

Eq ,Rk, IDn, IDf
Energy user, STAR-RIS, near and far information
users

Q,K,N, F
Number of energy users, STAR-RISs, near and far
information users

MBS,Mn,Mf
Number of antennas at BS, near and far
information users

Lr, Lt
Number of reflection and transmission elements
at STAR-RIS

ΘRk
,ΨRk

Phase shift matrix of reflecting and transmitting
elements

κLr , κLt

amplitude coefficient of reflecting and transmitting
elements

H, h Channel coefficient matrix and vector
yq , yn, yf Received signal at Eq , IDn and IDf

γ
ςp
b , γ

ςp
p

The SINR at IDb and IDp without grouping
elements

γAUG
b , γAUG

p
The SINR at IDb and IDp including grouping
elements

P User grouping matrix
r, ζ Auxiliary variable for soft data rates and SINR

Λ
Auxiliary variable for Λ � {Λb,p ≥ 0}
which satisfies the convex constraint Λn,f ′

≥ |ĤB,b(ΘRk
)Wb|2

A,�b, �p
Number of blocklength, instantaneous BLER at
IDb and IDp

are obstacles between zones 1 and 2. The BS is located in the
center of the cell, while energy users, near and far information
users are uniformly deployed at zones 1, 2, and 3, respectively.
And also, the STAR-RIS deployed between zones 2 and 3
to help BS can communicate with information users. Thus,
near and far information users are located in front and behind
STAR-RIS. Moreover, there are no direct links from BS to near
and far information users due to the obstacles. It is important
to note that different channel conditions between IDn and
IDf potentially make a user grouping at the same STAR-RIS
for NOMA transmission [6]. Besides, since energy users have
limited power supplies and are located in zone 1, they can
harvest energy from BS and store it in their local batteries
for future processing [6]. We assume that BS and all users
already know the networks’ channel state information (CSI)
and all channels except the channel between BS and STAR-
RIS experience quasi-static independent identically distributed
(i.i.d.) Rayleigh fading1. Without loss of generality, we also
assume each element (reflection and transmission) of STAR-
RIS to be ideal without energy consumption, thus we set
the amplitude coefficient of reflecting elements κLr = 1 and
transmitting elements κLt

= 1 [30].

1In practice, the wireless transmission between the BS and energy users
and transmissions from the STAR-RIS to information users can be subject to
uncertainties, including isotropic scattering and blocking from surrounding
environments such as leaves, ground surfaces and walls, thus Rayleigh
fading is utilized to model this transmission channel [25], [26]. Meanwhile,
transmissions from BS to STAR-RIS always maintain LoS conditions, and
Rician fading is utilized to model this transmission channel [27]. Additionally,
the Rayleigh fading is the worst wireless fading channel compared to the
Rician and Nakagami ones, and if the system can operate well under the
Rayleigh fading channels, it also works well with other fading channels. For
this reason, Rayleigh fading channels have been considered in various works
of STAR-RIS-Assisted MIMO-NOMA systems [17], [28], [29]

Fig. 1. Illustration of the proposed MIMO-NOMA systems with multiple
STAR-RISs and SWIPT.

B. Channel Model and Energy Harvesting Processes

In our system model, spatial transmit beamforming is
combined with NOMA transmission to serve multiple users
concurrently on the same resource block regarding time,
frequency, and spreading code. The BS delivers power to Q
energy users via an energy beamforming matrix and simulta-
neously transmits information messages to information users
(near and far) through information beamforming. Thus, the
superimposed signal transmitted from BS to users as X =
Vq+

∑
n∈N Wnςn+

∑
f∈F Wf ςf , where Vq ∼ CN (0,VVH),

with V ∈ CMBS×Q̄, is the energy beamforming matrix for Q
energy users, where Q̄ ≤ min(MBS, Q); Wn ∈ CMBS×d and
Wf ∈ CMBS×d denote the information beamforming matrices
for IDn and IDf , respectively; ςn ∈ Cd×1 and ςf ∈ Cd×1 are
data signals intended for IDn and IDf , respectively; and d is
the number of data streams transmitted for each information
user (IDn, IDf ), where 1 ≤ d ≤ min{MBS,Mn,Mf} for IDn

and IDf .
The received signal at Eq , IDn and IDf can be expressed,

respectively, as
yq = hH

BS,Eq
Vq +

∑
n∈N

hH
BS,Eq

Wnςn +
∑
f∈F

hH
BS,Eq

Wf ςf + nq,

(1)

yn =
∑

n′∈N\{n}

ĤB,n(ΘRk
)Wn′ςn′ +

∑
f∈F

ĤB,n(ΘRk
)Wf ςf

+ ĤB,n(ΘRk
)Vq + ĤB,n(ΘRk

)Wnςn + nn, (2)

yf =
∑

f ′∈F\{f}

ĤB,f (ΨRk
)Wf ′ςf ′ +

∑
n∈N

ĤB,f (ΨRk
)Wnςn

+ ĤB,f (ΨRk
)Vq + ĤB,f (ΨRk

)Wf ςf + nf , (3)
where ĤB,n(ΘRk

) �
∑

k∈K HRk,r,IDnΘRk
HBS,Rk,r

,
ĤB,f (ΨRk

) �
∑

k∈K HRk,t,IDf
ΨRk

HBS,Rk,t
, HRk,r,IDn ∈

CLr×Mn , HRk,t,IDf
∈ CLt×Mf , HBS,Rk,r

∈ CLr×MBS

and HBS,Rk,t
∈ CLt×MBS denote the channel coefficient

matrices from k-th STAR-RIS with reflection element Rk,r to
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n-th near information user IDn, from k-th STAR-RIS with
transmission element Rk,t to f -th far information user IDf ,
channel coefficient matrices from BS to k-th STAR-RIS with
reflection element Rk,r and k-th STAR-RIS with transmission
element Rk,r, respectively. hBS,Eq

∈ CMBS×1 denotes the
channel coefficient vector from BS to Eq . ΘRk

denotes
the k-th STAR-RIS with reflection with diagonal matrix
being ΘRk

= diag(κ1ϕk,1, κ2ϕk,2, · · · , κLrϕk,Lr ), where
ϕk,Lr = ejθk,Lr with θk,Lr ∈ (0, 2π]. While ΨRk

denotes
k-th STAR-RIS with transmission element with diagonal
matrix being ΨRk

= diag(κ1ψk,1, κ2ψk,2, · · · , κLr
ψk,Lt

),
where ψk,Lt

= ejδk,Lr with δk,Lr
∈ (0, 2π]. n ∈ {nq , nn, nf}

denote the additive white Gaussian noise of Eq , IDn and IDf ,
respectively, where n ∼ CN (0, Iσ2), with σ2 ∈ {σ2

q , σ
2
n, σ

2
f}

of Eq, IDn and IDf , respectively, and zero mean. The channel
coefficient matrix can be modeled as H =

√
ρh[h̃1, · · · , h̃i],

where H ∈ {HBS,Rk,r
,HBS,Rk,t

,HRk,r,IDn
,HRk,t,IDf

},
and each h̃i is a small-scale fading vector. Similarly, the
channel coefficient vector h is modeled as h =

√
ρhh̃

with h ∈ {hBS,Eq
}, where ρh is the large-scale fading.

Taking into account large-scale fading, ρh can be modeled
as ρh = L(da→b/d0)

−σPL , where da→b, σPL, d0 and
L present the distance (in meter) between a and b with
a ∈ {BS,Rk}, b ∈ {Rk, IDn, IDf}, the pathloss exponent,
the reference distance, and the measured pathloss at d0,
respectively [11]. The small scale fading has i.i.d. CN ∼ (0, 1)
elements. Due to the LoS transmission links between the BS
and the STAR-RIS, the small-scale fading can be characterized
by the Rician fading model, whose all elements are both i.i.d.
and satisfy h̃BS,Rk

=
√

k
k+1 h̄BS,Rk

+
√

1
k+1 ĥBS,Rk

, where

|h̄BS,Rk
| = 1 is LoS component, ĥBS,Rk

∼ CN (0, 1) is NLoS
component, and k is the Rician factor of h̃ [31]. We consider
discrete phase shifts at each reflecting/transmitting element
of the STAR-RIS while the number of phase shifts is limited
by phase shift resolution. The number of bits to quantize
the continuous phase shift as bqr = 8, and the phase shift
resolution at k-th STAR-RIS is Resk ≜ 2b

q
r [30]. From (1),

the radio frequency (RF) power at Eq for input of EH circuits
can be expressed as [32]

Eq(V,W) = ∥hH
BS,Eq

Vq∥2

+
∑
n∈N
|hH

BS,Eq
Wn|2 +

∑
f∈F

|hH
BS,Eq

Wf |2. (4)

To reflect the practical EH characteristics, we consider the
non-linear WET at EH circuits, where the model of non-linear-
energy harvesting (NL-EH) at Eq can be expressed as [32]

ENL
q (V,W) = (δq − P̄qΩq)(1− Ωq)

−1, (5)
where δq = P̄q/(1 + exp(−aq(Eq(V,W)− bq))), P̄q denotes
the maximum energy harvested at Eq at saturation state of
the EH circuit, aq and bq are constant parameters of the
non-linear EH model such as hardware limitations (resistance,
capacitance, etc.), and Ωq = 1/(1 + exp(aqbq)).

C. Adaptive User Grouping Beamforming Scheme

In the proposed scheme, due to different channel conditions
between IDn in zone 2 and IDf in zone 3, IDn is poten-
tially grouped with IDf . Once they are in groups, IDn/IDf

with good channel condition uses the successive interference

cancellation (SIC) to decode IDn’s/IDf ’s message and se-
quentially subtract it to get its own message, while IDf can
directly decode its own messages based on NOMA principle.
Moreover, the multiple STAR-RISs can reflect/transmit by
focusing the beamforming signal from BS to IDn and IDf

to improve the signal quality of both users simultaneously.
When the number of users in zone 2 is different from that
of zone 3 (i.e., N ̸= F ), or when IDn and IDf are not
belong to any group, the remaining users |N − F| cannot
be group and communicate directly to the BS using STAR-
RIS with reflecting element for IDn or transmission element
for IDf without using NOMA. Due to its simplicity for
practical implementation, grouping two users has been widely
studied [6], [33]. The benefit of the proposed scheme is low
signal processing since the near information user is required
to decode and subtract the signal of one far information user
in one iteration. It should be noted that in the NUG scheme,
the near information user requires many iterations to decode
and subtract signals of all far information users to perform
SIC, so it has a high signal processing [34]. In practice, when
the channel conditions between two users in a group are not
different, NOMA transmission may become inefficient [35].
Therefore, in the AUG scheme, the user with better IDb and
poorer IDp channel conditions can be grouped if and only
if the measure performance is improved. To implement it,
we introduce a new grouping matrix P ∈ RN×F with each
element being expressed as

[P]nf =

{
1, if IDb and IDp is grouped,
0, if IDb and IDp is not grouped.

(6)

The SIC decoding order is an essential issue in the NOMA-
STAR-RIS system, where each user sequentially performs SIC
to remove interference in a specific order before decoding its
own message. To ensure successful SIC for the considered
system, the better ĤB,b and poorer ĤB,p cascaded channel con-
dition between IDb and IDp at the same STAR-RIS should be
determined. Let ĤB,n ≜ ĤB,n(ΘRk

) and ĤB,f ≜ ĤB,f (ΨRk
).

The cascaded channel to determine the SIC order can be
expressed as

ĤB,b(XRk
) =

{
ĤB,n(ΘRk

), if ∥ĤB,n∥2 ≥ ∥ĤB,f∥2,
ĤB,f (ΨRk

), Otherwise,
(7)

ĤB,p(XRk
) =

{
ĤB,f (ΨRk

), if ∥ĤB,f∥2 ≥ ∥ĤB,n∥2,
ĤB,n(ΘRk

), Otherwise,
(8)

then, the criteria to select the user with better Wb and poorer
Wf channel conditions can be expressed as

Wb =

{
Wn, if ∥ĤB,b(XRk

)∥2 = ∥ĤB,n(ΘRk
)∥2,

Wf , if ∥ĤB,b(XRk
)∥2 ̸= ∥ĤB,n(ΘRk

)∥2,
(9)

Wp =

{
Wf , if ∥ĤB,p(XRk

)∥2 = ∥ĤB,f (ΨRk
)∥2,

Wn, if ∥ĤB,p(XRk
)∥2 ̸= ∥ĤB,f (ΨRk

)∥2,
(10)

where XRk
∈ {ΨRk

,ΘRk
}. These expressions compare the

channel gains to determine the better and poorer channel
conditions, which are crucial for setting the SIC decoding
order. Moreover, this approach ensures that the user with
the stronger channel condition is decoded later in the SIC
process, which is essential for maintaining the integrity of the
decoding process and improving overall system performance.
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Accordingly, the signal-to-interference-plus-noise ratio (SINR)
at IDb to decode the IDp’s message by applying SIC can be
presented as

γ
ςp
b (W,XRk

,V) =
|ĤB,b(XRk

)Wp|2

Υb,p(W,XRk
,V)

, (11)

where Υb,p(W,XRk
,V) =

∑
b∈B |ĤB,b(XRk

)Wb|2 +∑
p′∈P\{p} |ĤB,b(XRk

)Wp′ |2 + ∥ĤB,b(XRk
)V∥2 + σ2

b .
To implement the grouping process, IDb can decode its

message from the received signal, in which the SINR including
the grouping variable can be expressed as

γAUG
b (W,XRk

,V,P) =
|ĤB,b(XRk

)Wb|2

Υb(W,XRk
,V,P)

, (12)

where Υb(W,XRk
,V,P) =

∑
b′∈B\{b} |ĤB,b(XRk

)Wb′ |2 +∑
p′∈P(1− [P]bp′)|ĤB,b(XRk

)Wp′ |2 + ∥ĤB,b(XRk
)V∥2 + σ2

b .
Different from IDb, IDp can decode its own message

directly, in which the SINR can be expressed as

γςpp (W,XRk
,V) =

|ĤB,p(XRk
)Wp|2

Υp(W,XRk
,V)

, (13)

where Υp(W,XRk
,V) =

∑
b∈B |ĤB,p(XRk

)Wb|2 +∑
p′∈P\{p} |ĤB,p(XRk

)Wp′ |2 + ∥ĤB,p(XRk
)V∥2 + σ2

p.
According to (11) and (13), the SINR γAUG

b for IDb

including grouping element [P]nf can be expressed as
γAUG
p (W,XRk

,V,P)

= min
b∈B

{
|ĤB,p(XRk

)Wp|2

Υp(W,XRk
,V)

,
|ĤB,b(XRk

)Wp|2

[P]nfΥb,p(W,XRk
,V)

}
, (14)

In (14), when two users are not in a group (i.e. [P]nf =
0), the right-hand side (RHS) inside the min operator will
go to infinity. Thus, by using (12) IDp only decodes its own
message. By doing so, the proposed scheme is now switched to
the conventional one using conventional beamforming assisted
by the STAR-RIS without NOMA, which will be discussed in
Remark 1.

Remark 1. Based on SINRs of IDb and IDp in (12) and (14),
respectively, the AUG scheme can be applied. When [P]nf =
1, two users with different zones are grouped as done in [34],
while [P]nf = 0, these users are not in the group or it can
be said the BS serves users directly through the assistance of
multiple STAR-RIS as done in [10]. Therefore, the strategy of
the proposed AUG scheme can be switched from a grouping
scheme to the not grouping scheme by flexibly adjusting the
user grouping element [P]nf = 1 and [P]nf = 0, respectively.

Considering SPC, a packet of d information bits at the BS
is transmitted to IDb and IDp over blocklength (number of
channel uses) A, with A > 100 [36], the capacity at IDb and
IDp can be approximated, respectively, as

Rb(W,XRk
,V,P) = A

[
C(γAUG

b (W,XRk
,V,P))

−
√
υ(γAUG

b (W,XRk
,V,P))/A

]
Q−1(ϖb), (15)

Rp(W,X,V,P) = A
[
C(γAUG

p (W,XRk
,V,P))

−
√
υ(γAUG

p (W,XRk
,V,P))/A

]
Q−1(ϖp), (16)

where ϖu with u ∈ {b, p} is instantaneous BLER at IDb and
IDp, Q−1(.) is the inverse Gaussian Q-function, υ(x) ≜ (1−
(1+ x)−2)(log2e)

2 and C(x) ≜ ln(1+ x) denote the channel
dispersion and the Shannon capacity with x ∈ {γAUG

b , γAUG
p },

respectively.

D. Spectral Efficiency Maximization

Our main goal is to maximize the spectral efficiency of
the proposed AUG scheme subject to EH constraints for
energy users, maximum power budget at BS, the phase shift
of reflection and transmission constraints at STAR-RIS by
joint design of linear precoding matrix W, the phase shift of
reflection ΘRk

and transmission ΨRk
, energy beamforming

matrix V, and user grouping P which can be formulated as
max

W,ΘRk
,

ΨRk
,V,P

R∑ ≜
∑
b∈B

Rb(W,XRk
,V,P) +

∑
p∈P

Rp(W,XRk
,V,P)

(17a)
Eq(V,W) ≥ Ēq, ∀q ∈ Q, (17b)

∥Wn∥2 + ∥Wf∥2 + ∥V∥2 ≤ P̄BS, (17c)
[P]nf ∈ {0, 1}, ∀n ∈ N , ∀f ∈ F , (17d)∑
n∈N

[P]nf ≤ 1,
∑
f∈F

[P]nf ≤ 1, (17e)

ϖb ≤ ϖ̄b, ϖp ≤ ϖ̄p, (17f)

θk,lr =

{
0,
θk,lr2π

Resk
, · · · , (Resk − 1)θk,lr2π

Resk

}
,

(17g)

ψk,lt =

{
0,
ψk,lt2π

Resk
, · · · , (Resk − 1)ψk,lt2π

Resk

}
,

(17h)
where constraint (17b) indicates that the harvested energy for
Eq is greater than the predetermined threshold Ēq . Constraint
(17c) indicates that the total power of all users must be less
than equal maximum power budget of the BS. Constraints
(17d) and (17e) indicate the user grouping criteria for infor-
mation users. Constraint (17f) indicates that the instantaneous
BLER must be less than the threshold BLER. The constraints
(17g) and (17h) indicate the phase shift of reflection and
transmission of all STAR-RIS that have discrete values. It is
clear that the problem formulation (17) is non-convex subject
to mixed integer constraints, which is a non-convex problem
belonging to the mixed integer non-convex programming class.

III. THE PROPOSED SEM ALGORITHM

To tackle problem (17), the standard way to overcome the
binary property is by relaxing the binary and discrete variables
into continuous ones. The relaxed form of the original problem
(17) can be expressed as
max

W,ΘRk
,

ΨRk
,V,P

R∑ ≜
∑
b∈B

Rb(W,XRk
,V,P) +

∑
p∈P

Rp(W,XRk
,V,P)

(18a)
s.t. [P]nf ∈ [0, 1], ∀n ∈ N , ∀f ∈ F , (18b)

θk,lr ∈ [0, 2π], ∀k ∈ K, lr ∈ Lr, (18c)
ψk,lt ∈ [0, 2π], ∀k ∈ K, lt ∈ Lt, (18d)
(17b), (17c), (17e), (17f). (18e)

We introduce auxiliary variables r ∈ {rb, rp}b∈B, p∈P with
r > 0 representing as soft data rates, ζ ∈ {ζb, ζp}b∈B, p∈P
as SINRs of IDb and IDp, R̄b and R̄p as minimum data rates
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thresholds for IDb and IDp, respectively. Thus, (18) can be
re-expressed as

max
W,V,P,r,

ΘRk
,ΨRk

,ζ

R̄∑ ≜
∑
b∈B

rb +
∑
p∈P

rp (19a)

s.t. A
[
C(γAUG

b (W,XRk
,V,P))

−
√
υ(γAUG

b (W,XRk
,V,P))/A

]
Q−1(ϖb) ≥ rb,

(19b)

A
[
C(γAUG

p (W,XRk
,V,P))

−
√
υ(γAUG

p (W,XRk
,V,P))/A

]
Q−1(ϖp) ≥ rp,

(19c)

γAUG
b (W,XRk

,V,P) ≥ ζ−1
b , (19d)

γAUG
p (W,XRk

,V,P) ≥ ζ−1
p , (19e)

ln(1 + ζ−1
b ) ≥ R̄b, (19f)

ln(1 + ζ−1
p ) ≥ R̄p, (19g)

(17b), (17c), (17e), (17f), (18b), (18c), (18d). (19h)

The formulated problem in (19) is non-convex and frac-
tional form. To tackle this problem efficiently, we decouple
problem (19) into phase shift optimization and beamform-
ing optimization subproblems and then solve them alterna-
tively [37]. The phase shift optimization consists of phase
shift of reflection ΘRk

and transmission ΨRk
of the STAR-

RIS while the beamforming optimization consists of linear
precoding matrix W, energy beamforming matrix V, and user
grouping P. First, we tackle the phase shift optimization with
the fixed beamforming optimization variables (W, V, P). Then,
relying on the optimized phase shift of reflection ΘRk

and
transmission ΨRk

of the STAR-RIS, we propose an iterative
algorithm to achieve the beamforming optimization variables.
We solve this subproblem until convergence to solve the
problem (19) efficiently.

A. Phase Shift Optimization

Now, we start to find the optimal solution of phase shift
of reflection ΘRk

and transmission ΨRk
of the STAR-RIS.

By fixing the beamforming optimization variables (W, V, P),
problem (19) can be rewritten as

max
ΘRk

,ΨRk

R̄∑ ≜
∑
b∈B

rb +
∑
p∈P

rp (20a)

s.t. (18c), (18d). (20b)
Note that the objective function (20a) is a concave problem
while the constraints (18c) and (18d) are linear constraints.
However, when solving problem (20), the optimal solutions
of ψ(i)

k,l and θ
(i)
k,l still have continuous values. To address this

problem, we apply the rounding function after obtaining the
optimal solution to the problem (20) as

Y⋆ = ⌈Y(i) − α⌉, Y(i) ∈ Θ
(i)
Rk
,Ψ

(i)
Rk
, k ∈ K, (21)

where Y⋆ denotes the rounded value of Y(i) and α denotes the
range of the rounding function. To tackle this problem directly,
we introduce the Algorithm 1 based on the bisection search
algorithm to approximate the concave problem (20) efficiently
including the rounding function.

Algorithm 1 Bisection Search to Solving Problem (20)
Input: b, p.
Output: Ψ⋆

Rk
, Θ⋆

Rk
.

1: for k = 1, 2, 3 · · · K do
2: Initialization :

Lower bound pLl,t and pLl,r, upper bound pUl,t and pUl,r,
and α = 0.7;

3: for l = 1, 2, 3 · · · L do
4: Calculate pt = (pLl,t + pUl,t)/2; pr = (pLl,r + pUl,r)/2;
5: Update ψk,l(pt) and θk,l(pr);
6: Solve the problem (20);
7: Update new pLl,t, p

L
l,r, pUl,t and pUl,r;

8: end for
9: end for

10: if Convergence then
11: Rounded up (ΘRk

, ΨRk
) based on (21);

12: Θ⋆
Rk
← ΘRk

; Ψ⋆
Rk
← ΨRk

;
13: end if

B. Beamforming Optimization

In this section, we focus on beamforming optimization.
Given by phase shift reflection Θ and transmission Ψ at
STAR-RIS obtained from the phase shift optimization, the
problem in (19) can be rewritten as

max
W,V,P,r,ζ

R̄∑ ≜
∑
b∈B

rb +
∑
p∈P

rp (22a)

s.t. (17b), (17c), (17e), (17f), (18b), (19b),
(19c), (19d), (19e), (19f), (19g). (22b)

It should be noted that the objective function (22) is concave
while constraints (17b), (19b)-(19g) are non-convex.

The following Lemmas are described to make constraints
(17b), (19d), and (19e) convex, with x and y indicating the
initial point of x and y, respectively, while x̄ and ȳ indicate
feasible points of x and y in every iteration, respectively.

Lemma 1. ∀x ∈ C, ∀y ∈ R, 0 < y, it is true that
x2y−1 ≥ 2x̄∗xȳ−1 − |x̄|2yȳ−2. (23)

Proof. See Appendix A of [38] to proof of Lemma 1.

Lemma 2. ∀y ∈ R2, ∀x ∈ R2 it is true that
(xy)−1 ≤ (x̄2y2 + x2ȳ2)(2x2x̄y2ȳ)−1. (24)

Proof. The proof of Lemma 2 has been explained in [39]. The
left-hand-side (LHS) (xy)−1 indicates that the lower bound,
and the right-hand side (RHS) of (24) is convex based on the
IA method.

We are now in the position to address constraint (17b). We
first transform it into an equivalent expression as

Eq(V,W) ≥ bq − a−1
q ln

(
P̄q(1− Ωq)

−1

Ēq + P̄qΩq/(1− Ωq)
− 1

)
≜ ηq.

(25)
It should be noted that the LHS in (25) is convex. In the
iterative algorithm, let us introduce x(i) as the feasible point
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of x at the i-th iteration. Then, to approximate it around the
point (V(i),W(i)), we can utilize Lemma 1 as follows:
Eq(V,W)

≥ 2R
{

hBS,Eq
Trace

(
(V(i))HhH

BS,Eq
V
)}
− ∥hH

BS,Eq
V(i)∥2

+
∑
n∈N

[
2R

{
hBS,Eq

(W(i)
n )HhH

BS,Eq
Wb

}
− |hH

BS,Eq
W(i)

n |2
]

+
∑
f∈F

[
2R

{
hBS,Eq

(W(i)
f )HhH

BS,Eq
Wp

}
− |hH

BS,Eq
W(i)

f |
2

]

≜ E(i)
q (V,W). (26)

Following convex approximation, (17b) can be iteratively
approximated as

E(i)
q (V,W) ≥ ηq, ∀q ∈ Q. (27)

For constraint (19b), let f̂b(W,XRk
,V,P) ≜

ln(1 + γAUG
b (W,XRk

,V,P)), ξb ≜ Q−1(ϖb)/
√
A and

gb(W,XRk
,V,P) ≜

√
1− 1/(1 + γAUG

b (W,XRk
,V,P))2.

Then, (15) can be re-expressed as
rb(W,XRk

,V,P)

= A

[
f̂b(W,XRk

,V,P)− ξbgb(W,XRk
,V,P)

]
. (28)

By following (78) in [32, (78)], the lower bounding concave
function for f̂b can be approximated as
f̂b(W,XRk

,V,P) ≥ ā(i)b − |ĤB,b(XRk
)W(i)

b |
2(2R{Ξ(i)

b })
−1

− b̄(i)b |ĤB,b(XRk
)Wb|2 − c̄(i)b Υb(W,XRk

,V,P)

≜ f̂
(i)
b (W,XRk

,V,P). (29)
Under the trust region constraint by

2R{Ξ(i)
b } > 0, (30)

where

ā
(i)
b = f̂b(W(i),XRk

,V,P) + 2−
|ĤB,b(XRk

)W(i)
b |2σ2

b

d
(i)
b e

(i)
b

,

(31)

Ξ
(i)
b = W(i)

b (XRk
)ĤB,bĤB,b(XRk

)Wb − |ĤB,b(XRk
)W(i)

b |
2,

(32)

0 < b̄
(i)
b = e

(i)
b (d

(i)
b |ĤB,b(XRk

)W(i)
b |

2)−1, (33)

0 < c̄
(i)
b = |ĤB,b(XRk

)W(i)
b |

2(d
(i)
b e

(i)
b )−1, (34)

d
(i)
b ≜ |ĤB,b(XRk

)W(i)
b |

2 + σ2
b , (35)

e
(i)
b ≜

∑
b′∈B\{b}

|ĤB,b(XRk
)W(i)

b′ |
2 +

∑
p′∈P

(1− [P]bp′)

× |ĤB,b(XRk
)W(i)

p′ |2 + ∥ĤB,b(XRk
)V∥2 + σ2

b . (36)

Thus, the function f̂ (i)b in (29) is concave over the trust region
in (30) and it matches with f̂b(W,XRk

,V,P) at W(i):
f̂
(i)
b (W(i),XRk

,V,P) = f̂b(W(i),XRk
,V,P). (37)

And, gb(W,XRk
,V,P) by following (81) in [32, (81)] can be

upper bounding convex function as

gb(W,XRk
,V,P) = j

(i)
b − k

(i)
b

(Υb(W,XRk
,V,P))2

(|ĤB,b(XRk
)Wb|2 + σ2

b )
2
,

(38)

where
0 < j

(i)
b =

√
1− 1/(1 + γAUG

b (W(i),XRk
,V,P))2/2

+ 1/2

√
1− 1/(1 + γAUG

b (W(i),XRk
,V,P)

)2
, (39)

0 < k
(i)
b = 1/2

√
1− 1/(1 + γAUG,2

b (W(i),XRk
,V,P))2.

(40)
The RHS term in (38) is still a non-convex function. By fol-
lowing Appendix C in [32, Appendix C], we can approximate
the lower bound of the RHS in (38) as

(Υb(W,XRk
,V,P))2

(|ĤB,b(XRk
)Wb|2 + σ2

b )
2
≥

4e
(i)
b

(d
(i)
b )2

Ωb −
2(e

(i)
b )2

(d
(i)
b )3

×
(
|ĤB,b(XRk

)Wb|2 + σ2
b

)
− (Υb(W,XRk

,V,P))2/(d2b)
2,

(41)
where Ωb =

∑
b′∈B\{b}

(
2R{(ĤB,b(XRk

)W(i)
b′ )

∗ĤB,b(XRk
)

Wb′} − |ĤB,b(XRk
)W(i)

b′ |2
)
+

∑
p′∈P

(
2R{((1 − [P]bp′) ×

ĤB,b(XRk
)W(i)

p′ )∗((1 − [P]bp′)ĤB,b(XRk
)Wp′)} − (1 −

[P]bp′)|ĤB,b(XRk
)W(i)

p′ |2
)
+ ∥ĤB,b(XRk

)V∥2 + σ2
b , under the

trust region constrained by
|ĤB,b(XRk

)Wb|2 + σ2
b ≤ 2d

(i)
b , (42a)

1

d
(i)
b

(
|ĤB,b(XRk

)Wb|2 + σ2
b

)
≤ 2

e
(i)
b

Ωb. (42b)

By plugging (41) into (38), we have

gb(W,XRk
,V,P) ≤ j(i)b −

4e
(i)
b k

(i)
b

(d
(i)
b )2

Ωb +
2(e

(i)
b )2k

(i)
b

(d
(i)
b )3

×
(
|ĤB,b(XRk

)Wb|2 + σ2
b

)
+

(
Υb(W,XRk

,V,P)
)2
k
(i)
b

(d
(i)
b )2

≜ g
(i)
b ((W,XRk

,V,P)). (43)
From (29) and (43), the (28) iteratively can be re-expressed
as
rb(W,XRk

,V,P) ≥ A
[
f̂
(i)
b (W,XRk

,V,P)

− ξbg(i)b (W,XRk
,V,P)

]
≜ r

(i)
b (W,XRk

,V,P). (44)

For constraint (19c), let f̂p(W,XRk
,V) ≜

ln(1 + γ
ςp
p (W,XRk

,V)), f̂b,p(W,XRk
,V,P) ≜

ln(1 + (|ĤB,b(XRk
)Wp|2)/([P]nfΥb,p(W,XRk

,V))),
gp(W,XRk

,V) ≜
√
1− 1/(1 + γ

ςp
p (W,XRk

,V))2,
ξp ≜ Q−1(ϖp)/

√
A, gb,p(W,XRk

,V,P) ≜√
1− 1/(1 + (|ĤB,b(XRk

)Wp|2/([P]nfΥb,p(W,XRk
,V)))2.

Without loss generality, we can re-express constraint (19c)
from (14) as
rp(W,XRk

,V) = A
[
f̂p(W,XRk

,V)− ξpgp(W,XRk
,V)

]
,

(45a)
rp(W,XRk

,V,P)

= A
[
f̂b,p(W,XRk

,V,P)− ξpgb,p(W,XRk
,V,P)

]
, (45b)

Then, similar to (28), by following (78) in [32, (78)], the
lower bounding concave function for f̂p in (45a) can be
approximated as
f̂p(W,XRk

,V) ≥ ā(i)p − |ĤB,p(XRk
)W(i)

p |2(2R{Ξ(i)
p })−1

− b̄(i)p |ĤB,p(XRk
)Wp|2 − c̄(i)p Υp(W,XRk

,V)

≜ f̂ (i)p (W,XRk
,V). (46)
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Under the trust region constraint by
2R{Ξ(i)

p } > 0, (47)
where

ā(i)p = f̂p(W(i),XRk
,V) + 2−

|ĤB,p(XRk
)W(i)

p |2σ2
p

d
(i)
p e

(i)
p

, (48)

Ξ(i)
p = (W(i)

p )(XRk
)ĤB,pĤB,p(XRk

)Wp − |ĤB,p(XRk
)W(i)

p |2,
(49)

0 < b̄(i)p = e(i)p (d(i)p |ĤB,p(XRk
)W(i)

p |2)−1, (50)

0 < c̄(i)p = |ĤB,p(XRk
)W(i)

p |2(d(i)p e(i)p )−1, (51)

d(i)p ≜ |ĤB,p(XRk
)W(i)

p |2 + σ2
p, (52)

e(i)p ≜
∑
b∈B

|ĤB,p(XRk
)Wb|2 +

∑
p′∈P\{p}

|ĤB,p(XRk
)Wp′ |2

+ ∥ĤB,p(XRk
)V∥2 + σ2

p. (53)
Thus, the function f̂ (i)p in (45a) is concave over the trust region
in (47) and it matches with f̂p(W,XRk

,V) at W(i):
f̂ (i)p (W(i),XRk

,V) = f̂p(W(i),XRk
,V). (54)

And, gp(W,XRk
,V) in (45a), by following (81) in [32, Eq.

(81)] can be upper bounding convex function as

gp(W,XRk
,V) = j(i)p − k(i)p

(Υp(W,XRk
,V))2

(|ĤB,p(XRk
)Wp|2 + σ2

p)
2
, (55)

where
0 < j(i)p =

√
1− 1/(1 + γ

ςp
p (W(i),XRk

,V))2/2

+
1

2

√
1− 1/(1 + γ

ςp
p (W(i),XRk

,V))2
, (56)

0 < k(i)p =
(
2

√
1− 1/(1 + γ

ςp,2
p (W(i),XRk

,V
)
)2)−1. (57)

By following Appendix C in [32, Appendix C], we can
approximate the lower bound of the RHS term in (55) as

(Υp(W,XRk
,V))2

(|ĤB,p(XRk
)Wp|2 + σ2

p)
2
≥ 4e

(i)
p

(d
(i)
p )2

Ωp −
2(e

(i)
p )2

(d
(i)
p )3

×
(
|ĤB,p(XRk

)Wp|2 + σ2
p

)
− (Υp(W,XRk

,V))2

(d2p)
2

, (58)

where Ωp =
∑

b∈B
(
2R{(ĤB,p(XRk

)W(i)
b )∗ĤB,p(XRk

)Wb}
−|ĤB,p(XRk

)W(i)
b |2

)
+

∑
p′∈P\{p}

(
2R{(ĤB,p(XRk

)W(i)
p′ )∗

ĤB,p(XRk
)Wp′}−|ĤB,p(XRk

)W(i)
p′ |2

)
+∥ĤB,p(XRk

)V∥2+σ2
p,

under the trust region constrained by
|ĤB,p(XRk

)Wp|2 + σ2
p ≤ 2d(i)p , (59a)

1

d
(i)
p

(
|ĤB,p(XRk

)Wp|2 + σ2
p

)
≤ 2

e
(i)
p

Ωp. (59b)

By plugging (58) into (55), we have

gp(W,XRk
,V) ≤ j(i)p −

4e
(i)
p k

(i)
p

(d
(i)
p )2

Ωp +
2(e

(i)
p )2k

(i)
p

(d
(i)
p )3

×
(
|ĤB,p(XRk

)Wp|2 + σ2
p

)
+

(
Υp(W,XRk

,V)
)2
k
(i)
p

(d
(i)
p )2

≜ g(i)p ((W,XRk
,V)). (60)

From (46) and (60), (45a) can be iteratively re-expressed as

rp(W,XRk
,V) ≥ A

[
f̂ (i)p (W,XRk

,V)− ξpg(i)p (W,XRk
,V)

]

≜ r(i)p (W,XRk
,V). (61)

And for (45b), the lower bounding concave function for f̂b,p

can be approximated as
f̂b,p(W,XRk

,V,P) ≥ ā(i)bp − |ĤB,b(XRk
)W(i)

p |2(2R{Ξ
(i)
bp })

−1

− b̄(i)bp |ĤB,b(XRk
)Wp|2 − c̄(i)bp [P]nfΥb,p(W,XRk

,V,P)

≜ f̂
(i)
bp (W,XRk

,V,P). (62)
Under the trust region constraint by

2R{Ξ(i)
bp } > 0, (63)

where

ā
(i)
bp = f̂bp(W(i),XRk

,V,P) + 2−
|ĤB,b(XRk

)W(i)
p |2σ2

b

d
(i)
bp e

(i)
bp

,

(64)

Ξ
(i)
bp = (W(i)

p )(XRk
)ĤB,bĤB,b(XRk

)Wp − |ĤB,b(XRk
)W(i)

p |2,
(65)

0 < b̄
(i)
bp = e

(i)
bp (d

(i)
bp |ĤB,b(XRk

)W(i)
p |2)−1, (66)

0 < c̄
(i)
bp = |ĤB,b(XRk

)W(i)
p |2(d

(i)
bp e

(i)
bp )

−1, (67)

d
(i)
bp ≜ |ĤB,b(XRk

)W(i)
p |2 + σ2

b , (68)

e
(i)
bp ≜

(∑
b∈B

|ĤB,b(XRk
)Wb|2 +

∑
p′∈P\{p}

|ĤB,b(XRk
)Wp′ |2

+ ∥ĤB,b(XRk
)V∥2 + σ2

b

)
[P]nf . (69)

Thus, the function f̂ (i)p in (45b) is concave over the trust region
in (47) and it matches with f̂p(W,XRk

,V) at W(i):
f̂ (i)p (W(i),XRk

,V) = f̂p(W(i),XRk
,V). (70)

And, gbp((W,XRk
,V,P)) in (45b) by following (81) in [32,

Eq. (81)] can be upper bounded convex function as

gbp(W,XRk
,V,P) = j

(i)
bp − k

(i)
bp

([P]nfΥbp(W,XRk
,V))2

(|ĤB,b(XRk
)Wp|2 + σ2

b )
2
,

(71)
where

0 < j
(i)
bp =

√
1− 1/(1 + γ

ςp
b (W(i),XRk

,V,P))2/2

+ 1/2

√
1− 1/(1 + γ

ςp
b (W(i),XRk

,V,P))2, (72)

0 < k
(i)
bp = 1/2

√
1− 1/(1 + γ

ςp,2
b (W(i),XRk

,V,P))2. (73)
By following Appendix C in [32, Appendix C], we can
approximate the lower bound of the RHS term in (71) as
([P]nfΥbp(W,XRk

,V))2

(|ĤB,b(XRk
)Wp|2 + σ2

b )
2
≥

4e
(i)
bp

(d
(i)
bp )

2
Ωbp −

2(e
(i)
bp )

2

(d
(i)
bp )

3

×
(
|ĤB,b(XRk

)Wp|2 + σ2
b

)
− (Υbp(W,XRk

,V)[P]nf )2

(d2bp)
2

,

(74)
where Ωbp = [P]nf

(∑
b∈B

(
2R{(ĤB,b(XRk

)W(i)
b )∗ĤB,b

(XRk
)Wb} − |ĤB,b(XRk

)W(i)
b |2

)
+

∑
p′∈P\{p}(2R{(ĤB,b

(XRk
)W(i)

p′ )∗ĤB,p(XRk
)Wp′} − |ĤB,p (XRk

)W(i)
p′ |2 +

∥ĤB,p(XRk
)V∥2 +σ2

b

)
, under the trust region constrained by

|ĤB,b(XRk
)Wp|2 + σ2

b ≤ 2d
(i)
bp , (75a)

1

d
(i)
bp

(
|ĤB,b(XRk

)Wp|2 + σ2
b

)
≤ 2

e
(i)
bp

Ωbp. (75b)

By plugging (74) into (71), we have
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gbp(W,XRk
,V,P) ≤ j(i)bp −

4e
(i)
bp k

(i)
bp

(d
(i)
bp )

2
Ωbp +

2(e
(i)
bp )

2k
(i)
bp

(d
(i)
bp )

3

×
(
|ĤB,b(XRk

)Wp|2 + σ2
b

)
+

(
Υbp(W,XRk

,V,P)
)2
k
(i)
bp

(d
(i)
bp )

2

≜ g
(i)
bp ((W,XRk

,V,P)). (76)
From (62) and (76), (45b) can be iteratively re-expressed as

rp(W,XRk
,V,P) ≥ A

[
f̂
(i)
bp (W,XRk

,V,P)

− ξpg(i)bp (W,XRk
,V,P)

]
≜ r

(i)
bp (W,XRk

,V,P). (77)

We move to the approximation of constraint (19d) which
can be re-expressed from (12) as

|ĤB,b(XRk
)Wb|2 ≥ ζ−1

b Υb(W,XRk
,V,P). (78)

To get a tractable form, we introduce new variables Λ ≜
{Λb,p ≥ 0} which satisfy the convex constraint Λb,p′ ≥
|ĤB,b(XRk

)Wb|2. Then, the (78) can be re-expressed as
|ĤB,b(XRk

)Wb|2 ≥ ζ−1
b

( ∑
b′∈B\{b}

|ĤB,b(XRk
)Wb′ |2

+ ∥ĤB,b(XRk
)V∥2 + σ2

b +
∑
p′∈P

(
1− [P]bp′

)
Λb,p′

)

≜ ζ−1
b Υ̂b(W,XRk

,V,P,Λ). (79)

By following Lemma 1, the LHS of (79) can be approxi-
mated as
|ĤB,b(XRk

)Wb|2 ≥ 2R
{
(ĤB,b(X)W

(i)
b )∗(ĤB,b(X)Wb)

}

− |ĤB,b(X)Wb|2 ≜ f
(i)
b (X,Wb), (80)

And, the Υb(W,X,V,P,Λ) by following Lemma 2 can iter-
atively determine the upper bound as

Υ̂b(W,X,V,P,Λ)

≤
∑
p′∈P

1

2

(
(1− [P](i))Λ2

b,p′

Λ
(i)
b,p′

+
Λ
(i)
b,p′(1− [P]bp′)

1− [P](i)b,p′

)

+
∑

b′∈B\{b}

|ĤB,b(X)Wb′ |2 + ∥ĤB,b(X)V∥2 + σ2
b

≜ Υ̂
(i)
b (W,X,V,P,Λ). (81)

Noteworthy that Υb(W,X,V,P,Λ) is global upper
bound and Υ

(i)
b (W,X,V,P,Λ) is quadratic convex

function, which is satisfying Υ
(i)
b (W,X,V,P,Λ) =

Υ
(i)
b (W(i),X(i),V(i),P(i),Λ(i)). Accordingly, by following

convex constraint, (79) iteratively can be re-expressed as
ζ−1
b Υ̂b(W,X,V,P,Λ) ≤ f (i)b (X,Wb). (82)

Currently, we tackle constraint (19e). Without loss general-
ity, from (14), we can rewrite constraint (19e) as

ζ−1
p ≤ |ĤB,p(X)Wp|2

Υp(W,X,V)
, (83a)

ζ−1
p ≤ |ĤB,b(X)Wp|2

[P]nfΥb,p(W,X,V)
. (83b)

Inequality (83a) can be re-written as
ζ−1
p Υp(W,X,V) ≤ |ĤB,p(X)Wp|2, (84)

by following Lemma 1, the RHS term of inequality (84) can

be lower bounded as
|ĤB,p(X)Wp|2 ≥ 2R

{
(ĤB,p(X)W(i)

p )∗(ĤB,p(X)Wp)
}

− |ĤB,p(X)Wp|2 ≜ f (i)p (X,Wp), (85)
also, noteworthy that the LHS of (84) is a function of
quadratic-over-linear, and it is convex. Thus, we can approxi-
mate (83a) at iteration i+ 1 as

ζ−1
p Υp(W,X,V) ≤ f (i)p (X,Wp). (86)

Similar to (83a), (83b) can be approximated as
ζ−1
p Υb,p(W,X,V) ≤ |ĤB,b(X)Wp|2[P]−1

nf , (87)
where the RHS and LHS terms are a quadratic-over-linear
function. So, by following Lemma 1 again, we tackle the RHS
term of (87) can be lower bound as

|ĤB,b(X)Wp|2[P]−1
nf ≥

2R
{
(ĤB,b(X)W(i)

p )∗(ĤB,b(X)Wp)
}

[P](i)nf

− |ĤB,b(X)W(i)
p |2[P]nf (|[P]nf |)−2 ≜ f

(i)
b,p(X,Wp, [P]nf ).

(88)
Thus, by following convex constraint, (83b) iteratively can be
re-expressed as

ζ−1
p Υb,p(W,X,V) ≤ f (i)b,p(X,Wp, [P]nf ). (89)

From (19f) and (19g), the LHS terms are logarithmic
function and convex while the RHSs are linear. To address
these inequalities, we convert and approximate them into SOC
constraints. The LHS term ln(1 + ζ−1

u ), where ζu ∈ {ζb, ζp},
with ζu > 0 can be approximate at iteration i + 1 by
implementing equation (66) which is the concave lower bound
of the logarithmic function in [40, (66)] as

ln(1 + ζ−1
u ) ≥ ln(1 + (ζ(i)u )−1) + (ζ(i)u + 1)−1

− ζu[ζ(i)u (ζ(i)u + 1)]−1 ≜ D(i)(ζu). (90)
Thus, the problem (22) can be approximate at i+1 iteration

by following convex problem:
max

W,V,P,
r,ζ,Λ

R̄(i)∑ ≜
∑
b∈B

rb +
∑
p∈P

rp (91a)

s.t. D(i)(ζb) ≥ rb, D(i)(ζp) ≥ rp, (91b)

|ĤB,b(XRk
)Wb|2 ≤ Λb,p′ , (91c)

(17c), (17f), (30), (42a), (42b), (47), (59a), (59b),
(27), (82), (86), (89), (90), (63), (75a), (75b). (91d)

After addressing problem (91), we obtain an optimal solu-
tion for [P] that consists of non-integer values. This means
that the optimal solution obtained from problem (91) is not
feasible for the original problem (17). Similar to phase shift
issue, we apply a rounding function (21) after obtaining the
optimal solution to the problem (91) to address this issue with
Y ≜ [P]⋆bp and α = 0.5.

In the end, we summarize the proposed low-complexity
iterative algorithm to solve the beamforming problem (91)
in Algorithm 2. The initial point is generated randomly with
A > 100 [36], so that the Algorithm 2 always initializes with a
feasible solution of (91). Our transformations from the original
problem (17) to problem (91) are illustrated in Fig. 2.

IV. DEEP LEARNING FRAMEWORK FOR SEM PROBLEM

In STAR-RIS-assisted MIMO-NOMA systems, the com-
plexity of determining the resource allocation constantly in-
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Algorithm 2 Proposed IA-based for solving problem (17)
Output: W�, V�, P�, Ψ�

Rk
, Θ�

Rk
, R∑.

1: Initialization:
Set (W�, V�, P�) ← 0, and generate random initial fea-
sible point (W(0),V(0),P(0)ζ(0),Λ(0)) for (22), α = 0.5.

2: repeat
3: Solve the convex problem (20), to find (Ψ�

Rk
, Θ�

Rk
)

based on Algorithm 1.
4: Solve the convex problem (91), to find (W�, V�, P� ζ�,

Λ�);
5: Update variable based on (W�,V�,P�, ζ�,Λ�);
6: until Convergence
7: Round up (P�) based on (21);
8: Update (W�,V�,P�,Ψ�

Rk
,Θ�

Rk
) ← (W(i),V(i),P(i),

Ψ
(i)
Rk
,Θ

(i)
Rk

);
9: Calculate R∑ in (19) based on (W�,V�,P�,Ψ�

Rk
,Θ�

Rk
).

Fig. 2. Illustration of the transformation flow for the formulated optimization
problem.

creases when the number of users increases. Moreover, the
conventional approach faces resource optimization challenges
in determining optimal solutions efficiently. To address this
problem, we propose the DL framework based on the CNN
model to predict the optimal solution from unknown data sets.

We design the proposed DL framework to predict the opti-
mal solution including offline learning and online predicting,
as shown in Fig. 3. Compared to the fully connected deep
neural network (DNN), the CNN can reduce the number of
learning parameters due to the CNN adopting the sharing pa-
rameters so that it can extract features effectively [10]. Differ-
ent from the conventional approach to solving the problem (20)
and (91), which requires some iteration, we consider the input
variables of the CNN model including the positional informa-
tion for energy users (EPos

q ), near information users (IDPos
n ),

and far information users (IDPos
f ) - and for STAR-RISs (RPos

k ),

the number of energy users (Q), the number of near and far
information users (N , F ), the number of STAR-RISs (K),
the number of BS’s antennas (MBS), the number of STAR-
RISs elements (L), blocklength (A), transmit power at the BS
(P̄BS), the channel coefficient matrix from BS to STAR-RIS
(HBS,Rk,r

, HBS,Rk,t
), channel coefficient matrix from STAR-

RIS to information users, (HRk,r,IDn , HRk,t,IDf
), and channel

coefficient vector from BS to energy users, (hBS,Eq
). Based

on these settings, the linear precoding matrix W, the phase
shift of reflection ΘRk

and transmission ΨRk
at STAR-RIS,

energy beamforming matrix V, and user grouping P, which
are achieved by solving the problem (86) via Algorithm 2 and
then arranged into a matrix Y � [W,ΘRk

,ΨRk
,V,P], serve

as output variables of CNN. The whole dataset having 10K
samples is divided randomly into the training, validations, and
test sets with a ratio of 80-10-10.

(a) Offline learning

(b) Online predicting

Fig. 3. The proposed DL framework to predict the optimal value.

Fig. 3(a) shows the CNN model that learns by offline the
relationship between input parameters from the problem (19)
and the optimal solution as a target obtained by solving
the problem (19) with Algorithm 2. The training dataset is
normalized as y = (y − min(y))/(max(y) − min(y)) with
dimension (Lr×MBS)+(Lt×MBS)+(Mn×Lr)+(Mf×Lt)+
(1×MBS)+Q(2×1)+N(2×1)+F (2×1)+K(2×1)+MBS+8
before the learning process to improve the convergence speed
and avoid numerical instabilities. During offline learning,
the DL framework continually improves the CNN model by
updating model parameters (biases and weights) to minimize
errors between the output CNN model and the target. The
resulting CNN is employed as a mapping function to predict
online the optimal solution whenever the new input parameters
are available as shown in Fig. 3(b). In the prediction step, we
also implement scaling to maintain consistent feature represen-
tation. Following the prediction process, the inverse scaling is
performed to obtain the real value of output parameters. This
process significantly reduces the computational complexity
due to the complexity being transferred to offline learning.

The designed CNN architecture shown in Fig. 4 includes an
input layer, the convolution layer (CL), batch normalization
(BN) layers, an activation (AC) layer, a flatten layer, a fully
connected (FC) layer, and an output layer. The CL, BN,
and AC layers can be grouped into convolution blocks (CB).
Thus, stacking multiple convolution blocks allows the model
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Fig. 4. The proposed architecture of the CNN model.

to learn more complex features from the input parameters.
Additionally, due to the balance between model complexity
and efficiency, we consider 3 CB layers in the proposed
architecture of the CNN model. In the dimensional layer size
of the layer structure, we consider 1 input layer is 1× 56, CL
is 1 × 16 with 256 neurons while the output layer is 1 × 70.
In this model, we consider rectified linear unit (ReLU) for
the AC layers. Before passing the feature to the FC layer, the
features are flattened into a vector. The FC layer combines all
features to make the final prediction decision.

V. THE PROPOSED SEM ALGORITHM COMPLEXITY
ANALYSIS

We are now in the process of outlining the worst-case per-
iteration complexity analysis of the proposed Algorithms 1
and 2. As explained above, an advantage of the proposed al-
gorithms is the complexity of solving the convex problem. Al-
gorithms 1 and 2 for the convex phase shift and beamforming
optimization problems have a low computational complexity,
which only involves SOC and linear constraints. Moreover, the
brute-force search (BFS) algorithm is also provided as the opti-
mal scheme for benchmark purposes. We denote λc, τc and Oc

as the numbers of linear/SOC constraints, scalar optimization,
and worst-case per-iteration where c ∈ {1, 2} with c = 1 being
Algorithm 2 and c = 2 being BFS algorithm, respectively.
We summarize the worst-case complexity of the proposed
algorithm in Table II. As can be observed, the BFS algorithm
finds the best user-grouping within max(N,F )!/(|N − F |)!
possibilities. The complexity of each subproblem in the BFS
algorithm can be calculated in the same way as Algorithm 2
but without the user binary variable. The numbers of scalar
optimization variables and linear/SOC constraints in the BFS
algorithm are τ2 = (MBS + 3)(NMn + FMf ) + (MBSQ̄)
and λ2 = 2KL + 2NF + 3(NMn + FMf ) + Q + 1,
respectively. Therefore, the total complexity of the BSF al-
gorithm is max(N,F )!/(|N−F |)!×O(τ22λ

2.5
2 +λ3.5

2 ), which
indicates that the complexity of the BFS scheme has very high
complexity even for medium-sized networks. Thus, the BFS
algorithm is only served as a benchmark scheme.

VI. NUMERICAL RESULTS

In this section, we provide illustrative numerical results
to evaluate the proposed algorithm and the DL approach in
improving the SE performance in the networks. We consider
the downlink network topology with the cell radius d1, d2, and
d3 as 100, 200, and 300 m, respectively. Unless otherwise
stated, we set in simulations the number of energy users

TABLE II
THE COMPLEXITY ANALYSIS OF THE PROPOSED ALGORITHM 2 AND BFS

ALGORITHM.

τ1 (MBS + 3)(NMn + FMf ) +NF +MBSQ̄+KL
λ1 (NMn + FMf )(2NF + 1) + 3NF + 4(N + F ) +Q+ 1
O1 τ21λ

2.5
1 + λ3.5

1
τ2 (MBS + 3)(NMn + FMf ) + (MBSQ̄)

λ2 2KL + 2NF + 3(NMn + FMf ) +Q+ 1
O2 max(N,F )!/(|N − F |)!× (τ22λ

2.5
2 + λ3.5

2 )

Q = 4, the number of near information users is set to N = 3,
and the number of far information users is set to F = 5.
The energy users, near information users, and far information
users are uniformly deployed in zones 1, 2, and 3, respectively.
The number of STAR-RISs is set to K = 4, with each
STAR-RIS having 20 transmission elements (Lt = 20) and 20
reflection elements (Lr = 20), and they are deployed between
zones 2 and 3. The number of antennas at BS, near and far
information users MBS = 10, Mn = 2, Mf = 2, respectively.
The blocklength (number of channel uses) A = 1000, the
instantaneous BLER at IDn and IDf �b = �p = 10−5 [41],
the target energy harvesting threshold at Eq Ēq = −55 dBm,
target SE threshold at IDb and IDp R̄b = R̄p = 1bps/Hz and
the threshold BLER at IDb and IDp �̄b = �̄p = 10−4 [1],
[2]. We set the pathloss exponent σPL = 2.7 [11] and Rician
factor k = 3 dB [27]. We use SDPT3 as a convex solver
and YALMIP toolbox in the MATLAB software to solve the
convex problem. Additionally, MATLAB software is used to
implement the designed CNN model for fairness comparison.
The SE result is obtained in nats/sec/Hz, which can be divided
by ln(2) to get the result in bits/sec/Hz.

We investigate the performance of the proposed AUG
scheme by comparing it with the RUG (two information users
will be grouped randomly) and NUG (no information users
will be grouped) which serve as benchmark schemes. By
setting the matrix P in (91) to one or zero, the proposed
algorithm can be switched into the RUG or NUG schemes,
respectively. The benchmark schemes can be simulated using
the same algorithms in this setting. We illustrate in Fig. 5(a)
the convergence of the proposed Alg. 1. As can be observed
in Fig. 5(a), the convergence behavior of Alg. 1 is obtained
within 8 iterations because every iteration of the proposed
algorithm can search for a better solution of SE from the
whole feasible set, which shows the effectiveness of Alg. 1
in solving a problem (17).

Fig. 5(b) shows the convergence behavior of Algorithm 2
with different schemes, where the results are obtained by
averaging 1000 random channel realization with P̄BS = 30
dBm. Alg. 2 converges within 8 iterations because it can find
an improved solution in each iteration, indicating its effective-
ness. The AUG scheme outperforms the RUG and NUG ones
because it can find the most potential information users in
zones 2 and 3, under the same STAR-RIS and beamforming.
The AUG groups users only if their SINR improves, while
the RUG randomly groups users without considering their
location, and NUG scheme serves all users individually. In the
NUG, the lack of grouping leads to higher SINR interference,
reducing performance. RUG suffers from a similar issue since
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Fig. 6. Impact of the P̄BS with various scenarios, bqr , and P̄BS on the average SE.

it randomly selects users for pairing. This corresponds to (12)
and (14), wherein the [P]nf = 0, consequently, the interference
of SINR is high. Additionally, when the convergence rate
decreases, the iteration of Alg. 2 to achieve the optimal values
increases from 8 to 10 iterations, and the SE performance
increases slightly. The reason is that when Alg. 2 is closer to
the optimal value, the improvements become smaller. Thus, it
needs more iteration to achieve the optimal values precisely;
however, there is a slight improvement in the SE performance
of the system.

Fig. 5(c) reveals the root mean square error (RMSE) as a
function of epoch. This metric shows the accuracy between
the optimal value predictions and the actual data in the test
set [42], which can be expressed as

RMSE(τ (n), τ̃ (n)) =

√√√√ 1

Ñ

Ñ∑
n=1

(τ (n) − τ̃ (n))2, (92)

where Ñ denotes the number of samples in the test set, τ (n)

is predicted optimal value while τ̃ (n) is an output of the
test set. A smaller RMSE indicates that the predicted and
observed optimal values more closely match, implying high
accuracy. As can be observed in Fig. 5(c), RMSE decreases
as the number of epochs increases due to the CNN model
updating its biases and weights. The conventional DNN has the
highest RMSE, while the proposed CNN achieves the lowest
RMSE. The reason is that the CNN reduces shared parameters
compared to a fully connected DNN. Additionally, the CNN
with scaling performs better than the one without scaling.

The scaling block normalizes input and output parameters,
stabilizing the learning process and preventing the gradient
from vanishing or exploding.

TABLE III
THE CELL RADIUS IN VARIOUS SCENARIOS

Scenario d1 (m) d2 (m) d3 (m)
I 100 100 100
II 150 50 100
III 50 100 150
IV 50 150 100

We now analyze the impact of the dimension size on
each zone with the variation of P̄BS of the proposed AUG
scheme. We consider the cell radius with different scenarios
as shown in the Table. III. Fig. 6(a) reveals the impact of
P̄BS on the average SE in various scenarios. As can be
observed in Fig. 6(a), the AUG scheme outperforms the RUG
schemes. It is not surprising because the AUG scheme finds the
optimal information users in different zones to be grouped to
achieve the maximum SE, while the RUG randomly groups the
information users, and it achieves the lower SE performance.
Furthermore, the AUG and RUG schemes with scenario I
outperform their counterparts with the remaining scenarios.
In scenario I, a balanced configuration would potentially offer
a uniform distribution of signal quality across the cell. Each
zone, including energy users and information users, has almost
the same distance range, leading to a possibly more consistent
SE performance across the entire cell. Scenario II obtains the
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Fig. 7. Impact of R̄, Ē, and K on average SE.

second SE performer due to the BS needing more energy to
serve the energy users but still within a reasonable range from
STAR-RIS to serve information users. The scenarios III and
IV make the schemes under consideration to have the worst
performance since the IDf of scenario III and IDn of scenario
IV would experience more path loss. Moreover, due to the
potential benefit of STAR-RIS, IDn becomes a far information
user, and IDf becomes a near information user. Besides that,
the energy users are close to the BS, ensuring efficient energy
transfer, which improves the SE performance.

Fig. 6(b) analyzes the effect of the number of STAR-RIS
quantization levels on the average SE performance. When the
number of quantization levels at the STAR-RIS increases, the
average SE improves. The reason is that higher quantization
levels allow more precise phase adjustments, which can lead
to better signal alignment and reduced interference. Again, the
AUG scheme is the best performer, and the AUG-DL scheme
shows an excellent ability to predict optimal solutions.

Fig. 6(c) shows the impact of P̄BS on the average SE. When
the P̄BS increases, the average SE increases since the higher
power at the BS supports more information users. The BFS
scheme performs best by finding the best information user to
be grouped among all possibilities, but its high complexity
increases exponentially with more users. In contrast, the AUG
scheme, with low complexity, performs similarly, with only
a 2.6% deviation, as illustrated in Table IV. This deviation
is due to applying the rounding function (21) after obtaining
the optimal solution. AUG outperforms RUG and NUG, as
it optimally groups users in different zones, while the RUG
randomly groups users and no user grouping is in NUG,
resulting in poorer performance. We also demonstrate the
system without energy beamforming, labeled as “AUG-nEB”,
by setting the matrix V to zeros. In AUG-nEB, the BS must
share a portion of its energy to power the energy users to
satisfy the constraint (17b), decreasing the SE. This highlights
the importance of energy beamforming design. In addition, the
AUG-DL scheme provides a curve that fits the average SE to
the AUG scheme; thus, the DL has a good ability to predict
the output parameters with good accuracy.

Figs. 7(a) and 7(b) show effects of the minimum data rate R̄
and threshold Ē on the average SE performance of all schemes
with P̄BS = 30 dBm and R̄ = 1 bps/Hz. As can be observed

TABLE IV
THE AVERAGE SE OF THE AUG AND BFS SCHEMES ON P̄BS

P̄BS [dBm] 30 35 40 45 50
AUG [Kbps/Hz] 3.5897 4.0937 4.7869 5.9669 7.1894
BFS [Kbps/Hz] 3.6795 4.1835 4.8914 6.0567 7.2792

in Figs. 7(a) and 7(b), the AUG provides the best average
SE performance while the AUG-nEB is the worst performer.
In the AUG-nEB, the BS has to share its energy to power
the energy users while still guaranteeing QoS constraints of
information users. Therefore, the portion of energy for data
transmission is reduced, which results in low SE performance.
In the NUG scheme, the BS allocates a significant portion of
its power budget to serve near and far information users inde-
pendently. Consequently, the SE decreases when the data rate
requirements for information users are increased. In contrast,
the RUG scheme provides a higher SE performance since the
information users in the group can mitigate interference from
the other one in the group. Nevertheless, selecting two users
randomly to a group is not a favorable method when they are
in the same zone. As described in Remark 1, the AUG scheme
addresses this problem by optimally selecting two information
users with differing channel conditions for grouping, thereby
quickly achieving a satisfactory solution for information user
grouping and energy user constraints. This enables the system
to maintain its QoS requirements even in high data rate regime
scenarios. Furthermore, Fig. 7(b) shows that the gap of average
SE of all schemes is narrow in high Ē. In the AUG scheme,
it significantly decreases starting from -50 dBm while other
schemes start from -55 dBm. Particularly, the average SE of all
schemes is infeasible with the high impact of Ē on the system
when Ē is larger than -35 dBm. For Ē less than -35 dBm,
which indicates small Ē, the received signal still can fulfill
the harvested power requirement. In this case, the BS primarily
allocates its power to information users. Nevertheless, for the
large Ē, BS needs to allocate more power to energy users
due to (17b) being feasible, which results in the decrease of
the received power of information users and the average SE in
the system. Furthermore, the performance of the AUG scheme
outperforms the RUG and NUG schemes, which shows the
effectiveness of the proposed scheme applying to the MIMO-
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Fig. 8. Impact of the number of users, MBS and A on average SE.

NOMA network under NL-EH circuit conditions.
Fig. 7(c) plots the average SE versus the number of STAR-

RIS, K, with various schemes. As expected, the average SE
of all schemes increases when K increases because the use of
using STAR-RIS can increase the system’s degree of freedom
(DoF). By doing so, the STAR-RIS can significantly improve
the signal quality of the users. Again, the AUG scheme has
the highest SE performance among the considered schemes,
and the AUG-DL can present good predictive ability.

Fig. 8 plots the average SE versus the number of users,
the number of BS’s antenna (MBS), and blocklength (A). As
can be observed in Fig. 8, when the number of users, MBS,
and A increases, the average SE increases. As expected, the
average SE improves when the number of users and MBS

increases because DoF from MBS still contributes to the
system. In low MBS, the gap between AUG and NUG is high
compared to the high MBS due to low DoF in low MBS the
NOMA system becomes important. In contrast, when MBS

increases, the gap between AUG and NUG decreases due to
the contribution of DoF, and the effect of interference-free
becomes less significant in the NUG scheme. Consequently,
the SE of NUG increases asymptotically to that of RUG and
AUG schemes, while in Fig. 8(c) the average SE increases
when the blocklength increases. The reason is that when the A
increases, the system moves away from the finite blocklength
regime towards the Shannon rate [43]. Consequently, the
spectral efficiency also increases. Again, the AUG scheme
clearly outperforms all schemes while the AUG-DL scheme
has a high accuracy prediction ability.

Figs. 9(a) and 9(b) show the effects of the reflection
elements Lr with Lt = 20 and transmission element Lt with
Lr = 20 on the average SE performance of all schemes.
As the number of STAR-RIS elements increases, SE of all
schemes improves due to finer control of electromagnetic
waves, focusing signals more effectively towards the receiver,
and forming narrower beams [44], which enhances SINR
and SE. The impact of reflection elements on SE is more
significant than transmission elements, as shown by lower SE
when reflection elements decrease. The reason is that near
users, closer to the STAR-RIS, have better channel conditions.
Again, the AUG scheme has the highest SE performance
among the considered schemes, and the AUG-DL shows good
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the average SE.

predictive ability.
Finally, we analyze the execution time of the conventional

and DL approaches in Table V. When the number of users
increases, the execution time of all approaches increases. In
detail, the DL (AUG-DL) approach can guarantee an execu-
tion time of under one second. In contrast, the conventional
approach (AUG) based on the Alg. 2 requires more time to
obtain the optimal value due to some iteration to find the
optimal solution. Thus, the proposed DL framework based on
the CNN model has an excellent ability to predict optimal
solutions and great promise for large-scale network scenarios.

TABLE V
EXECUTION TIME OF THE CONVENTIONAL AND DL APPROACHES

Number of users 12 24 36
AUG [seconds] 74 402 1,150
AUG-DL [seconds] 0.34 0.62 0.89

VII. CONCLUSIONS

We proposed an adaptive user grouping scheme for SPC in
the STAR-RIS-assisted MIMO-NOMA system with SWIPT
to improve SE performance under NL-EH circuit conditions.
One near information user and one far information user with
different channel conditions were optimally grouped while
the energy users harvested the energy from the BS. We
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formulated the SE maximization problem subject to mixed
integer constraints. We then relaxed the integer part to con-
tinuous and decoupled the relaxed problem into phase shift
and beamforming optimization sub-problems. To tackle the
phase shift optimization sub-problem, we proposed a bisec-
tion search algorithm for its solution. Based on the optimal
phase shift value, a low-complexity iterative algorithm based
on the IA method was proposed to solve the beamforming
optimization sub-problem, which guaranteed convergence to
the local optima. Additionally, the DL framework based on the
CNN model was developed to achieve real-time optimization
via a quick-inference process. Simulation results illustrated
the proposed AUG scheme’s effectiveness in improving SE
performance against benchmark schemes. Moreover, the AUG-
DL scheme predicted the optimal value with high accuracy
and in a short amount of time. Due to the high complexity of
deploying energy splitting (ES)/time splitting (TS) protocols of
STAR-RIS, we will continue to study the STAR-RISs-assisted
MIMO-RSMA network with a novel DL technique and ES/TS
protocols of STAR-RIS to solve the energy efficiency maxi-
mization (EEM) problem in beyond 5G wireless networks in
the future works.
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