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Abstract

Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants
(WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyse the
antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents,
using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that
ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs.
ARG composition differs across continents and is distinct from that of the human gut and the
oceans. ARG composition strongly correlates with bacterial taxonomic composition, with
Chloroflexi, Acidobacteria and Deltaproteobacteria being the major carriers. ARG abundance
positively correlates with presence of mobile genetic elements, and 57% of the 1,112 recovered
high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven

by a complex combination of stochastic processes and deterministic abiotic factors.
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Introduction

Antibiotic resistance (i.e., the ability of bacteria to survive and replicate in the presence of an
antibiotic') poses an increasingly urgent global public health challenge?. Many bacterial
pathogens have developed resistance to major antibiotics, with some resisting multiple drugs and
causing untreatable infections™#. Owing to the global broad use of antibiotics, antibiotic resistant
bacteria (ARB) and their antibiotic resistance genes (ARGs) are emerging and spreading globally
among people, food, animals, plants, and environmental compartments; i.e., soil, water, and air>
6. The environment provides an immense gene pool from which numerous ARGs could be
acquired by pathogens to resist antibiotics’. Since many ARGs are found on mobile genetic
elements (MGEs) and are therefore often horizontally transmitted, antibiotic use also imposes a

selective pressure on the whole microbiome, not just pathogens.

In addition to studying the acquisition of antimicrobial resistance in pathogens, it is
important to examine how antibiotic use and other environmental variables (such as
temperature®, pH’, gross domestic product (GDP)!°, population density'!) affect the aggregate
collection of resistance genes of commensal microbiomes; i.e., the resistome. Reliable
information on the global occurrence and biotic/abiotic drivers of ARGs is urgently needed to
inform public health actions and antibiotic-use decisions. Previous studies have reported global
maps of resistomes for soil'?, inland water'?, urban mass-transit systems'#, sewage!>, and the
human gut!®, providing baseline information for understanding ARG diversity and health risks in

the environment.

The sewage of ~52% of the global population is delivered to wastewater treatment plants
(WWTPs)!"- 18, an essential infrastructure for the protection of human and ecosystem health!®-2°,
However, WWTPs are among the most important reservoirs of ARGs and ARB because they
receive wastewater from homes, hospitals, and pharmaceutical manufacturing facilities. Most
WWTPs employ the activated sludge (AS) process, an open aerobic enrichment-culture system
of microbial flocs or granules. Different anoxic/aerobic AS variants remove organic carbon,
nitrogen, and phosphorus and can function within treatment trains to remove pathogens,
micropollutants, and ARB?!"2. The activated sludge could also be a spawning ground for
resistance evolution, making it an important platform to study the rules governing the

development of ARGs in the environment.
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Recent studies have investigated resistome dynamics over time or across treatment

compartments in one specific WWTP?** 2

, and the resistome diversity and distribution in several
local WWTPs’- 2627 However, their findings exhibit limited concordance, possibly due to small
sample sizes or non-unified protocols. For instance, co-occurrence network analysis suggested
the bacterial phyla of Actinobacteria, and Bacteriodetes as main hosts of ARGs in WWTPs?¢, but
metagenome-assembled genome (MAG)-based methods revealed the most frequent hosts to be
Proteobacteria®®. Moreover, few studies have assessed the environmental factors driving
resistomes in WWTPs’. Hence, our understanding of global ARG diversity in WWTPs and the
underlying mechanisms affecting ARGs in WWTPs remains incomplete. Meta-analysis based on
localized experiments is problematic due to differences in experimental systems, sampling

methods, and analytical approaches®- 3. To discern the global picture of ARGs in WWTPs, a

survey is needed that is systematic, methodologically consistent, and globally representative.

To meet this need, a Global Water Microbiome Consortium (GWMC) was established
(http://gwmec.ou.edu/) to oversee and coordinate a systematic global campaign for collection,
sequencing, and analysis of ~1,200 AS samples using identical protocols®!. Among these
samples, 226 metagenomes (i.e., a collection of genomes and genes from all microorganisms>?)
were identified by shotgun sequencing. The resistomes (i.e., collections of ARGs)** were
analyzed to address fundamental questions: (i) What are the diversity and distributions of global
AS resistomes? (i1) What are the associations among the resistomes and microbiomes? and (ii1)
What biotic and abiotic mechanisms control the diversity, structure, and distributions of global

AS resistomes?
Results and Discussion

Diversity of global AS resistomes

To determine the resistomes of AS, the community DNA of 226 samples from 114 representative
WWTPs across six continents (Fig. 1a) was sequenced. A total of 2.8 terabases (Tb) with an
average of 12.3 £ 3.9 Gb per sample (Supplementary Data 1) were obtained. Rarefaction analysis
of the sequencing reads mapping to bacterial 16S rRNA genes (Supplementary Fig. 1a, b) and
ARGs (Supplementary Fig. 1c, d) showed that the sequencing depth was sufficient to represent

the diversity of AS microbiomes and resistomes.
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Overall, 36,147,212 contigs longer than 1 kb were assembled from all filtered
metagenomic reads, and 34,860,381 non-redundant open reading frames (ORFs) were predicted.
37,029 (0.11%) of the ORFs were annotated as ARG sequences. A total of 179 different ARGs,
relevant to 15 drug classes, were identified (Supplementary Table 1). To assess geographical
distribution, ARG abundance was normalized to the ARG copy number per bacterial cell**. The
core ARGs in activated sludge, meaning those present in all AS samples analyzed, encompassed
20 genes that accounted for 83.8% of the total ARG abundance (Supplementary Data 2). The
three most abundant ARGs were Tetracycline Resistance MFS Efflux Pump (15.2%), ClassB
(13.5%), and vanT gene in vanG cluster (11.4%), which respectively confer Tetracycline, Beta-

lactam, and Glycopeptide resistance (Supplementary Data 2).

Since different ARGs might be associated with the same resistance mechanism or drug
class, the relative abundances of ARGs were aggregated based on their resistance mechanisms
and drug classes (Fig. 1b and Supplementary Fig. 2a). ARGs encoding antibiotic inactivation
were the most abundant, accounting for about 55.7% of the total ARG abundance. The next most
prevalent were ARGs for antibiotic-target alteration (25.9%) and efflux pumps (15.8%). When
ARGs were aggregated by drug class, ARGs conferring resistance to Beta-lactam (46.5%),
Glycopeptide (24.5%), and Tetracycline (16.2%) were the most abundant. The relative
abundances of ARGs encoding major resistance mechanisms or drug classes were relatively

consistent across samples.
Global distribution of AS resistomes

Global variation in ARG abundance. The total ARG abundance showed no significant difference
across the six continents (Supplementary Fig. 2b; p = 0.78, Kruskal-Wallis test). However, the
mean ARG richness (Fig. 1¢) and Shannon’s H index (Supplementary Fig. 2c) were significantly
higher in Asia than in other continents except Africa. ARG abundance varied across samples
from different countries (p = 0.034, Kruskal-Wallis test): Samples from Chile (2.87 + 0.40) and
Canada (3.10 £ 0.35) were the lowest in mean ARG abundance, while samples from Switzerland
(4.30 = 0.20) and Colombia (4.26 £ 0.86) were the highest (Supplementary Fig. 3a). However,
post hoc analysis indicated that total ARG abundance was not significantly different between any

country pairs (p.adj > 0.05, Dunn post hoc tests).



179  Global variations in ARG compositions. To identify structural differences of resistomes across
180 continents, PERMANOVA (Permutational multivariate analysis of variance) was performed at
181  the individual gene level (Table 1). The resistomes were all significantly different (p < 0.05)
182  when comparing pairwise continents. Principal coordinate analysis (PCoA) and clustering

183  analysis at the gene level showed a strong regional separation (Fig. 1d, Supplementary Fig. 4a,
184  and Supplementary Note 1). A weaker regional separation was observed at the drug-class level,

185  versus the gene level (Supplementary Fig. 4b and Supplementary Note 1).

186 ARG differences across different habitats. To determine whether the structure of AS resistomes
187  resembled those from other habitats, we conducted a comparative analysis of resistomes across

t35

188  different environments (AS, human gu 16

, 50il*®, ocean®’, and sewage!”) according to the read-
189  based annotations. Comparison of the results obtained from contig- and read-based approaches
190 on our AS samples demonstrated that the major conclusions remain consistent regardless of the
191  approach used (Supplementary Fig. 5 and Supplementary Note 2). PCoA revealed that the

192  resistomes were distinctly different across habitats (Fig. 1e). AS resistomes were much more

193  similar to sewage and soil resistomes than to ocean or human gut resistomes (Fig. 1e), even when
194  aggregated by resistance mechanisms or drug classes (Supplementary Fig. 3b, ¢). The similar
195 ARG compositions among AS, sewage, and soil could be due to the interconnection of these

196  environments, as sewage is the influent of WWTPs, and soils could also be an important source

197  of the influent’s compositions, especially in combined sewer systems that collect both domestic

198  sewage and stormwater.
199  Relationships between the resistomes and microbiomes

200  Associations of the resistomes to bacterial community structure. To understand the relationships
201  between resistomes and bacterial community structure, we performed Procrustes analyses. The
202  bacterial community structure was represented either by 16S rRNA genes extracted from

203  metagenomes (Fig. 2a) or amplified 16S rRNA genes (Fig. 2b). Procrustes analysis yielded a
204  matrix-matrix correlation coefficient of 0.74 for metagenome 16S-based bacterial community
205  structure, and a matrix-matrix correlation coefficient of 0.70 for 16S amplicon-based bacterial
206  community structure (protest, p < 0.001), suggesting a strong association between WWTP

207  bacterial community structure and the resistomes. These results are consistent with previous
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studies on local WWTPs? 27 and so0il*®, demonstrating that bacterial community composition

plays a pivotal role in shaping the resistomes.

To further determine whether the relationships between the resistomes and microbiomes
depend on phylogenetic lineages, we determined the linkages of the total ARG abundance and
the top four major ARG groups to the relative abundances of major phyla (Fig. 2c and
Supplementary Note 3). Bacteroidetes, the most abundant phylum, were positively correlated
with the ARG abundance based on amplicon 16S rRNA gene data (rho = 0.28, adjusted p =
0.0001). Based on metagenome-derived 16S rRNA genes, the ARG abundance was also
positively correlated with Chloroflexi (rho = 0.48, adjusted p < 2.7x10°'?), Acidobacteria (rho =
0.28, adjusted p = 9.4x107), Gemmatimonadetes (rho = 0.24, adjusted p = 0.001), Nitrospirae
(rho = 0.20, adjusted p = 0.009), and Deltaproteobacteria (rho = 0.20, adjusted p = 0.008),
suggesting that these taxa may be major carriers of ARGs. Strong correlations between the ARG
abundance and taxonomic groups were also observed in other environments but with different
patterns (Supplementary Fig. 6 and Supplementary Note 3). These results suggest that the

resistomes in AS could be strongly tied to microbial physiology.

ARG-associated metagenome-assembled genomes. To further understand the association
between ARGs and their bacterial hosts, the shotgun sequences of these global AS samples were
assembled into contigs and binned into genomes (See Methods for details). A total of 1,112
dereplicated high-qualityand MAGs were recovered with 536 Bacteroidota, 272 Proteobacteria
and 43 Actinobacteria. We detected that 1,054 of them contain at least one ARG and 28 were
identified as potential human pathogens based on the taxonomic information and presence of
virulence factors***! (Supplementary Note 4). As shown in the MAGs-based phylogenetic tree in
Fig. 2d, the total ARG abundance and major ARG classes varied greatly among different
phylogenetic groups. Chloroflexi (7.2+3.0 ARG counts), Acidobacteria (6.6£3.0),
Deltaproteobacteria (4.5+2.8), Gemmatimonadota (3.5+2.1), and Bacteroidetes (3.3£1.7) were
the top five carriers of ARGs (Fig. 2¢), which was consistent with their positive correlations with
the ARG abundance. Bacteroidetes and Proteobacteria were reported to be the main hosts of
ARGs in local WWTPs?% 28, consistent with our synthetic analyses using both correlation- and
MAG-based methods. This is likely due to their ability to disseminate resistance genes via

)2

horizontal gene transfer (HGT)* and their adaptability to antibiotic-rich environments*.
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Collectively, all the above analyses indicate that the identified taxa may play significant roles in

ARG persistence and dissemination in activated sludge systems.
Mobility of resistomes and MAGs

MGESs facilitate the horizontal transfer of ARGs, contributing to antibiotic resistance
dissemination and evolution in microbial communities**. For determining the diversity of MGEs,
a total of 2,200 non-redundant ORFs were identified as 56 MGE genes (Supplementary Data 3).
The three most abundant MGEs were tnpA, 1S91and tnid, and the corresponding MGEs classes
were transposase, insertion_element IS91 and plasmid in AS (Fig. 3a and Supplementary Note
5). The total MGE abundance showed significant difference across the six continents (Fig. 3b; p
= 1.2x10°, Kruskal-Wallis test) and different countries (p = 5.8x1077, Kruskal-Wallis test).
Linear regressions showed that the MGE richness was positively correlated with the ARG
richness (R = 0.38, adjusted p =2.8x10). Furthermore, the total ARG abundance was positively
correlated with the abundance of their nearby MGEs (R = 0.20, adjusted p =0.003;
Supplementary Note 5).

We further quantified mobility based on the ARGs sharing between distinct hosts.

16.45 ‘mobile ARGs were identified as

Following the method applied to human microbiomes
identical or near identical sequences present in different bacterial hosts. From these 1,112
dereplicated MAGs, 3,646 ORFs were annotated as ARG sequences, which were further
clustered into 2,368 ARG clusters at 99% nucleotide identity. Subsequently, 29% of the ARG
clusters (682/2,368) covering 54% of all ARG sequences (1,959/3,646) were assigned to
multiple species, suggesting possible recent horizontal gene transfer across distantly related
organisms. In comparison, 10% of the ARG clusters from the human microbiome MAGs were
multi-species ARGs'®. Remarkably, the proportion of potentially mobile ARGs in AS was
surprisingly higher than that in the human microbiome. This may be due to the high density of
bacterial cells and well-mixed nature of AS, which enhances the probability of bacterial physical
contact and subsequently increases the likelihood of horizontal gene transfer. Note that the non-

mobile/intrinsic ARGs still contribute to the gene pool in the environment, as they might be

captured by mobile genetic elements in a certain stage of evolution and become mobile ARGs*.

The potential ARG mobility for MAGs varied across phylogenetic lineages (Fig. 2d). Of
the 1,112 MAGs, 57.6% (641/1,112) were identified as carrying multi-species mobile ARGs.

10
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Among MAGs harboring multi-species mobile ARGs, the proportion of Bacteroidetes phylum
was higher than those with immobile ARGs (Fig. 3c), suggesting that the Bacteroidetes phylum
could be more prone to horizontal gene transfer to survive in AS with antibiotics. In terms of
resistance mechanisms and drug classes, the relative abundances of glycopeptide and macrolide-
lincosamide-streptogramin resistance genes also were higher in mobile than immobile ARGs,
suggesting that these classes could potentially be more mobile in AS (Fig. 3c). Most mobile
ARG clusters can transfer across multi-species, while only 4% (26/682) ARG clusters exhibit the
ability to move across multi-phyla (Fig. 3d). Notably, 65% (17/26) multi-phyla mobile ARG
clusters are associated with antibiotic inactivation. Horizontal transfer of antibiotic inactivation
resistance genes plays a crucial role in microbial survival by enhancing adaptability, accelerating
the dissemination of resistance, and conferring evolutionary advantages in antibiotic-rich

environments*’. Horizontal transfer poses considerable challenges to public health.
Drivers of global AS resistomes

We quantitatively assessed the relative contribution of stochastic vs. deterministic processes to
the global AS resistome variations with the metric of normalized stochasticity ratio (NST)*. The
NST estimated for resistomes was generally above 0.5 for all continents except Europe (Fig. 4a
and Supplementary Note 6), suggesting that stochastic processes may play a role in the AS
resistome variations. Multiple regression on matrices (MRM)-based variance partition analysis
(VPA) also revealed that substantial variations (67.4%) of the resistomes remained unexplained
by the measured environmental variables and geographical distance (Fig. 4b and Supplementary
Note 6). While these results align with previous findings that stochastic processes are important
in shaping bacterial community assembly in AS®!, it is critical to note that apparent stochasticity
could mask unmeasured deterministic pressures, such as environmental stresses from
antibiotics*, heavy metals*’, or microplastics®’. Additionally, methodological limitations,
including sequencing depth and database biases, might constrain our ability to resolve
deterministic signals. Thus, while stochastic processes likely contribute to AS resistome

variations, deterministic factors should not be overlooked.

To further discern the roles of individual deterministic factors, we examined the
environmental variables having significant correlations (p < 0.05) with changes in ARG

abundance by using univariate models (Supplementary Table 2). The mixed liquor suspended

11
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solid (MLSS), temperature, and city population showed positive correlations with the ARG
abundance (Supplementary Fig. 7a-c and Supplementary Note 7). Conversely, the ARG
abundance was negatively correlated with pH, solids retention time and influent biochemical
oxygen demand (BOD) (Supplementary Fig. 7d-f and Supplementary Note 7), which have been
reported to play important roles in regulating the structure of the AS bacterial community>!> 3.
Unlike previous observations indicating that the abundance of sewage ARGs is strongly
correlated with socio-economic factors'®, we found no significant correlation between ARG
abundance and per capita GDP or country-level antibiotics use®! for where the WWTP is located
(Supplementary Table 2). The non-correlation may suggest that the antibiotic concentrations in
AS might be insufficient to pose a significant selective pressure for ARGs maintenance and

propagation®?. However, the resolution of antibiotic use data (only from 15 country-level

observations) may be too low to reveal its impact on the ARG abundance in AS.

A more in-depth analysis using partial least squares (PLS) further revealed potential
direct and indirect effects of biotic and abiotic drivers (Fig. 4c). PLS analysis indicated that the
bacterial community structure, MGEs, temperature, and city population could affect the AS
resistome, which further influenced the AS ecosystem functioning for pollutant removal.
Temperature had a direct influence on ARG abundance (Pearson »=0.39, partial R?=0.08) and
indirectly affected ARG abundance through the bacterial community structure (Pearson » = 0.54,
partial R>=0.14 of the first principal component score (PC1) representing the community
structure). Because temperature is a primary driver of biological processes™, temperature likely
has important effects on ARG abundance and distributions®. Although the potential mechanisms
underlying the relationships between ARGs and temperature are not clear, temperature could
facilitate horizontal gene transfer, population growth, biotic interactions, and community
turnovers>*>®, ARG abundance was also directly influenced by the abundance of proximal MGEs
(Pearson = 0.30 partial R*=0.09). Several studies have shown that MGEs can carry multiple
ARGs and contributed to their spread within bacterial populations, thereby increasing the ARG
abundance®” %%, Another factor that had a direct positive effect on ARG abundance was the city
population (Pearson = 0.30, partial R>=0.05). A higher population may be associated with an
increased use and sewage discharge of antibiotics, exacerbating the emergence and spread of
ARGs in bacteria'®. Overall, although the abiotic environmental variables had significant effects

on the resistome, their impact was relatively small (partial R?< 0.1, Fig. 4c), which are consistent

12
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with the null model-based stochasticity ratio (Fig. 4a) and MRM-VPA analysis (Fig. 4b)

showing that stochastic processes may play a more important role.
Concluding remarks

Understanding the global ARG abundance, diversity, and distributions, along with their
controlling mechanisms is critical to risk assessment and mitigation of antibiotic resistance. By
analyzing the AS resistomes via well-coordinated international efforts, this study showed that
ARGs are highly abundant, diverse, and widely distributed across global WWTPs, this
corroborates that WWTPs are an important reservoir of environmental ARGs> %!, By offering a
global-scale characterization of ARGs, this study provides inter-continental and inter-country
comparisons of the resistomes in WWTPs. Our results revealed that the structures of activated
sludge resistomes differed among continents and were far distant from those of the human gut
and oceans, but they exhibited close similarity to those of sewage and soils. We also recovered
thousands of dereplicated high-quality MAGS, which could enable more in-depth analyses of
ARG hosts and the quantification of ARG mobility. In addition, our analyses indicate that
resistome variations in activated sludge may be driven by stochastic processes, such as random
gene exchanges and drift®?. However, deterministic factors such as temperature and city
populations still played important roles in the evolution and proliferation of ARGs in global

WWTPs.

Methods

Global sampling and DNA sequencing

A total of 1,186 AS samples were collected by the GWMC from 269 WWTPs across 23
countries with varying geographic locations, latitudes, and climate zones>'. There was a unified
protocol (http://gwmec.ou.edu/files/Sampling Shipping Protocol General 20141103.pdf)
developed at GWMC for sampling, preserving samples, collecting metadata, collecting DNA,
and sequencing so that potential effects of the variations on experimentation would be
minimized. A total of 226 representative samples out of 1,186 AS samples had sufficient
metadata to be used for metagenomic sequencing.

Detailed information about the procedure of DNA extraction is described in Wu et al*!. In

brief, MoBio PowerSoil DNA isolation kit was used to isolate community DNA from mixed
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liquor samples (3 mL). We vortexed 12 bead tubes at maximum speed for 10 minutes, following
the manufacturing protocol, to minimize variations in cell lysis efficiency between samples.
Then, we constructed genomic DNA libraries by following the manufacturer's instructions with
an average insert size of 300 bp using KAPA Hyper Prep Kit (KR0961). DNA LabChip 1000 kit
from Agilent was used to assess the quality of all libraries, and all qualified libraries were
sequenced at the Oklahoma Medical Research Foundation (OMRF) with paired-end sequencing
on [llumina HiSeq3000. The sequenced reads were deposited in the Sequence Read Archive

(BioProject accession number PRJINAS509305).
Metagenomic sequences processing

An internal metagenomic pipeline (ARMAP,
http://zhoulab5.rccc.ou.edu/pipelines/ ARMAP_ web/job_submission.php) was used to process
the metagenomic data. First, all sequenced reads were subjected to FastQC for quality evaluation
with quality profile, duplication rates, and contamination rates. Using CD-HIT (v4.6.8)%, a
100% identity cutoff was used to remove duplicates. Quality trimming and filtering were
performed using NGS QC Toolkit (v2.3.3)%%. The pair-end adaptor library was used to detect
reads with residual adaptors. Raw reads were filtered with the following constraints: (i) reads
with more than one ambiguous N base were removed; (ii) 3'-ends of reads were trimmed to the
first high-quality base with quality score > 20; and (ii1) trimmed reads with the length > 120 bp
(80% of the sequence read length) were further filtered with an average quality score cutoff of
20. The paired-end reads (fasta) of each sample after quality trimming and filtering were
assembled by Megahit (v1.0.5)% into contigs in a time- and cost-efficient way, using the
following parameters: —min-contig-len = 1000, --k-min = 31, --k-max = 131, --k-step = 20 and —
min-count = 1. All assembled contigs were imported into the NGS QC Toolkit for calculation of

the contig length profiles (N50Stat.pl).
ARGs annotation for open reading frames

Open reading frames (ORFs) of protein-coding genes were predicted from the assembled contigs
of each metagenome by Prodigal (v2.6.3)% with ‘-p meta’ option. A non-redundant ORFs
catalog was constructed by protein clustering using MMseqs2®’, with a minimum identity
threshold of 95% and a minimum sequence coverage of 90% (--min-seq-id 0.95 -c 0.9 --cluster-

mode 2 --cov-mode 1). The coverages of the non-redundant genes in each sample were
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determined by CoverM (v0.6.1) (https://github.com/wwood/CoverM) using default settings.

Then, non-redundant ORFs were functionally annotated to the Comprehensive Antibiotic
Resistance Database (CARD)®® and the ResFams database®. Genes were first assigned as ARGs
by annotating with the CARD using their recommended tool Resistance Gene Identifier (RGI)
(v6.0.0), requiring a hit scoring above the family-specific threshold under the CARD homologue
model, with the top hit taken if several are achieved. The remaining unannotated genes were
filtered and subsequently annotated with Resfams protein families, requiring the score to a
ResFams hidden Markov model exceeded the gathering threshold for that model. The ORF
annotated to Resfam were represented as gene families. The following criteria were used to
remove potential false positive ARGs: (i) genes that confer resistance via overexpressing of
resistant target alleles (e.g. resistance to antifolate drugs via mutated DHPS and DHFR); (ii)
global gene regulators, two-component system proteins, and signaling mediators; (iii) efflux
pumps that confer resistance to multiple antibiotics; (iv) genes modifying cell wall charge (e.g.
those conferring resistance to polymixins and defensins). Raw unnormalized abundance value
was calculated for each ARG in a sample as the summed coverage depths of all ORFs that were
annotated to that ARG in the given sample.

To assess the ARG distributions in AS samples, the raw abundance of ARGs was
normalized and expressed as “copy of ARG per cell” using the equation (1).

n
Coverage;arc-like gene)
Coveragems sequence

Abundance = X Ni65 copy number

i=1
n
_ z Ni(ARG—like sequence) X Lreads/Li(ARG ORF)

N x L I X N16S copy number (1)
16S sequence reads/ 16S sequence

i=1
Where Coverage;arg-ike gene) 18 the coverage of a specific ARG ORF, which is calculated
from the number of reads annotated to this ORF (Njarg-like sequence))» the sequence length (bp)
of the reads (Lyeqqs), and the length (bp) of the corresponding ARG ORF (L;(arg orr))- For the
coverage of 16S rRNA gene (Coverage;gs sequence) calculation, Nygs sequence 18 the number of

the 16S rRNA gene sequences identified for the metagenomic data by Metaxa2 (v2.248)",

Lyeqqs represents the sequence length of the reads, Ligs sequence 18 the average length of 16S
rRNA genes (1,432 bp) in Greengenes database’!. Njgg copy number 18 the average copy number

of 16S rRNA genes per cell in the community, and # is the number of annotated ARGs for a
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specific category. The average copy number in the community was calculated as the abundance-
weighted mean 16S rRNA gene copy number, where the 16S rRNA gene copy number of each
genus was estimated through the rrnDB database based on its closest relatives with known rRNA
gene copy number’> 7, It is noted that the normalized ARG abundance (gene copies per cell)
depends on the algorithms for identifying ARGs and 16S rRNA genes. There could be false
positives and false negatives; thus, the resultant ARG abundance may not reflect the real values
in the community. However, we can still conduct relative comparison across different samples,
under the assumption that the estimations across samples are subjected to the same degree of
bias. In this way, we can compare the abundance of ARGs of samples and explore the underlying

mechanisms shaping the resistomes.
Mobile genetic elements (MGEs) annotation

To determine the diversity of MGEs in the AS, we annotated MGEs for the non-redundant ORFs
by BLASTN (-perc_identity 0.5 -evalue le-10 -max_target seqs 1) against the previously
published database of MGEs’*. This database consists of MGEs with 278 different genes and
more than 2,000 unique sequences. The raw abundance of each MGE in a sample was calculated
as the summed coverage depths of all ORFs annotated to that MGE and normalized as “copy of
MGE per cell” in the same manner as for the ARGs.

To quantify the mobility potential of ARGs, we performed co-localization analysis
between ARGs and MGEs on all assembled contigs. We first annotated the ARGs and MGEs on
all contigs and then identified the contigs carrying both ARGs and MGEs for calculating the
minimum distance between them. ARGs with potential mobility were defined as sharing a
nearby area (<10 kb)’> with an MGE. We calculated the proportions of mobile ARGs in each
sample. We also calculated the raw abundance of MGEs co-located (<10 kb) with ARGs using
the coverage of the corresponding contigs in the given sample, which was determined by
CoverM (v0.6.1) using default settings. The raw abundances of MGEs were then normalized as

“copy per cell” with the above method.
Taxonomic profiling of the metagenomic sequences

Bacterial-community profiling at the genus level was done using Metaxa2 (v2.248)’°, based on
the bacterial 16S rRNA reads extracted from the high-quality metagenomic reads. The bacterial
profile was also represented by the OTU table based on 16S rRNA amplicon sequencing data,
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which was published by Wu et al*!. The relative abundance of a taxonomic category was
calculated as the sum of reads annotated to that category normalized by the total number of

taxonomic reads in each sample.
MAG recovery, taxonomic annotation, and phylogenetic tree construction

All assembled contigs longer than 1 kbp were binned with Matabat2’®, Maxbin2”’, and
CONCOCT (v0.4.1)"® based on contig composition and coverages. Before binning, Bowtie2”’
was used to align short-read sequences to contigs (options: -very-fast), and SAMtools®® was used
to sort and convert SAM files to BAM format. Then, DAStools®' was used to refine binned
contigs with default parameters where Usearch®? was used as the search engine. We performed
CheckM (v1.0.6)% to estimate the completeness and contamination of each bin. To get the
nonredundant consolidation, the dRep®* dereplication workflow was used with options
‘dereplicate_ wf -p 16 -pa 0.9 -sa 0.95 -nc 0.3 -comp 70 -con 10 -str 100 -strW 0’. Bin scores
were given as completeness-5*contamination+0.5x1log(N50), and only the highest-scoring
MAGs from each cluster (> 95% average nucleotide identity) were retained in the dereplicated
set. The bins with high completeness (>90%) and few contaminants (<5%) were retained as
high-quality MAGs and were used for downstream analyses.

The taxonomy of the represented MAGs was assigned using GTDB-tk v2.1.0% based on the
Genome Taxonomy Database®®. Besides, to identify the pathogenic genomes, we first selected
the potential ones by referring to two published reference pathogen lists that consisted of 140
potentially human pathogenic genera*® and 538 potentially human pathogenic species*!. Then,
we searched the ORFs of taxonomically predicted potentially pathogenic genomes against the
experimentally verified bacterial virulence factor database VFDB (last update: Dec.11, 2020)*°
with BLASTN. The genomes with virulence factors with a global identity > 70% were
considered pathogens. The phylogenetic relationships of all MAGs were inferred by a maximum
likelihood alignment-based approach with PhyloPhlAn3%7 (--diversity high, --fast, with
configurations --db_aa diamond, --map_dna diamond, --map_aa diamond, --msa mafft, --trim
trimal, --treel iqtree). Visualization and annotation of the tree were done using GraPhlAn®®. It
should be noted that it has proven difficult to assemble genomes for populations below 1%
relative abundance owing to insufficient sequencing depth or difficulty in binning and assembly

of individual genomes from complex metagenomes®.
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ARG host and mobility annotation for MAGs

For the near-complete MAGs, ARGs of MAGs’ contigs were also identified based on CARD®
and the ResFams database®® as above. The mobile ARGs were defined as identical or near
identical sequences present in different species'®*. Since our recovered MAGs were
dereplicated at an average nucleotide identity of 95%, they represented species-level genome
bins®®?!. Thus, we searched for mobile ARGs as those present in two or more MAGs. To
achieve this, we first clustered the nucleotide sequences of all detected ARG ORFs into ARG
clusters with 99% identity, using the ‘cluster’ command of MMseqs2®’ with ‘~min-seq-id 0.99 -c
0.9 —cov-mode 0’. We then labeled any ARG cluster that was found in multiple MAGs as ‘multi-
species’, which was considered as the evidence of recent horizontal gene transfer. This strategy
of searching for ARG clusters across species to detect recent horizontal gene transfer is

equivalent to that used in some other studies on human microbiomes!® .

Analyzing metagenomic samples from other environments

To compare AS resistomes with other environments, we selected the public global metagenomic

t35 136

projects in human gut®>, sewage'®, soil*®, and oceans®’” and collected samples from these public

databases. The raw metagenomic sequences were downloaded from the European Bioinformatics
Institute Sequence Read Archive database (sewage: PRIEB13831, soil: ERP020652, gut:
ERP004605, ocean: ERP001736). To avoid bias caused by data processing, we re-processed the
raw sequences with the same quality trimming and filtering parameters with our pipeline to
obtain high-quality sequences. Rather than using the contig-based approach to annotate ARGs
which requires significant time and vast computational resources for the assembly step, here we
profiled the abundance of ARGs through a read-based mapping strategy. The read-based
approach enabled an efficient comparison of resistomes between environments. We annotated

)2

ARGs from the high-quality metagenomic sequences by DeepARG (v2)”* using the default

options (--id 50, -e le-10, -k 1000 of short reads mode), which can infer ARGs from short reads.

19334

The abundances of ARGs were normalized to the unit of “copy per cell””* in a similar manner as

described above, although the calculation of ARG coverage was slightly different with the
equation (2).

- Coverage;(arg)

=1 Coveragems sequence

Abundance = X Nygs copy number
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n
_ Z Ni(ARG—like sequence) X Lreads/Li(ARG reference sequence)

X N16S copy number (2)

=1 NlGS sequence X Lreads/L16S sequence

Where N;arg-like sequence) 18 the number of ARG-like reads annotated as one specific ARG

reference sequence, Lj(aRg reference sequence) 18 the sequence length (bp) of the corresponding

ARG reference sequence.

To compare the results of the two ARG detection methods (contig-based and read-based
approaches), we performed Procrustes analyses between the resultant AS ARG abundance
matrices from the two methods using the function ‘procrustes’ of vegan R package®. We also
examined the correlation between the total abundance from two methods using the function ‘Im’

of R.
Statistical analyses

The global map was created using the function ‘tm_shape’ of spData R package
(10.32614/CRAN.package.spData). Richness and Shannon’s H index were computed using the
vegan R package’® to measure the diversity of ARGs or MGEs based on a rarified count matrix,
which was obtained by rounding the coverages and sub-sampling to the lowest sample’s level.
The richness and Shannon’s H diversity rarefaction curves for bacteria and ARGs were
respectively based on the reads mapping to the bacterial 16S rRNA genes and ARGs. The curves
were computed using the function ‘rarefaction.individual’ of rareNMtests** and plotted using the
ggplot2®® R packages. Kruskal-Wallis and the Dunn post hoc test were used to compare the
means of ARG abundance or diversity between continents or countries, using R function
‘kruskal.test” and function ‘dunnTest’ of FS4 R package’®. To visualize the variation of
resistomes across samples, the principal coordinate analysis (PCoA) was performed on the
resistome Bray-Curtis dissimilarity matrix based on gene relative abundances, using the function
‘pcoa’ of ape R package’’. The heat map of genes was generated using the function ‘aheatmap’
of NMF R package”®. PERMANOVA was applied to assess the resistome dissimilarities among
continents using the function ‘adonis2’ of vegan R package. Procrustes analysis was performed
to test the association between bacterial taxonomic composition and the resistome using the
function ‘procrustes’ of vegan R package in which the ordinations of the bacterial taxonomic
composition and the resistome were generated from PCoA. To disentangle the relative

contributions of stochastic and deterministic processes to AS resistome, null model-based NST
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approach*® was applied to community ARG data. Normalized stochasticity ratio (NST) was used
to quantify ecological stochasticity in communities within continents and was analyzed in R
using the NST package®®.

To estimate the relative contributions of the environmental effects versus the distance
effects on the resistome dissimilarities, we performed a variation partition analysis (VPA) based
on multiple regression on matrices (MRM). Briefly, we first selected a non-redundant set of
environmental variables that contained missing data in less than 20% of all samples. The final set
included mixed liquid temperature, air temperature, precipitation, design capacity, volume of
aeration tanks, plant age, mixed liquor suspended solids (MLSS), solids retention time (SRT),
dissolved oxygen (DO), pH, and influent biochemical oxygen demand (BOD), effluent BOD,
food to microorganism (F/M) ratio and city GDP. The variance inflation factors (VIF) were less
than 10, indicating a low level of collinearity among these variables. MRM was performed using
the function ‘MRM’ of ecodist R package *°. Geographic distance was log-transformed. A
Euclidean distance matrix was calculated for each environmental variable. In VPA, the R? of the
selected environmental variables as independent matrices (R?), geographical distance as an
independent matrix (R?;), and all matrices (R?;) were used to compute the three components of
variations: (i) pure environmental variation = R?; — R?; (ii) pure geographical distance =
R%; — R?g; and (iii) spatially structured environmental variation = R?; + R?; — R?;.
Univariate models predicting the total ARG abundance (ARG copies per cell) as a function of
various environmental and site variables were performed using R function ‘lm’ and ‘summary’.
For each variable, we fitted a linear and a quadratic model and results are shown for the model
with lower Akaike information criteria (AIC) value.

The partial least squares (PLS) model with a partial R? index based on PLS!® was used to
explore the relationships among the microbiome (PC1 of bacterial community structure),
resistome (the total ARG abundance, PC1 of ARG composition, abundances of the top three
resistance mechanisms), the abundance of MGEs located near ( < 10kb) ARGs, six
environmental variables which significantly correlated (p < 0.05) with the total ARG abundance
based on the univariate models, and ecosystem functions (the removal rate of BOD, COD, total
nitrogen and total phosphorus). Based on predictive performance counting in the explained
variation (R2) and model significance (P for RZ and Q2< 0.05, where significant Q2 helps to

avoid overfitting), Each optimum PLS model was forward selected from all factors that might
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affect the dependent variable. To visualize relevant associations, we only included the most
relevant variable(s) with Variable Influence on Projection (VIP) values larger than 1. When used
as independent variables in PLS, the ARG composition was represented by the PC1 from PCoA
of Bray-Curtis distance. We used a partial R? index!?! on the basis of PLS to represent the
proportion of variance explained by each independent variable (equation 3). We also calculated
the pairwise correlation coefficient (as well as the R?) among the factors and the significance
was based on Pearson correlation as reference. The PLS-related analysis was performed using
the ropls package'®? and the Mantel test using the vegan package’® in R.
5, (W}  SS¥) _ 00 x S5
SSYcum SSY
Where Rjs ; 1s the partial R? of variable j based on PLS, W;f is the PLS weight of variable j

2 _ 2
Rprsj = Ry X

(3)

on component f, SSY; is the sum of squares of Yexplained by component f, SSY¢;, is the

cumulative sum of squares of Yexplained by all components, RZ is the percentage of Y
dispersion (i.e., sum of squares) explained by the PLS model, and SSY isthe Y dispersion, that

is, sum of squares of Y.

Data availability

The DNA sequences of the 16S rRNA gene and metagenomes generated in this study have been
deposited in the National Center for Biotechnology Information (NCBI) database under the project
accession number PRINAS509305 [https://www.ncbi.nlm.nih.gov/bioproject/PRINAS509305]. The
assembled MAG sequences have been deposited in Zenodo under the DOI
10.5281/zenodo.14916172.  [https://doi.org/10.5281/zenodo.14916172]. The source data
underlying figures and supplementary figures are provided as a Source Data file with this paper.
The raw metagenomic sequences of metagenomic samples from other environments used in this
study are available in the European Bioinformatics Institute Sequence Read Archive database
(sewage: ERP015409 [https://www.ebi.ac.uk/ena/browser/view/PRJEB13831], soil: ERP020652

[https://www.ebi.ac.uk/ena/browser/view/PRJEB18701], gut: ERP004605
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[https://www.ebi.ac.uk/ena/browser/view/PRIEB5224], ocean: [ERP001736

https://www.ebi.ac.uk/ena/browser/view/PRJEB1787]).

Code availability

No custom algorithms or software were used to generate and analyze data. The R script for

partial least squares is publicly available on GitHub at https://github.com/congminz/GWMC.
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Table 1. Differences of the AS resistomes between continents. PERMANOVA (Permutational
multivariate analysis of variance using distance matrices) was performed based on Bray-Curtis
dissimilarity matrix at the level of individual ARGs. The upper triangle (shaded grey) shows the
F values of PERMANOVA, while the lower triangle shows the two-sided p values. Sample size:
n =06, 59, 14, 20, 106, and 21 biologically independent samples for Africa, Asia, Australasia,

Europe, North America, and South America, respectively.

Africa  Asia  Australasia Europe North America South America

Africa 5.04 2.18 5.78 2.66 2.03
Asia 0.001 13.60 37.64 39.14 10.93
Australasia 0.011  0.001 7.17 4.46 3.20
Europe 0.002  0.001 0.001 14.12 13.11
North America 0.003  0.001 0.001 0.001 7.94
South America 0.028  0.001 0.003 0.001 0.001
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Figure Legends/Captions

Figure 1. The abundance and global distribution of the AS resistomes. a) Map of the
sampling locations. b) Average relative ARG abundance (copy of ARGs per cell) across
different continents based on resistance mechanism, drug class, and the nine most abundant
ARGs. MLS: macrolide-lincosamide-streptogramin. ¢) Richness of the ARGs. Richness index
was calculated based on a rarified matrix of resistance gene coverage, which was rounded and
subsampled to the lowest sample’s level. In the boxplots, hinges show the 25, 50, and 75
percentiles. The upper whisker extends to the largest value no further than 1.5 * IQR from the
upper hinge, where IQR is the inter-quartile range between the 25% and 75% quartiles; The
lower whisker extends to the smallest value at most 1.5 * IQR from the lower hinge. Sample
size: n =6, 59, 14, 20, 106, and 21 samples for Africa, Asia, Australasia, Europe, North
America, and South America, respectively. Significant differences (Dunn's test with two-sided p-
values adjusted by the Bonferroni method < 0.05) between continent pairs are indicated in the
plot. d) Principal coordinate analysis (PCoA) reveals distinct ARG composition diversity in six
continents. e) PCoA reveals distinct ARG diversity in different environments. Source data are

provided as a Source Data file.
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Figure 2. The linkage of the AS resistomes to microbiomes. a) Relationships detected by
Procrustes analysis between the resistomes and bacterial community structure as measured by
16S genes extracted from the metagenomes. Metagenomic shotgun sequencing was performed
for all activated sludge samples, and the 16S sequences were extracted and grouped at the genus
level using Metaxa2. b) Relationships detected by Procrustes analysis between the resistomes
and bacterial community structure as measured by the 16S amplicon sequencing data. The dotted
ends of lines represent the resistome position, while the undotted ends represent the bacteriome
position. Vegan Procrustes test ‘protest’ with 999 permutations yielded a matrix-matrix
correlation coefficient of 0.74 (protest, p = 0.001) for metagenome 16S-based bacterial
community structure, and a matrix-matrix correlation coefficient of 0.70 (protest, p = 0.001) for
16S amplicon-based bacterial community structure. ¢) The association between the ARG
abundance (total ARG abundance and the top four major ARG groups) and the relative
abundance of top 15 major bacterial phyla from 16S rRNA gene amplicon data (16S) or
metagenomes (Shotgun). The circle-filled color corresponds to Spearman’s correlation
coefficient. The asterisks ‘*’ denote significant correlations (two-sided p < 0.05 after adjustment
for multiple testing). d) The phylogenetic tree of metagenome-assembled genomes (MAGs) from
global AS samples. The leaf colors indicate phylum groups. The bar heights outside the circle are
respectively proportional to the ARG count annotated in MAGs, and those red bars represent the
MAGs carrying multi-species mobile ARGs. Inner rings show the resistance gene abundances of
the five major drug classes, with darker colors indicating higher abundances. e) The mean count
and relative abundances of ARGs encoding major resistance mechanisms or drug classes across
phylogenetic groups. Error bars indicate standard deviations. Numbers on the top indicate the
number of MAGs belonging to the phylogenetic groups. Source data are provided as a Source

Data file.
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Figure 3. Mobility of ARGs from assembly and MAG-based analyses. a) Relative MGE
abundance identified from the non-redundant ORFs on gene level and group level. b) Boxplots
of the MGE Shannon’s H index across six continents. Hinges show the 25, 50, and 75
percentiles. The upper whisker extends to the largest value no further than 1.5 * IQR from the
upper hinge, where IQR is the inter-quartile range between the 25% and 75% quartiles; The
lower whisker extends to the smallest value at most 1.5 * IQR from the lower hinge, and dots
indicate values of individual samples. Sample size: n = 6, 59, 14, 20, 106, and 21 samples for
Africa, Asia, Australasia, Europe, North America, and South America, respectively. Significant

differences (Dunn's test with two-sided p-values adjusted by the Bonferroni method < 0.05)

between continent pairs are indicated in the plot. ¢) The relative abundance of mobile or
immobile ARGs based on taxonomic composition, resistance mechanisms and drug class. d)
Multi-phyla mobile ARGs based on gene sharing between MAGs. Nodes represent ARG
sequences with labels indicating the gene/gene family name. Node colors indicate the
phylogenetic groups of MAGs in which the ARG is present. Node shapes indicate different

resistance mechanisms. Source data are provided as a Source Data file.
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Figure 4. Drivers for the AS resistomes. a) Normalized stochasticity ratio (NST) quantifies the
relative importance of stochasticity in governing resistomes. Sample size: n = 6, 59, 14, 20, 106,
and 21 samples for Africa, Asia, Australasia, Europe, North America, and South America,
respectively. b) The Variance partition analysis (VPA) results indicated that the relative
contributions of geographic distance (Geo), environmental variables (ENV), and their
interactions to the variation of the AS resistomes all reached a significant level (two-sided p <
0.05). ¢) PLS models of the relationships among microbiome (PC1 of bacterial community
structure), resistome (the total ARG abundance, PC1 of ARG composition, abundances of the top
three resistance mechanisms), the abundance of MGEs located near (<10kb) ARGs, ARG-
correlated environmental variables, and ecosystem functions (the removal rate of BOD, COD,
total nitrogen, total phosphorus). Directions for all arrows are from independent variable to a
dependent variable in the forward selected PLS models (p < 0.05); only the variables with
variable influence on projection > 1 are presented. The numbers near the pathway arrow indicate
the proportion of variance explained for every dependent variable, with the top row representing
the partial R? index based on PLS and the bottom row representing Pearson correlation R?. The
asterisks denote the significance levels with *** p <0.01, ** p <0.05 and * p <0.10 (two-
sided). The colors of pathways are related to the positive (blue) or negative (red) relationships.
The widths of pathways are related to the partial R? index. Source data are provided as a Source

Data file.
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