
Quantitative Symbolic Non-Equivalence Analysis
Laboni Sarker

labonisarker@ucsb.edu
University of California, Santa Barbara

Tevfik Bultan
bultan@ucsb.edu

University of California, Santa Barbara

ABSTRACT
Equivalence analysis focuses on assessing whether different pro-
grams, or different versions of a program, exhibit identical behavior.
While extensive research has been done on equivalence analysis,
there is a lack of detailed and quantitative reasoning techniques
for non-equivalence. In this paper we introduce quantitative sym-
bolic non-equivalence analysis and evaluate its effectiveness on the
EqBench [3] benchmark (the largest available benchmark for equiv-
alence analysis), and demonstrate how it can be used for reasoning
about the non-equivalence of different versions of C programs.

KEYWORDS
symbolic execution, quantitative analysis, non-equivalence analysis
ACM Reference Format:
Laboni Sarker and Tevfik Bultan. 2024. Quantitative Symbolic Non-Equivalence
Analysis. In 39th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3691620.3695324

1 INTRODUCTION
The goal of code equivalence analysis is to identify whether two
different programs or two different versions of the same program be-
have identically or not. Symbolic execution can capture behavioral
characterization of a program and has been used for equivalence
checking together with a variety of heuristics to optimize the pro-
cess [1, 2, 7, 8, 10].

When we assert that two programs are functionally equivalent,
we mean that for any identical input they will produce the same
output [6, 8]. But, saying two programs are “non-equivalent” can
correspond to different scenarios: (1) In the extreme case, two pro-
grams could yield differing outputs for all inputs, essentially ren-
dering them non-equivalent across the entire input domain. (2)
Alternatively, there might be specific inputs for which the pro-
grams produce dissimilar outputs, while for the rest of the inputs,
their respective outputs could be identical.

Two programs are considered non-equivalent even when the
non-equivalence arises for only one input from the whole domain.

This material is based on research supported by ONR Contract No. N6833523C0019,
Oceanit Laboratories Award #SB230168, by NSF grants CCF-2008660, and CCF-1901098,
and by DARPA grant N66001-22-2-4037. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Government.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10.
https://doi.org/10.1145/3691620.3695324

So, when we assert that two programs are non-equivalent, we are
not providing an assessment of how different the two programs
(or two different versions of one program) are. Non-equivalence
can be seen as a wide spectrum that can not be comprehensively
reasoned about by saying that two programs are “non-equivalent”.
This is because, unlike being “equivalent”, being “non-equivalent”
does not mean non-equivalence over the whole input domain. Even
though there is a lot of prior work on equivalence analysis and
quantitative software analysis [4, 5], there is not that much work
on quantitative assessment and reasoning of non-equivalence [9].

For any application of program equivalence, techniques for re-
fined non-equivalence analysis and quantitative equivalence anal-
ysis would provide additional insights for the cases where two
programs are assessed to be non-equivalent. In this paper, we ana-
lyze non-equivalence of different versions of programs using the
EqBench [3] dataset for C programs. We demonstrate that quantita-
tive symbolic analysis can be used to provide valuable information
about the non-equivalent cases in the EqBench benchmark.

2 OUR APPROACH
Figure 1 shows two different versions of a C program from
EqBench [3]. The two programs are marked as semantically “equiv-
alent” there, even though they are syntactically different. Note that
integer overflow can lead to undefined behaviors in C programs. For
the programs in Figure 1, client functions are syntactically similar
and the lib functions differ on the first branch. The client function
calls the lib function with different values by comparing variable x.
So, the two programs will be equivalent if they never reach the first
branch in lib function which is ensured while calling lib function
from both branches of client function. But interestingly here, the
multiplication of positive x+1 with 5 in the second return can result
in a negative value due to integer overflow and the same can happen
in the first branch of client function as well. Due to these integer
overflows, the programs will generate two very different outputs.
Classifying these programs as either equivalent or not equivalent
will not provide sufficient information about their behaviors. For
example, we may want to know more about the particular set of
values of x for which the programs will be equivalent, or the set of
values for which their outputs will differ.

Using our quantitative symbolic non-equivalence analysis, we
can infer that the two program versions are equivalent with respect
to C semantics only when the input x satisfies the following con-
straint: −429496729 ≤ 𝑥 ≤ 429496728 given that the input is a 32
bit integer. Our analysis can compute this range of equivalence and
also compute the percentage of input values in the input domain
for which the two versions of the program are equivalent. In this
case, two versions are equivalent for 59% of the input values.

Another example shown in Figure 2 illustrates a non-equivalent
case from the benchmark, and our analysis can capture that they
behave equivalent when 𝑥 ≥ 11, which corresponds to 50% of the
input domain.

2452

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-4793-7859
https://doi.org/10.1145/3691620.3695324
https://doi.org/10.1145/3691620.3695324
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695324&domain=pdf&date_stamp=2024-10-27


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Laboni and Tevfik, et al.

Version 1

int lib(int x) {

if(x < 5) return 5;

else return x;}

int client(int x){

if (x < 0)

return -lib((-x)*5)/5;

else
return lib((x+1)*5)/5 -1;}

Version 2

int lib(int x) {

if(x < 0) return 0;

else return x;}

int client(int x){

if (x < 0)

return -lib((-x)*5)/5;

else
return lib((x+1)*5)/5 -1;}

Figure 1: Two versions of equivalent C programs of the CLEV-
ER/ltfive dataset from EqBench [3] benchmark

Version 1

int lib(int x){

if (x > 10) return 11;

else return x;}

Version 2

int lib(int x){

if (x > 10) return 11;

else return x+1;}

Figure 2: Two versions of non-equivalent C programs of the
CLEVER/oneN2 dataset from EqBench [3] benchmark

Equivalent?
No

Program 1

Program 2

Yes

Total-EQ

Quantitative
Non-equivalence 

Reasoning

Equivalence Input 
Condition

Equivalence
Percentage

Total 
Non-Equivalent?

Yes

Total-NEQ

No

Figure 3: Workflow of non-equivalence analysis

Not Total Neq
89.7%

Total Neq
10.3%

Figure 4: Total Neq Vs. Not Total Neq
The overall workflow of non-equivalence analysis approach we

have been developing is shown in Figure 3. Given a pair of programs
as inputs, we aim to determine whether they are equivalent using
differential symbolic execution [8] by generating the program sum-
maries. The symbolic summary for the programs shown in Figure
2, would be: 𝑆1 ≡ (𝑥 > 10 ∧ return = 11) ∨ (𝑥 ≤ 10 ∧ return = 𝑥)
and 𝑆2 ≡ (𝑥 > 10 ∧ return = 11) ∨ (𝑥 ≤ 10 ∧ return = 𝑥 + 1). We
can check the equivalence by analyzing the equivalence constraint
𝑆1 ⇔ 𝑆2. If they are non-equivalent, we check whether the two
programs are non-equivalent for the whole input domain, which we
define as total non-equivalence. If they are totally non-equivalent,
we do not need to go further for reasoning. Otherwise, we can
further analyze the input domain for which the two programs are
behaving differently. Quantitative reasoning provides us with the
percentage of the input domain where the two programs behave
equivalently, which can be done using projected model counting
on input variables for the equivalence constraint.

3 RESULTS
To evaluate our technique for quantitative symbolic non-equivalence
analysis, we used programs from the publicly available benchmark

EqBench [3] for equivalence analysis. We have considered 76 C pro-
grams with the numeric domain, and 39 of them are non-equivalent.
Of those 39, only 4 are totally non-equivalent, and the rest are not.
Figure 4 shows the percentage of total non-equivalence versus the
not total non-equivalence in the EqBench [3] benchmark.

Table 1: Quantitative Analysis for Non-Equivalence
Neq Program Eq % Eq Domain Input Domain # Param
loopmult20 99.999999906% 4294967292 4294967296 1
ltfive:Lib 49.999999883% 2147483643 4294967296 1
oneBound 49.999999720% 2147483636 4294967296 1
getSign2 99.999999976% 4294967295 4294967296 1
ltfive:Client 59.875488234% 2571632638 4294967296 1
oneN2 99.999999976% 4294967295 4294967296 1
dart 99.999999953% 1.84467E+19 1.84467E+19 2

Table 1 shows the total input domain and the percentage of input
domain for which the programs are equivalent from the EqBench
benchmark. The table shows that even though the programs are
non-equivalent, they are not total non-equivalent. Rather, they
show equivalence by different percentages. So, it is not enough just
to deduce that two programs are non-equivalent, and we need to
analyze input conditions for which they behave differently.

Table 2: Input Condition for Non-Equivalence
Neq Program Input Condition of equivalence
loopmult20 x < 18 or x > 21
ltfive:lib x > 4
ltfive:client -429496729 <= x <= 429496728
oneN2 x!=2147483648
dart (x <= 1290 and x >= -1290) or (y!=10 and y!=20)

Table 2 shows the input conditions of some programs from the
EqBench for which they show non-equivalence. In this way, a
quantitative symbolic non-equivalence analysis can help us provide
refined results on the non-equivalence of the programs.

REFERENCES
[1] John Backes, Suzette Person, Neha Rungta, andOksana Tkachuk. 2013. Regression

Verification Using Impact Summaries, Vol. 7976. https://doi.org/10.1007/978-3-
642-39176-7_7

[2] Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDiff: scaling pro-
gram equivalence checking via iterative abstraction and refinement of common
code. 13–24. https://doi.org/10.1145/3368089.3409757

[3] Sahar Badihi, Yi Li, and Julia Rubin. 2021. EqBench: A Dataset of Equivalent and
Non-equivalent Program Pairs. 610–614. https://doi.org/10.1109/MSR52588.2021.
00084

[4] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina Păsăreanu, andWillem
Visser. 2014. Compositional Solution Space Quantification for Probabilistic
Software Analysis. ACM SIGPLAN Notices 49 (06 2014). https://doi.org/10.1145/
2594291.2594329

[5] Antonio Filieri, Corina Pasareanu, and Guowei Yang. 2015. Quantification of
Software Changes through Probabilistic Symbolic Execution (N). 703–708. https:
//doi.org/10.1109/ASE.2015.78

[6] Benny Godlin and Ofer Strichman. 2010. Inference Rules for Proving the
Equivalence of Recursive Procedures. Acta Informatica 45, 167–184. https:
//doi.org/10.1007/s00236-008-0075-2

[7] Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik. 2018. Client-specific
equivalence checking. 441–451. https://doi.org/10.1145/3238147.3238178

[8] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pundefined-
sundefinedreanu. 2008. Differential Symbolic Execution. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Atlanta, Georgia) (SIGSOFT ’08/FSE-16). Association for Computing Machinery,
New York, NY, USA, 226–237. https://doi.org/10.1145/1453101.1453131

[9] Laboni Sarker. 2023. Quantitative Symbolic Similarity Analysis. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis
(Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New
York, NY, USA, 1549–1551. https://doi.org/10.1145/3597926.3605238

[10] Anna Trostanetski, Orna Grumberg, and Daniel Kroening. 2017. Modular
Demand-Driven Analysis of Semantic Difference for Program Versions. 405–
427. https://doi.org/10.1007/978-3-319-66706-5_20

2453

https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1109/MSR52588.2021.00084
https://doi.org/10.1109/MSR52588.2021.00084
https://doi.org/10.1145/2594291.2594329
https://doi.org/10.1145/2594291.2594329
https://doi.org/10.1109/ASE.2015.78
https://doi.org/10.1109/ASE.2015.78
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1145/3238147.3238178
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/3597926.3605238
https://doi.org/10.1007/978-3-319-66706-5_20



