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Abstract—Signal reuse for multiple purposes is a way to
increase spectrum utilization. In this paper, we leverage the WiFi
signals of opportunity for the sensing purpose. The spectrograms
derived from WiFi downlink (DL) signals reflected from cars
are used as fingerprints to efficiently infer car density in
parking lots. To achieve this, experimental measurements were
conducted in a real outdoor environment to probe the reflected
WiFi signals from targets (cars), and the collected datasets
are employed for density estimation. The estimator combines
hybrid convolutional neural network (CNN) and support vector
machine (SVM) for classification, along with least-square estimate
(LSE) for interpolation. The probed signals are influenced by
many factors, such as the number of WiFi users and data
traffic, thereby degrading the estimation accuracy. To address
these challenges, we propose an uplink-downlink (UL-DL) WiFi
identification and separation technique using the least absolute
shrinkage and selection operator (LASSO) technique, without
requiring coordination with WiFi access points. Compared to the
estimation using a mixture of UL-DL WiFi signals, the simulation
results demonstrate that the proposed method achieves significant
improvement in estimation accuracy.

Index Terms—WiFi signals of opportunity, signal reuse for
spectrum efficiency, uplink-downlink separation, car density
estimation, convolutional neural network (CNN), and support
vector machine (SVM).

I. INTRODUCTION

The demand for wireless communication services has been

continuously increasing. There have been many growing

stresses that call for a revolutionary new spectrum era. One

driving philosophy towards the new spectrum era is to fur-

ther improve spectral efficiency through spectrum reuse in

a broader sense. Reusing signals for multiple purposes can

achieve even more spectral efficiency. The integration of

communication and sensing signals or joint communications

and sensing (JCS), for instance, has the potential to provide ad-

vanced location and application-aware services with virtually

no additional spectrum usage [1]. Intuitively, in addition to the

Shannon information (for communication), the Fisher informa-

tion (for sensing/estimation) can be delivered simultaneously

within a certain time over a given spectrum. Various types of

communication signals can be reused for sensing applications,

such as digital video broadcasting terrestrial (DVB-T) signals

[2] and WiFi signals [3].

With the widespread adoption of WiFi devices and the

ubiquitous coverage of WiFi networks, WiFi signals have

become a valuable resource for sensing the indoor physical

environment through various fingerprinting techniques [4]. For
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example, in [5], WiFi fingerprints were utilized to detect

human presence and classify human activity using SVM by

analyzing Doppler information. In another study [6], WiFi

fingerprinting and deep learning were employed for indoor

3D localization. Additionally, in [7], WiFi fingerprinting was

used as a means to measure building occupancy.

In [8], the authors proposed a machine-based method for

indoor-outdoor user detection using WiFi fingerprints. In the

field of intelligent transportation systems (ITS), our subsequent

work [9] introduced a scheme that reuses the opportunistic

spectrum of WiFi signals as fingerprints for estimating car

density in parking lots. The proposed scheme provides an

efficient and cost-effective alternative to existing parking oc-

cupancy detection systems that rely on numerous sensors for

real-time occupancy monitoring. Such systems often require

substantial implementation and maintenance costs, in addition

to the dedicated spectrum usage for data transmission.

In our previous work [9], the car density estimation pro-

cess utilized a combination of semi-supervised learning and

weighted-centroid interpolation techniques to mitigate the re-

liance on large labeled datasets. The scheme employed the

semi-supervised learning to classify opportunistic spectro-

grams derived from collected WiFi signals under different

occupancy scenarios (empty, moderate, and full). Then, the

weighted-centriod method was applied to estimate the number

of cars in the parking lot. Despite achieving relatively good

estimation accuracy, the scheme relies on the power of the

collected signals, which is subject to random fluctuations

due to the number of active WiFi users and data traffic,

as we mentioned in [9]. Furthermore, the weighted-centroid

estimator introduces bias, negatively impacting the accuracy

of the car density estimation.

To address these problems, in this paper, we propose an

effective approach to identify and separate the UL and DL

components of the WiFi signal and then apply estimation using

the DL signals reflected from targets. This approach aims

to remove the strong effects and random fluctuations caused

by the varying number of WiFi users and data traffic. It is

noteworthy that the UL-DL separation is not straightforward

due to the uncontrollable nature of opportunistic WiFi signals

and the lack of coordination with WiFi access points (APs).

Moreover, the use of time division multiplexing (TDD) by

WiFi further complicates the identification process between

the UL and DL. Specifically, in the TDD networks, the UL

and DL use the same frequency band in different time slots.

When viewing such TDD signals on a spectrum display, it

is impossible to differentiate the two signals. To tackle this

challenge, Wireshark is used to capture and analyze 802.11

packets, which offers valuable insights into the UL-DL packet

flow. Simultaneously, we record the reflected WiFi signals
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Fig. 1: System description of car density estimation experiment.

using Universal Software Radio Peripheral (USPR) software-

defined radios (SDRs). Subsequently, the LASSO technique

is employed between a sequence generated using Wireshark

information and collected signals in an effort for UL-DL

identification and separation. Following that, we employ hy-

brid CNN-SVM for spectrogram classification and LSE for

interpolation to estimate car density in the parking lot. The

LSE technique plays a crucial role in mitigating estimation

bias and improving estimation accuracy. Finally, simulations

were conducted to evaluate the performance of the CNN-SVM

model and the LSE. The performance evaluations indicate that

car density estimation using spectrograms derived from DL

signals can enhance estimation accuracy compared to using

spectrograms of a mixture of UL-DL signals.

The rest of this paper is organized as follows. Section II

presents system description. The experiment and dataset prepa-

ration are presented in Section III. The proposed estimation

scheme is described in Section IV. Performance evaluations

and numerical results are discussed in Section V, followed by

conclusions in Section VI.

II. SYSTEM DESCRIPTION

Fig. 1 illustrates the system description of the car density

estimation experiment. The system comprises a WiFi AP, a

receiver (Rx) equipped with a directional antenna directed to

parking lot, a number of cars in the parking lot, and WiFi

users.

The WiFi AP broadcasts DL WiFi signals to serve the users

within and around the parking lot. The Rx tries to capture

reflections from cars for density estimation. However, there is

interference due to the direct path between the AP and the Rx,

in addition to UL signals from WiFi users. The direct path

interference affects the power of spectrograms consistently

across different classes. However, this constant level of signal

does not actually interfere classification since it does not

reduce the distinguishing between classes. For the interference

from WiFi users, it needs further signal processing to identify

and separate the UL from the captured or recorded signals.

Fig. 2: The environmental layout of Tennessee Tech University
parking lot in which the experiment was performed and the locations
of the transmitter and receivers used in the experiment.

III. EXPERIMENT AND DATA SET PREPARATION

A. Experiment Setup

The experiment setup is shown in Fig. 2, where a USRP

used to capture signals from the WiFi AP installed on the wall

of Tennessee Tech Library. The heights of the WiFi AP and the

USRP Rx are 6 meters. The WiFi AP provides coverage for

an area of approximately 8646 square meters, including 282

parking spaces indicated by the blue line in Fig. 2. Signals

were collected at 2.421 GHz WiFi frequency band.

Multiple rounds of experiments were conducted to generate

datasets that contain car-density information. The desired

signals are those reflected by the cars. Nonetheless, several

disruptive factors, such as the number of WiFi users and data

traffic, affect the strength of collected signals. These factors

contribute to the power level of the signals reflected from the

target, consequently influencing the density estimation process.

In order to mitigate the impact of these disruptive factors, we

consider estimation using DL signals reflected from targets.

Thus, it becomes essential to differentiate between UL and

DL time slots, as they both utilize the same carrier frequency.

By isolating the DL slots, the UL slots can be eliminated,

while preserving the signal’s duration. An approach to dif-

ferentiate between UL and DL is to utilize Wireshark for

packet recording and synchronize it with the signal recorded

using the USRP and GNURadio software. Note that Wireshark

offers comprehensive details regarding packets, including their

source and destination, arrival time, length, data rate, received

signal strength indicator (RSSI), and modulation scheme. Fig.

3 (next page) shows information extracted from Wireshark,

which has been used to generate a sequence. This sequence can

be correlated with the recorded waveform, offering insights

into the distinction between UL and DL, as will be explained

later.

B. Signal Post-processing and Uplink-Downlink Separation

Let y
(l)
Σ (t) be the measured waveform after some process

(e.g., time-domain gating and frequency-domain filtering to

cut off unrelated parts in the mixed signals), where index l,

l = 0, 1, · · · , L, refers to car density levels of interest, with

l = 0 and l = L for empty and full occupant scenarios,
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Fig. 3: The information extracted from Wireshark.

respectively. Roughly speaking, y
(l)
Σ (t) contains three terms

and can expressed as

y
(l)
Σ (t)= y

(l)
DL,ref (t) + y

(l)
UL(t) + y

(l)
bg (t), (1)

where y
(l)
DL,ref (t) is the DL signal reflected from the cars,

y
(l)
UL(t) is a sum of all signals caused by UL signal sources,

including users’ UL signals, the UL signals reflected from the

cars, and y
(l)
bg (t) account for all background signals and noise,

including DL direct-path signal, and DL signal reflected from

surrounding clutter. Both y
(l)
UL(t) and y

(l)
bg (t) are unwanted and

considered as interference, but y
(l)
UL(t) is much more severer

than y
(l)
bg (t). These UL-related signals can be strong if users

are close to the probe receiver, and they fluctuate in strength

as users move.

To suppress the impact of UL signals, we propose to

identify the UL portion from the total received signal y
(l)
Σ (t)

and then remove it. For differentiating UL and DL of the

collected signals, we generate virtual vectors (sequences) from

Wireshark, which can be stacked into a matrix and used as

a dictionary matrix for correlation with the recorded signal.

Specifically, for each Wireshark recording, we represent the

UL or DL as +1, while no transmission is represented as −1 to

create a virtual vector. We denote each virtual vector as xiN×1
,

and the dictionary matrix as X = (x1, x2, · · · , xi)N×M ,

where i = 0, 1, · · · ,M .

On the other hand, the measured waveform y
(l)
Σ (t) requires

processing, including downsampling, removal of zeros, and

cleaning, before being converted into a test vector based on

a binary decision or a variable threshold value. In essence,

the binary decision or the threshold enforces the waveform’s

amplitude to be either +1 or −1, with +1 for amplitudes

greater than the threshold and −1 for amplitudes less than the

threshold. We denote the test vector generated from y
(l)
Σ (t) as

yN×1. It’s worth noting that using such values for generating

the dictionary matrix and test vector yields desirable correla-

tion results.

After generating the dictionary matrix X and the test vector

y, we apply LASSO technique [10] to correlate and align
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Fig. 4: The proposed concept of estimating the delay between
Wireshark and the recorded waveform.

them. Specifically, we estimate the coefficients β̂ of the linear

regression equation as follows:

β̂ = argmin
β

∥y −Xβ∥22 + λ ∥β∥1 (2)

where β ∈ R
N×1 and λ is a nonnegative regularization

parameter. Then, the delay τ̂ between X and y can be

estimated as follows:

τ̂ = ∆t index
(

max(β̂)
)

(3)

where ∆t is the sampling interval of the waveform. Then,

we can shift the Wireshark recording virtual vector x1 by τ̂ .

Fig. 4 illustrates the steps involved in estimating the delay τ̂ ,

which will be employed to align the test vector and virtual

vectors. Once the test vector and virtual vectors have been

aligned, we can proceed to identify the UL and DL frames

within the waveform. When DL is extracted, UL can be deleted

(substituting data with zeroes, without changing the signal’s

duration).

C. Dataset Generation

For each density level scenario, spectrograms are obtained

by applying short-time Fourier transform to y
(l)
DL,ref . Specifi-

cally, the spectrogram generation process involves dividing the

reflected DL signal y
(l)
DL,ref into segments, each containing

100,000 samples, which are then transformed into spectro-

grams. Spectrograms offer a useful representation of the signal,

showcasing the relationship between instantaneous frequency

and time as a non-negative function. They are also valuable

for estimating the power spectral density of the signal, which

can be utilized to infer car density.

The spectrograms are utilized as inputs to CNN-SVM that

employs image-based classification techniques. This CNN-

SVM is trained using the supervised learning algorithm, utiliz-

ing 1,610 spectrograms as training inputs. Once trained using

spectrograms with known car densities, the CNN-SVM can

classify spectrograms of signals with unknown car densities

into the predefined classes. Leveraging its learned features and

patterns, the CNN-SVM makes predictions and assigns the

unknown spectrograms to the appropriate car density class.

This classification process, combined with the LSE technique,

enables the estimation of car densities.
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Fig. 5: The structure of the proposed hybrid CNN-SVM classifier.

IV. ESTIMATION USING CNN-SVM AND LSE

We employed our CNN architecture, as proposed in [9], and

integrated SVM to create the hybrid CNN-SVM, as shown in

Fig. 5. This hybrid model combines the key properties of both

classifiers, with the CNN functioning as a feature extractor and

the SVM as a classifier. It simplifies the CNN architecture to

reduce training time and combines the advantages of CNN and

SVM to enhance classification accuracy [11], [12]. The CNN-

SVM utilizes spectrograms derived from a processed DL WiFi

signal obtained through the USRP X310 SDR testbed. For

detailed information about the CNN architecture, we refer the

reader to [9]. The input to the CNN-SVM consists of multiple

segmented sequences of raw IQ samples represented as graph-

ical spectrograms with a size of 224 × 224× 3 pixels. These

spectrograms are collected at L (g 2) different car density

levels to train and evaluate the CNN-SVM. Specifically, we

considered six car density levels: l = 0 for 8 cars, which is

considered as the lowest density level since parking cannot be

controlled, l = 1 for 52 cars, l = 2 for 106 cars, and l = 3
for 165 cars, l = 4 for 201 cars, and l = 5 for the full density

level (i.e., 282 cars).

After collecting the datasets and generating spectrograms,

we employ a supervised learning approach with CNN-SVM

to train the datasets. The idea is to utilize L labeled datasets

with a known number of cars, along with an unlabeled

dataset containing an unknown number of cars, which will

be classified into the predefined L classes.

Subsequently, the unlabeled dataset can be preprocessed by

generating spectrograms for the unknown number of cars.

Without considering the labels, the trained CNN model is

employed to extract features from the unlabeled spectrograms.

Then, the SVM applies a multi-classification between the

unlabeled dataset spectrograms and each pre-defined labeled

dataset. Finally, the trained CNN-SVM model validates the

unlabeled dataset and provides accuracy values against each

labeled dataset.

Next, we develop an LSE based car density estimator. As-

sume there are L training datasets with each being associated

with a pre-defined classification level (class). Let Nl be the

actual car density (number of cars) that is associated with

the l-th class, and N̂ be the car density estimate; let A
(l)
j be

the similarity score of the j-th training dataset against class

l, which is the cross-entropy obtained from the classifier; let

Â(l) represent the similarity score of a testing dataset for an

unknown car density against class l. Define vectors η, ζ̂ and

ζj :

η = (N0, N1, · · · , NL−1)
T

(4)

ζ̂ =
(

Â(0), Â(1), · · · , Â(L−1)
)T

(5)

ζj =
(

A
(0)
j , A

(1)
j , · · · , A

(L−1)
j

)T
,

j = 0, 1, 2, · · · , L− 1. (6)

Then, form a matrix that is a stack of L accuracy vectors:

Z =







ζT
0
...

ζT
L−1







L×L

(7)

Consider a density estimator expressed as:

N̂ = ζ̂
T
w, Nj = ζT

j w, j = 0, 1, · · · , L− 1 (8)

where w is an unknown L × 1 weighting vector to be

determined. Equations Nj = ζT
j w, j = 0, 1, · · · , L − 1, can

be rewritten in a compact format η = Zw and the weighting

vector is given by w = Z−1η. Practically, the training

dataset contains multiple measurements for each class, which

means we can form a tall matrix Z with L′ rows (L′ > L),

corresponding to a car density vector η with L′ class elements.

In such an overcomplete system, the optimal weight can be

solved using LSE as follows:

ω∗ =
(

ZZT
)

−1

Zη (9)

which leads to the following optimal estimator

N̂v = ζ̂
T
ω∗ (10)

Note that the LSE serves as an unbiased optimal estimator,

in contrast to the weighted-centroid technique proposed in [9].

The weighted-centroid technique with accuracy values as its

weights does not guarantee unbiased estimation.
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Fig. 6: A segment of a virtual vector generated from the Wireshark.
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Fig. 7: A segment of the test vector generated from the recorded
waveform.

V. PERFORMANCE EVALUATION

In this section, we assess the effectiveness of the proposed

car density estimation method for parking lots. There are

L = 6 car density levels being considered for evaluation,

corresponding to 8, 52, 106, 165, 202, and 282 cars. To

evaluate its performance, we use the dataset of l = 2 density

scenario (i.e. 106 cars dataset) as the testing dataset with an

unknown number of cars, while the other training datasets

serve as benchmarks for estimating the number of cars.

A. Analysis of Signal Post-processing and Uplink-downlink

Separation

As stated in Subsection III-B, achieving a strong correlation

between the Wireshark data and the recorded waveform is

essential for identifying the UL and DL components of the

recorded waveform. The first step involves generating the

sequence based on the information retrieved from Wireshark,

as illustrated in Fig. 3. Then, this sequence is transformed into

virtual vectors with ±1 values and an approximate 50% duty

cycle. Fig. 6 shows a segment of the obtained virtual vector.

The second step is to convert the recorded waveform to the

test vector with ±1 values based on a threshold Th value,

which can be computed as follows:

Th =

∑

k pkνk

2
(11)

where pk and νk represent the signal peak and valley, respec-

tively. Fig. 7 shows the test vector generated based on the
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Fig. 8: Correlation result using LASSO technique.

(a)

(b)

Fig. 9: Spectrogram of a segment of a collected signal: (a) before
UL-DL separation, and (b) after UL-DL separation

threshold value. Similar to the virtual vector, the test vector

exhibits a 50% duty cycle, approximately.

Finally, after applying the LASSO algorithm, the estimated

delay τ̂ is approximately 200 samples, as depicted in Fig.

8. Then, we can align both the test vector and the virtual

vectors and identify the UL-DL of the recorded waveform.

Subsequently, both the test vector and the virtual vectors

can be aligned, allowing for the identification of the UL-DL

components within the recorded waveform.

Fig. 9 shows the spectrogram of a segment of a collected

signal before and after performing the UL nulling operation.
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TABLE I: Similarity measurements between 106 cars testing class
and training classes.

Type of 8 52 165 201 282

reused signal Cars Cars Cars Cars Cars

DL only 0.0220 0.3521 0.4243 0.1302 0.0714

UL & DL 0.0010 0.2414 0.5000 0.1429 0.1419

The UL signal contains data from WiFi users, affecting the

power spectrum density of the spectrograms and reducing the

accuracy of density estimation. By removing the UL, we can

perform estimation using only DL signals, thereby mitigating

the impact of WiFi user data traffic and achieving improved

estimation accuracy.

B. Car Density Estimation Performance Metrics

We assess the performance of the proposed CNN-SVM

model by measuring the validation similarity between the test-

ing class with unknown density scenario and the pre-defined

training classes. In the evaluation process, we considered the

testing data of l = 2 (i.e. 106 cars) as input for the CNN-SVM

multi-classifier. This was validated against the training data of

l = 0, l = 1, l = 3, l = 4, and l = 5, corresponding to 8,

52, 165, 201, and 282 cars, respectively. Note that the testing

class has never been trained using the CNN-SVM model.

For the performance evaluation of car density estimation

using LSE estimator, the estimator is assessed in terms of root

mean square error deviation (RMSD).

C. Numerical Results

To assess the performance of the supervised learning

CNN-SVM model, we divided the spectrograms datasets of

{8, 52, 165, 201, 282} cars into training and testing sets. Then,

we used the spectrograms of 106 cars as an unknown dataset

for validation. Note that this procedure has been applied to

both DL signals after separation and the mixture of UL-DL

without separation.

Table I gives the validation similarity between the 106
cars class and the training classes for both DL data and the

mixture of UL-DL data. The results indicate that according

to the CNN-SVM model, the testing 106 cars class is likely

to fall between the 52 and 165 cars classes for both DL

and mixture UL-DL scenarios, where the highest similarity

values are observed. For instance, in the DL only scenario, the

similarity values indicating that the 106 cars class belongs to

the 52 cars class and the 165 cars class are 0.3521 and 0.4243,

respectively. It’s worth noting that the CNN-SVM model does

not yield high accuracy values as it hasn’t been trained on the

106 cars class.

After evaluating the proposed CNN model, we can apply

the LSE estimation method to estimate the number of cars of

the 106 cars dataset based on equations (4) – (10). The LSE

leads to an estimate of Ñv = 113 when using DL signals

alone, which closely aligns with the actual number of cars,

106. Then, the calculated RMSD of the car density estimator

over several iterations is equal to 6.8%, approximately. For

the UL & DL mixture scenario, the LSE leads yields an

estimate of N̂v = 132 with an RSMD of 24.9%. One can

observe that using the DL signals only can achieve higher

estimation accuracy compared to the UL & DL mixture. It can

be observed that using DL signals exclusively achieves higher

estimation accuracy compared to the UL & DL mixture. This

difference is attributed to the mitigation of the influence of the

number of WiFi users and data traffic on the classification and

estimation process.
VI. CONCLUSIONS

In this paper, we proposed and tested a particular use case

of reusing the spectrum of DL WiFi signals of opportunity for

car density estimation. The proposed scheme exploits spectro-

grams generated from the WiFi DL signals as fingerprints to

provide an efficient and cost-effective alternative to current

parking occupancy detection systems. It makes use of the

combination of hybrid CNN-SVM for classification and LSE

for interpolation to estimate the car density. To mitigate the

effect of WiFi users’ UL signals on the estimation accuracy,

we introduced UL-DL identification and separation method

using LASSO technique. The simulation results suggest that

proposed UL signal removal technique leads to significant

improvement in estimation accuracy. Our preliminary work has

demonstrated the promise of low-cost non-coordinated reuse

of existing signals for sensing, but further research in this line

is still needed to improve the estimation accuracy.
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