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The ability to relate physical concepts and phenomena to multiple mathematical representations—and to
move fluidly between these representations—is a critical outcome expected of physics instruction.
In upper-division quantum mechanics, students must work with multiple symbolic notations, including
some that they have not previously encountered. Thus, developing the ability to generate and translate
expressions in these notations is of great importance, and the extent to which students can relate these
expressions to physical quantities and phenomena is crucial to understand. To investigate student
understanding of the expressions used in these notations and the ways they relate, clinical think-aloud
interviews were conducted with students enrolled in an upper-division quantum mechanics course.
Analysis of these interviews used the symbolic forms framework to determine the ways that participants
interpret and reason about these expressions. Multiple symbolic forms—internalized connections between
symbolic templates and their conceptual interpretations—were identified in both Dirac and wave function
notations, suggesting that students develop an understanding of expressions for probability both in terms of

their constituent pieces and as larger composite expressions.
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I. INTRODUCTION

Physics students enrolled in upper-division quantum
mechanics (QM) courses are expected to learn and use
Dirac formalism to represent quantum systems and com-
pute relevant values such as probabilities and expectation
values for specific measurements and physical observables,
respectively. Students in these courses are also expected to
learn and use other, more familiar mathematical notations,
such as matrix-vector and wave function notations, that
they may have used previously in linear algebra or modern
physics contexts. Perhaps most crucially, they are expected
to learn how these different notational styles interrelate, as
calculating properties related to different physical observ-
ables will often require a student to work partially in one
notation before needing to finish a calculation using
another. If this translation is not required, it is nonetheless
often preferred, as certain calculations are less computa-
tionally demanding with a given notation for a given
context [1,2].
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The symbolic forms framework was proposed by Sherin
in an attempt to capture the ways in which students reason
about formal mathematical expressions in physics [3]. In
particular, it functions on the premise that students learn to
interpret expressions via a vocabulary of smaller elements
arranged via some syntactical rules. One goal of instruc-
tion is to assist students in developing and refining an
understanding of these elements so that the students are
eventually able to both make sense of new expressions
they encounter and generate mathematical expressions to
describe physical phenomena.

Viewing upper-division quantum mechanics courses
through a symbolic forms lens thus provides a means of
studying the mathematical and physical interpretations of
quantum mechanical quantities that students develop in
these courses. That students in this context are typically
learning an entirely new mathematical representation (in
the form of Dirac formalism) makes the application of this
lens even more interesting, as it allows for an investigation
into the mathematical and physical interpretations that
students develop for expressions that are entirely new to
them, and that will be of great relevance should they
continue on to graduate study in physics. This study
investigates the ways that students reason about expressions
commonly used in upper-division quantum mechanics
courses, particularly those used to represent probabilities
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in Dirac and wave function notations. To this end, we
sought to determine the various symbolic forms students
develop relating to probability concepts throughout a
spins-first, upper-division quantum mechanics course. A
spins-first QM course is one that traditionally begins by
studying the Stern-Gerlach experiments and spin-1/2
systems [4,5]. Dirac notation is thus introduced at the
very beginning of the course and is used extensively at the
beginning of the course before wave function notation and
the Schrodinger equation is introduced later on. This is in
contrast with wave functions-first courses, wherein the
Schrodinger equation and wave functions are used in the
beginning, and Dirac formalism is often introduced much
later in the course [6].

II. BACKGROUND

The symbolic forms framework [3] was developed by
Sherin as an extension of the knowledge-in-pieces frame-
work [7] in order to describe the building blocks of
meaning encoded in symbolic mathematical expressions.
Symbolic forms thus represent a marriage of form (e.g., the
shapes and squiggles on paper and their orientation relative
to each other) and meaning (i.e., the relationships ascribed
to the given arrangements of shapes and squiggles). These
are referred to within the framework as symbol templates
and conceptual schemata, respectively, and their combina-
tions are dubbed symbolic forms. These are intended to be
viewed as the simplest possible relationships; a given
equation in physics may be constructed of multiple sym-
bolic forms. An example symbolic form is “opposition,”
represented by the symbol template “[J—[]” and the
conceptual schema “two influences working against each
other.”” An example application of the “opposition” sym-
bolic form would be in the sum of vertical forces acting on
a block resting on a surface: N —mg. This framework
allows for theory building where new building blocks of
symbolic reasoning are discovered and has been used
as such both for studying mathematical sensemaking in
electrostatics contexts with vector calculus [8,9] and linear
algebra concepts in QM [10,11]. As these symbolic
representations and their implied meaning are often not
taught explicitly (unlike much of the conceptual knowledge
built from conceptual resources, which is largely the
curricular focus), a greater understanding of these forms
and more explicit curricular goals related to symbolic
understanding is largely the goal of research within this
framework.

Originally developed in chemistry education, representa-
tional competence is a theoretical framework targeting
students’ understanding of and ability to work with
multiple representations—including symbolic and graphi-
cal representations [12]. They found that students possess
an impressive ability to generate, refine, and judge the qua-
lity of representations of physical phenomena. This par-
ticular aspect of representational competence was dubbed

metarepresentational competence (MRC) [13], as it was not
only their competence in generating and refining repre-
sentations that proved valuable, but their ability to reason
about the representations as well—critiquing and refining
them as deemed necessary by the students. They found that
even young children possess a “deep, rich, and generative
(if intuitive and sometimes limited) understanding of
representations” [14] and that this inherent MRC may be
key to deepening student understanding of the power and
limitations of representations both in physics and more
generally [15]. This framework has been used by both
mathematics and physics education researchers to study
student understanding of linear algebra representations in
quantum mechanics [16].

Related work within PER also describes two skills that
are needed to benefit from using multiple representations
in physics: representational fluency and flexibility [17].
Representational fluency refers to “the ability to construct
or interpret certain representations like equations, dia-
grams, or graphs, but also to what extent someone can
switch between different representations on demand,” and
representational flexibility involves “making appropriate
representational choices when solving problems” [18]. The
idea of representational fluency has been used to investigate
the challenges students face when working with symbolic
and graphical representations of vector fields [18].

Research in physics education has shown that the ways
in which conceptual meaning is tied to mathematical
representations are multifaceted, and authors often use
different combinations of the various frameworks discussed
above to analyze their student data and to inform their
claims. Redish and Kuo used some aspects of cognitive
semantics to compare how meaning is made in language
and to “show how those same mechanisms can be used to
understand how meaning is made with mathematical expres-
sions in both science and math” [19]. They discussed how
embodied cognition can be extended to mathematical
reasoning, using the symbolic forms framework [3] as an
example. They argued that the conceptual schema is
obtained through embodied experience, citing the parts-
of-a-whole symbolic form, where the concept of pieces of a
larger whole is inherently connected to physical experiences
with real-life objects that are made up of smaller objects [19].

1. SYMBOLIC FORMS’ SUITABILITY

Before discussing the experimental design and digging
into our analyses, it will be helpful to first discuss the
normative expressions for these probability concepts in
these notations and to discuss the suitability of the symbolic
forms framework for this analysis.

Given that the focus of this work is on the interpretation
of expressions for probability that commonly occur within
upper-division quantum mechanics courses, there are two
normative expressions within Dirac notation that are of
explicit interest to this study. The first of these is inner
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products, which represent probability amplitudes: {a,|y).
These are also expressed as c,, the coefficient of an
eigenstate in that operator’s basis expansion. The associ-
ated probabilities are found by taking the complex square
of these inner products: P, = |(a,|y)[* = |c,|*. Thus, the
principal (normative) expression in Dirac notation that is
expected to show up within students’ responses as repre-
senting probability is the complex square of an inner
product, |{a,|y)|>. It would also be expected for students
to have developed conceptual knowledge about the con-
stituent parts of this expression, such as the inner product,
the ket, and/or the bra, separately. It should be noted that
bras and kets are formally distinct mathematical objects: a
bra is the covector of its associated ket and the set of bras
forms a dual vector space to the vector space within which
the set of ket vectors reside. These nuances of dual spaces
are not discussed in depth in most upper-division quantum
mechanics courses and thus students are expected to view
these distinctions as relatively “fuzzy.”

The principal (normative) wave function expressions
expected of students as representative of probabilities in
quantum mechanics would be twofold. For situations
where a probability for a single value of a discrete
observable is being represented in wave function notation,
a complex square of an integral with two different func-
tions, similar to P, = | [ ¢;(x)¥(x)dx]* would be
expected (in this example, as in our data collection, the
wave functions are written as functions of position). For
scenarios where the students discuss probabilities for a
system to have a measured value of a continuous observ-
able within a given region, an integral over the range of
values of the complex square of a single function should
be expected, either expressed as exactly that (e.g.,
J? |y (x)|*dx) or as the product of the wave function and
its complex conjugate (e.g., [?y*(x)y(x)dx). As was the
case with the expressions in Dirac notation, it is reasonable
to suspect that students would also learn to view the
components of these expressions—the wave functions
w(x) and ¢,(x) as well as their complex conjugates—as
individual objects with their own interpretations as well.

Because these expressions for probability concepts in
principle follow a simple formula as inner product expres-
sions and complex squares of inner product expressions,
the symbolic forms framework is particularly apt for this
analysis. The symbolic forms framework describes con-
sistent symbolic templates to which students learn to
ascribe specific meaning, and the types of expressions
discussed earlier in this section very much fit the descrip-
tion as fitting certain symbolic templates. In particular,
Dirac brackets and inner product integrals, as well as their
complex squares and their constituent pieces (the bras, kets,
and functions), are seen and used extensively enough
within these courses that it is reasonable to expect that
students would learn to recognize them quickly and treat
them as representative of physical and mathematical objects

and/or processes. In short, we would expect students to
develop symbolic forms for many of the expression types
discussed above by connecting recognizable symbol tem-
plates with distinct conceptual schemata.

IV. RESEARCH DESIGN AND METHODOLOGY

To determine the ways that students interpret expressions
in these two different notations, think-aloud interviews
were conducted over several years with students enrolled in
the upper-division quantum mechanics course at a public
research university in the U.S. This course is offered every
fall semester and follows the spins-first curricular structure.
All students enrolled in these classes were offered financial
compensation for agreeing to participate in the interviews,
and all students who expressed interest were interviewed.

The first set of interviews was planned before the
COVID-19 pandemic, which greatly affected both the
distribution of and participation rates for the interviews
conducted. Thus, our first set of interviews was virtual,
while in subsequent semesters, they were able to be
conducted in person. The differences inherent in virtual
and in-person interview settings required the structure of
these interviews to differ significantly, and participation
rates were lower than expected for all three instances of
interview data collection. In total, two individual virtual
interviews, a single in-person interview with a pair of
students, and two individual in-person interviews were
conducted.

Pseudonyms have been selected for all six students, with
Aaliyah and Bilbo as the two virtual interviewees, Castor
and Delilah as the participants in the pair interview, and
Enoch and Frodo as the participants in the individual
interviews. The perceived gender of participants’ pseud-
onyms does not necessarily correspond to the participants’
own gender identities.

A. Virtual interviews

Because the virtual interview participants could not be
expected to have equipment at hand such as tablets and
styluses or other means of writing that would be convenient
and visible in a virtual environment, the interview tasks
were necessarily designed to be conducted solely with a
computer mouse. Accordingly, two tasks were adminis-
tered to the participants: a card-sorting task and an
expression-construction task.

1. Card-sorting interview task

The card-sorting task made use of the card-sorting
functionality in Desmos and effectively tasked participants
with categorizing and recategorizing a number of expres-
sions by whatever means they deemed appropriate. An
example of the expressions and a potential sorting by a
participant are shown in Fig. 1. Expressions were selected
for this task for a number of reasons. First, they were all
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FIG. 1.
chose to sort the given expression cards.

expressions with which the students should have been
familiar, either from the quantum mechanics course they
were enrolled in or from earlier physics courses (e.g., v,
ii - U, and J). Second, they largely covered every type of
expression for probability and their constituent parts within
Dirac and wave function notation, such that groups could
be constructed containing analogous or equivalent expres-
sions from both notations. It is worth noting that one
expression, | [y* (x)y(x)dx|?, is not a normatively correct
expression in a QM context—it is either a complex square
of a normalization integral (if integrated over all space) or a
complex square of a probability over a region in space (if
integrated over that region). It was included, despite its
non-normative nature, due to its similarity in form to the
probability of measuring an eigenfunction’s associated

(b)

(a) The original view of the expression cards in the card-sorting task as seen by the participants. (b) One way that a participant

eigenvalue (e.g., | [ ¢;(x)w(x)dx|?, where ¢,(x) is an
eigenfunction of an operator), in order to determine
whether participants would focus on this surface-level
similarity or recognize its distinction from a probability
expression. Participants were expected to determine cat-
egories that “made sense” for these expressions and to
group them accordingly. They were asked to reason aloud
about their thought processes and were encouraged to sort
the expressions multiple times to capture as many different
categorizations that they thought made sense.

The goals of this interview task were to allow for in-
sights into (a) the ways that students think of expressions
conceptually, by seeing the categories into which they
would sort the expressions and (b) the ways that various
expressions interrelate for students, both within and
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between the given representations. This task generally
took the first 20 min of the interview; upon the student
being satisfied with their categorizations, the second task
was initiated.

2. Expression-construction interview task

The second task was an expression-construction task,
where students were provided with an assortment of
expressions and parts of expressions that were commonly
used in their quantum mechanics course. They were then
tasked with constructing as many expressions as possible
that they deemed as representative of a quantum mechani-
cal probability. This was conducted via a shared Google
Slides file, with the student clicking and dragging the parts
of expressions around to form the desired probability
expressions. The expressions used, as well as an example
of some expressions formed by participants, are shown in
Fig. 2. Similar to the card-sorting task, participants were
asked to think aloud and explain their reasoning for each
expression they constructed. Due to the nature of this
task, follow-up questions posed to participants depended
greatly on the particular expressions they constructed
and the expression elements they indicated, selected, and
manipulated.

The goals of this interview task were to elicit student
thinking on (a) what the individual components of expres-
sions mean and (b) how these expression components
interact to form larger expressions with their own meaning.
Due to the structure of the questions, the meaning ascribed

[9) 8. |2} pn(@) (Bl | |2 2 Wler@ i1 [ 2ol

S.0)en@ Bl | P2 e@ i [zee
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to these expressions would be expected to relate to
probability concepts. By observing the language students
used to describe both the components and larger expres-
sions as they were in the process of constructing them,
these goals could be addressed. The remaining 40 min of
interview time were generally dedicated to this task.

B. In-person interviews

The questions and tasks posed to the participants of the
in-person interviews differed from the virtual interviews but
were identical between the 2 years these in-person inter-
views were conducted, with the exception of one additional
question asked during the two individual in-person inter-
views. These interviews took place in a room with a
whiteboard and markers, with both the participants and
their writing captured by a video camera. The initial
prompts given to the students are shown in Table I and
generally required students to either generate or translate
expressions in Dirac and/or wave function notations.

The primary goal of these interviews was to ascertain
students’ functional understanding of the expressions used
to represent probability concepts in quantum mechanics, by
which we mean that understanding these students exhibit in
an authentic setting such as in the classroom, on homework
problem sets, or on an exam [20]. Prompts 3 and 4 were
thus designed to be similar to homework problems the
participants would have seen throughout the course.
Prompts 1 and 2 were chiefly focused on how students
generate an expression with only verbal prompting, as well

oo
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FIG. 2.

(a) The list of expression components provided to the students for the expression-construction task. (b) An example of a

participant’s constructed expressions. Some expression components are free floating from the process of constructing other expressions.
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TABLE I. The structured prompts given in the in-person interviews. Note: *Not asked during pair interview but added for individual

interviews.

Prompt 1 How would you express the probability for an electron within a potential well to be measured as having the ground state
energy of that well?

Prompt 2%  Let’s say we have an electron in a potential well—perhaps an infinite square well. If we know that it has an even 33%
chance of having any of the three lowest possible measurable energy values for that well, how could you express its
current quantum state mathematically?

Prompt 3a  Let’s say we have a particle in an infinite square well (“particle-in-a-box”) potential. It is currently in the superposition
state described by |y) = ﬁ(\/ﬂEl) + |E,) + 2|E3))

How would you go about finding the probability of measuring that particle to be in the left half of the square well?

Prompt 3b How would you go about finding the probability of measuring that particle to be in the lowest energy state?

Prompt 4a  Let’s say we have a particle in an infinite square well (“particle-in-a-box”) potential. The particle is described by the
following wave function: w(x) = \/%Sin3 (4mx)

How would you go about finding the probability of measuring that particle to be in the lowest energy state?
Prompt 4b  How would you go about finding the probability of measuring that particle to be on the left half of the square well?

as seeing what participants’ first choice for notational style
would be. These prompts and their respective follow-up
questions were thus intended to gain an understanding of
the ways students reason about these expressions, including
what they mean as a whole, what their constituent parts
mean, and how they are related to their analogous expres-
sions in other notational styles. These responses were
analyzed through a symbolic forms lens.

V. SYMBOLIC FORMS ANALYSIS RESULTS
AND DISCUSSION

Analysis of students’ responses in both virtual and in-
person interviews was conducted to determine any con-
ceptual interpretations that were consistently applied to
expressions and components of expressions when working
with or discussing them. We note a convention when
presenting student excerpts. When a symbolic expression
is spoken, and the interpretation is clear, our convention
is to write out the symbolic expression rather than the
verbal equivalent, e.g., E, is written when a student says
“E-sub-n”, for both ease of reading mathematical expres-
sions and efficiency.

The results of this analysis are broken down primarily by
notational representation and secondarily by the types of
expressions identified as separable by students. There is
then a discussion about the instances of students identifying
conceptual overlap between the two notations, as often
occurred in situations where they translated between the
different representations.

The symbolic forms we have identified are presented in
Table II, along with their associated symbol templates. It is
notable that multiple forms seen in this table share identical
symbol templates; this is not unprecedented, as Sherin
noted cases where templates can appear similar or identical,
depending on the context. This includes the “base =+
change” symbolic form having the symbol template
[O + A], which can appear identical to the templates used

for “parts-of-a-whole” or “whole — part” symbolic forms
depending on context ([0 + O+ 0O+ ---] and [0 — ],
respectively). The thing that distinguishes two symbolic
forms with identical symbol templates is the interpretations
that students apply to them—that is, their conceptual
schemata. The conceptual schemata applied to each
symbolic form are summarized somewhat by their titles
and are made explicit within the following sections where
they are discussed in detail. To assist the reader, the end of
each section includes a smaller table containing the
specific symbolic forms and symbol templates identified
in that section.

A. Symbolic forms identified within
Dirac notation expressions

Many symbolic forms were identified within Dirac
notation expressions for probability concepts. We begin
by discussing the symbolic forms identified for the smallest
constituent pieces of these expressions: Dirac bras and kets.

1. Dirac bras and kets as quantum states

One consistent observation is that students appeared to
consider bras and kets as representative of quantum states.
Aaliyah was seen doing this in the virtual card-sorting task
when discussing the elements within a category containing
several Dirac bras and kets and a Dirac inner product:

This [|E,,)] represents a ket energy eigenstate, and
this [(E,|] represents a bra energy eigenstate. So
these [|y) and (w|] are general ones, these [|E,,)]
and (E,|] are specific energy eigenstates, and this
thing [(E,|w)]- this inner product represents the
amplitude of the energy eigenstate E, if I [...]
map out all the [...] energy eigenstates that make
up the .

Here Aaliyah called out the E, bras and kets as being
different from the y bras and kets, as she drew a distinction
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TABLE II.

The symbolic forms identified through our analysis, as well as their associated symbol templates. Symbolic forms are

divided into two categories, based on whether their associated conceptual schemata imply more physical or mathematical interpretations
of their associated symbol templates. Note that “probability amplitude” and “probability” refer to the probability (amplitude) of a
physical measurement, hence their placement in the “more physical” column.

(More) mathematical

symbolic forms Symbol templates

(More) physical symbolic forms

Ket as vector [ )
Bra as vector (]
Bracket as projection {1
(P
Function as vector £(O)
Conjugate function as vector 4(0O)
£,(0)
AE)
Inner product integral of two identical J(O)f(O)dO
functions as projection
Inner product integral of two different JrA(0)g(0)dd
functions as projection
[ (@) f(@)anf
|/ £(D)g(0)an?
Coefficient as component C,
leal?

Ket as quantum state
Bra as quantum state
Bracket as probability amplitude
Square bracket as probability
Function as superposition state
Conjugate function as superposition state
Function as specific state
Conjugate function as specific state
Inner product integral of two identical functions as probability
amplitude
Inner product integral of two identical functions as probability
Inner product integral of two different functions as probability
amplitude
Inner product integral of two different functions as probability
Complex square of inner product integral of two identical
functions as probability
Complex square of inner product integral of two different functions
as probability

Squared coefficient as probability

between “specific” eigenstates and “general” states. This
distinction shows up again later in the interview when
Aaliyah discusses an expression for the probability that she
constructed (|(E,|y)[?): “The E,q, [gestures at |(E, [y)|*]
represents, like the probability of finding y, which is a
general state, in a particular energy eigenstate E,.” This
suggests that, for Aaliyah at least, there may be a distinction
between the symbolic forms for a “general state” and for a
“specific eigenstate.” The exact nature of the meaning of a
general state may be hinted at by Aaliyah’s discussion of y
being “[made] up” of the energy eigenstates. This may be
indicative of an interpretation of y and general states as
relating to superposition states made of a combination of
specific eigenstates.

Bilbo, in his interview, discussed the ket |x) in the
following terms: “you could make x an eigenstate, you
could make it a spin state [...] put anything in there [...] I
just need it to be a ket.” This implies that Bilbo was very
much treating the ket symbol as a marker for a quantum
state. Interestingly, he appeared to treat x here as a
mathematical variable, with it being a possibility to swap
it with some other symbol to signify a given quantum state;
so long as it is a ket, it represents some kind of quantum
state, with the marker inside the ket determining the exact
type of state.

Castor and Delilah quite frequently discussed E, bras
and kets as representing quantum states, such as early in

their interview when explaining an expression they wrote to
represent an electron in a potential well. They had written

lw(x))g = c1|E\)g + ol Ex)p + -+,

and Delilah described it with: “if psi is written in terms of
the energy states, in Dirac notation like this [points to kets
in the expression] then P [probability] is, you know, as
[Castor] said, is just [writes Pg, = co*].” Much later in the
interview, Delilah reflected on their earlier response to
prompt 3a, where they were given the expression

1
=——(V3|E)) + |E)) +2|E
ly) 2\/5( |E1) + |Ea) |3>)
as representing a particle in an infinite square well

potential. She discussed her interpretation of the expression
as a whole and why it was written that way:

I think it’s just, by design. The point of this is to
give information. And so the coefficients are
designed to give us the probability. And well,
[...] these [points to the different terms in
lw) =525 (V3|E)) + |Ey) +2|E3))] are all our
possible values. [...] And so we just represent it
as [...] [points to V/3] the square root of the
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probability times the first state [points to |E;)]
plus the square root of probability [points in front
of |E,)] times the second state [points to |E,)]
plus the square root of the probability [points to
the 2] times the third state [points to |E3)] and
then do that. We can do that infinitely. [...] So
yeah, [...] we essentially just have square root of
probability times each state.

As can be seen from this excerpt, Delilah directly
referred to the ket symbols as states, with the E,’s
representing “all our possible values” (presumably the
possible measurable energy values for each state). She
also notably described the coefficients in front of each
eigenstate as “the square root of the probability” for
measuring that state’s energy, which is a normatively
correct interpretation, albeit without explicitly referring
to the possibility of complex coefficients and the necessity
of a complex square to attain the probabilities.

Delilah also wrote an expression equating (E,| and .9,
and Z with a large and exaggerated “~” sign (see Fig. 3).
When asked to explain her expression, she replied with
“I’m just trying to say that’s how I reconciled the complete
orthonormal basis of the E, energy states,” calling out a
conceptual similarity to them between a bra representing
an “energy state” and Cartesian unit vectors. This vector
interpretation of bras and kets will be discussed in more
depth in Sec. VA 2.

Although Aaliyah, Bilbo, Castor, and Delilah all claimed
bras and kets represented quantum states, there was some
ambiguity as to what they meant by “state.” Did they have
a clear conceptual interpretation for that phrase or was
that simply a learned name from the lecture? Evidence that
they did in fact have a clear conceptual understanding
of what a quantum state “is” or describes can be found
in the interviews with Enoch and Frodo. When Enoch
interpreted the expression given in prompt 3a (Jy) =

ﬁ(\/ﬂEl) + |E,) 4+ 2|E5))), he identified the kets as
energy states: “What this equation is saying is that [...]
the particle could be in any of the three energy states
[gestures at the three E, kets].” Later, Enoch discussed
his error in writing w(x) on the LHS of the expression
he initially wrote for prompt 2 (w(x)= \/%|E1> +
\/%|E2> +%|E3>): “lw(x)] is a function of x, and then I
wrote it as a sum of vectors of the distinct energy levels.”
Frodo likewise discussed kets as representing explicit

(E"‘M/\Q);)g

FIG. 3. Delilah’s expression relating an energy eigenstate bra to
Cartesian unit vectors.

TABLE III. Symbolic forms identified for Dirac bras and kets
as describing quantum states and their associated symbol tem-
plates.

Symbolic form Symbol template

Ket as quantum state | )
Bra as quantum state (]

energy levels, discussing the terms in his expression for
prompt 2 (written as y = %(H} +12) +13))) with “so
each of these [gestures to the three kets]... these are the
three lowest energy levels,” later describing the state of the
particle as “a mixture of the three different energy states.”
Frodo did explain that he was being imprecise with calling
it a “mixture” and was conscientious of the difference
between superposition and mixed states. In these examples,
Enoch and Frodo were clear about what a (quantum)
state means to them—that it was related to a property
associated with a particle, be it describing a particle’s
(possible) energy value or a superposition of possible
energy values.

Based on the responses discussed in this section, two
symbol templates are present here—| ) and ( |—both of
which appear to share a conceptual schema of representing
a particle or system in a specific quantum state (either a
general state or an eigenstate of an observable), with their
associated physical properties or eigenvalues. These sym-
bol template-conceptual schema pairs then define the “ket
as quantum state” and “bra as quantum state” symbolic
forms (Table III). Looking at the responses from Aaliyah,
it is also possible that there are distinctions to be made
between a “general” state—typically with a y inside the ket
or bra—and a “specific” eigenstate—with some other label
within the bras and kets. This would suggest that perhaps
there should be a differentiation between two types of kets
and bras as symbol templates based on the symbol within
them and that there are distinct conceptual schemata for the
two “flavors” of kets and bras. While this is representative
of a normative understanding as there is indeed a distinction
between a general ket that can represent any state (typically
expressed as |y)) and kets such as |+,) or |E;) that describe
specific eigenstates of physical observables, without more
evidence of this from the other five interviewees there does
not appear to be enough evidence to entirely support that
claim. Thus, we will only lay out the two symbolic forms
discussed above (ket and bra as quantum state).

2. Dirac bras and kets as vectors, and Dirac brackets
as dot products

Another cluster of symbolic forms that appeared in
student responses relates to treating bras and kets as
vectors, and Dirac brackets as vector dot products.
As students often discussed brackets in terms of bras
and kets—particularly in the context of bras and kets as
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vectors—and brackets as dot products between bra and
ket vectors, these three symbol templates and their
associated vectorlike conceptual schemata will all be
discussed together.

In the virtual card-sorting task, Aaliyah discussed both
the (E,|y) and (w|y) brackets in terms relating to a
geometric interpretation of dot products, where she calcu-
lated a projection of one vector onto another. When
discussing the (E,|y) bracket, she said, “I will get the
amplitude from this inner product [...] like in vector form,
like how one vector along the other, like projection of one
thing along the other, so that is like the projection of y
function along the E,-basis.” When discussing the (y|w)
bracket, she said “why would I do w of w? Because
physically like I'm thinking in terms of vectors, it repre-
sents y along w.” Upon being asked what she meant by
“_ along ____” she explicitly connected their inter-
pretation of the Dirac bracket to that of a dot product’s
projection idea: “it’s a traditional way to think about
vectors, like because our dot product represents—Ilike

—

a-b represents, basically, the projection of a along b

or projection of b along a” Later, Aaliyah was thinking
aloud about the meaning of |{x|x)|> and asked herself
“what does a vector dot-product-ed with itself represent?
The magnitude? Squared...” She eventually settled on the
convention that a dot product of a vector with itself would
in fact produce the magnitude of that vector squared (e.g.,
7+ 7 = |v[*), and thus the complex square on the outside
of the bracket was redundant. In all of these cases, the
connection between Dirac brackets and the projection ideas
she associated with dot products is clear. She also appeared
to relate the Dirac bracket as a combination of a bra and a

ket and associated them as her @ and b vectors (e.g.,

treating the bracket as an analog: (|) <> a - b), where the
bracket is explicitly the projection of a ket vector onto a bra
vector with a geometric spatial interpretation to both the
vectors and the inner product.

During the virtual card-sorting task, Bilbo provided
explicit categories for “vector” and “vector inner product,”
wherein he placed the bras/kets and Dirac brackets,

respectively. He initially grouped the v and ly) together,
saying “I’'m going to be grouping these things as vectors,”
then added j and |E,) sequentially, explicitly calling out
that they go into that group because they are all vectors.
Bilbo briefly grouped (E,| and (| together, saying “bras
are effectively vectors as well, they’re just conjugate
vectors,” before then combining the two groups together,
stating “I could combine the bras with the kets, surely,
because to me, those are just—they’re all—they’re vec-
tors.” He crystallized this point for himself by declaring
“If you’re gonna take an inner product between a bra and a
ket, you can only have an inner product of two vectors.”
This connected in with his earlier grouping of Dirac

brackets and dot product expressions, which began by

grouping (y|y) together with u - v, with him stating
“yeah so, I mean, got some dot products here” and
continued with adding (E,|w), saying, “this is also going
to be a dot product.” Bilbo applied other rules of dot
products and vectors to this category when he stated

“(E,|w), (w|w), u - v] should be scalars because they’re
inner products”—upon being asked why that meant they
were necessarily scalars, he expounded with “a dot
product produces a scalar. Due to mathematics [...] that’s
the way it goes—there are two types of vector multipli-
cation. You're doing an inner product that is the [...]
scalar multiplication.” He later clarified that “[he’d] been
taught to think of [a dot/inner product] as like a projec-
tion, so then you know how much does one vector project
onto the other.”” Bilbo also treated kets and bras as
geometric vectors in contexts beyond inner products.
For example, during the expression construction task, he
discussed what operating an S, operator on |y) or (|
would do.

Certainly changes the state [...] well actually [...]
does it have to change the state? I mean [...] if the
state is purely in z, I believe it’1l still change it, but
I think by only lengthwise stretching [...] rather
than rotating.

[Asked why it would only stretch and not rotate]
Because it would be an eigenstate of that matrix
[...] we just know if you have a vector [...] that is
an eigenvector of the operator, then when you
operate you just get you know ‘A your eigenvalue
times your vector,” which is thus the same vector
and not rotated at all, but its magnitude may have
changed.

Here it is clear that Bilbo was treating these bras and kets
geometrically, with “stretching” and “rotating” as viable
operations that could occur to them. It is also of note that
Bilbo discussed this action as occurring not only to a
vector, but to a state as well. This is further evidence of the
ket as quantum state symbolic form from Sec. VA 1, as
well as evidence of Bilbo thinking fluidly about these
symbolic forms.

Castor and Delilah likewise treated brackets as dot
products, and even had a discussion on the distinctions
between an inner product and a dot product, starting when
the interviewer asked them about their calling (E; |y (x)),
an expression they wrote prior, a dot product.

Interviewer: Okay, so you called the—this thing [(E| |w) (x)]
a dot product.
Delilah: Uh, inner product, yes.
Castor: They’re basically the same.
Delilah: I think a dot product is a form—one of them is a
form of the other.
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Castor: Like, one is more broad than the other, but they’re
basically the same thing.

Delilah: Which one is which though [...] T think dot
product is a form of an inner product.

Here they can be seen determining (correctly) that an
inner product is a generalization of a dot product, but they
nonetheless referred to Dirac brackets as dot products.
Later in their interview, they made the assertion that for
n# m, (E,|E,) = 0. When asked to explain why that was
the case, Castor stated “because of like orthonormality,
the eigenstates are perpendicular in a space,” ascribing
spatial geometric properties such as orthogonality and
perpendicularity to a Dirac bracket. As was discussed
in Sec. VA 1, Delilah wrote an exaggerated version of
(E,| ~ %,9,% on the board. Later in the interview, the two
discussed it in the following way:

Delilah: But like that [(E,|~X,9,2], that helps me realize,
why it’s orthonormal- why it’s orthogonal. And
complete.

Castor: And like the dot product, or inner product is like
the, if you do it with just with vectors, it’s like,
how much is a projection onto the other... thing.

Delilah: Yeah, how much of them are in the same direction.

Castor: So if they’re 90 degrees from each other, then their
components are just in their directions. They’re
not, like, a superposition or like a vector that has
multiple pieces. [sketches an arrow lying between
two perpendicular dotted arrows (presumably
two axes)]

Here Castor and Delilah were discussing the similarities
between the bra (E,| and the Cartesian unit vectors %, 9,
and 2. They explicitly connected (E,| to ideas of dot
products, projection, and directionality. Later on, when
working through some calculations for prompt 3b, they
determined that (F,|E,) = 1. When asked to explain that
step, Castor responded with “because, like 100% of E,
[points to the (E,| in (E,|E,)] is in the direction of E,
[points to the |E,) in (E;|E,)].”

Enoch and Frodo also described Dirac bras/kets and
brackets in terms of a vector- and dot productlike inter-
pretation, respectively. While explaining his answer to
prompt 3b, Enoch described |(E;|y)|> as “giving the
component of this [|y)] in a particular direction or in this
case of the particular energy, and then norm squaring it.”
Enoch was referring to the Dirac bracket within the
complex square as a process of determining a component
along a direction, a clearly geometric dot product inter-
pretation. Enoch also discussed the ket |y) alone, referring
to it as “a vector sum of each of the probabilities of the
different energy states or observables that you can do,”
where he explicitly connected a ket for a superposition state
to a vector sum. Very early in Enoch’s interview, he wrote

w(x) = %|E1> +\/L§|E2> +%|E3> for prompt 2. Upon
reflection near the end of the interview, he corrected
himself: “Yeah, that’s wrong [...] [y(x)] is a function of
x, and then I wrote it as a sum of vectors of the distinct
energy levels.” Here, Enoch again referred to a sum of kets
as a vector sum. It is notable that there are two ways that
Enoch could have corrected this expression: he could have
changed w(x) into |w), thus matching it to the “vector”
ontology he identifies the E, kets as sharing; alternatively,
he could have changed the E, kets into their corresponding
eigenfunctions written as functions of position to match the
w(x)’s “function of x” identity. It is also worth noting the
somewhat “sloppy”” language Enoch uses, referring earlier
to a vector sum of probabilities (which are scalar quantities)
and “vectors of [...] energy levels.” Based on his other
responses, we believe this sloppiness is not indicative of a
low level of understanding and view his first statement as
referring to the probability amplitudes being the coeffi-
cients in front of the basis vectors and his reference to
“energy levels” referring to energy eigenstates (which
describe states at certain energy levels). Frodo, meanwhile,
used perpendicularity to explain the Dirac bracket (E||E,):
“so, these two [gestures at (E||E,)], when they’re not the
same state, they’re perpendicular to each other. Like these
[gestures at (E;| and |E,) in (E||E,)] are each orthogonal
to each other.” Similarly to Castor and Delilah, Frodo
conceptually connected inner products and dot products
together, saying “we were calling these inner products in
class. [...] But I mean, it’s the same as a dot product.”
As can be seen from these interview excerpts, these
students all made very strong conceptual connections
between bras and kets and vector ideas, and between
projection/dot product ideas and Dirac brackets. In this
case, there are three symbol templates: | ), ( |, and ( | ).
The conceptual schemata that these students appear to have
connected to the | ) and ( | symbol templates include ideas
related to vectors in a geometric sense, such as length/
magnitude and directionality. They appear to have identical
conceptual schemata tied to both: although Bilbo does
potentially draw a distinction between | ) as a “vector” and
(| as a “conjugate vector,” he quickly sorted the two
together into one overarching vector category so a strong
conceptual distinction does not seem likely. We name the
symbolic forms formed from these symbol template-
conceptual schema pairs “ket as vector” and “bra as
vector” (Table IV). The ( | ) symbol template, meanwhile,

TABLE IV. Symbolic forms identified for Dirac bras, kets, and
brackets in the context of vectorlike conceptualizations.

Symbolic form Symbol template

Ket as vector | )
Bra as vector (]
Bracket as projection (1)
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appears to elicit a very strong conceptual response as
representing a dot product, complete with a geometric
projection interpretation. We call the combination of this
symbol template with these ideas of two vectors being
projected together via a dot product the “bracket as
projection” symbolic form (Table IV).

3. Dirac brackets—and squared brackets—as
probability concepts

Another common interpretation of Dirac brackets was
that of probabilities or probability amplitudes (meaning
a quantity that will represent a probability upon being
multiplied with its complex conjugate). Recall from
Sec. II A that the complex square of a Dirac bracket
between a state vector (often represented as |y)) and an
eigenstate of an operator is generally representative of a
probability (e.g., |{a,|w)|? is the probability of measuring
the eigenvalue associated with |a,,), the nth eigenstate of
the operator A). The bracket alone generally represents the
probability amplitude. The only deviation from this rule is
when the bracket includes two identical vectors (e.g., (y/|w)
or (a,|a,)). These expressions have two interpretations: as
a step in the process of normalizing the vectors within the
inner product or as a sum of probabilities of all states
included within a superposition expansion of the vector
within the bracket in a basis (which, not coincidentally,
need to sum to one—hence the normalization condition).

In the card-sorting task, Aaliyah discussed the bracket
(E,|w) as representing a probability amplitude in this way,
saying “this inner product represents the amplitude of the
energy eigenstate E, if I, you know, map out all the [...]
energy eigenstates that make up the y [...] and this will
give me- squaring it will give me the probability.” Aaliyah
also discussed a similar interpretation of the complex
square of the bracket (y|w) in the expression-construction
task, constructing |(w|y)[> and saying “I'm trying to
represent probability in bra-ket notation [...] and this will
be just one, if psi is normalized [...] that should represent
probability of one.” In these excerpts, Aaliyah was con-
necting the square of a Dirac bracket with the means of
calculating a probability. Similarly, Aaliyah later described
|(E,|w)|> as “the probability of finding y, which is a
general state, in a particular energy eigenstate E,,.” Aaliyah
also explicitly connected |(y|y)|? and |(E,|y) | later in the
interview during the expression-construction task:

for me, this [|(y/|w)|*] also represents probability
in the sense like if I go all-to like all space [...]
This [|(yw|yw)|?] is like a summation of all the
possible variations of this [|(E,|w)|*], okay. If
add all of these guys [|(E,|y)|?] together I'll get—
end up getting a one [...] since every y is made
up of all the possible energy eigenstates [...] so if
I find the individual probabilities of all of these

E,’s [|(E,|y)|*] and add them together what do I
get? T get 1. Because that’s how we represent
probability. [...] One means hundred percent of
the time so—so that’s what like this [|{y/|w)|?] is
like more broader [sic] representation of the right
thing [|(E,|y)|*], but again, essentially [...] they
would both represent probabilities to me.

Aaliyah was clearly treating both |{y/|w)|* and |(E, |w)|?
as representations of probability; she also noted (incor-
rectly) that |(y|w)|? is the sum of all possible |(E,|y)|?
probabilities (in fact, (y|y) is the sum of all possible
|E,|y|*s). Earlier in her interview, however, Aaliyah also
explained a Dirac bracket she constructed—(x|w)—as rep-
resenting a probability, despite the fact that it lacked the
complex square: “this will also represent the probability of
finding x—sorry, the probability of finding the general state y
in the eigenstate x.” It is unclear if this is a mere slip of the
tongue for Aaliyah, as she was consistent in requiring the
complex square in all other cases, or if the position repre-
sentation for this expression had a different meaning for her.

Bilbo also treated |(E, |y)|* as a probability in the card-
sorting task, saying “I’'m looking at [|(E,|w)|*] and I'm
thinking like, probability. [...] In this case, probability of
being in that eigenstate. Of this wave function [indicates y]
being in that [indicates E,] eigenstate.” Later in the card-
sorting task, Bilbo grouped |(E,|y)|% | [v* (x)w(x)dx|,
and | [ ¢} (x)y (x)dx|? together and said “okay, here we got
our inner products—our probabilities, excuse me, because
they’re [...] magnitude squared of inner products.” Here he
explicitly stated the necessity of taking the complex square
of an inner product to effectively represent a probability.
Later on, Bilbo expressed some confusion as to whether he
should square (y|y), asking “do we want to square [{y|y)]
here? Do we need to square this again? I’'m not so sure here,
because it’s already a magnitude. It is already a scalar.
That is just an inner product, though I had been saying the
inner product squared is a probability and that this [{y|y)]
is just a density.” Here Bilbo exhibited a behavior that was
observed quite often: mixing up terminology, particularly
probability amplitude and probability density. He also
appeared to be confused due to the repeated label within
both the bra and ket of (y|y), asking if it was necessary to
“square [it] again.” Taking the statement about it being a
magnitude, this is presumably a result of his conceptual-
izing the result of taking a dot product of a vector with itself
as the magnitude of the vector squared, hence the question
of whether he was squaring it “again.” Regardless, it is clear
that Bilbo thought both an inner product and a square of
some kind was required (be it implicit in the repeated y or
explicit in the complex square). Enoch showcased similar
reasoning to Aaliyah and Bilbo, even describing his own
pseudosymbol template when asked how to write a prob-
ability in prompt 1: “The probability, which T will call
squiggly P, is going to be something like the norm squared
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of some business with some kets and... [writes P = |{|)|*]
something like that.”

Frodo likewise discussed the complex squares of Dirac
brackets representing probabilities, discussing his answer
to prompt 2 (y = %(H) +12) +[3))) by declaring the
criteria for its correctness as “when you do the square—
when you do this... [writes |{y|w)[> =] you need it to spit
out the one third for the probability.” While the expression
he gave for the desired probability was incorrect (we
believe he meant to write |(1|y)|?), he nonetheless wrote
a complex square of a Dirac bracket. Similarly to Enoch, he
then went on to (correctly) write for their solution to prompt
3b that the probability could be written P, = |[(E;|y)|*.
When asked why the square was necessary, he explained
“because we’re looking for the probability, and without it,
we just have the probability amplitude.”

These students have developed some symbol
templates—( | ) and |( | )|*—as well as some consistent
conceptual schemata tied to them. The latter template has
developed a strong conceptual association as a representa-
tion of a probability, while the former, commonly referred
to as a probability amplitude but occasionally as a prob-
ability density, appears to have a strong association as a
quantity that is squared to become a probability. In some
cases, as with Aaliyah with (x|y), the Dirac bracket is
declared a probability despite lacking the square. In another
case, Bilbo gets confused about whether |{y|y)[?> is
squaring a quantity one too many times, leading him to
wonder if (y|y) is in fact a probability and not a probability
amplitude. While these fuzzy distinctions do appear to
exist, for the majority of cases, these students appeared to
have robust conceptual schemata ascribed to these symbol
templates. We name these symbolic forms the ‘“square
bracket as probability” symbolic form, and the “bracket as
probability amplitude” symbolic form, as seen in Table V.
While some students referred to the probability amplitude
as effectively the square root of the probability, rather than
using the technically rigorous term, we have elected to use
the normatively correct term for this symbolic form, but
note that most students appear to interpret it in terms of an
object that needs to be squared.

| 2

B. Symbolic forms identified within wave function
notation expressions

Just as the focus of our work on expressions for
probability determined the particular expressions of interest

TABLE V. Symbolic forms identified for Dirac brackets (and
complex squares of Dirac brackets) in the context of probability
concepts.

Symbolic form Symbol template

Square bracket as probability [(1)]?
Bracket as probability amplitude (1)

within Dirac notation to primarily be Dirac brackets and
their constituent parts, this same focus is true for the wave
function notation. As in Sec. VA, we begin by looking at
symbolic forms identified for the smallest constituent
components of these expressions: the wave functions
themselves.

1. Functions as quantum state

A common interpretation of wave function expressions
was that—similar to Dirac bras and kets—they represented
quantum states. During the card-sorting task, Aaliyah
sorted w(x), ¢@,(x), w*(x), and ¢ (x) all into the same
category and said they “would represent a general eigen-
state w(x) or its conjugate [indicates w*(x)], or like
a specific energy eigenstate phi of- ... Those represent
states [...] some of them represent general states [y (x) and
w*(x)], some of them represent specific energy states
[p,(x) and @j(x)], but they represent states.” Here
Aaliyah drew a parallel to the distinction she drew between
“general” states and “specific” states in Dirac notation, as
discussed in Sec. VA 1. If taken in conjunction with her
discussion in that section of the general states (| and |y)
as being “made up of” the specific states (E, | and |E,,), it is
reasonable that this interpretation of general vs specific
applies to the y and ¢, wave functions here.

Bilbo also discussed wave functions as representing
quantum states, particularly while discussing them in the
context of inner product integrals. While discussing the
expression [ ¢} (x)y(x)dx, he said “I'm thinking okay, you
have this state [indicates y(x)] ... and you want to ask the
question of, you know, ‘what about that state [indicates
the y(x)] being in this [indicates the ¢} (x)] eigenstate.””
Later in his interview, he discussed the expression
| [w*(x)w(x)dx|* on two different occasions. First, he
seemed somewhat puzzled by what it could mean but
suggested that “it’s like the probability of a state being...
in... its own state? I- yeah I'm not quite sure honestly.” He
later came back to it and declared that “[| [ w* (x)y (x)dx|*]
I believe should be one [...] because it’s a state with itself-
what’s the probability of a state being in itself? What’s the
probability of a heads-up coin being heads? It’s one.” Here
he drew a parallel between the wave function y(x) and a
heads-up coin. Both objects have a certain quality that
describes them—whatever quantum state a system is in and
that the heads side is facing up, respectively. The analogy is
not a perfect one, as heads-up would be more analogous to
an eigenstate of a coin flip and thus the quantum state
described by w(x) would need to be in a postmeasurement
eigenstate to be perfectly analogous to a coin with a
predetermined coin flip result. Regardless, Bilbo did appear
to treat the functions inside of the integral as representing
a quantum state, and moreover, the complex conjugate of
the wave function (y*(x)) as representing the same state
as y(x). He also treats the integral as determining the
probability of one function “being in” the other.
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While responding to prompt 1 in his interview, Frodo
described his thinking after writing w(x) = c;¢@;(x) as
“w(x)is [...] ¢; times @, (x) [...] but I think these [gestures
at the ¢, (x)] are the [...] energy eigenstates written in the
position basis.” Later, during his response to prompt 2,
Frodo wrote an expression in Dirac notation for a super-
position state, w = %(|1> +12) +3)). When asked
whether he could translate it into another notation, he
wrote a ¢, directly above the [1) and discussed the
difference between the y and ¢, saying “so this [gestures
at ] would be this- like the whole state, and then these
[gestures at the ¢;] are the individual energy functions, I
believe.” Frodo can be seen here describing y/(x) and ¢, (x)
as representative of “whole” states and “energy” eigen-
states, respectively. This is reminiscent of the distinction
between “general” and “specific” states drawn by Aaliyah
earlier.

As was seen with the Dirac bras and kets, these wave
function expressions appear to be treated as representative
of quantum states. There appear to be two symbol tem-
plates present: that of a function f([J) and of a function
with a subscript f,,([J), as well as distinct symbol templates
for their complex conjugates (i.e., f*(CJ) and £} ([J)). We
use generic function notation (the f) for these symbol
templates because we do not wish to make a claim about
what specific letters the students cue these templates from
(if there exist specific letters at all). The conceptual
schemata that students have applied to these functions
seem to consistently differ, with f([J) connoting a whole or
general state. This suggests they regard these functions as
representative of superposition states, which is distinct
from their conception of f,([J) as representing a specific
state associated with a given quantity, i.e., an eigenstate;
this manifested as a specific energy in the situations
prompted by the interview setting. This is similar to the
quantum state conceptual schemata observed for Dirac bras
and kets in Sec. VA 1, though there appears to be a more
obvious symbolic distinction between the general states
and the specific states in the context of wave function
expressions. We note that while the symbol templates differ
between the functions and their respective complex con-
jugates (f(0)/f*(0) and f,(0)/f:(0)), there were no
real differences between the conceptual schemata applied
to the complex conjugate functions when compared to their
respective nonconjugated function—i.e., these students did
not appear to draw a physical or mathematical distinction
between the wave functions or their dual functions. We
name the symbolic forms associated with the f(OJ), f*(0),
f»(0), and f3 () symbol templates with their associated
conceptual schemata the “function as superposition state,”
“conjugate function as superposition state,” “function as
eigenstate,” and “conjugate function as eigenstate,” respec-
tively. These symbolic forms and their symbol templates
are summed up in Table VL.

TABLE VI. Symbolic forms identified for functions in the
context of describing quantum states.

Symbolic form Symbol template

Function as superposition state f(O)
Conjugate function as superposition state (O
Function as eigenstate f(0)
Conjugate function as eigenstate i (m)

2. Functions as vectors, and integrals as dot products

One potentially surprising conceptualization of wave
function expressions is the combination of wave functions
representing vectors and integrals representing dot prod-
ucts. This was most often exhibited within the context
of inner product integrals, such as Aaliyah describing
| [y* (x)y(x)dx|> with “it basically represents an inner
product of y with itself. So in the Cartesian world, it will
look like the projection of y along itself.” Aliyah drew
an explicit analogy between the integral and projection
in a Cartesian space. During the card-sorting task, after
discussing how he interpreted the expression, Bilbo added
J @5 (x)w(x)dx to the group containing w|y and E,|y:
“So this integral without being squared [referring to
f @k (x)w(x)dx], also a dot product, I believe, effectrvely—
or an inner product of those functions over space.”
He similarly remarked upon subsequently adding
f w( x)dx to the same group, saying that it is also
“just a dot product Later, he discussed his interpretation

of [ ¢ (x)y(x)dx:

in this case here [...] I'm thinking okay, you have
this state [indicates the y(x)] [...] and you want
to ask the question of, you know, ‘what about that
state [indicates the w(x)] being in this [indicates
the ¢, (x)] eigenstate.” [...] to me I'm looking at
this thing I'm thinking, ‘what is the projection of
this eigenstate onto this wave function,” or maybe
vice versa, but I don’t think it should matter—dot
products are [...] commutative.

Bilbo seemed to be categorizing these integrals into a
group of what he considered to be dot products, which bear
the conceptualization of a geometric projection. He also
sorted w(x) and ¢,(x) together with |E,,, v, ly, and J,
saying “these [y(x), ¢, (x)] could also, you know, be kets
in functional form, so we could think of all of these [|E,,, v,
lw, 7, w(x), and ¢@,(x)] as just vectors, kets I guess,”
explicitly referring to the wave functions as representing
vectors. Bilbo also discussed wave functions in terms of
representing vectors to him in the context of operating an
operator on a function. During the expression construction
task, Bilbo constructed | [ ¢, (x)xy (x)dx|?, which is some-
thing of a conflation of an expression for a probability of
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measuring an energy value and that of an expectation value
for position. He discussed the effect of placing the x in this
expression in the following way: “if I am saying [the x in
| [ @ (x)xy(x)dx|*] is an operator, an operator on a vector
is just [ ] a vector, so it’s the same thing. It’s just another
probability [...] it’s a different state after being operated
on.” In this context, Bilbo was expressing that the expres-
sion still represented a probability because he treated the x
as an operator, which acts on one of the wave functions like
it would on a vector, which will just generate another vector
(albeit one that has been scaled and/or rotated from the
original). This is further evidence that these wave functions
represented vector objects to these students.

As has been shown, some students appear to have
developed an understanding by relating wave functions
to vector properties and inner product integrals to dot
products. The symbol templates at play here include f(0J),
(0, [O)f(O)d0, and [ f*(0)g(0)d0. While
there does not appear to be any conceptual distinction
between wave functions with and without subscripts when
students are interpreting these functions in this way,
students did discuss integrals in this manner when the
two functions within the integrand were both the same
(e.g., [w*(x)y(x)dx) and different (e.g., [ @} (x)w(x)dx).
These students did not appear to focus on the bounds
of integration (i.e., they did not distinguish between an
indefinite integral, a definite integral over all space, and a
definite integral over a finite region), and so these are
excised from the symbol template that they have developed.
The conceptual schema tied to both of the first two symbol
templates (f(0J) and f*(0J)) appears to be that of a vector
with an associated directionality, which is the same as was
connected to the bras and kets in Sec. VA 2. Thus, we call
the symbolic forms formed from these symbol template-
conceptual schema pairs “function as vector” and ‘“con-
Jjugate function as vector.” The latter symbol templates
(/ 4(O)f(O)d0 and [ f*(0)g(0)d0) appear to also
both share a conceptual schema that appeared in Sec. VA 2
when discussing the Dirac brackets: that of a dot product’s
projection along a direction. In this context, the “direction”
is that of one of the two functions’ vector interpretation.
We name these symbolic forms “inner product integral
of two identical/different functions as projection.” These
symbolic forms and their symbol templates are again
shown in Table VII.

3. Integrals as probabilities

Finally, students also viewed complex squares of inner
product integral expressions as representative of probabil-
ities. Because the expressions for probability, probability
density, and probability amplitude for continuous variables
are quite similar, a brief refresher of the distinctions is
warranted. As in Dirac notation, a probability amplitude for
measuring a given observable’s eigenvalue is the inner
product of the initial state and the corresponding eigenstate

TABLE VII. Symbolic forms identified for describing func-
tions and integrals in vectorlike terms.

Symbolic form Symbol template

Function as vector £(0)

Conjugate function as vector (O

Inner product integral of two identical (O f(O)dO
functions as projection

Inner product integral of two different JA(O)g(O)d

functions as projection

(e.g., [ ¢;(x)y(x)dx). Thus, the probability of that
eigenvalue will be the complex square of this expression:
| [%, @5 (x)y(x)dx|>. Unlike in Dirac notation, however,
there is another potential expression for a probability: that
of measuring a continuous observable (e.g., position). Due
to it being a probability for a continuous variable, we
instead define a probability density for that variable as the
complex square of the wave function as a function of
the continuous variable (e.g., [y (x)|?), thus the probability
for a region is found by integrating the probability density
over the region of interest: [?|y(x)|?dx (alternatively,
JPw b x)dx). While the first few expressions have
an obV10us probability analog in Dirac notation, the latter
are more related to a subset of the normalization condition
(w|y). These different integrals and their interpretations
can appear quite similar both visually and conceptually, and
it is thus reasonable that they could prove challenging to
students in the development of firm symbolic forms.
During the expression-construction task, Aaliyah
compared two pairs of expressions, with each pair con-
taining a Dirac expression and a wave function expression.
She discussed the distinction between one pair (|(y|y)|?
and flp* w(x)dx) and the other (|(E,|y)[?
J @5 (x)w(x)dx) as follows:

So this [|(y|w)|*] and this [[y*(x)y(x)dx]
will represent the same thing, [|(E,|y)[> and

f @ (x)w(x)dx] will represent the same thing,
Wthh 1s probability- [...] [[{w|w)|> and
Jw( dx] will be just [makes finger quo-

tatlons] ‘one” if y is normalized [...] and then
[{E,|w)|*> and [ @} (x)y(x)dx] will be like some
number, less than one, unless it’s an eigenstate
itself.

Here, Aaliyah was drawing parallels between the Dirac
and wave function notation expressions she viewed as
representative of probabilities. Interestingly, the squares that
are present in the Dirac expressions are missing from their
associated integrals. It is not entirely clear why she paired
these together despite their visual (and mathematical/
physical) dissimilarity, though it is perhaps evidence of
some confusion as to whether and/or how a complex square
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TABLE VIIL
concepts.

Symbolic forms identified for inner product integrals in the context of describing probability

Symbolic form

Symbol template

Inner product integral of two identical functions as probability amplitude (O f(O)dO
Inner product integral of two identical functions as probability [ O f (D)dD
Inner product integral of two different functions as probability amplitude JA(O)g(O)dm
Inner product integral of two different functions as probability JA(O)g(0)do
Complex square of inner product integral of two identical functions as probability |f F(O)f(O)d0)?
Complex square of inner product integral of two different functions as probability |[ F(O)g(O)aO?

translates between Dirac and wave function notation. She
also drew a distinction again between the expressions
that contained an eigenstate (and thus have a probability
less than 1) and expressions that contained two identical
states (which have a probability of 1).

Bilbo sorted  [(E,[w)[*, | [y*(x)y(x)dx’, and

| f @5 (x)w(x)dx|* all together and explamed the grouping

okay, here we got our inner products—our probabilities,
excuse me, because they’re [...] magnitude squared of
inner products.” The square on the outside of the integrals
appeared to be crucial to him for delineating which
expressions represented probabilities.

When Enoch was asked the question in prompt 3a about
finding the probability for measuring a particle (provided as
in a superposition state in Dirac notation) within the left
half of an infinite square well, his immediate response
was “I remember it being an integral of sorts [...] it was
something like the probability equals integral of y of x
complex conjugate wxdx [writes P = [y*(x)y(x)dx]”
Later in his interview, while working with the expression
given in prompt 3 (ly) =515 (V3|Ey) + |Ez) +2|E3))),
Enoch explained the difference between the probabilities
calculated by |[(E|y)|* and [y*(x)w(x)dx:

The particle could be in any of the three energy
states [gestures at -~ (\/_\E1> + |E,) + 2|E3))]
by a probability glven by whatever you calculate
this to be [gestures at |(E,|w)|*]. Whereas this
[gestures at [ y* (x)y(x)dx]is saying [...] what is
the probability of the particle to be at a certain
position, regardless of which energy state you’re
looking at.

Enoch later successfully translated the expression given
in prompt 3 into generic wave function notation:

w(x) = —= [V301(x) + ¢2(x) + 203(x)].

2f
He was then asked how he would find the probability for
measuring the particle to be in the left half of the well and
said that he would “take this whole conflagration [draws

brackets around the expression he translated, and squares it
all] [...] just do that from O to L/2.” It seems that Enoch had
developed a fairly consistent symbol template of an integral
of a product of two functions that he drew from when
expressing probabilities in wave function notation.

Again, a few symbol templates appear to capture the work
of these students when generating or selecting function-
based expressions for probability. [ f*(0J)f(0)d0 shows
up here as it did in Sec. V B 2, though this time it is called
upon to represent either a probability for a measurement or a
quantity that must be complex-squared to get a probability
(i.e., a probability amplitude). Unlike in Sec. V B 2, how-
ever, it appears that some of the students treated integrals
differently depending on whether they contained a product
of the same function (albeit with one being the function’s
complex conjugate) or a product of two different functions.
Because this appears to be a meaningful distinction within
this context we will propose another symbol template here,
J f*(0)g(0)d0, with the same (or at least fundamentally
s1m11ar) mterpretatlons as a (square root of) probability as
was applied to the [ f*(0)f(0)d0 symbol template.
Relatedly, | [ f*(0)f(0)d0|* appears to represent prob-
abilities of a measurement as well and thus shares a
conceptual schema. We name these symbolic forms the
“inner product integral of two identical/different functions
as probability amplitude,” “inner product integral of two
identical/different functions as probability,” and “complex
square of inner product integral of two identical/different
functions as probability” symbolic forms, as shown in
Table VIII. Similar to what was noted in Sec. VA 3, we are
naming some of these forms “probability amplitudes” to
better reflect convention, though students often appeared
to reason about them as a thing that must be squared.
Given the discussion of normative interpretations of inner
product integrals at the beginning of this section, it is
worth pointing out which of these symbolic forms are
generally normatively correct. These would be the “inner
product integral of two identical functions as probability,”
“inner product integral of two different functions as
probability amplitude,” and “complex square of inner
product integral of two different functions as probability”
symbolic forms.
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C. Castor and Delilah’s focus on coefficients
as an intermediate step between inner products
and probability expressions

While Aaliyah, Bilbo, Enoch, and Frodo all shared very
similar interpretations of the ways that inner products
expressed in both notations related to probability concepts,
Castor and Delilah appeared to connect the expressions and
concepts differently. They instead seemed to prefer to make
an additional symbolic step between inner products and
the probabilities they represent: that of first converting the
inner product to a coefficient associated with a term in
the initial state’s representation as a superposition of
orthonormal eigenstates. For example, after they had

finished with prompt 3a, where they were given |y) =
ﬁ(\/ﬂEl) + |E,) + 2|E3)) and asked to find the prob-

ability for the left half of the well, they were asked to
calculate the probability for measuring the lowest energy
value for the given particle. The following exchange then
occurred:

Castor: I mean, it’s written in the energy basis.
Delilah: Yeah. I mean, I’d go back to the energy basis
Castor: And just square the coefficient.
[...]
[Castor writes |§§ ]2]
Interviewer: Okay. Why is that the probability of the first
energy state?
Castor: Because it’s the coefficient for the first energy
state.

In this exchange, Castor has squared the coefficient in
front of the lowest energy state’s ket and claimed that as the
probability of a measurement of E|. Earlier in their inter-
view, they defined their own initial state for prompt 1 as
lw(x))g = c1|E\)g + ¢2|E>) g + - -+, and, when explaining
how they would find the probability for the lowest energy,
Delilah said, “if y is written in terms of the energy states, in
Dirac notation like this [gestures at their expression for
ly(x)) g, then P is [...] just [writes Pg, = c¢;%],” defining
the probability as an eigenstate’s associated component
(squared) when expressed as a superposition state. Later,
they expanded that expression for the probability and added
complex square bars to make it Py, = |c|* = [(E;|y)|%
Castor justified their addition of the complex square by
saying, “because this [(E||w(x))] gives you the coefficient.
[...] Because when you do, like, the inner product of that
they end up like, the dot product of something times itself
[referring to the (F;| multiplication being distributed
through the superposition state, specifically the |E;)
component to form (E,|E,)] it all works out to give you
the coefficient.” Again, they were very focused on the
coefficient as the expression that represents the probability
amplitude and treated the inner product as a means of
obtaining the coefficient rather than the probability itself.

However, they then got confused as to whether they needed
to square the integrand of a wave function version of an
inner product or square the result of the integral (i.e.,
whether the complex square happens inside or outside the
integral). In the end, they made sense of this problem
through the following conversation:

Castor: Isn’t it inside the integral?

Delilah: Well, I'm not sure. I have to think...

Castor: I'm pretty sure- I don’t think we’ve ever seen-

Delilah: -No, but I think, I think this equation is
[writes ¢; = [7[squiggle]]

Castor: Oh, yeah.

[...]

Castor: Because that’s where you get your coefficient and
then you square it. I was like, thinking I’'m like,
we’ve never really seen that on the outside.

Delilah: Yeah, no, we’ve never done that. But I think
that’s just because we write it as this [gestures
to ¢; = [}?[squiggle]]

Castor: Because typically we write it as the coefficient and
square it to be able to get the probability

Here Castor and Delilah are calling back to a recogniz-
able expression in the ¢; = || 12 [squiggle]. Their statements,
such as “I don’t think we’ve ever seen )’ “we write it
as ____ 7 and Castor’s “Oh, yeah” upon seeing Delilah’s
expression template, fit very well with the symbolic forms
framework.

While Castor and Delilah do occasionally make direct
connections between inner products in both notations and
probabilities (displaying use of the symbolic forms dis-
cussed in Secs. VA 3 and V B 3), they appear to have two
symbol templates that show up with much more importance
in their thinking than did in the other students’ interviews:
¢, and |c,|*. Given the role these symbol templates appear
to play in their reasoning and interpretation of these
expressions, the symbolic forms framework suggests there
are different conceptual schemata tied to each of them.
The first is that of a coefficient in a linear combination
of terms, as seen in their superposition state |y(x)), =
c1|E1)g + ¢2|Es)p + -+, with the interpretation of the
relative importance or size of its associated component
in the sum. The inner products’ symbolic forms relating to
projection along axes thus interface with this concep-
tual schema with the interpretation of the inner product
“picking out” the coefficient. This manifests in their
equality, ¢; = (E;|w). This conceptual schema pairs with
the ¢,, symbol template in what we call the “coefficient as
component” symbolic form. The conceptual schema con-
nected to the |c,|> symbol template is that of the squared
coefficient being a representation of the probability for
the coefficient’s associated component. This pair forms the
symbolic form “squared coefficient as probability.” These
two symbolic forms are ultimately manifested in their
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TABLE IX. Symbolic forms identified for coefficients and
complex squares of coefficients as describing probability concepts.

Symbolic form Symbol template

Coefficient as component c,
Squared coefficient as probability leal?

equality Pg, = |c1|* = |(E,|w)[* Given this interpretation,
this equality can be read out as ‘“the probability of
measuring E; is the complex square of the coefficient
for the |E;) term in the expansion of |y), which can be
obtained by taking the inner product of E|y,” and under-
stood as relating |(E;|y)|> to by means of picking out the
E, component of |y). These two symbolic forms and their
symbol templates are shown in Table IX.

VI. CONCLUSIONS AND FUTURE WORK

One conclusion that can be drawn from these excerpts
can be seen by comparing the lengths of Secs. VA and V B:
these students used and referred to wave function expres-
sions less often than they did those expressed in Dirac
notation. This is perhaps explainable by the curricular focus
of the course, as in a spins-first course, students may be
expected to be more comfortable with Dirac notation than
with wave function notation. Viewed through a symbolic
forms lens, it could be that the increased time spent working
with and thinking about expressions in Dirac notation
increased the strength of the connections between symbol
templates and conceptual schemata for expressions in that
notation. This is potentially significant as, due to the timing
of these interviews during or following the course, students
had likely used more wave functions than Dirac expressions
in the weeks before the interview. This relative recency
nonetheless does not appear to override the comfort working
with Dirac expressions that has been engendered by working
within this notation since day one of the course.

It is also apparent from Sec. V and Table II that students
in this course developed numerous symbolic forms to aid
them in interpreting, generating, and translating expres-
sions in one or both notations explored in this study. Of
note is that the vast majority of the symbolic forms explored
in this work are normative; most non-normative symbolic
forms are explainable by a lack of a complex square. This
is potentially a problem when it leads to students failing
to take complex squares when calculating probabilities in
quantum mechanical contexts. This confusion did appear to
manifest more often within wave function contexts (with
students not being sure where to put the square or if a
square is necessary at all), though often students would mix
up the terms “‘probability,” “probability amplitude,” and
“probability density” in both contexts—they would simply
write the correct expressions more often in Dirac notation,
regardless of what they called them. Confusion regarding the

different expressions for probability in QM has been noted
in prior work [21], though not this particular difficulty in
correctly applying the complex square. Other work has also
identified challenges in correctly translating between Dirac
and wave function inner product expressions [22]. While one
would like to believe that these data suggest that students
mostly develop normative symbolic forms in these courses,
it is possible that the tasks given within these interviews were
not conducive to capturing any other non-normative sym-
bolic forms. It is also possible that there is a selection bias
to the participants, as the interviews were entirely opt-in,
and thus perhaps only those students with well-developed
normative symbolic forms (and thus likely well-performing
students in the class) were willing to volunteer to answer
questions about quantum mechanics. Regardless, these
symbolic forms provide a useful means for understanding
the interpretations students hold for common expressions for
probabilities in quantum mechanics, both of the expressions
as a whole and their constituent parts.

Indeed, the symmetry between the symbol templates for
the Dirac and wave function expressions—due largely to
very similar conceptual schemata cropping up within both
notations—is perhaps evidence of the symbolic forms
framework’s usefulness in explaining how students trans-
late between expressions that they deem ‘“equivalent.”
Within the symbolic forms framework, shared conceptual
schemata—such as that between the “bracket as dot
product” and “integral as dot product”—may be the means
by which students coordinate the expressions they choose
as a direct translation from one to the other. Misapplying
these shared schemata is a possible explanation for the
difficulties in translating between inner products reported
by Wan et al. [22].

This work is limited by a number of factors, which
provide obvious avenues for future research. First, this
work is entirely concerned with expressions for probability.
There are many other types of expressions that are
commonly used in upper-division quantum mechanics,
such as eigenequations and expectation values, that would
benefit from further investigations into the symbolic forms
students learn to apply when reasoning about these
expressions. Second, the subject pool for this study is
limited to students from a single institution using a spins-
first curriculum. It is very likely that gathering data from
other spins-first institutions and/or from wave functions-
first institutions would expand the pool of symbolic forms
students develop within their curriculum at their institutions
and may even show distinctions due to instructional
approach. Third, the COVID-19 pandemic impacted every
class studied within this work and very likely affected
individual students’ learning (and thus the number and/or
type of symbolic forms that they were able to develop
within the course). Fourth, COVID-19 also noticeably
lowered interview participation rates, and thus, this study
is only representative of the symbolic forms developed by
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six students. It is likely that with a larger pool of partici-
pants, there would have been a larger pool of symbolic
forms observed as well.

VII. IMPLICATIONS FOR INSTRUCTION

The findings presented above allow for some potential
insight into instruction. The number of normative symbolic
forms expressed by the participants is encouraging and
perhaps serves as an endorsement of the spins-first cur-
riculum with which the students were engaged. Given the
novel nature of Dirac notation to the students taking this
course, the clear level at which they were able to engage
with and understand the nuances of this notation is an
encouraging sign that this curricular structure was generally
successful in this aspect. It is likely that the explicit
connections between Dirac and vector-matrix notation both
in the text and in instruction supported the understanding
of the geometric aspects of Dirac notation. It is worth
noting that, even for this potentially biased sample of high-
achieving students, there were consistent difficulties in
correctly applying complex squares when calculating
probabilities. Given our symbolic forms theoretical frame-
work, this difficulty is explicable by students developing
the “complex square of inner product integral of two
identical functions as probability” symbolic form (symbol
template: | [ f*(00)f(0)d0?). 1t is likely that this unpro-
ductive symbolic form is developed due to its visual
similarity to the “complex square of inner product integral
of two different functions as probability” symbolic form
(symbol template: | [ f*(CJ)g(CJ)dCJ|?). This suggests that
perhaps time should be explicitly spent, either in or out of
class, drawing attention to the times when a complex square
is needed and, in the case of wave function notation,
whether it belongs inside or outside the integral. For
example, Castor and Delilah’s focus on the expansion
coefficients as an in-between step for finding expressions
for probability may prove to be a useful connection to focus
on during instruction, as this learned connection between
expressions (c; = [?[squiggle])—i.e., a symbolic form
connecting an integral to an expansion coefficient—
ultimately helped them to recognize where the complex
squaring should take place. Focusing on this connection
may therefore help students avoid this common pitfall.

One specific potential instructional intervention to help
students learn to correctly identify expressions for proba-
bility and correct uses of complex squares would be a
simple clicker question-type sequence or other in-class
activity, paced throughout the course, asking students to
select correct statements for probability from a list of
expressions in the notations they have learned up to that
point. For example, in a spins-first course, they may first be
given expressions in Dirac notation of the form: (n|y),
|(nw)|?, (w|w), and |(w|w)|* and be asked to select those
representing probabilities. Then, once they have learned
wave function notation, they can be asked to choose from a
larger list of the form: | f x)dx, [P |1// \2dx

2 on(x JSw (x)w f°° @, (X)y (x)dx,
| [by (x a’x|2 |f°° *(x)w(x)dx|?, and
| [, @5 (x)y(x)dx|?, as this covers most permutations of

1ntegrat10n bounds (either over a finite or infinite extent),
complex square inside vs outside of the inner product, and
inner products between matching wave functions or wave
functions and eigenfunctions. Alternatively, these could be
divided up along any of these variables (integration bounds,
complex square, and/or functions) into multiple different
questions in sequence. In any case, an in-class discussion
following these questions would allow for an opportunity to
explicitly draw attention to the relevant details and to tease
apart the important distinctions between what makes for a
valid or invalid expression for probability—and whether
they should consider a normalization condition as a state-
ment of 100% probability. It is our intention that inter-
ventions such as these may help students to better be able to
tackle the challenge in distinguishing these expressions as
observed in our student accounts.
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