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Opportunistic WiF1 Spectrum Reuse for Car Density
Estimation

Wesam Al Amiri, James T. Jones, Terry N. Guo and Allen B. MacKenzie

Abstract—Signal reuse for multiple purposes is a way to
increase spectrum utilization. In this paper, we leverage the WiFi
signals of opportunity for the sensing purpose. The spectrograms
derived from WiFi downlink (DL) signals reflected from cars
are used as fingerprints to efficiently infer car density in
parking lots. To achieve this, experimental measurements were
conducted in a real outdoor environment to probe the reflected
WiFi signals from targets (cars), and the collected datasets
are employed for density estimation. The estimator combines
hybrid convolutional neural network (CNN) and support vector
machine (SVM) for classification, along with least-square estimate
(LSE) for interpolation. The probed signals are influenced by
many factors, such as the number of WiFi users and data
traffic, thereby degrading the estimation accuracy. To address
these challenges, we propose an uplink-downlink (UL-DL) WiFi
identification and separation technique using the least absolute
shrinkage and selection operator (LASSO) technique, without
requiring coordination with WiFi access points. Compared to the
estimation using a mixture of UL-DL WiFi signals, the simulation
results demonstrate that the proposed method achieves significant
improvement in estimation accuracy.

Index Terms—WiFi signals of opportunity, signal reuse for
spectrum efficiency, uplink-downlink separation, car density
estimation, convolutional neural network (CNN), and support
vector machine (SVM).

I. INTRODUCTION

The demand for wireless communication services has been
continuously increasing. There have been many growing
stresses that call for a revolutionary new spectrum era. One
driving philosophy towards the new spectrum era is to fur-
ther improve spectral efficiency through spectrum reuse in
a broader sense. Reusing signals for multiple purposes can
achieve even more spectral efficiency. The integration of
communication and sensing signals or joint communications
and sensing (JCS), for instance, has the potential to provide ad-
vanced location and application-aware services with virtually
no additional spectrum usage [1]. Intuitively, in addition to the
Shannon information (for communication), the Fisher informa-
tion (for sensing/estimation) can be delivered simultaneously
within a certain time over a given spectrum. Various types of
communication signals can be reused for sensing applications,
such as digital video broadcasting terrestrial (DVB-T) signals
[2] and WiFi signals [3].

With the widespread adoption of WiFi devices and the
ubiquitous coverage of WiFi networks, WiFi signals have
become a valuable resource for sensing the indoor physical
environment through various fingerprinting techniques [4]. For
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example, in [5], WiFi fingerprints were utilized to detect
human presence and classify human activity using SVM by
analyzing Doppler information. In another study [6], WiFi
fingerprinting and deep learning were employed for indoor
3D localization. Additionally, in [7], WiFi fingerprinting was
used as a means to measure building occupancy.

In [8], the authors proposed a machine-based method for
indoor-outdoor user detection using WiFi fingerprints. In the
field of intelligent transportation systems (ITS), our subsequent
work [9] introduced a scheme that reuses the opportunistic
spectrum of WiFi signals as fingerprints for estimating car
density in parking lots. The proposed scheme provides an
efficient and cost-effective alternative to existing parking oc-
cupancy detection systems that rely on numerous sensors for
real-time occupancy monitoring. Such systems often require
substantial implementation and maintenance costs, in addition
to the dedicated spectrum usage for data transmission.

In our previous work [9], the car density estimation pro-
cess utilized a combination of semi-supervised learning and
weighted-centroid interpolation techniques to mitigate the re-
liance on large labeled datasets. The scheme employed the
semi-supervised learning to classify opportunistic spectro-
grams derived from collected WiFi signals under different
occupancy scenarios (empty, moderate, and full). Then, the
weighted-centriod method was applied to estimate the number
of cars in the parking lot. Despite achieving relatively good
estimation accuracy, the scheme relies on the power of the
collected signals, which is subject to random fluctuations
due to the number of active WiFi users and data traffic,
as we mentioned in [9]. Furthermore, the weighted-centroid
estimator introduces bias, negatively impacting the accuracy
of the car density estimation.

To address these problems, in this paper, we propose an
effective approach to identify and separate the UL and DL
components of the WiFi signal and then apply estimation using
the DL signals reflected from targets. This approach aims
to remove the strong effects and random fluctuations caused
by the varying number of WiFi users and data traffic. It is
noteworthy that the UL-DL separation is not straightforward
due to the uncontrollable nature of opportunistic WiFi signals
and the lack of coordination with WiFi access points (APs).
Moreover, the use of time division multiplexing (TDD) by
WiFi further complicates the identification process between
the UL and DL. Specifically, in the TDD networks, the UL
and DL use the same frequency band in different time slots.
When viewing such TDD signals on a spectrum display, it
is impossible to differentiate the two signals. To tackle this
challenge, Wireshark is used to capture and analyze 802.11
packets, which offers valuable insights into the UL-DL packet
flow. Simultaneously, we record the reflected WiFi signals
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Fig. 1: System description of car density estimation experiment.

using Universal Software Radio Peripheral (USPR) software-
defined radios (SDRs). Subsequently, the LASSO technique
is employed between a sequence generated using Wireshark
information and collected signals in an effort for UL-DL
identification and separation. Following that, we employ hy-
brid CNN-SVM for spectrogram classification and LSE for
interpolation to estimate car density in the parking lot. The
LSE technique plays a crucial role in mitigating estimation
bias and improving estimation accuracy. Finally, simulations
were conducted to evaluate the performance of the CNN-SVM
model and the LSE. The performance evaluations indicate that
car density estimation using spectrograms derived from DL
signals can enhance estimation accuracy compared to using
spectrograms of a mixture of UL-DL signals.

The rest of this paper is organized as follows. Section II
presents system description. The experiment and dataset prepa-
ration are presented in Section III. The proposed estimation
scheme is described in Section IV. Performance evaluations
and numerical results are discussed in Section V, followed by
conclusions in Section VI.

II. SYSTEM DESCRIPTION

Fig. 1 illustrates the system description of the car density
estimation experiment. The system comprises a WiFi AP, a
receiver (Rx) equipped with a directional antenna directed to
parking lot, a number of cars in the parking lot, and WiFi
users.

The WiFi AP broadcasts DL WiFi signals to serve the users
within and around the parking lot. The Rx tries to capture
reflections from cars for density estimation. However, there is
interference due to the direct path between the AP and the Rx,
in addition to UL signals from WiFi users. The direct path
interference affects the power of spectrograms consistently
across different classes. However, this constant level of signal
does not actually interfere classification since it does not
reduce the distinguishing between classes. For the interference
from WiFi users, it needs further signal processing to identify
and separate the UL from the captured or recorded signals.

Fig. 2: The environmental layout of Tennessee Tech University
parking lot in which the experiment was performed and the locations
of the transmitter and receivers used in the experiment.

III. EXPERIMENT AND DATA SET PREPARATION
A. Experiment Setup

The experiment setup is shown in Fig. 2, where a USRP
used to capture signals from the WiFi AP installed on the wall
of Tennessee Tech Library. The heights of the WiFi AP and the
USRP Rx are 6 meters. The WiFi AP provides coverage for
an area of approximately 8646 square meters, including 282
parking spaces indicated by the blue line in Fig. 2. Signals
were collected at 2.421 GHz WiFi frequency band.

Multiple rounds of experiments were conducted to generate
datasets that contain car-density information. The desired
signals are those reflected by the cars. Nonetheless, several
disruptive factors, such as the number of WiFi users and data
traffic, affect the strength of collected signals. These factors
contribute to the power level of the signals reflected from the
target, consequently influencing the density estimation process.
In order to mitigate the impact of these disruptive factors, we
consider estimation using DL signals reflected from targets.
Thus, it becomes essential to differentiate between UL and
DL time slots, as they both utilize the same carrier frequency.
By isolating the DL slots, the UL slots can be eliminated,
while preserving the signal’s duration. An approach to dif-
ferentiate between UL and DL is to utilize Wireshark for
packet recording and synchronize it with the signal recorded
using the USRP and GNURadio software. Note that Wireshark
offers comprehensive details regarding packets, including their
source and destination, arrival time, length, data rate, received
signal strength indicator (RSSI), and modulation scheme. Fig.
3 (next page) shows information extracted from Wireshark,
which has been used to generate a sequence. This sequence can
be correlated with the recorded waveform, offering insights
into the distinction between UL and DL, as will be explained
later.

B. Signal Post-processing and Uplink-Downlink Separation

Let yg)(t) be the measured waveform after some process

(e.g., time-domain gating and frequency-domain filtering to
cut off unrelated parts in the mixed signals), where index [,
l=0,1,---, L, refers to car density levels of interest, with
l = 0and [ = L for empty and full occupant scenarios,
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No. Time Source

Destination Protocol Length lInfo rate RsSI
1 0 ExtremeN_8ficl:f9  Broadcast 802.11 140 Data, SN=2149, 12 -39
2 0.0617124 20:1e:88:cf:5c:hba Broadcast 802.11 136 Data, SN=2151, 12! -60
3 0.1509177 lc:d6:be:91:d5:47 IPvdmcast fb 802.11 721 Data, SN=2168, 12 -59
4 0.1509283 1c:d6:be:91:ds:47 IPvemcast_fb 802.11 741 Data, SN=2169, 12 -59
5 0.3058633 ExtremeN_78:03:a5 Broadcast 802.11 463 Beacon frame, 12 -60
6 0.3401969 ExtremeN_8f:ci:fs  Broadcast 802.11 434 Data, SN=2189, 12! -60
7 0.4803879 1c:d6:be:93:89:bc IPvdmcast fb 802.11 274 Data, SN=2205, 12 -59
8 0.4805781 1c:d6:be:93:89:bc IPvémcast_fb 802.11 234 Data, SN=2206, 12 -39
9 0.7298022 1c:d6:be:93:89:bc IPvAmcast_fb 802.11 274 Data, SN=2250, 12 -60
10 0.7298022 1c:d6:be:93:83:bc IPvemcast_fb 802.11 234 Data, SN=2231, 12 -60
11 0.980744 1c:d6:be:93:89:bc IPvAmcast_fb 802.11 274 Data, SN=2285, 12 -60
12 0.980744 lc:d6:be:93:89:bc IPvémcast_fb 802.11 294 Data, SN=2286, 12 -60
13 1.0536435 SamsungE c2:0c:16  Broadcast 802.11 157 Data, SN=2315, 12 60
14 1.0788748 20:1e:88:cf:5cha Broadcast 802.11 136 Data, SN=2316, 12 -60
15 1.2308592 1c:d6:be:93:89:bc IPvdmcast_fb 802.11 537 Data, SN=2339, 12 -60
16 1.2308592 1c:d6:be:93:89:bc IPvémcast_fb 802.11 557 Data, SN=2340, 12 -60

RSSI (dBm) DL: downlink packet

UL: uplink packet

Fig. 3: The information extracted from Wireshark.

respectively. Roughly speaking, yg)(t) contains three terms

and can expressed as
l 1 l 1
Y () =y e (8) + YL (D) + Yo (1), (1

where yg)L rey(t) is the DL signal reflected from the cars,
y((]l}:(t) is a sum of all signals caused by UL signal sources,
including users’ UL signals, the UL signals reflected from the
cars, and yélg) (t) account for all background signals and noise,
including DL direct-path signal, and DL signal reflected from

surrounding clutter. Both yg)L(t) and yl(};)(t) are unwanted and

considered as interference, but y;]l)L(t) is much more severer
than yl(,lg) (t). These UL-related signals can be strong if users
are close to the probe receiver, and they fluctuate in strength
as users move.

To suppress the impact of UL signals, we propose to
identify the UL portion from the total received signal y(zl)(t)
and then remove it. For differentiating UL and DL of the
collected signals, we generate virtual vectors (sequences) from
Wireshark, which can be stacked into a matrix and used as
a dictionary matrix for correlation with the recorded signal.
Specifically, for each Wireshark recording, we represent the
UL or DL as +1, while no transmission is represented as —1 to
create a virtual vector. We denote each virtual vector as x; .,
and the dictionary matrix as X = (x1,Z2,  ,Zi)NxM>
where 1 =0,1,--- , M.

On the other hand, the measured waveform yg) (t) requires
processing, including downsampling, removal of zeros, and
cleaning, before being converted into a test vector based on
a binary decision or a variable threshold value. In essence,
the binary decision or the threshold enforces the waveform’s
amplitude to be either +1 or —1, with +1 for amplitudes
greater than the threshold and —1 for amplitudes less than the
threshold. We denote the test vector generated from yg) (t) as
Ynx1- It’s worth noting that using such values for generating
the dictionary matrix and test vector yields desirable correla-
tion results.

After generating the dictionary matrix X and the test vector
y, we apply LASSO technique [10] to correlate and align
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Fig. 4: The proposed concept of estimating the delay between
Wireshark and the recorded waveform.

them. Specifically, we estimate the coefficients B of the linear
regression equation as follows:

B:arg;ninlly*XﬂHng/\ 18]]1 2

where 3 € RM*! and ) is a nonnegative regularization
parameter. Then, the delay 7 between X and y can be
estimated as follows:

7T =At mdem(max(é)) 3)

where At is the sampling interval of the waveform. Then,
we can shift the Wireshark recording virtual vector z; by 7.
Fig. 4 illustrates the steps involved in estimating the delay 7,
which will be employed to align the test vector and virtual
vectors. Once the test vector and virtual vectors have been
aligned, we can proceed to identify the UL and DL frames
within the waveform. When DL is extracted, UL can be deleted
(substituting data with zeroes, without changing the signal’s
duration).

C. Dataset Generation

For each density level scenario, spectrograms are obtained
by applying short-time Fourier transform to yg)LJ,e 7+ Specifi-
cally, the spectrogram generation process involves dividing the
reflected DL signal y[l,)L ref iNto segments, each containing
100,000 samples, which are then transformed into spectro-
grams. Spectrograms offer a useful representation of the signal,
showcasing the relationship between instantaneous frequency
and time as a non-negative function. They are also valuable
for estimating the power spectral density of the signal, which
can be utilized to infer car density.

The spectrograms are utilized as inputs to CNN-SVM that
employs image-based classification techniques. This CNN-
SVM is trained using the supervised learning algorithm, utiliz-
ing 1,610 spectrograms as training inputs. Once trained using
spectrograms with known car densities, the CNN-SVM can
classify spectrograms of signals with unknown car densities
into the predefined classes. Leveraging its learned features and
patterns, the CNN-SVM makes predictions and assigns the
unknown spectrograms to the appropriate car density class.
This classification process, combined with the LSE technique,
enables the estimation of car densities.
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Fig. 5: The structure of the proposed hybrid CNN-SVM classifier.

IV. ESTIMATION USING CNN-SVM AND LSE

We employed our CNN architecture, as proposed in [9], and
integrated SVM to create the hybrid CNN-SVM, as shown in
Fig. 5. This hybrid model combines the key properties of both
classifiers, with the CNN functioning as a feature extractor and
the SVM as a classifier. It simplifies the CNN architecture to
reduce training time and combines the advantages of CNN and
SVM to enhance classification accuracy [11], [12]. The CNN-
SVM utilizes spectrograms derived from a processed DL WiFi
signal obtained through the USRP X310 SDR testbed. For
detailed information about the CNN architecture, we refer the
reader to [9]. The input to the CNN-SVM consists of multiple
segmented sequences of raw IQ samples represented as graph-
ical spectrograms with a size of 224 x 224x 3 pixels. These
spectrograms are collected at L (> 2) different car density
levels to train and evaluate the CNN-SVM. Specifically, we
considered six car density levels: [ = 0 for 8 cars, which is
considered as the lowest density level since parking cannot be
controlled, { = 1 for 52 cars, [ = 2 for 106 cars, and [ = 3
for 165 cars, | = 4 for 201 cars, and [ = 5 for the full density
level (i.e., 282 cars).

After collecting the datasets and generating spectrograms,
we employ a supervised learning approach with CNN-SVM
to train the datasets. The idea is to utilize L labeled datasets
with a known number of cars, along with an unlabeled
dataset containing an unknown number of cars, which will
be classified into the predefined L classes.

Subsequently, the unlabeled dataset can be preprocessed by
generating spectrograms for the unknown number of cars.
Without considering the labels, the trained CNN model is
employed to extract features from the unlabeled spectrograms.
Then, the SVM applies a multi-classification between the
unlabeled dataset spectrograms and each pre-defined labeled
dataset. Finally, the trained CNN-SVM model validates the
unlabeled dataset and provides accuracy values against each
labeled dataset.

Next, we develop an LSE based car density estimator. As-
sume there are L training datasets with each being associated
with a pre-defined classification level (class). Let N; be the
actual car density (number of cars) that is associated with
the I-th class, and N be the car density estimate; let A§-l) be
the similarity score of the j-th training dataset against class
I, which is the cross-entropy obtained from the classifier; let
A® represent the similarity score of a testing dataset for an

unknown car density against class [. Define vectors 7, ¢ and
Cj3
T’:(NOaNla"'aNL—l)T (4)

¢ = (A(O)’A(l)’ e 7A(L—U)T (5)

— (4O 4@ (L= T
j:071527"'aL_1' (6)

Then, form a matrix that is a stack of L accuracy vectors:

¢

Z = 7)

T
CLfl LXL

Consider a density estimator expressed as:
~ ~T T .

where w is an unknown L X 1 weighting vector to be
determined. Equations [V; = C;Fw,j =0,1,---,L —1, can
be rewritten in a compact format 7 = Zw and the weighting
vector is given by w = Z 'm. Practically, the training
dataset contains multiple measurements for each class, which
means we can form a tall matrix Z with L’ rows (L' > L),
corresponding to a car density vector 1 with L’ class elements.
In such an overcomplete system, the optimal weight can be
solved using LSE as follows:

L
w* = (ZZ ) Zn 9)
which leads to the following optimal estimator
(10)
Note that the LSE serves as an unbiased optimal estimator,
in contrast to the weighted-centroid technique proposed in [9].

The weighted-centroid technique with accuracy values as its
weights does not guarantee unbiased estimation.
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Fig. 6: A segment of a virtual vector generated from the Wireshark.
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Fig. 7: A segment of the test vector generated from the recorded
waveform.

V. PERFORMANCE EVALUATION

In this section, we assess the effectiveness of the proposed
car density estimation method for parking lots. There are
L = 6 car density levels being considered for evaluation,
corresponding to 8, 52, 106, 165, 202, and 282 cars. To
evaluate its performance, we use the dataset of [ = 2 density
scenario (i.e. 106 cars dataset) as the testing dataset with an
unknown number of cars, while the other training datasets
serve as benchmarks for estimating the number of cars.

A. Analysis of Signal Post-processing and Uplink-downlink
Separation

As stated in Subsection III-B, achieving a strong correlation
between the Wireshark data and the recorded waveform is
essential for identifying the UL and DL components of the
recorded waveform. The first step involves generating the
sequence based on the information retrieved from Wireshark,
as illustrated in Fig. 3. Then, this sequence is transformed into
virtual vectors with +1 values and an approximate 50% duty
cycle. Fig. 6 shows a segment of the obtained virtual vector.

The second step is to convert the recorded waveform to the
test vector with &1 values based on a threshold Th value,
which can be computed as follows:

Th = —Zké”“”’“ (11)
where pj and vy, represent the signal peak and valley, respec-
tively. Fig. 7 shows the test vector generated based on the
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Fig. 8: Correlation result using LASSO technique.
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Fig. 9: Spectrogram of a segment of a collected signal: (a) before
UL-DL separation, and (b) after UL-DL separation

threshold value. Similar to the virtual vector, the test vector
exhibits a 50% duty cycle, approximately.

Finally, after applying the LASSO algorithm, the estimated
delay 7 is approximately 200 samples, as depicted in Fig.
8. Then, we can align both the test vector and the virtual
vectors and identify the UL-DL of the recorded waveform.
Subsequently, both the test vector and the virtual vectors
can be aligned, allowing for the identification of the UL-DL
components within the recorded waveform.

Fig. 9 shows the spectrogram of a segment of a collected
signal before and after performing the UL nulling operation.
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TABLE I: Similarity measurements between 106 cars testing class
and training classes.

Type of 8 52 165 201 282
reused signal Cars Cars Cars Cars Cars

DL only 0.0220 | 0.3521 | 0.4243 | 0.1302 | 0.0714

UL & DL 0.0010 | 0.2414 | 0.5000 | 0.1429 | 0.1419

The UL signal contains data from WiFi users, affecting the
power spectrum density of the spectrograms and reducing the
accuracy of density estimation. By removing the UL, we can
perform estimation using only DL signals, thereby mitigating
the impact of WiFi user data traffic and achieving improved
estimation accuracy.

B. Car Density Estimation Performance Metrics

We assess the performance of the proposed CNN-SVM
model by measuring the validation similarity between the test-
ing class with unknown density scenario and the pre-defined
training classes. In the evaluation process, we considered the
testing data of [ = 2 (i.e. 106 cars) as input for the CNN-SVM
multi-classifier. This was validated against the training data of
l=0,l=1,1=3,1 =4, and | = 5, corresponding to 8§,
52, 165, 201, and 282 cars, respectively. Note that the testing
class has never been trained using the CNN-SVM model.

For the performance evaluation of car density estimation
using LSE estimator, the estimator is assessed in terms of root
mean square error deviation (RM SD).

C. Numerical Results

To assess the performance of the supervised learning
CNN-SVM model, we divided the spectrograms datasets of
{8,52,165,201, 282} cars into training and testing sets. Then,
we used the spectrograms of 106 cars as an unknown dataset
for validation. Note that this procedure has been applied to
both DL signals after separation and the mixture of UL-DL
without separation.

Table I gives the validation similarity between the 106
cars class and the training classes for both DL data and the
mixture of UL-DL data. The results indicate that according
to the CNN-SVM model, the testing 106 cars class is likely
to fall between the 52 and 165 cars classes for both DL
and mixture UL-DL scenarios, where the highest similarity
values are observed. For instance, in the DL only scenario, the
similarity values indicating that the 106 cars class belongs to
the 52 cars class and the 165 cars class are 0.3521 and 0.4243,
respectively. It’s worth noting that the CNN-SVM model does
not yield high accuracy values as it hasn’t been trained on the
106 cars class.

After evaluating the proposed CNN model, we can apply
the LSE estimation method to estimate the number of cars of
the 106 cars dataset based on equations (4) — (10). The LSE
leads to an estimate of N, = 113 when using DL signals
alone, which closely aligns with the actual number of cars,
106. Then, the calculated RMSD of the car density estimator
over several iterations is equal to 6.8%, approximately. For
the UL & DL mixture scenario, the LSE leads yields an

estimate of Nv = 132 with an RSMD of 24.9%. One can
observe that using the DL signals only can achieve higher
estimation accuracy compared to the UL & DL mixture. It can
be observed that using DL signals exclusively achieves higher
estimation accuracy compared to the UL & DL mixture. This
difference is attributed to the mitigation of the influence of the
number of WiFi users and data traffic on the classification and

estimation process.
VI. CONCLUSIONS

In this paper, we proposed and tested a particular use case
of reusing the spectrum of DL WiFi signals of opportunity for
car density estimation. The proposed scheme exploits spectro-
grams generated from the WiFi DL signals as fingerprints to
provide an efficient and cost-effective alternative to current
parking occupancy detection systems. It makes use of the
combination of hybrid CNN-SVM for classification and LSE
for interpolation to estimate the car density. To mitigate the
effect of WiFi users’ UL signals on the estimation accuracy,
we introduced UL-DL identification and separation method
using LASSO technique. The simulation results suggest that
proposed UL signal removal technique leads to significant
improvement in estimation accuracy. Our preliminary work has
demonstrated the promise of low-cost non-coordinated reuse
of existing signals for sensing, but further research in this line
is still needed to improve the estimation accuracy.
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