

1 **Global Diversity and Distribution of Antibiotic Resistance Genes in Human Wastewater**
2 **Treatment Systems**

3
4 Congmin Zhu^{1,2,3#}, Linwei Wu^{3,4#†}, Daliang Ning^{3#}, Renmao Tian^{3,5}, Shuhong Gao³, Bing
5 Zhang^{6,7}, Jianshu Zhao⁸, Ya Zhang³, Naijia Xiao³, Yajiao Wang³, Mathew R. Brown⁹, Qichao
6 Tu¹⁰, Global Water Microbiome Consortium^{*}, Feng Ju^{11,12}, George F. Wells¹³, Jianhua Guo¹⁴,
7 Zhili He^{15,16}, Per H. Nielsen¹⁷, Aijie Wang¹⁸, Yu Zhang¹⁹, Ting Chen²⁰, Qiang He^{21,22}, Craig S.
8 Criddle²³, Michael Wagner²⁴, James M. Tiedje²⁵, Thomas P. Curtis⁹, Xianghua Wen⁶, Yunfeng
9 Yang⁶, Lisa Alvarez-Cohen^{26,27}, David A. Stahl²⁸, Pedro J. J. Alvarez²⁹, Bruce E. Rittmann³⁰, and
10 Jizhong Zhou^{3,27,31,32,33†}

11
12 ¹School of Biomedical Engineering, Capital Medical University, Beijing, China
13 ²Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application,
14 Beijing, China

15 ³Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
16 ⁴Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education,
17 College of Urban and Environmental Sciences, Peking University, Beijing, China

18 ⁵Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA

19 ⁶State Key Joint Laboratory of Environment Simulation and Pollution Control, School of
20 Environment, Tsinghua University, Beijing, China

21 ⁷College of Life and Environmental Sciences, Minzu University of China, Beijing, China

22 ⁸Center for Bioinformatics and Computational Biology, School of Biological Sciences, Georgia
23 Institute of Technology, Atlanta, GA, USA

24 ⁹School of Engineering, Newcastle University, Newcastle upon Tyne, UK

25 ¹⁰Institute for Marine Science and Technology, Shandong University, Qingdao, China

26 ¹¹Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of
27 Engineering, Westlake University, Hangzhou, Zhejiang, China

28 ¹²Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou,
29 Zhejiang, China

30 ¹³Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL,
31 USA

32 ¹⁴Australian Centre for Water and Environmental Biotechnology, The University of Queensland,
33 Brisbane, Queensland, Australia

34 ¹⁵Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

35 ¹⁶ College of Agronomy, Hunan Agricultural University, Changsha, China

36 ¹⁷Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg
37 University, Aalborg, Denmark

38 ¹⁸Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing,
39 China

40 ¹⁹State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-
41 Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of
42 Sciences, Beijing, China

43 ²⁰Institute for Artificial Intelligence and Department of Computer Science and Technology,
44 Tsinghua University, Beijing, China

45 ²¹Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville,
46 TN, USA

47 ²²Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville,
48 TN, USA

49 ²³Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

50 ²⁴Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research
51 Network 'Chemistry meets Microbiology', University of Vienna, Vienna, Austria

52 ²⁵Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA

53 ²⁶Department of Civil and Environmental Engineering, College of Engineering, University of
54 California, Berkeley, CA, USA

55 ²⁷Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA,
56 USA

57 ²⁸Department of Civil and Environmental Engineering, University of Washington, Seattle, WA,
58 USA

59 ²⁹Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

60 ³⁰Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe,
61 AZ, USA

62 ³¹School of Biological Sciences, University of Oklahoma, Norman, OK, USA

63 ³²School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman,
64 OK, USA

65 ³³School of Computer Sciences, University of Oklahoma, Norman, OK, USA

66 *A list of authors and their affiliations appears at the end of the paper.

67

68

69

70 [#]These authors contributed equally: Congmin Zhu, Linwei Wu, Daliang Ning.

71 [†]**Corresponding author:** Linwei Wu, e-mail: linwei.wu@pku.edu.cn; Jizhong Zhou, e-mail:
72 jzhou@ou.edu

73

74 **Classification:** Biological Sciences, Microbiology

75 **Keywords:** antibiotic resistance, microbiome, metagenomics, activated sludge, wastewater
76 treatment plants

77

78 **Abstract**

79 Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants
80 (WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyse the
81 antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents,
82 using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that
83 ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs.
84 ARG composition differs across continents and is distinct from that of the human gut and the
85 oceans. ARG composition strongly correlates with bacterial taxonomic composition, with
86 *Chloroflexi*, *Acidobacteria* and *Delta proteobacteria* being the major carriers. ARG abundance
87 positively correlates with presence of mobile genetic elements, and 57% of the 1,112 recovered
88 high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven
89 by a complex combination of stochastic processes and deterministic abiotic factors.

90

91 **Introduction**

92 Antibiotic resistance (i.e., the ability of bacteria to survive and replicate in the presence of an
93 antibiotic¹) poses an increasingly urgent global public health challenge². Many bacterial
94 pathogens have developed resistance to major antibiotics, with some resisting multiple drugs and
95 causing untreatable infections^{3,4}. Owing to the global broad use of antibiotics, antibiotic resistant
96 bacteria (ARB) and their antibiotic resistance genes (ARGs) are emerging and spreading globally
97 among people, food, animals, plants, and environmental compartments; i.e., soil, water, and air⁵,
98 ⁶. The environment provides an immense gene pool from which numerous ARGs could be
99 acquired by pathogens to resist antibiotics⁷. Since many ARGs are found on mobile genetic
100 elements (MGEs) and are therefore often horizontally transmitted, antibiotic use also imposes a
101 selective pressure on the whole microbiome, not just pathogens.

102 In addition to studying the acquisition of antimicrobial resistance in pathogens, it is
103 important to examine how antibiotic use and other environmental variables (such as
104 temperature⁸, pH⁹, gross domestic product (GDP)¹⁰, population density¹¹) affect the aggregate
105 collection of resistance genes of commensal microbiomes; i.e., the resistome. Reliable
106 information on the global occurrence and biotic/abiotic drivers of ARGs is urgently needed to
107 inform public health actions and antibiotic-use decisions. Previous studies have reported global
108 maps of resistomes for soil¹², inland water¹³, urban mass-transit systems¹⁴, sewage¹⁵, and the
109 human gut¹⁶, providing baseline information for understanding ARG diversity and health risks in
110 the environment.

111 The sewage of ~52% of the global population is delivered to wastewater treatment plants
112 (WWTPs)^{17,18}, an essential infrastructure for the protection of human and ecosystem health^{19,20}.
113 However, WWTPs are among the most important reservoirs of ARGs and ARB because they
114 receive wastewater from homes, hospitals, and pharmaceutical manufacturing facilities. Most
115 WWTPs employ the activated sludge (AS) process, an open aerobic enrichment-culture system
116 of microbial flocs or granules. Different anoxic/aerobic AS variants remove organic carbon,
117 nitrogen, and phosphorus and can function within treatment trains to remove pathogens,
118 micropollutants, and ARB²¹⁻²³. The activated sludge could also be a spawning ground for
119 resistance evolution, making it an important platform to study the rules governing the
120 development of ARGs in the environment.

121 Recent studies have investigated resistome dynamics over time^{24, 25} or across treatment
122 compartments in one specific WWTP^{24, 25}, and the resistome diversity and distribution in several
123 local WWTPs^{9, 26, 27}. However, their findings exhibit limited concordance, possibly due to small
124 sample sizes or non-unified protocols. For instance, co-occurrence network analysis suggested
125 the bacterial phyla of Actinobacteria, and Bacterioidetes as main hosts of ARGs in WWTPs²⁶, but
126 metagenome-assembled genome (MAG)-based methods revealed the most frequent hosts to be
127 Proteobacteria²⁸. Moreover, few studies have assessed the environmental factors driving
128 resistomes in WWTPs⁹. Hence, our understanding of global ARG diversity in WWTPs and the
129 underlying mechanisms affecting ARGs in WWTPs remains incomplete. Meta-analysis based on
130 localized experiments is problematic due to differences in experimental systems, sampling
131 methods, and analytical approaches^{29, 30}. To discern the global picture of ARGs in WWTPs, a
132 survey is needed that is systematic, methodologically consistent, and globally representative.

133 To meet this need, a Global Water Microbiome Consortium (GWMC) was established
134 (<http://gwmc.ou.edu/>) to oversee and coordinate a systematic global campaign for collection,
135 sequencing, and analysis of ~1,200 AS samples using identical protocols³¹. Among these
136 samples, 226 metagenomes (i.e., a collection of genomes and genes from all microorganisms³²)
137 were identified by shotgun sequencing. The resistomes (i.e., collections of ARGs)³³ were
138 analyzed to address fundamental questions: (i) What are the diversity and distributions of global
139 AS resistomes? (ii) What are the associations among the resistomes and microbiomes? and (iii)
140 What biotic and abiotic mechanisms control the diversity, structure, and distributions of global
141 AS resistomes?

142 Results and Discussion

143 Diversity of global AS resistomes

144 To determine the resistomes of AS, the community DNA of 226 samples from 114 representative
145 WWTPs across six continents (Fig. 1a) was sequenced. A total of 2.8 terabases (Tb) with an
146 average of 12.3 ± 3.9 Gb per sample (Supplementary Data 1) were obtained. Rarefaction analysis
147 of the sequencing reads mapping to bacterial 16S rRNA genes (Supplementary Fig. 1a, b) and
148 ARGs (Supplementary Fig. 1c, d) showed that the sequencing depth was sufficient to represent
149 the diversity of AS microbiomes and resistomes.

150 Overall, 36,147,212 contigs longer than 1 kb were assembled from all filtered
151 metagenomic reads, and 34,860,381 non-redundant open reading frames (ORFs) were predicted.
152 37,029 (0.11%) of the ORFs were annotated as ARG sequences. A total of 179 different ARGs,
153 relevant to 15 drug classes, were identified (Supplementary Table 1). To assess geographical
154 distribution, ARG abundance was normalized to the ARG copy number per bacterial cell³⁴. The
155 core ARGs in activated sludge, meaning those present in all AS samples analyzed, encompassed
156 20 genes that accounted for 83.8% of the total ARG abundance (Supplementary Data 2). The
157 three most abundant ARGs were Tetracycline_Resistance_MFS_Efflux_Pump (15.2%), ClassB
158 (13.5%), and vanT gene in vanG cluster (11.4%), which respectively confer Tetracycline, Beta-
159 lactam, and Glycopeptide resistance (Supplementary Data 2).

160 Since different ARGs might be associated with the same resistance mechanism or drug
161 class, the relative abundances of ARGs were aggregated based on their resistance mechanisms
162 and drug classes (Fig. 1b and Supplementary Fig. 2a). ARGs encoding antibiotic inactivation
163 were the most abundant, accounting for about 55.7% of the total ARG abundance. The next most
164 prevalent were ARGs for antibiotic-target alteration (25.9%) and efflux pumps (15.8%). When
165 ARGs were aggregated by drug class, ARGs conferring resistance to Beta-lactam (46.5%),
166 Glycopeptide (24.5%), and Tetracycline (16.2%) were the most abundant. The relative
167 abundances of ARGs encoding major resistance mechanisms or drug classes were relatively
168 consistent across samples.

169 **Global distribution of AS resistomes**

170 *Global variation in ARG abundance.* The total ARG abundance showed no significant difference
171 across the six continents (Supplementary Fig. 2b; $p = 0.78$, Kruskal-Wallis test). However, the
172 mean ARG richness (Fig. 1c) and Shannon's H index (Supplementary Fig. 2c) were significantly
173 higher in Asia than in other continents except Africa. ARG abundance varied across samples
174 from different countries ($p = 0.034$, Kruskal-Wallis test): Samples from Chile (2.87 ± 0.40) and
175 Canada (3.10 ± 0.35) were the lowest in mean ARG abundance, while samples from Switzerland
176 (4.30 ± 0.20) and Colombia (4.26 ± 0.86) were the highest (Supplementary Fig. 3a). However,
177 *post hoc* analysis indicated that total ARG abundance was not significantly different between any
178 country pairs ($p_{adj} > 0.05$, Dunn *post hoc* tests).

179 *Global variations in ARG compositions.* To identify structural differences of resistomes across
180 continents, PERMANOVA (Permutational multivariate analysis of variance) was performed at
181 the individual gene level (Table 1). The resistomes were all significantly different ($p < 0.05$)
182 when comparing pairwise continents. Principal coordinate analysis (PCoA) and clustering
183 analysis at the gene level showed a strong regional separation (Fig. 1d, Supplementary Fig. 4a,
184 and Supplementary Note 1). A weaker regional separation was observed at the drug-class level,
185 versus the gene level (Supplementary Fig. 4b and Supplementary Note 1).

186 *ARG differences across different habitats.* To determine whether the structure of AS resistomes
187 resembled those from other habitats, we conducted a comparative analysis of resistomes across
188 different environments (AS, human gut³⁵, soil³⁶, ocean³⁷, and sewage¹⁵) according to the read-
189 based annotations. Comparison of the results obtained from contig- and read-based approaches
190 on our AS samples demonstrated that the major conclusions remain consistent regardless of the
191 approach used (Supplementary Fig. 5 and Supplementary Note 2). PCoA revealed that the
192 resistomes were distinctly different across habitats (Fig. 1e). AS resistomes were much more
193 similar to sewage and soil resistomes than to ocean or human gut resistomes (Fig. 1e), even when
194 aggregated by resistance mechanisms or drug classes (Supplementary Fig. 3b, c). The similar
195 ARG compositions among AS, sewage, and soil could be due to the interconnection of these
196 environments, as sewage is the influent of WWTPs, and soils could also be an important source
197 of the influent's compositions, especially in combined sewer systems that collect both domestic
198 sewage and stormwater.

199 **Relationships between the resistomes and microbiomes**

200 *Associations of the resistomes to bacterial community structure.* To understand the relationships
201 between resistomes and bacterial community structure, we performed Procrustes analyses. The
202 bacterial community structure was represented either by 16S rRNA genes extracted from
203 metagenomes (Fig. 2a) or amplified 16S rRNA genes (Fig. 2b). Procrustes analysis yielded a
204 matrix-matrix correlation coefficient of 0.74 for metagenome 16S-based bacterial community
205 structure, and a matrix-matrix correlation coefficient of 0.70 for 16S amplicon-based bacterial
206 community structure (protest, $p < 0.001$), suggesting a strong association between WWTP
207 bacterial community structure and the resistomes. These results are consistent with previous

208 studies on local WWTPs^{9,27} and soil³⁸, demonstrating that bacterial community composition
209 plays a pivotal role in shaping the resistomes.

210 To further determine whether the relationships between the resistomes and microbiomes
211 depend on phylogenetic lineages, we determined the linkages of the total ARG abundance and
212 the top four major ARG groups to the relative abundances of major phyla (Fig. 2c and
213 Supplementary Note 3). Bacteroidetes, the most abundant phylum, were positively correlated
214 with the ARG abundance based on amplicon 16S rRNA gene data ($\rho = 0.28$, adjusted $p =$
215 0.0001). Based on metagenome-derived 16S rRNA genes, the ARG abundance was also
216 positively correlated with Chloroflexi ($\rho = 0.48$, adjusted $p < 2.7 \times 10^{-13}$), Acidobacteria ($\rho =$
217 0.28, adjusted $p = 9.4 \times 10^{-5}$), Gemmatimonadetes ($\rho = 0.24$, adjusted $p = 0.001$), Nitrospirae
218 ($\rho = 0.20$, adjusted $p = 0.009$), and Deltaproteobacteria ($\rho = 0.20$, adjusted $p = 0.008$),
219 suggesting that these taxa may be major carriers of ARGs. Strong correlations between the ARG
220 abundance and taxonomic groups were also observed in other environments but with different
221 patterns (Supplementary Fig. 6 and Supplementary Note 3). These results suggest that the
222 resistomes in AS could be strongly tied to microbial physiology.

223 *ARG-associated metagenome-assembled genomes.* To further understand the association
224 between ARGs and their bacterial hosts, the shotgun sequences of these global AS samples were
225 assembled into contigs and binned into genomes (See Methods for details). A total of 1,112
226 dereplicated high-quality and MAGs were recovered with 536 Bacteroidota, 272 Proteobacteria
227 and 43 Actinobacteria. We detected that 1,054 of them contain at least one ARG and 28 were
228 identified as potential human pathogens based on the taxonomic information and presence of
229 virulence factors³⁹⁻⁴¹ (Supplementary Note 4). As shown in the MAGs-based phylogenetic tree in
230 Fig. 2d, the total ARG abundance and major ARG classes varied greatly among different
231 phylogenetic groups. Chloroflexi (7.2 ± 3.0 ARG counts), Acidobacteria (6.6 ± 3.0),
232 Deltaproteobacteria (4.5 ± 2.8), Gemmatimonadota (3.5 ± 2.1), and Bacteroidetes (3.3 ± 1.7) were
233 the top five carriers of ARGs (Fig. 2e), which was consistent with their positive correlations with
234 the ARG abundance. Bacteroidetes and Proteobacteria were reported to be the main hosts of
235 ARGs in local WWTPs^{26,28}, consistent with our synthetic analyses using both correlation- and
236 MAG-based methods. This is likely due to their ability to disseminate resistance genes via
237 horizontal gene transfer (HGT)⁴² and their adaptability to antibiotic-rich environments⁴³.

238 Collectively, all the above analyses indicate that the identified taxa may play significant roles in
239 ARG persistence and dissemination in activated sludge systems.

240 **Mobility of resistomes and MAGs**

241 MGEs facilitate the horizontal transfer of ARGs, contributing to antibiotic resistance
242 dissemination and evolution in microbial communities⁴⁴. For determining the diversity of MGEs,
243 a total of 2,200 non-redundant ORFs were identified as 56 MGE genes (Supplementary Data 3).
244 The three most abundant MGEs were *tnpA*, *IS91* and *tniA*, and the corresponding MGEs classes
245 were transposase, insertion_element_IS91 and plasmid in AS (Fig. 3a and Supplementary Note
246 5). The total MGE abundance showed significant difference across the six continents (Fig. 3b; p
247 = 1.2×10^{-6} , Kruskal-Wallis test) and different countries ($p = 5.8 \times 10^{-7}$, Kruskal-Wallis test).
248 Linear regressions showed that the MGE richness was positively correlated with the ARG
249 richness ($R = 0.38$, adjusted $p = 2.8 \times 10^{-9}$). Furthermore, the total ARG abundance was positively
250 correlated with the abundance of their nearby MGEs ($R = 0.20$, adjusted $p = 0.003$;
251 Supplementary Note 5).

252 We further quantified mobility based on the ARGs sharing between distinct hosts.
253 Following the method applied to human microbiomes^{16, 45}, mobile ARGs were identified as
254 identical or near identical sequences present in different bacterial hosts. From these 1,112
255 dereplicated MAGs, 3,646 ORFs were annotated as ARG sequences, which were further
256 clustered into 2,368 ARG clusters at 99% nucleotide identity. Subsequently, 29% of the ARG
257 clusters (682/2,368) covering 54% of all ARG sequences (1,959/3,646) were assigned to
258 multiple species, suggesting possible recent horizontal gene transfer across distantly related
259 organisms. In comparison, 10% of the ARG clusters from the human microbiome MAGs were
260 multi-species ARGs¹⁶. Remarkably, the proportion of potentially mobile ARGs in AS was
261 surprisingly higher than that in the human microbiome. This may be due to the high density of
262 bacterial cells and well-mixed nature of AS, which enhances the probability of bacterial physical
263 contact and subsequently increases the likelihood of horizontal gene transfer. Note that the non-
264 mobile/intrinsic ARGs still contribute to the gene pool in the environment, as they might be
265 captured by mobile genetic elements in a certain stage of evolution and become mobile ARGs⁴⁶.

266 The potential ARG mobility for MAGs varied across phylogenetic lineages (Fig. 2d). Of
267 the 1,112 MAGs, 57.6% (641/1,112) were identified as carrying multi-species mobile ARGs.

268 Among MAGs harboring multi-species mobile ARGs, the proportion of Bacteroidetes phylum
269 was higher than those with immobile ARGs (Fig. 3c), suggesting that the Bacteroidetes phylum
270 could be more prone to horizontal gene transfer to survive in AS with antibiotics. In terms of
271 resistance mechanisms and drug classes, the relative abundances of glycopeptide and macrolide-
272 lincosamide-streptogramin resistance genes also were higher in mobile than immobile ARGs,
273 suggesting that these classes could potentially be more mobile in AS (Fig. 3c). Most mobile
274 ARG clusters can transfer across multi-species, while only 4% (26/682) ARG clusters exhibit the
275 ability to move across multi-phyla (Fig. 3d). Notably, 65% (17/26) multi-phyla mobile ARG
276 clusters are associated with antibiotic inactivation. Horizontal transfer of antibiotic inactivation
277 resistance genes plays a crucial role in microbial survival by enhancing adaptability, accelerating
278 the dissemination of resistance, and conferring evolutionary advantages in antibiotic-rich
279 environments⁴⁷. Horizontal transfer poses considerable challenges to public health.

280 **Drivers of global AS resistomes**

281 We quantitatively assessed the relative contribution of stochastic vs. deterministic processes to
282 the global AS resistome variations with the metric of normalized stochasticity ratio (NST)⁴⁸. The
283 NST estimated for resistomes was generally above 0.5 for all continents except Europe (Fig. 4a
284 and Supplementary Note 6), suggesting that stochastic processes may play a role in the AS
285 resistome variations. Multiple regression on matrices (MRM)-based variance partition analysis
286 (VPA) also revealed that substantial variations (67.4%) of the resistomes remained unexplained
287 by the measured environmental variables and geographical distance (Fig. 4b and Supplementary
288 Note 6). While these results align with previous findings that stochastic processes are important
289 in shaping bacterial community assembly in AS³¹, it is critical to note that apparent stochasticity
290 could mask unmeasured deterministic pressures, such as environmental stresses from
291 antibiotics⁴³, heavy metals⁴⁹, or microplastics⁵⁰. Additionally, methodological limitations,
292 including sequencing depth and database biases, might constrain our ability to resolve
293 deterministic signals. Thus, while stochastic processes likely contribute to AS resistome
294 variations, deterministic factors should not be overlooked.

295 To further discern the roles of individual deterministic factors, we examined the
296 environmental variables having significant correlations ($p < 0.05$) with changes in ARG
297 abundance by using univariate models (Supplementary Table 2). The mixed liquor suspended

298 solid (MLSS), temperature, and city population showed positive correlations with the ARG
299 abundance (Supplementary Fig. 7a-c and Supplementary Note 7). Conversely, the ARG
300 abundance was negatively correlated with pH, solids retention time and influent biochemical
301 oxygen demand (BOD) (Supplementary Fig. 7d-f and Supplementary Note 7), which have been
302 reported to play important roles in regulating the structure of the AS bacterial community^{31, 36}.
303 Unlike previous observations indicating that the abundance of sewage ARGs is strongly
304 correlated with socio-economic factors¹⁵, we found no significant correlation between ARG
305 abundance and per capita GDP or country-level antibiotics use⁵¹ for where the WWTP is located
306 (Supplementary Table 2). The non-correlation may suggest that the antibiotic concentrations in
307 AS might be insufficient to pose a significant selective pressure for ARGs maintenance and
308 propagation⁵². However, the resolution of antibiotic use data (only from 15 country-level
309 observations) may be too low to reveal its impact on the ARG abundance in AS.

310 A more in-depth analysis using partial least squares (PLS) further revealed potential
311 direct and indirect effects of biotic and abiotic drivers (Fig. 4c). PLS analysis indicated that the
312 bacterial community structure, MGEs, temperature, and city population could affect the AS
313 resistome, which further influenced the AS ecosystem functioning for pollutant removal.
314 Temperature had a direct influence on ARG abundance (Pearson $r = 0.39$, partial $R^2 = 0.08$) and
315 indirectly affected ARG abundance through the bacterial community structure (Pearson $r = 0.54$,
316 partial $R^2 = 0.14$ of the first principal component score (PC1) representing the community
317 structure). Because temperature is a primary driver of biological processes⁵³, temperature likely
318 has important effects on ARG abundance and distributions⁸. Although the potential mechanisms
319 underlying the relationships between ARGs and temperature are not clear, temperature could
320 facilitate horizontal gene transfer, population growth, biotic interactions, and community
321 turnovers⁵⁴⁻⁵⁶. ARG abundance was also directly influenced by the abundance of proximal MGEs
322 (Pearson $r = 0.30$ partial $R^2 = 0.09$). Several studies have shown that MGEs can carry multiple
323 ARGs and contributed to their spread within bacterial populations, thereby increasing the ARG
324 abundance^{57, 58}. Another factor that had a direct positive effect on ARG abundance was the city
325 population (Pearson $r = 0.30$, partial $R^2 = 0.05$). A higher population may be associated with an
326 increased use and sewage discharge of antibiotics, exacerbating the emergence and spread of
327 ARGs in bacteria¹⁰. Overall, although the abiotic environmental variables had significant effects
328 on the resistome, their impact was relatively small (partial $R^2 < 0.1$, Fig. 4c), which are consistent

329 with the null model-based stochasticity ratio (Fig. 4a) and MRM-VPA analysis (Fig. 4b)
330 showing that stochastic processes may play a more important role.

331 **Concluding remarks**

332 Understanding the global ARG abundance, diversity, and distributions, along with their
333 controlling mechanisms is critical to risk assessment and mitigation of antibiotic resistance. By
334 analyzing the AS resistomes via well-coordinated international efforts, this study showed that
335 ARGs are highly abundant, diverse, and widely distributed across global WWTPs, this
336 corroborates that WWTPs are an important reservoir of environmental ARGs^{5, 59-61}. By offering a
337 global-scale characterization of ARGs, this study provides inter-continental and inter-country
338 comparisons of the resistomes in WWTPs. Our results revealed that the structures of activated
339 sludge resistomes differed among continents and were far distant from those of the human gut
340 and oceans, but they exhibited close similarity to those of sewage and soils. We also recovered
341 thousands of dereplicated high-quality MAGS, which could enable more in-depth analyses of
342 ARG hosts and the quantification of ARG mobility. In addition, our analyses indicate that
343 resistome variations in activated sludge may be driven by stochastic processes, such as random
344 gene exchanges and drift⁶². However, deterministic factors such as temperature and city
345 populations still played important roles in the evolution and proliferation of ARGs in global
346 WWTPs.

347 **Methods**

348 **Global sampling and DNA sequencing**

349 A total of 1,186 AS samples were collected by the GWMC from 269 WWTPs across 23
350 countries with varying geographic locations, latitudes, and climate zones³¹. There was a unified
351 protocol (http://gwmc.ou.edu/files/Sampling_Shipping_Protocol_General_20141103.pdf)
352 developed at GWMC for sampling, preserving samples, collecting metadata, collecting DNA,
353 and sequencing so that potential effects of the variations on experimentation would be
354 minimized. A total of 226 representative samples out of 1,186 AS samples had sufficient
355 metadata to be used for metagenomic sequencing.

356 Detailed information about the procedure of DNA extraction is described in Wu et al³¹. In
357 brief, MoBio PowerSoil DNA isolation kit was used to isolate community DNA from mixed

358 liquor samples (3 mL). We vortexed 12 bead tubes at maximum speed for 10 minutes, following
359 the manufacturing protocol, to minimize variations in cell lysis efficiency between samples.
360 Then, we constructed genomic DNA libraries by following the manufacturer's instructions with
361 an average insert size of 300 bp using KAPA Hyper Prep Kit (KR0961). DNA LabChip 1000 kit
362 from Agilent was used to assess the quality of all libraries, and all qualified libraries were
363 sequenced at the Oklahoma Medical Research Foundation (OMRF) with paired-end sequencing
364 on Illumina HiSeq3000. The sequenced reads were deposited in the Sequence Read Archive
365 (BioProject accession number PRJNA509305).

366 **Metagenomic sequences processing**

367 An internal metagenomic pipeline (ARMAP,
368 http://zhoulab5.rccc.ou.edu/pipelines/ARMAP_web/job_submission.php) was used to process
369 the metagenomic data. First, all sequenced reads were subjected to FastQC for quality evaluation
370 with quality profile, duplication rates, and contamination rates. Using CD-HIT (v4.6.8)⁶³, a
371 100% identity cutoff was used to remove duplicates. Quality trimming and filtering were
372 performed using NGS QC Toolkit (v2.3.3)⁶⁴. The pair-end adaptor library was used to detect
373 reads with residual adaptors. Raw reads were filtered with the following constraints: (i) reads
374 with more than one ambiguous N base were removed; (ii) 3'-ends of reads were trimmed to the
375 first high-quality base with quality score ≥ 20 ; and (iii) trimmed reads with the length > 120 bp
376 (80% of the sequence read length) were further filtered with an average quality score cutoff of
377 20. The paired-end reads (fasta) of each sample after quality trimming and filtering were
378 assembled by Megahit (v1.0.5)⁶⁵ into contigs in a time- and cost-efficient way, using the
379 following parameters: --min-contig-len = 1000, --k-min = 31, --k-max = 131, --k-step = 20 and --
380 min-count = 1. All assembled contigs were imported into the NGS QC Toolkit for calculation of
381 the contig length profiles (N50Stat.pl).

382 **ARGs annotation for open reading frames**

383 Open reading frames (ORFs) of protein-coding genes were predicted from the assembled contigs
384 of each metagenome by Prodigal (v2.6.3)⁶⁶ with '-p meta' option. A non-redundant ORFs
385 catalog was constructed by protein clustering using MMseqs2⁶⁷, with a minimum identity
386 threshold of 95% and a minimum sequence coverage of 90% (--min-seq-id 0.95 -c 0.9 --cluster-
387 mode 2 --cov-mode 1). The coverages of the non-redundant genes in each sample were

388 determined by CoverM (v0.6.1) (<https://github.com/wwood/CoverM>) using default settings.
389 Then, non-redundant ORFs were functionally annotated to the Comprehensive Antibiotic
390 Resistance Database (CARD)⁶⁸ and the ResFams database⁶⁹. Genes were first assigned as ARGs
391 by annotating with the CARD using their recommended tool Resistance Gene Identifier (RGI)
392 (v6.0.0), requiring a hit scoring above the family-specific threshold under the CARD homologue
393 model, with the top hit taken if several are achieved. The remaining unannotated genes were
394 filtered and subsequently annotated with Resfams protein families, requiring the score to a
395 ResFams hidden Markov model exceeded the gathering threshold for that model. The ORF
396 annotated to Resfam were represented as gene families. The following criteria were used to
397 remove potential false positive ARGs: (i) genes that confer resistance via overexpressing of
398 resistant target alleles (e.g. resistance to antifolate drugs via mutated DHPS and DHFR); (ii)
399 global gene regulators, two-component system proteins, and signaling mediators; (iii) efflux
400 pumps that confer resistance to multiple antibiotics; (iv) genes modifying cell wall charge (e.g.
401 those conferring resistance to polymixins and defensins). Raw unnormalized abundance value
402 was calculated for each ARG in a sample as the summed coverage depths of all ORFs that were
403 annotated to that ARG in the given sample.

404 To assess the ARG distributions in AS samples, the raw abundance of ARGs was
405 normalized and expressed as “copy of ARG per cell” using the equation (1).

$$406 \quad \text{Abundance} = \sum_{i=1}^n \frac{\text{Coverage}_{i(\text{ARG-like gene})}}{\text{Coverage}_{16S \text{ sequence}}} \times N_{16S \text{ copy number}} \\ 407 \quad = \sum_{i=1}^n \frac{N_{i(\text{ARG-like sequence})} \times L_{\text{reads}}/L_{i(\text{ARG ORF})}}{N_{16S \text{ sequence}} \times L_{\text{reads}}/L_{16S \text{ sequence}}} \times N_{16S \text{ copy number}} \quad (1)$$

408 Where $\text{Coverage}_{i(\text{ARG-like gene})}$ is the coverage of a specific ARG ORF, which is calculated
409 from the number of reads annotated to this ORF ($N_{i(\text{ARG-like sequence})}$), the sequence length (bp)
410 of the reads (L_{reads}), and the length (bp) of the corresponding ARG ORF ($L_{i(\text{ARG ORF})}$). For the
411 coverage of 16S rRNA gene ($\text{Coverage}_{16S \text{ sequence}}$) calculation, $N_{16S \text{ sequence}}$ is the number of
412 the 16S rRNA gene sequences identified for the metagenomic data by Metaxa2 (v2.248)⁷⁰,
413 L_{reads} represents the sequence length of the reads, $L_{16S \text{ sequence}}$ is the average length of 16S
414 rRNA genes (1,432 bp) in Greengenes database⁷¹. $N_{16S \text{ copy number}}$ is the average copy number
415 of 16S rRNA genes per cell in the community, and n is the number of annotated ARGs for a

416 specific category. The average copy number in the community was calculated as the abundance-
417 weighted mean 16S rRNA gene copy number, where the 16S rRNA gene copy number of each
418 genus was estimated through the rrnDB database based on its closest relatives with known rRNA
419 gene copy number^{72, 73}. It is noted that the normalized ARG abundance (gene copies per cell)
420 depends on the algorithms for identifying ARGs and 16S rRNA genes. There could be false
421 positives and false negatives; thus, the resultant ARG abundance may not reflect the real values
422 in the community. However, we can still conduct relative comparison across different samples,
423 under the assumption that the estimations across samples are subjected to the same degree of
424 bias. In this way, we can compare the abundance of ARGs of samples and explore the underlying
425 mechanisms shaping the resistomes.

426 **Mobile genetic elements (MGEs) annotation**

427 To determine the diversity of MGEs in the AS, we annotated MGEs for the non-redundant ORFs
428 by BLASTN (-perc_identity 0.5 -evaluate 1e-10 -max_target_seqs 1) against the previously
429 published database of MGEs⁷⁴. This database consists of MGEs with 278 different genes and
430 more than 2,000 unique sequences. The raw abundance of each MGE in a sample was calculated
431 as the summed coverage depths of all ORFs annotated to that MGE and normalized as “copy of
432 MGE per cell” in the same manner as for the ARGs.

433 To quantify the mobility potential of ARGs, we performed co-localization analysis
434 between ARGs and MGEs on all assembled contigs. We first annotated the ARGs and MGEs on
435 all contigs and then identified the contigs carrying both ARGs and MGEs for calculating the
436 minimum distance between them. ARGs with potential mobility were defined as sharing a
437 nearby area (<10 kb)⁷⁵ with an MGE. We calculated the proportions of mobile ARGs in each
438 sample. We also calculated the raw abundance of MGEs co-located (<10 kb) with ARGs using
439 the coverage of the corresponding contigs in the given sample, which was determined by
440 CoverM (v0.6.1) using default settings. The raw abundances of MGEs were then normalized as
441 “copy per cell” with the above method.

442 **Taxonomic profiling of the metagenomic sequences**

443 Bacterial-community profiling at the genus level was done using Metaxa2 (v2.248)⁷⁰, based on
444 the bacterial 16S rRNA reads extracted from the high-quality metagenomic reads. The bacterial
445 profile was also represented by the OTU table based on 16S rRNA amplicon sequencing data,

446 which was published by Wu et al³¹. The relative abundance of a taxonomic category was
447 calculated as the sum of reads annotated to that category normalized by the total number of
448 taxonomic reads in each sample.

449 **MAG recovery, taxonomic annotation, and phylogenetic tree construction**

450 All assembled contigs longer than 1 kbp were binned with Matabat2⁷⁶, Maxbin2⁷⁷, and
451 CONCOCT (v0.4.1)⁷⁸ based on contig composition and coverages. Before binning, Bowtie2⁷⁹
452 was used to align short-read sequences to contigs (options: -very-fast), and SAMtools⁸⁰ was used
453 to sort and convert SAM files to BAM format. Then, DAStools⁸¹ was used to refine binned
454 contigs with default parameters where Usearch⁸² was used as the search engine. We performed
455 CheckM (v1.0.6)⁸³ to estimate the completeness and contamination of each bin. To get the
456 nonredundant consolidation, the dRep⁸⁴ dereplication workflow was used with options
457 ‘dereplicate_wf -p 16 -pa 0.9 -sa 0.95 -nc 0.3 -comp 70 -con 10 -str 100 -strW 0’. Bin scores
458 were given as completeness-5×contamination+0.5×log(N50), and only the highest-scoring
459 MAGs from each cluster (> 95% average nucleotide identity) were retained in the dereplicated
460 set. The bins with high completeness (>90%) and few contaminants (<5%) were retained as
461 high-quality MAGs and were used for downstream analyses.

462 The taxonomy of the represented MAGs was assigned using GTDB-tk v2.1.0⁸⁵ based on the
463 Genome Taxonomy Database⁸⁶. Besides, to identify the pathogenic genomes, we first selected
464 the potential ones by referring to two published reference pathogen lists that consisted of 140
465 potentially human pathogenic genera⁴⁰ and 538 potentially human pathogenic species⁴¹. Then,
466 we searched the ORFs of taxonomically predicted potentially pathogenic genomes against the
467 experimentally verified bacterial virulence factor database VFDB (last update: Dec.11, 2020)³⁹
468 with BLASTN. The genomes with virulence factors with a global identity > 70% were
469 considered pathogens. The phylogenetic relationships of all MAGs were inferred by a maximum
470 likelihood alignment-based approach with PhyloPhlAn3⁸⁷ (--diversity high, --fast, with
471 configurations --db_aa diamond, --map_dna diamond, --map_aa diamond, --msa mafft, --trim
472 trimal, --tree1 iqtree). Visualization and annotation of the tree were done using GraPhlAn⁸⁸. It
473 should be noted that it has proven difficult to assemble genomes for populations below 1%
474 relative abundance owing to insufficient sequencing depth or difficulty in binning and assembly
475 of individual genomes from complex metagenomes⁸⁹.

476 **ARG host and mobility annotation for MAGs**

477 For the near-complete MAGs, ARGs of MAGs' contigs were also identified based on CARD⁶⁸
478 and the ResFams database⁶⁹ as above. The mobile ARGs were defined as identical or near
479 identical sequences present in different species^{16, 45}. Since our recovered MAGs were
480 dereplicated at an average nucleotide identity of 95%, they represented species-level genome
481 bins^{90, 91}. Thus, we searched for mobile ARGs as those present in two or more MAGs. To
482 achieve this, we first clustered the nucleotide sequences of all detected ARG ORFs into ARG
483 clusters with 99% identity, using the 'cluster' command of MMseqs2⁶⁷ with '-min-seq-id 0.99 -c
484 0.9 -cov-mode 0'. We then labeled any ARG cluster that was found in multiple MAGs as 'multi-
485 species', which was considered as the evidence of recent horizontal gene transfer. This strategy
486 of searching for ARG clusters across species to detect recent horizontal gene transfer is
487 equivalent to that used in some other studies on human microbiomes^{16, 45}.

488 **Analyzing metagenomic samples from other environments**

489 To compare AS resistomes with other environments, we selected the public global metagenomic
490 projects in human gut³⁵, sewage¹⁵, soil³⁶, and oceans³⁷ and collected samples from these public
491 databases. The raw metagenomic sequences were downloaded from the European Bioinformatics
492 Institute Sequence Read Archive database (sewage: PRJEB13831, soil: ERP020652, gut:
493 ERP004605, ocean: ERP001736). To avoid bias caused by data processing, we re-processed the
494 raw sequences with the same quality trimming and filtering parameters with our pipeline to
495 obtain high-quality sequences. Rather than using the contig-based approach to annotate ARGs
496 which requires significant time and vast computational resources for the assembly step, here we
497 profiled the abundance of ARGs through a read-based mapping strategy. The read-based
498 approach enabled an efficient comparison of resistomes between environments. We annotated
499 ARGs from the high-quality metagenomic sequences by DeepARG (v2)⁹² using the default
500 options (--id 50, -e 1e-10, -k 1000 of short reads mode), which can infer ARGs from short reads.
501 The abundances of ARGs were normalized to the unit of "copy per cell"³⁴ in a similar manner as
502 described above, although the calculation of ARG coverage was slightly different with the
503 equation (2).

504

$$\text{Abundance} = \sum_{i=1}^n \frac{\text{Coverage}_{i(\text{ARG})}}{\text{Coverage}_{16S \text{ sequence}}} \times N_{16S \text{ copy number}}$$

505
$$= \sum_{i=1}^n \frac{N_{i(\text{ARG-like sequence})} \times L_{\text{reads}}/L_{i(\text{ARG reference sequence})}}{N_{16S \text{ sequence}} \times L_{\text{reads}}/L_{16S \text{ sequence}}} \times N_{16S \text{ copy number}} \quad (2)$$

506 Where $N_{i(\text{ARG-like sequence})}$ is the number of ARG-like reads annotated as one specific ARG
 507 reference sequence, $L_{i(\text{ARG reference sequence})}$ is the sequence length (bp) of the corresponding
 508 ARG reference sequence.

509 To compare the results of the two ARG detection methods (contig-based and read-based
 510 approaches), we performed Procrustes analyses between the resultant AS ARG abundance
 511 matrices from the two methods using the function ‘procrustes’ of *vegan* R package⁹³. We also
 512 examined the correlation between the total abundance from two methods using the function ‘lm’
 513 of R.

514 **Statistical analyses**

515 The global map was created using the function ‘tm_shape’ of *spData* R package
 516 (10.32614/CRAN.package.spData). Richness and Shannon’s H index were computed using the
 517 *vegan* R package⁹³ to measure the diversity of ARGs or MGEs based on a rarified count matrix,
 518 which was obtained by rounding the coverages and sub-sampling to the lowest sample’s level.
 519 The richness and Shannon’s H diversity rarefaction curves for bacteria and ARGs were
 520 respectively based on the reads mapping to the bacterial 16S rRNA genes and ARGs. The curves
 521 were computed using the function ‘rarefaction.individual’ of *rareNMtests*⁹⁴ and plotted using the
 522 *ggplot2*⁹⁵ R packages. Kruskal–Wallis and the Dunn *post hoc* test were used to compare the
 523 means of ARG abundance or diversity between continents or countries, using R function
 524 ‘kruskal.test’ and function ‘dunnTest’ of *FSA* R package⁹⁶. To visualize the variation of
 525 resistomes across samples, the principal coordinate analysis (PCoA) was performed on the
 526 resistome Bray-Curtis dissimilarity matrix based on gene relative abundances, using the function
 527 ‘pcoa’ of *ape* R package⁹⁷. The heat map of genes was generated using the function ‘aheatmap’
 528 of *NMF* R package⁹⁸. PERMANOVA was applied to assess the resistome dissimilarities among
 529 continents using the function ‘adonis2’ of *vegan* R package. Procrustes analysis was performed
 530 to test the association between bacterial taxonomic composition and the resistome using the
 531 function ‘procrustes’ of *vegan* R package in which the ordinations of the bacterial taxonomic
 532 composition and the resistome were generated from PCoA. To disentangle the relative
 533 contributions of stochastic and deterministic processes to AS resistome, null model-based NST

534 approach⁴⁸ was applied to community ARG data. Normalized stochasticity ratio (NST) was used
535 to quantify ecological stochasticity in communities within continents and was analyzed in R
536 using the *NST* package⁴⁸.

537 To estimate the relative contributions of the environmental effects versus the distance
538 effects on the resistome dissimilarities, we performed a variation partition analysis (VPA) based
539 on multiple regression on matrices (MRM). Briefly, we first selected a non-redundant set of
540 environmental variables that contained missing data in less than 20% of all samples. The final set
541 included mixed liquid temperature, air temperature, precipitation, design capacity, volume of
542 aeration tanks, plant age, mixed liquor suspended solids (MLSS), solids retention time (SRT),
543 dissolved oxygen (DO), pH, and influent biochemical oxygen demand (BOD), effluent BOD,
544 food to microorganism (F/M) ratio and city GDP. The variance inflation factors (VIF) were less
545 than 10, indicating a low level of collinearity among these variables. MRM was performed using
546 the function 'MRM' of *ecodist* R package⁹⁹. Geographic distance was log-transformed. A
547 Euclidean distance matrix was calculated for each environmental variable. In VPA, the R^2 of the
548 selected environmental variables as independent matrices (R^2_E), geographical distance as an
549 independent matrix (R^2_G), and all matrices (R^2_T) were used to compute the three components of
550 variations: (i) pure environmental variation = $R^2_T - R^2_G$; (ii) pure geographical distance =
551 $R^2_T - R^2_E$; and (iii) spatially structured environmental variation = $R^2_G + R^2_E - R^2_T$.
552 Univariate models predicting the total ARG abundance (ARG copies per cell) as a function of
553 various environmental and site variables were performed using R function 'lm' and 'summary'.
554 For each variable, we fitted a linear and a quadratic model and results are shown for the model
555 with lower Akaike information criteria (AIC) value.

556 The partial least squares (PLS) model with a partial R^2 index based on PLS¹⁰⁰ was used to
557 explore the relationships among the microbiome (PC1 of bacterial community structure),
558 resistome (the total ARG abundance, PC1 of ARG composition, abundances of the top three
559 resistance mechanisms), the abundance of MGEs located near (< 10kb) ARGs, six
560 environmental variables which significantly correlated ($p < 0.05$) with the total ARG abundance
561 based on the univariate models, and ecosystem functions (the removal rate of BOD, COD, total
562 nitrogen and total phosphorus). Based on predictive performance counting in the explained
563 variation (R^2_Y) and model significance (P for R^2_Y and $Q^2_Y < 0.05$, where significant Q^2_Y helps to
564 avoid overfitting), Each optimum PLS model was forward selected from all factors that might

565 affect the dependent variable. To visualize relevant associations, we only included the most
566 relevant variable(s) with Variable Influence on Projection (VIP) values larger than 1. When used
567 as independent variables in PLS, the ARG composition was represented by the PC1 from PCoA
568 of Bray-Curtis distance. We used a partial R^2 index¹⁰¹ on the basis of PLS to represent the
569 proportion of variance explained by each independent variable (equation 3). We also calculated
570 the pairwise correlation coefficient (as well as the R^2) among the factors and the significance
571 was based on Pearson correlation as reference. The PLS-related analysis was performed using
572 the *ropels* package¹⁰² and the Mantel test using the *vegan* package⁹³ in R.

$$573 R_{PLSj}^2 = R_Y^2 \times \frac{\sum_f (W_{jf}^2 \times SSY_f)}{SSY_{cum}} = \frac{\sum_f (W_{jf}^2 \times SSY_f)}{SSY} \quad (3)$$

574 Where R_{PLSj}^2 is the partial R^2 of variable j based on PLS, W_{jf} is the PLS weight of variable j
575 on component f , SSY_f is the sum of squares of Y explained by component f , SSY_{cum} is the
576 cumulative sum of squares of Y explained by all components, R_Y^2 is the percentage of Y
577 dispersion (i.e., sum of squares) explained by the PLS model, and SSY is the Y dispersion, that
578 is, sum of squares of Y .

579 Data availability

580 The DNA sequences of the 16S rRNA gene and metagenomes generated in this study have been
581 deposited in the National Center for Biotechnology Information (NCBI) database under the project
582 accession number PRJNA509305 [<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA509305>]. The
583 assembled MAG sequences have been deposited in Zenodo under the DOI
584 10.5281/zenodo.14916172. [<https://doi.org/10.5281/zenodo.14916172>]. The source data
585 underlying figures and supplementary figures are provided as a Source Data file with this paper.
586 The raw metagenomic sequences of metagenomic samples from other environments used in this
587 study are available in the European Bioinformatics Institute Sequence Read Archive database
588 (sewage: ERP015409 [<https://www.ebi.ac.uk/ena/browser/view/PRJEB13831>], soil: ERP020652
589 [<https://www.ebi.ac.uk/ena/browser/view/PRJEB18701>], gut: ERP004605

590 [https://www.ebi.ac.uk/ena/browser/view/PRJEB5224], ocean: [ERP001736
591 https://www.ebi.ac.uk/ena/browser/view/PRJEB1787]).

592 **Code availability**

593 No custom algorithms or software were used to generate and analyze data. The R script for
594 partial least squares is publicly available on GitHub at https://github.com/congminz/GWMC.

595 **Global Water Microbiome Consortium members contributing to this study**

596 Dany Acevedo³⁴, Miriam Agullo-Barcelo³⁵, Pedro J. J. Alvarez²⁹, Lisa Alvarez-Cohen^{26,27},
597 Juliana Calabria de Araujo³⁶, Érika Ferreira de Abreu Mac Conell³⁶, Kevin Boehnke³⁷, Philip
598 Bond³⁵, Charles B. Bott^{38,39,40}, Patricia Bovio-Winkler⁴¹, Rebecca K. Brewster⁴², Faizal Bux⁴³,
599 Angela Cabezas⁴⁴, Léa Cabrol^{45,46}, Si Chen²³, Craig S. Criddle²³, Thomas P. Curtis⁹, Claudia
600 Etchebehere⁴¹, Amanda Ford³⁸, Janeth Sanabria Gómez³⁴, James S. Griffin⁴⁷, April Z. Gu⁴⁸,
601 Moshe Habagil⁴⁹, Lauren Hale⁴, Marc Harmon⁵⁰, Qiang He^{21,22}, Zhili He^{15,16}, Harald Horn⁵¹,
602 Zhiqiang Hu⁵², David R. Johnson⁵³, Deborah Garbani Marcantini⁵³, Alexander Keucken^{49,54},
603 Sheena Kumari⁴³, Cintia Dutra Leal³⁶, Zarraz MP Lee⁵⁵, Yong Li⁵⁶, Zhenxin Li⁵⁷, Mengyan Li²⁹,
604 Yu Liu^{55,58}, Leda C. Mendonça-Hagler⁵⁹, Francisca Gleire Rodriguez de Menezes⁶⁰, Arthur J.
605 Meyers⁶¹, Per H. Nielsen¹⁷, Daliang Ning³, Andrew Palmer⁶², Prathap Parameswaran³⁰, Valeria
606 Reginatto⁶³, Francis L. de los Reyes III⁶⁴, Bruce E. Rittmann³⁰, Simona Rossetti⁶⁵, Jatinder
607 Sidhu⁶², Kylie Smith⁶², Oscarina Viana de Sousa⁶⁰, David A. Stahl²⁸, Kyle Stephens⁶⁶,
608 Chenxiang Sun⁶, Renmao Tian^{3,5}, James M. Tiedje²⁵, Nicholas B. Tooker⁶⁷, Qichao Tu¹⁰, Joy D.
609 Van Nostrand⁴, Michael Wagner²⁴, Steve Wakelin⁶⁸, Aijie Wang¹⁸, Bei Wang⁶⁹, Joseph E.
610 Weaver⁶⁴, George F. Wells¹³, Xianghua Wen⁶, Stephanie West⁵¹, Sung-Geun Woo²³, Linwei
611 Wu^{3,4}, Jer-Horng Wu⁷⁰, Liyou Wu³, Chuanwu Xi⁴², Naijia Xiao³, Tao Yan⁷¹, Min Yang¹⁹,
612 Yunfeng Yang⁶, Michelle Young³³, Bing Zhang^{6,7}, Chiqian Zhang⁵², Qian Zhang^{72,73}, Wen
613 Zhang⁷⁴, Ya Zhang³, Yu Zhang¹⁹, Wanlin Zheng⁶, Hongde Zhou⁶⁹, Jizhong Zhou^{3,27,31,32,33},
614 Weiqin Zhuang⁷¹

615
616 ³⁴Environmental Microbiology and Biotechnology Laboratory, Engineering School of
617 Environmental & Natural Resources, Engineering Faculty, Universidad del Valle–Sede
618 Meléndez, Cali, Colombia

619 ³⁵Advanced Water Management Centre, The University of Queensland, Brisbane, QLD,
620 Australia

621 ³⁶Universidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental,
622 Belo Horizonte, Brazil

623 ³⁷Anesthesiology Department, The University of Michigan, Ann Arbor, MI, USA

624 ³⁸Hampton Roads Sanitation District (HRSD), Virginia Beach, VA, USA

625 ³⁹Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech,
626 Blacksburg, VA, USA

627 ⁴⁰Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA,
628 USA

629 ⁴¹Microbial Ecology Laboratory, Microbial Biochemistry and Genomics Department, Biological
630 Research Institute “Clemente Estable”, Montevideo, Uruguay

631 ⁴²Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, MI,
632 USA

633 ⁴³Institute of Water and Wastewater Technology, Durban University of Technology, Durban,
634 South Africa

635 ⁴⁴Instituto Tecnológico Regional Centro Sur, Universidad Tecnológica, Durazno, Uruguay

636 ⁴⁵Aix-Marseille University CNRS IRD, MIO UM110 Mediterranean Institute of Oceanography,
637 Marseille, France

638 ⁴⁶Escuela de Ingenieria Bioquimica, Pontificia Universidad Católica de Valparaíso, Valparaíso,
639 Chile

640 ⁴⁷Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL,
641 USA.

642 ⁴⁸School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

643 ⁴⁹Vatten & Miljö i Väst AB (VIVAB), Falkenberg, Sweden

644 ⁵⁰Golden Heart Utilities, Fairbanks, AK, USA

645 ⁵¹Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water
646 Technology, Karlsruhe, Germany

647 ⁵²Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO,
648 USA

649 ⁵³Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland

650 ⁵⁴Water Resources Engineering, Faculty of Engineering, Lund University, Lund, Sweden
651 ⁵⁵Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research
652 Institute, Nanyang Technological University, Singapore
653 ⁵⁶College of Resource & Environment Southwest University, Chongqing, China
654 ⁵⁷School of Environment, Northeastern Normal University, Changchun, China
655 ⁵⁸School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
656 ⁵⁹Plant Biotechnology Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
657 ⁶⁰Federal University of Ceará, UFC, Fortaleza, Brazil
658 ⁶¹University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN, USA
659 ⁶²CSIRO Land and Water, Ecosciences Precinct, QLD, Australia
660 ⁶³Departamento de Química, Universidade de São Paulo, Faculdade de Filosofia Ciências e
661 Letras de Ribeirão Preto – FFCLRP, Ribeirão Preto, SP, Brazil
662 ⁶⁴Department of Civil, Construction, and Environmental Engineering, North Carolina State
663 University, Raleigh, NC, USA
664 ⁶⁵CNR-IRSA, National Research Council, Water Research Institute, Rome, Italy
665 ⁶⁶Tryon Creek & Columbia Blvd. Wastewater Treatment Plants, Bureau of Environmental
666 Services, City of Portland, OR, USA
667 ⁶⁷Department of Civil and Environmental Engineering, Northeastern University, Boston, MA,
668 USA
669 ⁶⁸Scion Research, Christchurch, New Zealand
670 ⁶⁹School of Engineering, University of Guelph, Guelph, Ontario, Canada
671 ⁷⁰Department of Environmental Engineering, National Cheng Kung University, Tainan City,
672 Taiwan, China
673 ⁷¹Department of Civil and Environmental Engineering, University of Hawaii at Manoa,
674 Honolulu, HI, USA
675 ⁷²Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
676 ⁷³Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
677 ⁷⁴Department of Civil Engineering, University of Arkansas, Fayetteville, AR, USA

678 **References**

679 1. Balaban, N.Q. et al. Definitions and guidelines for research on antibiotic persistence.
680 *Nature reviews. Microbiology* **17**, 441-448 (2019).

681 2. Organization, W.H. Antimicrobial resistance: global report on surveillance. (World
682 Health Organization, 2014).

683 3. Holmes, A.H. et al. Understanding the mechanisms and drivers of antimicrobial
684 resistance. *Lancet (London, England)* **387**, 176-187 (2016).

685 4. Nathan, C. & Cars, O. Antibiotic resistance--problems, progress, and prospects. *The New
686 England journal of medicine* **371**, 1761-1763 (2014).

687 5. Berendt, T.U. et al. Tackling antibiotic resistance: the environmental framework. *Nat
688 Rev Microbiol* **13**, 310-317 (2015).

689 6. Larsson, D.G.J. et al. Critical knowledge gaps and research needs related to the
690 environmental dimensions of antibiotic resistance. *Environ Int* **117**, 132-138 (2018).

691 7. Larsson, D. & Flach, C.-F. Antibiotic resistance in the environment. *Nature Reviews
692 Microbiology*, 1-13 (2021).

693 8. Diehl, D.L. & LaPara, T.M. Effect of temperature on the fate of genes encoding
694 tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic
695 digesters treating municipal wastewater solids. *Environmental science & technology* **44**,
696 9128-9133 (2010).

697 9. Ju, F. et al. Wastewater treatment plant resistomes are shaped by bacterial composition,
698 genetic exchange, and upregulated expression in the effluent microbiomes. *The ISME
699 journal* **13**, 346-360 (2019).

700 10. Zhu, Y.G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes.
701 *Nature microbiology* **2**, 16270 (2017).

702 11. Zhang, Z. et al. Assessment of global health risk of antibiotic resistance genes. *Nature
703 communications* **13**, 1553 (2022).

704 12. Zheng, D. et al. Global biogeography and projection of soil antibiotic resistance genes.
705 *Science advances* **8**, eabq8015 (2022).

706 13. Wang, B. et al. Global diversity, coexistence and consequences of resistome in inland
707 waters. *Water research* **253**, 121253 (2024).

708 14. Danko, D. et al. A global metagenomic map of urban microbiomes and antimicrobial
709 resistance. *Cell* **184**, 3376-3393.e3317 (2021).

710 15. Hendriksen, R.S. et al. Global monitoring of antimicrobial resistance based on
711 metagenomics analyses of urban sewage. *Nature communications* **10**, 1-12 (2019).

712 16. Lee, K. et al. Population-level impacts of antibiotic usage on the human gut microbiome.
713 *Nature communications* **14**, 1191 (2023).

714 17. Tiseo, L. Global share of population with wastewater collection systems by region 2018.
715 [https://www.statista.com/statistics/1016760/population-connected-to-wastewater-
716 collection-system-globally-by-region](https://www.statista.com/statistics/1016760/population-connected-to-wastewater-) (2018).

717 18. World Population. <https://www.worldometers.info/world-population> (2018).

718 19. Wang, X. et al. Probabilistic evaluation of integrating resource recovery into wastewater
719 treatment to improve environmental sustainability. *Proceedings of the National Academy
720 of Sciences* **112**, 1630-1635 (2015).

721 20. Grant, S.B. et al. Taking the “waste” out of “wastewater” for human water security and
722 ecosystem sustainability. *Science* **337**, 681-686 (2012).

723 21. Kartal, B., Kuenen, J.v. & Van Loosdrecht, M. Sewage treatment with anammox. *Science*
724 **328**, 702-703 (2010).

725 22. van Loosdrecht, M.C. & Brdjanovic, D. Anticipating the next century of wastewater
726 treatment. *Science* **344**, 1452-1453 (2014).

727 23. Yang, C. et al. Phylogenetic Diversity and Metabolic Potential of Activated Sludge
728 Microbial Communities in Full-Scale Wastewater Treatment Plants. *Environmental*
729 *science & technology* **45**, 7408-7415 (2011).

730 24. Sun, C., Li, W., Chen, Z., Qin, W. & Wen, X. Responses of antibiotics, antibiotic
731 resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis
732 pre-treatment and various anaerobic digestion conditions. *Environment international* **133**,
733 105156 (2019).

734 25. Zheng, W., Huyan, J., Tian, Z., Zhang, Y. & Wen, X. Clinical class 1 integron-integrase
735 gene—A promising indicator to monitor the abundance and elimination of antibiotic
736 resistance genes in an urban wastewater treatment plant. *Environment international* **135**,
737 105372 (2020).

738 26. An, X.L. et al. Tracking antibiotic resistome during wastewater treatment using high
739 throughput quantitative PCR. *Environment international* **117**, 146-153 (2018).

740 27. Munck, C. et al. Limited dissemination of the wastewater treatment plant core resistome.
741 *Nature communications* **6**, 8452 (2015).

742 28. Yuan, L. et al. Pathogenic and Indigenous Denitrifying Bacteria are Transcriptionally
743 Active and Key Multi-Antibiotic-Resistant Players in Wastewater Treatment Plants.
744 *Environmental science & technology* **55**, 10862-10874 (2021).

745 29. Thompson, L.R. et al. A communal catalogue reveals Earth's multiscale microbial
746 diversity. *Nature* **551**, 457-463 (2017).

747 30. Zhou, J. et al. High-Throughput Metagenomic Technologies for Complex Microbial
748 Community Analysis: Open and Closed Formats. *mBio* **6**, e02288-02214 (2015).

749 31. Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater
750 treatment plants. *Nature microbiology* **4**, 1183–1195 (2019).

751 32. Marchesi, J.R. & Ravel, J. The vocabulary of microbiome research: a proposal.
752 *Microbiome* **3**, 31 (2015).

753 33. Wright, G.D. The antibiotic resistome: the nexus of chemical and genetic diversity.
754 *Nature reviews. Microbiology* **5**, 175-186 (2007).

755 34. Ma, L. et al. Catalogue of antibiotic resistome and host-tracking in drinking water
756 deciphered by a large scale survey. *Microbiome* **5**, 154 (2017).

757 35. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome.
758 *Nature biotechnology* **32**, 834-841 (2014).

759 36. Bahram, M. et al. Structure and function of the global topsoil microbiome. *Nature* **560**,
760 233-237 (2018).

761 37. Sunagawa, S. et al. Structure and function of the global ocean microbiome. *Science* **348**,
762 1261359 (2015).

763 38. Forsberg, K.J. et al. Bacterial phylogeny structures soil resistomes across habitats. *Nature*
764 **509**, 612-616 (2014).

765 39. Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: a comparative
766 pathogenomic platform with an interactive web interface. *Nucleic Acids Res* **47**, D687-
767 D692 (2019).

768 40. Cai, L., Ju, F. & Zhang, T. Tracking human sewage microbiome in a municipal
769 wastewater treatment plant. *Appl Microbiol Biotechnol* **98**, 3317-3326 (2014).

770 41. Zhang, S., He, Z. & Meng, F. Floc-size effects of the pathogenic bacteria in a membrane
771 bioreactor plant. *Environment international* **127**, 645-652 (2019).

772 42. Brito, I.L. Examining horizontal gene transfer in microbial communities. *Nature Reviews
773 Microbiology* **19**, 442-453 (2021).

774 43. Brown, C.L. et al. Selection and horizontal gene transfer underlie microdiversity-level
775 heterogeneity in resistance gene fate during wastewater treatment. *Nature
776 communications* **15**, 5412 (2024).

777 44. Brito, I.L. Examining horizontal gene transfer in microbial communities. *Nature reviews.
778 Microbiology* **19**, 442-453 (2021).

779 45. Brito, I.L. et al. Mobile genes in the human microbiome are structured from global to
780 individual scales. *Nature* **535**, 435-439 (2016).

781 46. Hu, Y., Gao, G.F. & Zhu, B. The antibiotic resistome: gene flow in environments,
782 animals and human beings. *Frontiers of medicine* **11**, 161-168 (2017).

783 47. Darby, E.M. et al. Molecular mechanisms of antibiotic resistance revisited. *Nature
784 Reviews Microbiology* **21**, 280-295 (2023).

785 48. Ning, D., Deng, Y., Tiedje, J.M. & Zhou, J. A general framework for quantitatively
786 assessing ecological stochasticity. *Proceedings of the National Academy of Sciences of
787 the United States of America* **116**, 16892-16898 (2019).

788 49. Liu, Z.-T. et al. Organic fertilization co-selects genetically linked antibiotic and
789 metal(loid) resistance genes in global soil microbiome. *Nature communications* **15**, 5168
790 (2024).

791 50. Wang, Y.-F. et al. Microplastic diversity increases the abundance of antibiotic resistance
792 genes in soil. *Nature communications* **15**, 9788 (2024).

793 51. The Center for Disease, D.E.P. (2021).

794 52. Zheng, W., Huyan, J., Tian, Z., Zhang, Y. & Wen, X. Clinical class 1 integron-integrase
795 gene - A promising indicator to monitor the abundance and elimination of antibiotic
796 resistance genes in an urban wastewater treatment plant. *Environment international* **135**,
797 105372 (2020).

798 53. Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. Toward a metabolic
799 theory of ecology. *Ecology* **85**, 1771-1789 (2004).

800 54. MacFadden, D.R., McGough, S.F., Fisman, D., Santillana, M. & Brownstein, J.S.
801 Antibiotic resistance increases with local temperature. *Nature Climate Change* **8**, 510-
802 514 (2018).

803 55. Guo X et al. Climate warming leads to divergent succession of grassland microbial
804 communities. *Nature Climate Change* **8**, 813-818 (2018).

805 56. Yuan, M.M. et al. Climate warming enhances microbial network complexity and
806 stability. *Nature Climate Change* **11**, 343-348 (2021).

807 57. Kim, M., Park, J., Kang, M., Yang, J. & Park, W. Gain and loss of antibiotic resistant
808 genes in multidrug resistant bacteria: One Health perspective. *Journal of microbiology
809 (Seoul, Korea)* **59**, 535-545 (2021).

810 58. Jiang, Y. et al. Pooled Plasmid Sequencing Reveals the Relationship Between Mobile
811 Genetic Elements and Antimicrobial Resistance Genes in Clinically Isolated *Klebsiella*
812 *pneumoniae*. *Genomics, proteomics & bioinformatics* **18**, 539-548 (2020).

813 59. Aarestrup, F.M. & Woolhouse, M.E.J. Using sewage for surveillance of antimicrobial
814 resistance. *Science* **367**, 630-632 (2020).

815 60. Pärnänen, K.M.M. et al. Antibiotic resistance in European wastewater treatment plants
816 mirrors the pattern of clinical antibiotic resistance prevalence. *Science advances* **5**,
817 eaau9124 (2019).

818 61. Mao, D. et al. Prevalence and proliferation of antibiotic resistance genes in two municipal
819 wastewater treatment plants. *Water research* **85**, 458-466 (2015).

820 62. Hou, L. et al. Fecal pollution mediates the dominance of stochastic assembly of antibiotic
821 resistome in an urban lagoon (Yundang lagoon), China. *Journal of hazardous materials*
822 **417**, 126083 (2021).

823 63. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-
824 generation sequencing data. *Bioinformatics (Oxford, England)* **28**, 3150-3152 (2012).

825 64. Patel, R.K. & Jain, M. NGS QC Toolkit: a toolkit for quality control of next generation
826 sequencing data. *PLoS One* **7**, e30619 (2012).

827 65. Li, D., Liu, C.M., Luo, R., Sadakane, K. & Lam, T.W. MEGAHIT: an ultra-fast single-
828 node solution for large and complex metagenomics assembly via succinct de Bruijn
829 graph. *Bioinformatics (Oxford, England)* **31**, 1674-1676 (2015).

830 66. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site
831 identification. *BMC bioinformatics* **11**, 119 (2010).

832 67. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for
833 the analysis of massive data sets. *Nature biotechnology* **35**, 1026-1028 (2017).

834 68. Alcock, B.P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive
835 antibiotic resistance database. *Nucleic acids research* **48**, D517-D525 (2020).

836 69. Gibson, M.K., Forsberg, K.J. & Dantas, G. Improved annotation of antibiotic resistance
837 determinants reveals microbial resistomes cluster by ecology. *The ISME journal* **9**, 207-
838 216 (2015).

839 70. Bengtsson-Palme, J. et al. METAXA2: improved identification and taxonomic
840 classification of small and large subunit rRNA in metagenomic data. *Mol Ecol Resour* **15**,
841 1403-1414 (2015).

842 71. DeSantis, T.Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and
843 workbench compatible with ARB. *Applied and environmental microbiology* **72**, 5069-
844 5072 (2006).

845 72. Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R. & Schmidt, T.M. rrnDB: improved
846 tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation
847 for future development. *Nucleic Acids Res* **43**, D593-598 (2015).

848 73. Wu, L. et al. Microbial functional trait of rRNA operon copy numbers increases with
849 organic levels in anaerobic digesters. *The ISME journal* **11**, 2874-2878 (2017).

850 74. Pärnänen, K. et al. Maternal gut and breast milk microbiota affect infant gut antibiotic
851 resistome and mobile genetic elements. *Nature communications* **9**, 3891 (2018).

852 75. Sun, J. et al. Environmental remodeling of human gut microbiota and antibiotic resistome
853 in livestock farms. *Nature communications* **11**, 1427 (2020).

854 76. Kang, D.D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient
855 genome reconstruction from metagenome assemblies. *PeerJ* **7**, e7359 (2019).

856 77. Wu, Y.W., Simmons, B.A. & Singer, S.W. MaxBin 2.0: an automated binning algorithm
857 to recover genomes from multiple metagenomic datasets. *Bioinformatics (Oxford,*
858 *England)* **32**, 605-607 (2016).

859 78. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. *Nature*
860 *methods* **11**, 1144-1146 (2014).

861 79. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
862 9, 357-359 (2012).

863 80. Danecek, P. et al. Twelve years of SAMtools and BCFtools. *Gigascience* **10** (2021).

864 81. Sieber, C.M.K. et al. Recovery of genomes from metagenomes via a dereplication,
865 aggregation and scoring strategy. *Nature microbiology* **3**, 836-843 (2018).

866 82. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics (Oxford, England) **26**, 2460-2461 (2010).

867 83. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P. & Tyson, G.W. CheckM:
868 assessing the quality of microbial genomes recovered from isolates, single cells, and
869 metagenomes. *Genome research* **25**, 1043-1055 (2015).

870 84. Rahman, S.F., Olm, a.M.R., Morowitz, a.M.J. & Msystems, b.J.F.B.J. Machine Learning
871 Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance
872 Genes in the Infant Gut Microbiome. *3*, e00123-00117 (2018).

873 85. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk v2: memory
874 friendly classification with the genome taxonomy database. *Bioinformatics (Oxford,
875 England)* **38**, 5315-5316 (2022).

876 86. Parks, D.H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea.
Nature biotechnology **38**, 1079-1086 (2020).

877 87. Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from
878 metagenomes using PhyloPhlAn 3.0. *Nature communications* **11**, 2500 (2020).

879 88. Asnicar, F., Weingart, G., Tickle, T.L., Huttenhower, C. & Segata, N. Compact graphical
880 representation of phylogenetic data and metadata with GraPhlAn. *PeerJ* **3**, e1029 (2015).

881 89. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by
882 differential coverage binning of multiple metagenomes. *Nat Biotechnol* **31**, 533-538
883 (2013).

884 90. Jain, C., Rodriguez, R.L., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. High
885 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
Nature communications **9**, 5114 (2018).

886 91. Saheb Kashaf, S., Almeida, A., Segre, J.A. & Finn, R.D. Recovering prokaryotic
887 genomes from host-associated, short-read shotgun metagenomic sequencing data. *Nature
888 protocols* **16**, 2520-2541 (2021).

889 92. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic
890 resistance genes from metagenomic data. *Microbiome* **6**, 23 (2018).

891 93. Oksanen, J. et al. vegan community ecology package version 2.6-2 April 2022. (2022).

892 94. Cayuela, L. & Gotelli, N.J. rareNMtests: Ecological and biogeographical null model tests
893 for comparing rarefaction curves. (2014).

894 95. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. (ggplot2: Elegant Graphics
895 for Data Analysis, 2009).

896 96. Derek H. Ogle, J.C.D., A. Powell Wheeler and Alexis Dinno FSA: Simple Fisheries
897 Stock Assessment Methods. . (2023).

898 97. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and
899 evolutionary analyses in R. *Bioinformatics (Oxford, England)* **35**, 526-528 (2019).

900 98. Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization.
BMC bioinformatics **11**, 367 (2010).

901 99. Goslee, S.C. & Urban, D.L.J.J.o.S.S. The ecodist Package for Dissimilarity-based
902 Analysis of Ecological Data. *22*, 1-19 (2007).

907 100. Zhang, Y. et al. Experimental warming leads to convergent succession of grassland
908 archaeal community. *Nature Climate Change* **13**, 561-569 (2023).

909 101. Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial
910 biodiversity. *Nature Ecology & Evolution* **3**, 612-619 (2019).

911 102. Thévenot, E.A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the Human Adult
912 Urinary Metabolome Variations with Age, Body Mass Index, and Gender by
913 Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses.
914 *Journal of proteome research* **14**, 3322-3335 (2015).

915

916 **Acknowledgements**

917 The authors thank A. Al-Omari, R. Bart, D. Crowley, S. D. Hardeman, T. Hensley, G. Harwood,
918 J. Keller, M. Taylor, and, B. Pathak for helping with sampling and metadata collection. This work
919 was supported by the Office of the Vice President for Research at the University of Oklahoma.
920 The data synthesis performed by Linwei Wu and Ya Zhang was also partially supported by the
921 U.S. National Science Foundation (NSF) (EF-2025558). The contribution by Linwei Wu was also
922 partially supported by the National Natural Science Foundation of China (grant 32371724). The
923 data synthesis performed by Congmin Zhu and Ting Chen was supported by the National Natural
924 Science Foundation of China (grants 82202299, 61872218 and 61721003), National Key R&D
925 Program of China (2019YFB1404804), Beijing National Research Center for Information Science
926 and Technology (BNRist), Tsinghua University Initiative Scientific Research Program, and
927 Guoqiang Institute, Tsinghua University.

928 **Author Contributions Statement**

929 All authors contributed experimental assistance and intellectual input to this study. The original
930 concept was conceived by Jiz.Z. Experimental strategies and sampling design were developed by
931 Jiz.Z., X.W., T.P.C., Q.H., Z.H. and D.N. Sample collections were coordinated by Q.H., Ya.Z.,
932 D.N., X.W., T.P.C., B.Z., M.R.B., G.F.W., Jiz.Z. and other GWMC members. Q.T. and D.N.
933 managed shipping. N.X., B.Z., Yu.Z., Y.W, D.N. and some GWMC members did DNA
934 extraction. B.Z., and S.G. performed Shotgun sequencing with the help from Lin.W. Data
935 analyses were performed by C.Z., Lin.W., Jian.Z., R.T., D.N., and Jiz.Z. The manuscript was
936 written by C.Z., Lin.W., Jiz.Z. and D.N. with the help from B.E.R., L.A.-C., M.W., C.S.C.,
937 J.M.T., P.J.J.A., A.W., P.H.N., F.J., J.G., D.A.S., T.C. and Y.Y.

938 **Competing Interests Statement**

939 The Authors declare no competing interests.

940 **Tables**

941 **Table 1. Differences of the AS resistomes between continents.** PERMANOVA (Permutational
 942 multivariate analysis of variance using distance matrices) was performed based on Bray-Curtis
 943 dissimilarity matrix at the level of individual ARGs. The upper triangle (shaded grey) shows the
 944 F values of PERMANOVA, while the lower triangle shows the two-sided *p* values. Sample size:
 945 *n* = 6, 59, 14, 20, 106, and 21 biologically independent samples for Africa, Asia, Australasia,
 946 Europe, North America, and South America, respectively.

	Africa	Asia	Australasia	Europe	North America	South America
Africa		5.04	2.18	5.78	2.66	2.03
Asia	0.001		13.60	37.64	39.14	10.93
Australasia	0.011	0.001		7.17	4.46	3.20
Europe	0.002	0.001	0.001		14.12	13.11
North America	0.003	0.001	0.001	0.001		7.94
South America	0.028	0.001	0.003	0.001	0.001	

947
 948

949 **Figure Legends/Captions**

950 **Figure 1. The abundance and global distribution of the AS resistomes. a)** Map of the
951 sampling locations. **b)** Average relative ARG abundance (copy of ARGs per cell) across
952 different continents based on resistance mechanism, drug class, and the nine most abundant
953 ARGs. MLS: macrolide-lincosamide-streptogramin. **c)** Richness of the ARGs. Richness index
954 was calculated based on a rarified matrix of resistance gene coverage, which was rounded and
955 subsampled to the lowest sample's level. In the boxplots, hinges show the 25, 50, and 75
956 percentiles. The upper whisker extends to the largest value no further than $1.5 * \text{IQR}$ from the
957 upper hinge, where IQR is the inter-quartile range between the 25% and 75% quartiles; The
958 lower whisker extends to the smallest value at most $1.5 * \text{IQR}$ from the lower hinge. Sample
959 size: $n = 6, 59, 14, 20, 106$, and 21 samples for Africa, Asia, Australasia, Europe, North
960 America, and South America, respectively. Significant differences (Dunn's test with two-sided p -
961 values adjusted by the Bonferroni method < 0.05) between continent pairs are indicated in the
962 plot. **d)** Principal coordinate analysis (PCoA) reveals distinct ARG composition diversity in six
963 continents. **e)** PCoA reveals distinct ARG diversity in different environments. Source data are
964 provided as a Source Data file.

965

966 **Figure 2. The linkage of the AS resistomes to microbiomes.** **a)** Relationships detected by
967 Procrustes analysis between the resistomes and bacterial community structure as measured by
968 16S genes extracted from the metagenomes. Metagenomic shotgun sequencing was performed
969 for all activated sludge samples, and the 16S sequences were extracted and grouped at the genus
970 level using Metaxa2. **b)** Relationships detected by Procrustes analysis between the resistomes
971 and bacterial community structure as measured by the 16S amplicon sequencing data. The dotted
972 ends of lines represent the resistome position, while the undotted ends represent the bacteriome
973 position. Vegan Procrustes test ‘protest’ with 999 permutations yielded a matrix-matrix
974 correlation coefficient of 0.74 (protest, $p = 0.001$) for metagenome 16S-based bacterial
975 community structure, and a matrix-matrix correlation coefficient of 0.70 (protest, $p = 0.001$) for
976 16S amplicon-based bacterial community structure. **c)** The association between the ARG
977 abundance (total ARG abundance and the top four major ARG groups) and the relative
978 abundance of top 15 major bacterial phyla from 16S rRNA gene amplicon data (16S) or
979 metagenomes (Shotgun). The circle-filled color corresponds to Spearman’s correlation
980 coefficient. The asterisks ‘*’ denote significant correlations (two-sided $p < 0.05$ after adjustment
981 for multiple testing). **d)** The phylogenetic tree of metagenome-assembled genomes (MAGs) from
982 global AS samples. The leaf colors indicate phylum groups. The bar heights outside the circle are
983 respectively proportional to the ARG count annotated in MAGs, and those red bars represent the
984 MAGs carrying multi-species mobile ARGs. Inner rings show the resistance gene abundances of
985 the five major drug classes, with darker colors indicating higher abundances. **e)** The mean count
986 and relative abundances of ARGs encoding major resistance mechanisms or drug classes across
987 phylogenetic groups. Error bars indicate standard deviations. Numbers on the top indicate the
988 number of MAGs belonging to the phylogenetic groups. Source data are provided as a Source
989 Data file.

990

991

992 **Figure 3. Mobility of ARGs from assembly and MAG-based analyses.** **a)** Relative MGE
993 abundance identified from the non-redundant ORFs on gene level and group level. **b)** Boxplots
994 of the MGE Shannon's H index across six continents. Hinges show the 25, 50, and 75
995 percentiles. The upper whisker extends to the largest value no further than 1.5 * IQR from the
996 upper hinge, where IQR is the inter-quartile range between the 25% and 75% quartiles; The
997 lower whisker extends to the smallest value at most 1.5 * IQR from the lower hinge, and dots
998 indicate values of individual samples. Sample size: n = 6, 59, 14, 20, 106, and 21 samples for
999 Africa, Asia, Australasia, Europe, North America, and South America, respectively. Significant
1000 differences (Dunn's test with two-sided *p*-values adjusted by the Bonferroni method < 0.05)
1001 between continent pairs are indicated in the plot. **c)** The relative abundance of mobile or
1002 immobile ARGs based on taxonomic composition, resistance mechanisms and drug class. **d)**
1003 Multi-phyla mobile ARGs based on gene sharing between MAGs. Nodes represent ARG
1004 sequences with labels indicating the gene/gene family name. Node colors indicate the
1005 phylogenetic groups of MAGs in which the ARG is present. Node shapes indicate different
1006 resistance mechanisms. Source data are provided as a Source Data file.

1007

1008

1009 **Figure 4. Drivers for the AS resistomes.** **a)** Normalized stochasticity ratio (NST) quantifies the
1010 relative importance of stochasticity in governing resistomes. Sample size: n = 6, 59, 14, 20, 106,
1011 and 21 samples for Africa, Asia, Australasia, Europe, North America, and South America,
1012 respectively. **b)** The Variance partition analysis (VPA) results indicated that the relative
1013 contributions of geographic distance (Geo), environmental variables (ENV), and their
1014 interactions to the variation of the AS resistomes all reached a significant level (two-sided $p <$
1015 0.05). **c)** PLS models of the relationships among microbiome (PC1 of bacterial community
1016 structure), resistome (the total ARG abundance, PC1 of ARG composition, abundances of the top
1017 three resistance mechanisms), the abundance of MGEs located near (<10kb) ARGs, ARG-
1018 correlated environmental variables, and ecosystem functions (the removal rate of BOD, COD,
1019 total nitrogen, total phosphorus). Directions for all arrows are from independent variable to a
1020 dependent variable in the forward selected PLS models ($p < 0.05$); only the variables with
1021 variable influence on projection > 1 are presented. The numbers near the pathway arrow indicate
1022 the proportion of variance explained for every dependent variable, with the top row representing
1023 the partial R^2 index based on PLS and the bottom row representing Pearson correlation R^2 . The
1024 asterisks denote the significance levels with *** $p < 0.01$, ** $p < 0.05$ and * $p < 0.10$ (two-
1025 sided). The colors of pathways are related to the positive (blue) or negative (red) relationships.
1026 The widths of pathways are related to the partial R^2 index. Source data are provided as a Source
1027 Data file.

1028