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Abstract 78 

Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants 79 

(WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyse the 80 

antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, 81 

using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that 82 

ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs. 83 

ARG composition differs across continents and is distinct from that of the human gut and the 84 

oceans. ARG composition strongly correlates with bacterial taxonomic composition, with 85 

Chloroflexi, Acidobacteria and Deltaproteobacteria being the major carriers. ARG abundance 86 

positively correlates with presence of mobile genetic elements, and 57% of the 1,112 recovered 87 

high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven 88 

by a complex combination of stochastic processes and deterministic abiotic factors. 89 

  90 
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Introduction 91 

Antibiotic resistance (i.e., the ability of bacteria to survive and replicate in the presence of an 92 

antibiotic1) poses an increasingly urgent global public health challenge2. Many bacterial 93 

pathogens have developed resistance to major antibiotics, with some resisting multiple drugs and 94 

causing untreatable infections3, 4. Owing to the global broad use of antibiotics, antibiotic resistant 95 

bacteria (ARB) and their antibiotic resistance genes (ARGs) are emerging and spreading globally 96 

among people, food, animals, plants, and environmental compartments; i.e., soil, water, and air5, 97 

6. The environment provides an immense gene pool from which numerous ARGs could be 98 

acquired by pathogens to resist antibiotics7. Since many ARGs are found on mobile genetic 99 

elements (MGEs) and are therefore often horizontally transmitted, antibiotic use also imposes a 100 

selective pressure on the whole microbiome, not just pathogens. 101 

In addition to studying the acquisition of antimicrobial resistance in pathogens, it is 102 

important to examine how antibiotic use and other environmental variables (such as 103 

temperature8, pH9, gross domestic product (GDP)10, population density11) affect the aggregate 104 

collection of resistance genes of commensal microbiomes; i.e., the resistome. Reliable 105 

information on the global occurrence and biotic/abiotic drivers of ARGs is urgently needed to 106 

inform public health actions and antibiotic-use decisions. Previous studies have reported global 107 

maps of resistomes for soil12, inland water13, urban mass-transit systems14, sewage15, and the 108 

human gut16, providing baseline information for understanding ARG diversity and health risks in 109 

the environment. 110 

The sewage of ~52% of the global population is delivered to wastewater treatment plants 111 

(WWTPs)17, 18, an essential infrastructure for the protection of human and ecosystem health19, 20. 112 

However, WWTPs are among the most important reservoirs of ARGs and ARB because they 113 

receive wastewater from homes, hospitals, and pharmaceutical manufacturing facilities. Most 114 

WWTPs employ the activated sludge (AS) process, an open aerobic enrichment-culture system 115 

of microbial flocs or granules. Different anoxic/aerobic AS variants remove organic carbon, 116 

nitrogen, and phosphorus and can function within treatment trains to remove pathogens, 117 

micropollutants, and ARB21-23. The activated sludge could also be a spawning ground for 118 

resistance evolution, making it an important platform to study the rules governing the 119 

development of ARGs in the environment.  120 
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Recent studies have investigated resistome dynamics over time24, 25 or across treatment 121 

compartments in one specific WWTP24, 25, and the resistome diversity and distribution in several 122 

local WWTPs9, 26, 27. However, their findings exhibit limited concordance, possibly due to small 123 

sample sizes or non-unified protocols. For instance, co-occurrence network analysis suggested 124 

the bacterial phyla of Actinobacteria, and Bacteriodetes as main hosts of ARGs in WWTPs26, but 125 

metagenome-assembled genome (MAG)-based methods revealed the most frequent hosts to be 126 

Proteobacteria28. Moreover, few studies have assessed the environmental factors driving 127 

resistomes in WWTPs9. Hence, our understanding of global ARG diversity in WWTPs and the 128 

underlying mechanisms affecting ARGs in WWTPs remains incomplete. Meta-analysis based on 129 

localized experiments is problematic due to differences in experimental systems, sampling 130 

methods, and analytical approaches29, 30. To discern the global picture of ARGs in WWTPs, a 131 

survey is needed that is systematic, methodologically consistent, and globally representative. 132 

To meet this need, a Global Water Microbiome Consortium (GWMC) was established 133 

(http://gwmc.ou.edu/) to oversee and coordinate a systematic global campaign for collection, 134 

sequencing, and analysis of ~1,200 AS samples using identical protocols31. Among these 135 

samples, 226 metagenomes (i.e., a collection of genomes and genes from all microorganisms32) 136 

were identified by shotgun sequencing. The resistomes (i.e., collections of ARGs)33 were 137 

analyzed to address fundamental questions: (i) What are the diversity and distributions of global 138 

AS resistomes? (ii) What are the associations among the resistomes and microbiomes? and (iii) 139 

What biotic and abiotic mechanisms control the diversity, structure, and distributions of global 140 

AS resistomes? 141 

Results and Discussion 142 

Diversity of global AS resistomes 143 

To determine the resistomes of AS, the community DNA of 226 samples from 114 representative 144 

WWTPs across six continents (Fig. 1a) was sequenced. A total of 2.8 terabases (Tb) with an 145 

average of 12.3 ± 3.9 Gb per sample (Supplementary Data 1) were obtained. Rarefaction analysis 146 

of the sequencing reads mapping to bacterial 16S rRNA genes (Supplementary Fig. 1a, b) and 147 

ARGs (Supplementary Fig. 1c, d) showed that the sequencing depth was sufficient to represent 148 

the diversity of AS microbiomes and resistomes.  149 

file:///F:/Waste%20water/manuscript/20210429/d%20(http:/g
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Overall, 36,147,212 contigs longer than 1 kb were assembled from all filtered 150 

metagenomic reads, and 34,860,381 non-redundant open reading frames (ORFs) were predicted. 151 

37,029 (0.11%) of the ORFs were annotated as ARG sequences. A total of 179 different ARGs, 152 

relevant to 15 drug classes, were identified (Supplementary Table 1). To assess geographical 153 

distribution, ARG abundance was normalized to the ARG copy number per bacterial cell34. The 154 

core ARGs in activated sludge, meaning those present in all AS samples analyzed, encompassed 155 

20 genes that accounted for 83.8% of the total ARG abundance (Supplementary Data 2). The 156 

three most abundant ARGs were Tetracycline_Resistance_MFS_Efflux_Pump (15.2%), ClassB 157 

(13.5%), and vanT gene in vanG cluster (11.4%), which respectively confer Tetracycline, Beta-158 

lactam, and Glycopeptide resistance (Supplementary Data 2). 159 

Since different ARGs might be associated with the same resistance mechanism or drug 160 

class, the relative abundances of ARGs were aggregated based on their resistance mechanisms 161 

and drug classes (Fig. 1b and Supplementary Fig. 2a). ARGs encoding antibiotic inactivation 162 

were the most abundant, accounting for about 55.7% of the total ARG abundance. The next most 163 

prevalent were ARGs for antibiotic-target alteration (25.9%) and efflux pumps (15.8%). When 164 

ARGs were aggregated by drug class, ARGs conferring resistance to Beta-lactam (46.5%), 165 

Glycopeptide (24.5%), and Tetracycline (16.2%) were the most abundant. The relative 166 

abundances of ARGs encoding major resistance mechanisms or drug classes were relatively 167 

consistent across samples. 168 

Global distribution of AS resistomes 169 

Global variation in ARG abundance. The total ARG abundance showed no significant difference 170 

across the six continents (Supplementary Fig. 2b; p = 0.78, Kruskal-Wallis test). However, the 171 

mean ARG richness (Fig. 1c) and Shannon’s H index (Supplementary Fig. 2c) were significantly 172 

higher in Asia than in other continents except Africa. ARG abundance varied across samples 173 

from different countries (p = 0.034, Kruskal-Wallis test): Samples from Chile (2.87 ± 0.40) and 174 

Canada (3.10 ± 0.35) were the lowest in mean ARG abundance, while samples from Switzerland 175 

(4.30 ± 0.20) and Colombia (4.26 ± 0.86) were the highest (Supplementary Fig. 3a). However, 176 

post hoc analysis indicated that total ARG abundance was not significantly different between any 177 

country pairs (p.adj > 0.05, Dunn post hoc tests).  178 
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Global variations in ARG compositions. To identify structural differences of resistomes across 179 

continents, PERMANOVA (Permutational multivariate analysis of variance) was performed at 180 

the individual gene level (Table 1). The resistomes were all significantly different (p < 0.05) 181 

when comparing pairwise continents. Principal coordinate analysis (PCoA) and clustering 182 

analysis at the gene level showed a strong regional separation (Fig. 1d, Supplementary Fig. 4a, 183 

and Supplementary Note 1). A weaker regional separation was observed at the drug-class level, 184 

versus the gene level (Supplementary Fig. 4b and Supplementary Note 1).  185 

ARG differences across different habitats. To determine whether the structure of AS resistomes 186 

resembled those from other habitats, we conducted a comparative analysis of resistomes across 187 

different environments (AS, human gut35, soil36, ocean37, and sewage15) according to the read-188 

based annotations. Comparison of the results obtained from contig- and read-based approaches 189 

on our AS samples demonstrated that the major conclusions remain consistent regardless of the 190 

approach used (Supplementary Fig. 5 and Supplementary Note 2). PCoA revealed that the 191 

resistomes were distinctly different across habitats (Fig. 1e). AS resistomes were much more 192 

similar to sewage and soil resistomes than to ocean or human gut resistomes (Fig. 1e), even when 193 

aggregated by resistance mechanisms or drug classes (Supplementary Fig. 3b, c). The similar 194 

ARG compositions among AS, sewage, and soil could be due to the interconnection of these 195 

environments, as sewage is the influent of WWTPs, and soils could also be an important source 196 

of the influent’s compositions, especially in combined sewer systems that collect both domestic 197 

sewage and stormwater. 198 

Relationships between the resistomes and microbiomes 199 

Associations of the resistomes to bacterial community structure. To understand the relationships 200 

between resistomes and bacterial community structure, we performed Procrustes analyses. The 201 

bacterial community structure was represented either by 16S rRNA genes extracted from 202 

metagenomes (Fig. 2a) or amplified 16S rRNA genes (Fig. 2b). Procrustes analysis yielded a 203 

matrix-matrix correlation coefficient of 0.74 for metagenome 16S-based bacterial community 204 

structure, and a matrix-matrix correlation coefficient of 0.70 for 16S amplicon-based bacterial 205 

community structure (protest, p < 0.001), suggesting a strong association between WWTP 206 

bacterial community structure and the resistomes. These results are consistent with previous 207 
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studies on local WWTPs9, 27 and soil38, demonstrating that bacterial community composition 208 

plays a pivotal role in shaping the resistomes. 209 

To further determine whether the relationships between the resistomes and microbiomes 210 

depend on phylogenetic lineages, we determined the linkages of the total ARG abundance and 211 

the top four major ARG groups to the relative abundances of major phyla (Fig. 2c and 212 

Supplementary Note 3). Bacteroidetes, the most abundant phylum, were positively correlated 213 

with the ARG abundance based on amplicon 16S rRNA gene data (rho = 0.28, adjusted p = 214 

0.0001). Based on metagenome-derived 16S rRNA genes, the ARG abundance was also 215 

positively correlated with Chloroflexi (rho = 0.48, adjusted p < 2.7x10-13), Acidobacteria (rho = 216 

0.28, adjusted p = 9.4x10-5), Gemmatimonadetes (rho = 0.24, adjusted p = 0.001), Nitrospirae 217 

(rho = 0.20, adjusted p = 0.009), and Deltaproteobacteria (rho = 0.20, adjusted p = 0.008), 218 

suggesting that these taxa may be major carriers of ARGs. Strong correlations between the ARG 219 

abundance and taxonomic groups were also observed in other environments but with different 220 

patterns (Supplementary Fig. 6 and Supplementary Note 3). These results suggest that the 221 

resistomes in AS could be strongly tied to microbial physiology.  222 

ARG-associated metagenome-assembled genomes. To further understand the association 223 

between ARGs and their bacterial hosts, the shotgun sequences of these global AS samples were 224 

assembled into contigs and binned into genomes (See Methods for details). A total of 1,112 225 

dereplicated high-qualityand MAGs were recovered with 536 Bacteroidota, 272 Proteobacteria 226 

and 43 Actinobacteria. We detected that 1,054 of them contain at least one ARG and 28 were 227 

identified as potential human pathogens based on the taxonomic information and presence of 228 

virulence factors39-41 (Supplementary Note 4). As shown in the MAGs-based phylogenetic tree in 229 

Fig. 2d, the total ARG abundance and major ARG classes varied greatly among different 230 

phylogenetic groups. Chloroflexi (7.2±3.0 ARG counts), Acidobacteria (6.6±3.0), 231 

Deltaproteobacteria (4.5±2.8), Gemmatimonadota (3.5±2.1), and Bacteroidetes (3.3±1.7) were 232 

the top five carriers of ARGs (Fig. 2e), which was consistent with their positive correlations with 233 

the ARG abundance. Bacteroidetes and Proteobacteria were reported to be the main hosts of 234 

ARGs in local WWTPs26, 28, consistent with our synthetic analyses using both correlation- and 235 

MAG-based methods. This is likely due to their ability to disseminate resistance genes via 236 

horizontal gene transfer (HGT)42 and their adaptability to antibiotic-rich environments43. 237 
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Collectively, all the above analyses indicate that the identified taxa may play significant roles in 238 

ARG persistence and dissemination in activated sludge systems. 239 

Mobility of resistomes and MAGs 240 

MGEs facilitate the horizontal transfer of ARGs, contributing to antibiotic resistance 241 

dissemination and evolution in microbial communities44. For determining the diversity of MGEs, 242 

a total of 2,200 non-redundant ORFs were identified as 56 MGE genes (Supplementary Data 3). 243 

The three most abundant MGEs were tnpA, IS91and tniA, and the corresponding MGEs classes 244 

were transposase, insertion_element_IS91 and plasmid in AS (Fig. 3a and Supplementary Note 245 

5). The total MGE abundance showed significant difference across the six continents (Fig. 3b; p 246 

= 1.2x10-6, Kruskal-Wallis test) and different countries (p = 5.8x10-7, Kruskal-Wallis test). 247 

Linear regressions showed that the MGE richness was positively correlated with the ARG 248 

richness (R = 0.38, adjusted p =2.8x10-9). Furthermore, the total ARG abundance was positively 249 

correlated with the abundance of their nearby MGEs (R = 0.20, adjusted p =0.003; 250 

Supplementary Note 5). 251 

We further quantified mobility based on the ARGs sharing between distinct hosts. 252 

Following the method applied to human microbiomes16, 45, mobile ARGs were identified as 253 

identical or near identical sequences present in different bacterial hosts. From these 1,112 254 

dereplicated MAGs, 3,646 ORFs were annotated as ARG sequences, which were further 255 

clustered into 2,368 ARG clusters at 99% nucleotide identity. Subsequently, 29% of the ARG 256 

clusters (682/2,368) covering 54% of all ARG sequences (1,959/3,646) were assigned to 257 

multiple species, suggesting possible recent horizontal gene transfer across distantly related 258 

organisms. In comparison, 10% of the ARG clusters from the human microbiome MAGs were 259 

multi-species ARGs16. Remarkably, the proportion of potentially mobile ARGs in AS was 260 

surprisingly higher than that in the human microbiome. This may be due to the high density of 261 

bacterial cells and well-mixed nature of AS, which enhances the probability of bacterial physical 262 

contact and subsequently increases the likelihood of horizontal gene transfer. Note that the non-263 

mobile/intrinsic ARGs still contribute to the gene pool in the environment, as they might be 264 

captured by mobile genetic elements in a certain stage of evolution and become mobile ARGs46.  265 

The potential ARG mobility for MAGs varied across phylogenetic lineages (Fig. 2d). Of 266 

the 1,112 MAGs, 57.6% (641/1,112) were identified as carrying multi-species mobile ARGs. 267 
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Among MAGs harboring multi-species mobile ARGs, the proportion of Bacteroidetes phylum 268 

was higher than those with immobile ARGs (Fig. 3c), suggesting that the Bacteroidetes phylum 269 

could be more prone to horizontal gene transfer to survive in AS with antibiotics. In terms of 270 

resistance mechanisms and drug classes, the relative abundances of glycopeptide and macrolide-271 

lincosamide-streptogramin resistance genes also were higher in mobile than immobile ARGs, 272 

suggesting that these classes could potentially be more mobile in AS (Fig. 3c). Most mobile 273 

ARG clusters can transfer across multi-species, while only 4% (26/682) ARG clusters exhibit the 274 

ability to move across multi-phyla (Fig. 3d). Notably, 65% (17/26) multi-phyla mobile ARG 275 

clusters are associated with antibiotic inactivation. Horizontal transfer of antibiotic inactivation 276 

resistance genes plays a crucial role in microbial survival by enhancing adaptability, accelerating 277 

the dissemination of resistance, and conferring evolutionary advantages in antibiotic-rich 278 

environments47. Horizontal transfer poses considerable challenges to public health.  279 

Drivers of global AS resistomes 280 

We quantitatively assessed the relative contribution of stochastic vs. deterministic processes to 281 

the global AS resistome variations with the metric of normalized stochasticity ratio (NST)48. The 282 

NST estimated for resistomes was generally above 0.5 for all continents except Europe (Fig. 4a 283 

and Supplementary Note 6), suggesting that stochastic processes may play a role in the AS 284 

resistome variations. Multiple regression on matrices (MRM)-based variance partition analysis 285 

(VPA) also revealed that substantial variations (67.4%) of the resistomes remained unexplained 286 

by the measured environmental variables and geographical distance (Fig. 4b and Supplementary 287 

Note 6). While these results align with previous findings that stochastic processes are important 288 

in shaping bacterial community assembly in AS31, it is critical to note that apparent stochasticity 289 

could mask unmeasured deterministic pressures, such as environmental stresses from 290 

antibiotics43, heavy metals49, or microplastics50. Additionally, methodological limitations, 291 

including sequencing depth and database biases, might constrain our ability to resolve 292 

deterministic signals. Thus, while stochastic processes likely contribute to AS resistome 293 

variations, deterministic factors should not be overlooked. 294 

To further discern the roles of individual deterministic factors, we examined the 295 

environmental variables having significant correlations (p < 0.05) with changes in ARG 296 

abundance by using univariate models (Supplementary Table 2). The mixed liquor suspended 297 
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solid (MLSS), temperature, and city population showed positive correlations with the ARG 298 

abundance (Supplementary Fig. 7a-c and Supplementary Note 7). Conversely, the ARG 299 

abundance was negatively correlated with pH, solids retention time and influent biochemical 300 

oxygen demand (BOD) (Supplementary Fig. 7d-f and Supplementary Note 7), which have been 301 

reported to play important roles in regulating the structure of the AS bacterial community31, 36. 302 

Unlike previous observations indicating that the abundance of sewage ARGs is strongly 303 

correlated with socio-economic factors15, we found no significant correlation between ARG 304 

abundance and per capita GDP or country-level antibiotics use51 for where the WWTP is located 305 

(Supplementary Table 2). The non-correlation may suggest that the antibiotic concentrations in 306 

AS might be insufficient to pose a significant selective pressure for ARGs maintenance and 307 

propagation52. However, the resolution of antibiotic use data (only from 15 country-level 308 

observations) may be too low to reveal its impact on the ARG abundance in AS. 309 

A more in-depth analysis using partial least squares (PLS) further revealed potential 310 

direct and indirect effects of biotic and abiotic drivers (Fig. 4c). PLS analysis indicated that the 311 

bacterial community structure, MGEs, temperature, and city population could affect the AS 312 

resistome, which further influenced the AS ecosystem functioning for pollutant removal. 313 

Temperature had a direct influence on ARG abundance (Pearson r = 0.39, partial R2 = 0.08) and 314 

indirectly affected ARG abundance through the bacterial community structure (Pearson r = 0.54, 315 

partial R2 = 0.14 of the first principal component score (PC1) representing the community 316 

structure). Because temperature is a primary driver of biological processes53, temperature likely 317 

has important effects on ARG abundance and distributions8. Although the potential mechanisms 318 

underlying the relationships between ARGs and temperature are not clear, temperature could 319 

facilitate horizontal gene transfer, population growth, biotic interactions, and community 320 

turnovers54-56. ARG abundance was also directly influenced by the abundance of proximal MGEs 321 

(Pearson r = 0.30 partial R2 = 0.09). Several studies have shown that MGEs can carry multiple 322 

ARGs and contributed to their spread within bacterial populations, thereby increasing the ARG 323 

abundance57, 58. Another factor that had a direct positive effect on ARG abundance was the city 324 

population (Pearson r = 0.30, partial R2 = 0.05). A higher population may be associated with an 325 

increased use and sewage discharge of antibiotics, exacerbating the emergence and spread of 326 

ARGs in bacteria10. Overall, although the abiotic environmental variables had significant effects 327 

on the resistome, their impact was relatively small (partial R2 < 0.1, Fig. 4c), which are consistent 328 
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with the null model-based stochasticity ratio (Fig. 4a) and MRM-VPA analysis (Fig. 4b) 329 

showing that stochastic processes may play a more important role. 330 

Concluding remarks 331 

Understanding the global ARG abundance, diversity, and distributions, along with their 332 

controlling mechanisms is critical to risk assessment and mitigation of antibiotic resistance. By 333 

analyzing the AS resistomes via well-coordinated international efforts, this study showed that 334 

ARGs are highly abundant, diverse, and widely distributed across global WWTPs, this 335 

corroborates that WWTPs are an important reservoir of environmental ARGs5, 59-61. By offering a 336 

global-scale characterization of ARGs, this study provides inter-continental and inter-country 337 

comparisons of the resistomes in WWTPs. Our results revealed that the structures of activated 338 

sludge resistomes differed among continents and were far distant from those of the human gut 339 

and oceans, but they exhibited close similarity to those of sewage and soils. We also recovered 340 

thousands of dereplicated high-quality MAGS, which could enable more in-depth analyses of 341 

ARG hosts and the quantification of ARG mobility. In addition, our analyses indicate that 342 

resistome variations in activated sludge may be driven by stochastic processes, such as random 343 

gene exchanges and drift62. However, deterministic factors such as temperature and city 344 

populations still played important roles in the evolution and proliferation of ARGs in global 345 

WWTPs.  346 

Methods 347 

Global sampling and DNA sequencing 348 

A total of 1,186 AS samples were collected by the GWMC from 269 WWTPs across 23 349 

countries with varying geographic locations, latitudes, and climate zones31. There was a unified 350 

protocol (http://gwmc.ou.edu/files/Sampling_Shipping_Protocol_General_20141103.pdf) 351 

developed at GWMC for sampling, preserving samples, collecting metadata, collecting DNA, 352 

and sequencing so that potential effects of the variations on experimentation would be 353 

minimized. A total of 226 representative samples out of 1,186 AS samples had sufficient 354 

metadata to be used for metagenomic sequencing.  355 

Detailed information about the procedure of DNA extraction is described in Wu et al31. In 356 

brief, MoBio PowerSoil DNA isolation kit was used to isolate community DNA from mixed 357 
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liquor samples (3 mL). We vortexed 12 bead tubes at maximum speed for 10 minutes, following 358 

the manufacturing protocol, to minimize variations in cell lysis efficiency between samples. 359 

Then, we constructed genomic DNA libraries by following the manufacturer's instructions with 360 

an average insert size of 300 bp using KAPA Hyper Prep Kit (KR0961). DNA LabChip 1000 kit 361 

from Agilent was used to assess the quality of all libraries, and all qualified libraries were 362 

sequenced at the Oklahoma Medical Research Foundation (OMRF) with paired-end sequencing 363 

on Illumina HiSeq3000. The sequenced reads were deposited in the Sequence Read Archive 364 

(BioProject accession number PRJNA509305). 365 

Metagenomic sequences processing 366 

An internal metagenomic pipeline (ARMAP, 367 

http://zhoulab5.rccc.ou.edu/pipelines/ARMAP_web/job_submission.php) was used to process 368 

the metagenomic data. First, all sequenced reads were subjected to FastQC for quality evaluation 369 

with quality profile, duplication rates, and contamination rates. Using CD-HIT (v4.6.8)63, a 370 

100% identity cutoff was used to remove duplicates. Quality trimming and filtering were 371 

performed using NGS QC Toolkit (v2.3.3)64. The pair-end adaptor library was used to detect 372 

reads with residual adaptors. Raw reads were filtered with the following constraints: (i) reads 373 

with more than one ambiguous N base were removed; (ii) 3′-ends of reads were trimmed to the 374 

first high-quality base with quality score ≥ 20; and (iii) trimmed reads with the length > 120 bp 375 

(80% of the sequence read length) were further filtered with an average quality score cutoff of 376 

20. The paired-end reads (fasta) of each sample after quality trimming and filtering were 377 

assembled by Megahit (v1.0.5)65 into contigs in a time- and cost-efficient way, using the 378 

following parameters: –min-contig-len = 1000, --k-min = 31, --k-max = 131, --k-step = 20 and –379 

min-count = 1. All assembled contigs were imported into the NGS QC Toolkit for calculation of 380 

the contig length profiles (N50Stat.pl).  381 

ARGs annotation for open reading frames  382 

Open reading frames (ORFs) of protein-coding genes were predicted from the assembled contigs 383 

of each metagenome by Prodigal (v2.6.3)66 with ‘-p meta’ option. A non-redundant ORFs 384 

catalog was constructed by protein clustering using MMseqs267, with a minimum identity 385 

threshold of 95% and a minimum sequence coverage of 90% (--min-seq-id 0.95 -c 0.9 --cluster-386 

mode 2 --cov-mode 1). The coverages of the non-redundant genes in each sample were 387 
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determined by CoverM (v0.6.1) (https://github.com/wwood/CoverM) using default settings. 388 

Then, non-redundant ORFs were functionally annotated to the Comprehensive Antibiotic 389 

Resistance Database (CARD)68 and the ResFams database69. Genes were first assigned as ARGs 390 

by annotating with the CARD using their recommended tool Resistance Gene Identifier (RGI) 391 

(v6.0.0), requiring a hit scoring above the family-specific threshold under the CARD homologue 392 

model, with the top hit taken if several are achieved. The remaining unannotated genes were 393 

filtered and subsequently annotated with Resfams protein families, requiring the score to a 394 

ResFams hidden Markov model exceeded the gathering threshold for that model. The ORF 395 

annotated to Resfam were represented as gene families. The following criteria were used to 396 

remove potential false positive ARGs: (i) genes that confer resistance via overexpressing of 397 

resistant target alleles (e.g. resistance to antifolate drugs via mutated DHPS and DHFR); (ii) 398 

global gene regulators, two-component system proteins, and signaling mediators; (iii) efflux 399 

pumps that confer resistance to multiple antibiotics; (iv) genes modifying cell wall charge (e.g. 400 

those conferring resistance to polymixins and defensins). Raw unnormalized abundance value 401 

was calculated for each ARG in a sample as the summed coverage depths of all ORFs that were 402 

annotated to that ARG in the given sample.  403 

To assess the ARG distributions in AS samples, the raw abundance of ARGs was 404 

normalized and expressed as “copy of ARG per cell” using the equation (1). 405 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = ∑
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖(ARG−like gene)

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒16S sequence
× 𝑁16S copy number

𝑛

𝑖=1

406 

= ∑
𝑁𝑖(ARG−like sequence) × 𝐿𝑟𝑒𝑎𝑑𝑠/𝐿𝑖(ARG ORF)

𝑁16S sequence × 𝐿𝑟𝑒𝑎𝑑𝑠/𝐿16𝑆 sequence

𝑛

𝑖=1

× 𝑁16S copy number    (1) 407 

Where 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖(ARG−like gene) is the coverage of a specific ARG ORF, which is calculated 408 

from the number of reads annotated to this ORF (𝑁𝑖(ARG−like sequence)), the sequence length (bp) 409 

of the reads (𝐿𝑟𝑒𝑎𝑑𝑠), and the length (bp) of the corresponding ARG ORF (𝐿𝑖(ARG ORF)). For the 410 

coverage of 16S rRNA gene (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒16S sequence) calculation, 𝑁16S sequence is the number of 411 

the 16S rRNA gene sequences identified for the metagenomic data by Metaxa2 (v2.248)70, 412 

𝐿𝑟𝑒𝑎𝑑𝑠 represents the sequence length of the reads, 𝐿16𝑆 sequence is the average length of 16S 413 

rRNA genes (1,432 bp) in Greengenes database71. 𝑁16S copy number is the average copy number 414 

of 16S rRNA genes per cell in the community, and n is the number of annotated ARGs for a 415 

https://github.com/wwood/CoverM


 16 

specific category. The average copy number in the community was calculated as the abundance-416 

weighted mean 16S rRNA gene copy number, where the 16S rRNA gene copy number of each 417 

genus was estimated through the rrnDB database based on its closest relatives with known rRNA 418 

gene copy number72, 73. It is noted that the normalized ARG abundance (gene copies per cell) 419 

depends on the algorithms for identifying ARGs and 16S rRNA genes. There could be false 420 

positives and false negatives; thus, the resultant ARG abundance may not reflect the real values 421 

in the community. However, we can still conduct relative comparison across different samples, 422 

under the assumption that the estimations across samples are subjected to the same degree of 423 

bias. In this way, we can compare the abundance of ARGs of samples and explore the underlying 424 

mechanisms shaping the resistomes.  425 

Mobile genetic elements (MGEs) annotation 426 

To determine the diversity of MGEs in the AS, we annotated MGEs for the non-redundant ORFs 427 

by BLASTN (-perc_identity 0.5 -evalue 1e-10 -max_target_seqs 1) against the previously 428 

published database of MGEs74. This database consists of MGEs with 278 different genes and 429 

more than 2,000 unique sequences. The raw abundance of each MGE in a sample was calculated 430 

as the summed coverage depths of all ORFs annotated to that MGE and normalized as “copy of 431 

MGE per cell” in the same manner as for the ARGs. 432 

To quantify the mobility potential of ARGs, we performed co-localization analysis 433 

between ARGs and MGEs on all assembled contigs. We first annotated the ARGs and MGEs on 434 

all contigs and then identified the contigs carrying both ARGs and MGEs for calculating the 435 

minimum distance between them. ARGs with potential mobility were defined as sharing a 436 

nearby area (<10 kb)75 with an MGE. We calculated the proportions of mobile ARGs in each 437 

sample. We also calculated the raw abundance of MGEs co-located (<10 kb) with ARGs using 438 

the coverage of the corresponding contigs in the given sample, which was determined by 439 

CoverM (v0.6.1) using default settings. The raw abundances of MGEs were then normalized as 440 

“copy per cell” with the above method.  441 

Taxonomic profiling of the metagenomic sequences 442 

Bacterial-community profiling at the genus level was done using Metaxa2 (v2.248)70, based on 443 

the bacterial 16S rRNA reads extracted from the high-quality metagenomic reads. The bacterial 444 

profile was also represented by the OTU table based on 16S rRNA amplicon sequencing data, 445 
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which was published by Wu et al31. The relative abundance of a taxonomic category was 446 

calculated as the sum of reads annotated to that category normalized by the total number of 447 

taxonomic reads in each sample.  448 

MAG recovery, taxonomic annotation, and phylogenetic tree construction 449 

All assembled contigs longer than 1 kbp were binned with Matabat276, Maxbin277, and 450 

CONCOCT (v0.4.1)78 based on contig composition and coverages. Before binning, Bowtie279 451 

was used to align short-read sequences to contigs (options: -very-fast), and SAMtools80 was used 452 

to sort and convert SAM files to BAM format. Then, DAStools81 was used to refine binned 453 

contigs with default parameters where Usearch82 was used as the search engine. We performed 454 

CheckM (v1.0.6)83 to estimate the completeness and contamination of each bin. To get the 455 

nonredundant consolidation, the dRep84 dereplication workflow was used with options 456 

‘dereplicate_wf -p 16 -pa 0.9 -sa 0.95 -nc 0.3 -comp 70 -con 10 -str 100 -strW 0’. Bin scores 457 

were given as completeness-5×contamination+0.5×log(N50), and only the highest-scoring 458 

MAGs from each cluster (> 95% average nucleotide identity) were retained in the dereplicated 459 

set. The bins with high completeness (>90%) and few contaminants (<5%) were retained as 460 

high-quality MAGs and were used for downstream analyses.  461 

The taxonomy of the represented MAGs was assigned using GTDB-tk v2.1.085 based on the 462 

Genome Taxonomy Database86. Besides, to identify the pathogenic genomes, we first selected 463 

the potential ones by referring to two published reference pathogen lists that consisted of 140 464 

potentially human pathogenic genera40 and 538 potentially human pathogenic species41. Then, 465 

we searched the ORFs of taxonomically predicted potentially pathogenic genomes against the 466 

experimentally verified bacterial virulence factor database VFDB (last update: Dec.11, 2020)39 467 

with BLASTN. The genomes with virulence factors with a global identity > 70% were 468 

considered pathogens. The phylogenetic relationships of all MAGs were inferred by a maximum 469 

likelihood alignment-based approach with PhyloPhlAn387 (--diversity high, --fast, with 470 

configurations --db_aa diamond, --map_dna diamond, --map_aa diamond, --msa mafft, --trim 471 

trimal, --tree1 iqtree). Visualization and annotation of the tree were done using GraPhlAn88. It 472 

should be noted that it has proven difficult to assemble genomes for populations below 1% 473 

relative abundance owing to insufficient sequencing depth or difficulty in binning and assembly 474 

of individual genomes from complex metagenomes89. 475 
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ARG host and mobility annotation for MAGs 476 

For the near-complete MAGs, ARGs of MAGs’ contigs were also identified based on CARD68 477 

and the ResFams database69 as above. The mobile ARGs were defined as identical or near 478 

identical sequences present in different species16, 45. Since our recovered MAGs were 479 

dereplicated at an average nucleotide identity of 95%, they represented species-level genome 480 

bins90, 91. Thus, we searched for mobile ARGs as those present in two or more MAGs. To 481 

achieve this, we first clustered the nucleotide sequences of all detected ARG ORFs into ARG 482 

clusters with 99% identity, using the ‘cluster’ command of MMseqs267 with ‘–min-seq-id 0.99 -c 483 

0.9 –cov-mode 0’. We then labeled any ARG cluster that was found in multiple MAGs as ‘multi-484 

species’, which was considered as the evidence of recent horizontal gene transfer. This strategy 485 

of searching for ARG clusters across species to detect recent horizontal gene transfer is 486 

equivalent to that used in some other studies on human microbiomes16, 45.  487 

Analyzing metagenomic samples from other environments 488 

To compare AS resistomes with other environments, we selected the public global metagenomic 489 

projects in human gut35, sewage15, soil36, and oceans37 and collected samples from these public 490 

databases. The raw metagenomic sequences were downloaded from the European Bioinformatics 491 

Institute Sequence Read Archive database (sewage: PRJEB13831, soil: ERP020652, gut: 492 

ERP004605, ocean: ERP001736). To avoid bias caused by data processing, we re-processed the 493 

raw sequences with the same quality trimming and filtering parameters with our pipeline to 494 

obtain high-quality sequences. Rather than using the contig-based approach to annotate ARGs 495 

which requires significant time and vast computational resources for the assembly step, here we 496 

profiled the abundance of ARGs through a read-based mapping strategy. The read-based 497 

approach enabled an efficient comparison of resistomes between environments. We annotated 498 

ARGs from the high-quality metagenomic sequences by DeepARG (v2)92 using the default 499 

options (--id 50, -e 1e-10, -k 1000 of short reads mode), which can infer ARGs from short reads. 500 

The abundances of ARGs were normalized to the unit of “copy per cell”34 in a similar manner as 501 

described above, although the calculation of ARG coverage was slightly different with the 502 

equation (2). 503 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = ∑
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖(ARG)

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒16S sequence
× 𝑁16S copy number

𝑛

𝑖=1

 504 
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= ∑
𝑁𝑖(ARG−like sequence) × 𝐿𝑟𝑒𝑎𝑑𝑠/𝐿𝑖(ARG reference sequence)

𝑁16S sequence × 𝐿𝑟𝑒𝑎𝑑𝑠/𝐿16𝑆 sequence

𝑛

𝑖=1

× 𝑁16S copy number     (2) 505 

Where 𝑁𝑖(ARG−like sequence) is the number of ARG-like reads annotated as one specific ARG 506 

reference sequence, 𝐿𝑖(ARG reference sequence) is the sequence length (bp) of the corresponding 507 

ARG reference sequence.  508 

To compare the results of the two ARG detection methods (contig-based and read-based 509 

approaches), we performed Procrustes analyses between the resultant AS ARG abundance 510 

matrices from the two methods using the function ‘procrustes’ of vegan R package93. We also 511 

examined the correlation between the total abundance from two methods using the function ‘lm’ 512 

of R. 513 

Statistical analyses 514 

The global map was created using the function ‘tm_shape’ of spData R package 515 

(10.32614/CRAN.package.spData). Richness and Shannon’s H index were computed using the 516 

vegan R package93 to measure the diversity of ARGs or MGEs based on a rarified count matrix, 517 

which was obtained by rounding the coverages and sub-sampling to the lowest sample’s level. 518 

The richness and Shannon’s H diversity rarefaction curves for bacteria and ARGs were 519 

respectively based on the reads mapping to the bacterial 16S rRNA genes and ARGs. The curves 520 

were computed using the function ‘rarefaction.individual’ of rareNMtests94 and plotted using the 521 

ggplot295 R packages. Kruskal–Wallis and the Dunn post hoc test were used to compare the 522 

means of ARG abundance or diversity between continents or countries, using R function 523 

‘kruskal.test’ and function ‘dunnTest’ of FSA R package96. To visualize the variation of 524 

resistomes across samples, the principal coordinate analysis (PCoA) was performed on the 525 

resistome Bray-Curtis dissimilarity matrix based on gene relative abundances, using the function 526 

‘pcoa’ of ape R package97. The heat map of genes was generated using the function ‘aheatmap’ 527 

of NMF R package98. PERMANOVA was applied to assess the resistome dissimilarities among 528 

continents using the function ‘adonis2’ of vegan R package. Procrustes analysis was performed 529 

to test the association between bacterial taxonomic composition and the resistome using the 530 

function ‘procrustes’ of vegan R package in which the ordinations of the bacterial taxonomic 531 

composition and the resistome were generated from PCoA. To disentangle the relative 532 

contributions of stochastic and deterministic processes to AS resistome, null model-based NST 533 
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approach48 was applied to community ARG data. Normalized stochasticity ratio (NST) was used 534 

to quantify ecological stochasticity in communities within continents and was analyzed in R 535 

using the NST package48. 536 

To estimate the relative contributions of the environmental effects versus the distance 537 

effects on the resistome dissimilarities, we performed a variation partition analysis (VPA) based 538 

on multiple regression on matrices (MRM). Briefly, we first selected a non-redundant set of 539 

environmental variables that contained missing data in less than 20% of all samples. The final set 540 

included mixed liquid temperature, air temperature, precipitation, design capacity, volume of 541 

aeration tanks, plant age, mixed liquor suspended solids (MLSS), solids retention time (SRT), 542 

dissolved oxygen (DO), pH, and influent biochemical oxygen demand (BOD), effluent BOD, 543 

food to microorganism (F/M) ratio and city GDP. The variance inflation factors (VIF) were less 544 

than 10, indicating a low level of collinearity among these variables. MRM was performed using 545 

the function ‘MRM’ of ecodist R package 99. Geographic distance was log-transformed. A 546 

Euclidean distance matrix was calculated for each environmental variable. In VPA, the R2 of the 547 

selected environmental variables as independent matrices (R2
𝐸), geographical distance as an 548 

independent matrix (R2
𝐺), and all matrices (R2

𝑇) were used to compute the three components of 549 

variations: (i) pure environmental variation = R2
𝑇 − R2

𝐺; (ii) pure geographical distance = 550 

R2
𝑇 − R2

𝐸; and (iii) spatially structured environmental variation = R2
𝐺 + R2

𝐸 − R2
𝑇. 551 

Univariate models predicting the total ARG abundance (ARG copies per cell) as a function of 552 

various environmental and site variables were performed using R function ‘lm’ and ‘summary’. 553 

For each variable, we fitted a linear and a quadratic model and results are shown for the model 554 

with lower Akaike information criteria (AIC) value.  555 

The partial least squares (PLS) model with a partial R2 index based on PLS100 was used to 556 

explore the relationships among the microbiome (PC1 of bacterial community structure), 557 

resistome (the total ARG abundance, PC1 of ARG composition, abundances of the top three 558 

resistance mechanisms), the abundance of MGEs located near ( < 10kb) ARGs, six 559 

environmental variables which significantly correlated (p < 0.05) with the total ARG abundance 560 

based on the univariate models, and ecosystem functions (the removal rate of BOD, COD, total 561 

nitrogen and total phosphorus). Based on predictive performance counting in the explained 562 

variation (𝑅𝑌
2) and model significance (P for 𝑅𝑌

2 and 𝑄𝑌
2

 < 0.05, where significant 𝑄𝑌
2

  helps to 563 

avoid overfitting), Each optimum PLS model was forward selected from all factors that might 564 
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affect the dependent variable. To visualize relevant associations, we only included the most 565 

relevant variable(s) with Variable Influence on Projection (VIP) values larger than 1. When used 566 

as independent variables in PLS, the ARG composition was represented by the PC1 from PCoA 567 

of Bray-Curtis distance. We used a partial 𝑅2 index101 on the basis of PLS to represent the 568 

proportion of variance explained by each independent variable (equation 3). We also calculated 569 

the pairwise correlation coefficient (as well as the 𝑅2) among the factors and the significance 570 

was based on Pearson correlation as reference. The PLS-related analysis was performed using 571 

the ropls package102 and the Mantel test using the vegan package93 in R. 572 

𝑅PLS𝑗
2 = 𝑅𝑌

2 ×
∑ (𝑊𝑓𝑓

2 × 𝑆𝑆𝑌𝑓)𝑓

𝑆𝑆𝑌𝑐𝑢𝑚
=

∑ (𝑊𝑗𝑓
2 × 𝑆𝑆𝑌𝑓)𝑓

𝑆𝑆𝑌
            (3) 573 

Where 𝑅PLS𝑗
2  is the partial R2 of variable 𝑗 based on PLS, 𝑊𝑗𝑓 is the PLS weight of variable 𝑗 574 

on component 𝑓, 𝑆𝑆𝑌𝑓 is the sum of squares of 𝑌explained by component 𝑓, 𝑆𝑆𝑌𝑐𝑢𝑚 is the 575 

cumulative sum of squares of 𝑌explained by all components, 𝑅𝑌
2 is the percentage of 𝑌 576 

dispersion (i.e., sum of squares) explained by the PLS model, and 𝑆𝑆𝑌 is the 𝑌 dispersion, that 577 

is, sum of squares of 𝑌. 578 

Data availability 579 

The DNA sequences of the 16S rRNA gene and metagenomes generated in this study have been 580 

deposited in the National Center for Biotechnology Information (NCBI) database under the project 581 

accession number PRJNA509305 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA509305]. The 582 

assembled MAG sequences have been deposited in Zenodo under the DOI 583 

10.5281/zenodo.14916172. [https://doi.org/10.5281/zenodo.14916172]. The source data 584 

underlying figures and supplementary figures are provided as a Source Data file with this paper. 585 

The raw metagenomic sequences of metagenomic samples from other environments used in this 586 

study are available in the European Bioinformatics Institute Sequence Read Archive database 587 

(sewage: ERP015409 [https://www.ebi.ac.uk/ena/browser/view/PRJEB13831], soil: ERP020652 588 

[https://www.ebi.ac.uk/ena/browser/view/PRJEB18701], gut: ERP004605 589 
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[https://www.ebi.ac.uk/ena/browser/view/PRJEB5224], ocean: [ERP001736 590 

https://www.ebi.ac.uk/ena/browser/view/PRJEB1787]). 591 

Code availability 592 

No custom algorithms or software were used to generate and analyze data. The R script for 593 

partial least squares is publicly available on GitHub at https://github.com/congminz/GWMC. 594 
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Table 1. Differences of the AS resistomes between continents. PERMANOVA (Permutational 941 

multivariate analysis of variance using distance matrices) was performed based on Bray-Curtis 942 

dissimilarity matrix at the level of individual ARGs. The upper triangle (shaded grey) shows the 943 

F values of PERMANOVA, while the lower triangle shows the two-sided p values. Sample size: 944 

n = 6, 59, 14, 20, 106, and 21 biologically independent samples for Africa, Asia, Australasia, 945 

Europe, North America, and South America, respectively.  946 

 Africa Asia Australasia Europe North America South America 

Africa  5.04 2.18 5.78 2.66 2.03 

Asia 0.001  13.60 37.64 39.14 10.93 

Australasia 0.011 0.001  7.17 4.46 3.20 

Europe 0.002 0.001 0.001  14.12 13.11 

North America 0.003 0.001 0.001 0.001  7.94 

South America 0.028 0.001 0.003 0.001 0.001  

 947 
  948 
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Figure Legends/Captions 949 

Figure 1. The abundance and global distribution of the AS resistomes. a) Map of the 950 

sampling locations. b) Average relative ARG abundance (copy of ARGs per cell) across 951 

different continents based on resistance mechanism, drug class, and the nine most abundant 952 

ARGs. MLS: macrolide-lincosamide-streptogramin. c) Richness of the ARGs. Richness index 953 

was calculated based on a rarified matrix of resistance gene coverage, which was rounded and 954 

subsampled to the lowest sample’s level. In the boxplots, hinges show the 25, 50, and 75 955 

percentiles. The upper whisker extends to the largest value no further than 1.5 * IQR from the 956 

upper hinge, where IQR is the inter-quartile range between the 25% and 75% quartiles; The 957 

lower whisker extends to the smallest value at most 1.5 * IQR from the lower hinge. Sample 958 

size: n = 6, 59, 14, 20, 106, and 21 samples for Africa, Asia, Australasia, Europe, North 959 

America, and South America, respectively. Significant differences (Dunn’s test with two-sided p-960 

values adjusted by the Bonferroni method < 0.05) between continent pairs are indicated in the 961 

plot. d) Principal coordinate analysis (PCoA) reveals distinct ARG composition diversity in six 962 

continents. e) PCoA reveals distinct ARG diversity in different environments. Source data are 963 

provided as a Source Data file. 964 
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Figure 2. The linkage of the AS resistomes to microbiomes. a) Relationships detected by 966 

Procrustes analysis between the resistomes and bacterial community structure as measured by 967 

16S genes extracted from the metagenomes. Metagenomic shotgun sequencing was performed 968 

for all activated sludge samples, and the 16S sequences were extracted and grouped at the genus 969 

level using Metaxa2. b) Relationships detected by Procrustes analysis between the resistomes 970 

and bacterial community structure as measured by the 16S amplicon sequencing data. The dotted 971 

ends of lines represent the resistome position, while the undotted ends represent the bacteriome 972 

position. Vegan Procrustes test ‘protest’ with 999 permutations yielded a matrix-matrix 973 

correlation coefficient of 0.74 (protest, p = 0.001) for metagenome 16S-based bacterial 974 

community structure, and a matrix-matrix correlation coefficient of 0.70 (protest, p = 0.001) for 975 

16S amplicon-based bacterial community structure. c) The association between the ARG 976 

abundance (total ARG abundance and the top four major ARG groups) and the relative 977 

abundance of top 15 major bacterial phyla from 16S rRNA gene amplicon data (16S) or 978 

metagenomes (Shotgun). The circle-filled color corresponds to Spearman’s correlation 979 

coefficient. The asterisks ‘*’ denote significant correlations (two-sided p < 0.05 after adjustment 980 

for multiple testing). d) The phylogenetic tree of metagenome-assembled genomes (MAGs) from 981 

global AS samples. The leaf colors indicate phylum groups. The bar heights outside the circle are 982 

respectively proportional to the ARG count annotated in MAGs, and those red bars represent the 983 

MAGs carrying multi-species mobile ARGs. Inner rings show the resistance gene abundances of 984 

the five major drug classes, with darker colors indicating higher abundances. e) The mean count 985 

and relative abundances of ARGs encoding major resistance mechanisms or drug classes across 986 

phylogenetic groups. Error bars indicate standard deviations. Numbers on the top indicate the 987 

number of MAGs belonging to the phylogenetic groups. Source data are provided as a Source 988 

Data file. 989 
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 991 

Figure 3. Mobility of ARGs from assembly and MAG-based analyses. a) Relative MGE 992 

abundance identified from the non-redundant ORFs on gene level and group level. b) Boxplots 993 

of the MGE Shannon’s H index across six continents. Hinges show the 25, 50, and 75 994 

percentiles. The upper whisker extends to the largest value no further than 1.5 * IQR from the 995 

upper hinge, where IQR is the inter-quartile range between the 25% and 75% quartiles; The 996 

lower whisker extends to the smallest value at most 1.5 * IQR from the lower hinge, and dots 997 

indicate values of individual samples. Sample size: n = 6, 59, 14, 20, 106, and 21 samples for 998 

Africa, Asia, Australasia, Europe, North America, and South America, respectively. Significant 999 

differences (Dunn’s test with two-sided p-values adjusted by the Bonferroni method < 0.05) 1000 

between continent pairs are indicated in the plot. c) The relative abundance of mobile or 1001 

immobile ARGs based on taxonomic composition, resistance mechanisms and drug class. d) 1002 

Multi-phyla mobile ARGs based on gene sharing between MAGs. Nodes represent ARG 1003 

sequences with labels indicating the gene/gene family name. Node colors indicate the 1004 

phylogenetic groups of MAGs in which the ARG is present. Node shapes indicate different 1005 

resistance mechanisms. Source data are provided as a Source Data file. 1006 
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 1008 

Figure 4. Drivers for the AS resistomes. a) Normalized stochasticity ratio (NST) quantifies the 1009 

relative importance of stochasticity in governing resistomes. Sample size: n = 6, 59, 14, 20, 106, 1010 

and 21 samples for Africa, Asia, Australasia, Europe, North America, and South America, 1011 

respectively. b) The Variance partition analysis (VPA) results indicated that the relative 1012 

contributions of geographic distance (Geo), environmental variables (ENV), and their 1013 

interactions to the variation of the AS resistomes all reached a significant level (two-sided p < 1014 

0.05). c) PLS models of the relationships among microbiome (PC1 of bacterial community 1015 

structure), resistome (the total ARG abundance, PC1 of ARG composition, abundances of the top 1016 

three resistance mechanisms), the abundance of MGEs located near (<10kb) ARGs, ARG-1017 

correlated environmental variables, and ecosystem functions (the removal rate of BOD, COD, 1018 

total nitrogen, total phosphorus). Directions for all arrows are from independent variable to a 1019 

dependent variable in the forward selected PLS models (p  <  0.05); only the variables with 1020 

variable influence on projection > 1 are presented. The numbers near the pathway arrow indicate 1021 

the proportion of variance explained for every dependent variable, with the top row representing 1022 

the partial R2 index based on PLS and the bottom row representing Pearson correlation R2. The 1023 

asterisks denote the significance levels with *** p  < 0.01, ** p   < 0.05 and * p  <0.10 (two-1024 

sided). The colors of pathways are related to the positive (blue) or negative (red) relationships. 1025 

The widths of pathways are related to the partial R2 index. Source data are provided as a Source 1026 

Data file. 1027 
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