
Assisting Teaching Assistants with Automatic Code Corrections

Yana Malysheva
Caitlin Kelleher

Washington University in St. Louis
St. Louis, Missouri, USA

Figure 1: A fragment of the debugging interface used in the study

ABSTRACT

Undergraduate TeachingAssistants(TAs) in Computer Science courses

are often the �rst and only point of contact when a student gets

stuck on a programming problem. But these TAs are often relative

beginners themselves, both in programming and in teaching. In this

paper, we examine the impact of availability of corrected code on

TAs’ ability to �nd, �x, and address bugs in student code. We found

that seeing a corrected version of the student code helps TAs debug

code 29% faster, and write more accurate and complete student-

facing explanations of the bugs (30%more likely to correctly address

a given bug). We also observed that TAs do not generally strug-

gle with the conceptual understanding of the underlying material.

Rather, their di�culties seem more related to issues with working

memory, attention, and overall high cognitive load.

ACM Reference Format:

Yana Malysheva and Caitlin Kelleher. 2022. Assisting Teaching Assistants

with Automatic Code Corrections. InACMCHI Conference on Human Factors

in Computing Systems, April 30 - May 6 2022, New Orleans, LA. ACM, New

York, NY, USA, 18 pages. https://doi.org/10.1145/3491102.3501820

1 INTRODUCTION

Undergraduate teaching assistants (TAs) are often the �rst and only

point of contact when a student gets stuck on a programming prob-

lem as a part of their class assignment. In order to e�ectively help

a student overcome their di�culties and advance their understand-

ing of the subject matter, the TA needs to perform several tasks

simultaneously, within a limited amount of time: reason about the

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22, April 30 - May 6 2022, New Orleans, LA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3501820

student’s intentions in writing their code; �nd the mistakes that

prevent the student’s current code from ful�lling those intentions;

and explain the problem to the student, striving to reinforce the con-

cepts that the original problem was intended to address. Handling

all of these disparate tasks at the same time can be challenging even

for an experienced educator, but TAs are often new to teaching, and

relatively new to programming. Therefore, it is not surprising that

they may have di�culties managing all of these responsibilities at

once.

To better assist TAs, it is important to understand which aspects

of these tasks serve as barriers. Yet, little is known about how TAs

approach helping students, where they struggle, and how those

struggles impact their interaction with learners.

In this paper, we examine the impact of the availability of auto-

generated, corrected code on TA behavior when the TA is engaged

in �nding and explaining bugs in student code. Seeing a comparison

between the buggy student code and a corrected version of the same

code (as illustrated in Figure 1) can quickly provide TAs with a sense

of the student’s intention and an overview of their mistakes. This

may enable TAs to invest more time and mental energy in providing

a good explanation to the student.

In order to evaluate the e�ect of seeing the corrected code, we

ran a series of studies in which TAs �rst debugged code written by

introductory computer science students, and then wrote a helpful

explanation to the student who wrote the code. Results show that

TAs who saw a corrected version of the student code completed

the tasks faster and more accurately than those who did not.

We also discuss the patterns we observed in TA behavior when

they debug student code, the di�culties they tend to have, and

what kinds of tools may be able to address these di�culties. We

believe that the major source of di�culty in this task comes from

high cognitive e�ort, and associated slips and lapses of attention,

rather than a lack of conceptual understanding of the underlying

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

material. For example, we found that TAs actually have more dif-

�culty �nding the second and third instance of the same bug in

a short snippet of code than the �rst instance. If this is true, then

tools that help reduce cognitive demands on TAs may be able to

improve TAs’ impact on student learning.

2 RELATED WORK

This work builds on and contributes to research in four areas: Un-

dergraduate Teaching Assistant (UTA) programs, peer tutoring,

debugging, and automatic code correction.

2.1 Undergraduate CS TAs

The existing literature on TAs and learning is small and focused

on the evaluation of programs rather than in-depth analyses of

TA-student interactions. A recent review of the literature [32] in

this area �nds that undergraduate TA programs claim bene�ts that

fall into three broad categories: 1) bene�ts to student learners, 2)

bene�ts to teaching assistants, and 3) bene�ts to the instructor and

organization.

2.1.1 Benefits to student learners. Researchers evaluating the im-

pact of di�erent TA programs have found improvements in student

performance [5, 13, 35] and student satisfaction [11, 31].

Biggers et al found that changing recitation sections to be prob-

lem solving driven rather than a re-lecture improved student’s grade

performance [5]. Erdei found that an additional undergraduate TA

to support labs was comparable to a peer programming approach in

supporting student understanding on a programming assessment

[13]. Pivkina found that the availability of peer learning assistants

(in addition to the instructor and TAs) improved students’ average

course score [35].

Both Decker et. al and Minnes et al. found that additional ac-

cess to undergraduate TAs (UTAs) can improve student experience.

Decker et al found that the use of UTAs in CS1 was associated with

higher subjective student satisfaction [11]. Minnes found that the

availability of individually assigned near-peer tutors improved the

sense of community among learners [31].

2.1.2 Benefits to TAs. Several studies have also documented bene-

�ts for the students who serve as TAs. Fryling et al. found in focus

groups that the experience of serving as a mentor during lecture

and lab improved TAs skills and con�dence [15] Brent et al. found

a a similar boost in teaching con�dence for TAs who attended an

eight hour training before starting their TA assignment [6]. Finally,

[45] found that after serving as a TA, students rated their own

interpersonal skills more highly.

2.1.3 Benefits to the instructor/organization. Finally, some research

points to bene�ts for the instructors and organizations o�ering

courses. UTAs can make the operation of large classes with limited

sta� more feasible [7]. A number of these papers discuss departmen-

tal practices in hiring, training, and evaluating TAs [6, 11, 15, 35].

However, we note that the 2019 literature review notes that “we

found limited research that links speci�c practices to bene�ts and

program goals” [32].

Overall, our understanding of TAs is sparse and largely informed by

studies of programs. Studies of the interactions between students

and TAs could potentially identify opportunities to improve TA

e�ciency, student learning, and student experience.

2.2 Sca�olding peer tutoring

Several studies explore how best to sca�old interactions between

students in a programming or CS course and peer or near-peer

assistants who can help students make progress on their tasks.

The interventions proposed in these studies target a variety of

potential roadblocks to e�ective peer help. Kos [25] seeks to ex-

plicitly sca�old good peer tutor practices through a “Collaborative

Learning Framework” poster. Liu et al.[28] and Fong et al.[14] or-

ganize and motivate potential peer tutors to provide assistance to

students. Glassman et al.[16] describe several ways of organizing

peer-created information to be more discoverable and useful to the

students who need it. However, while these interventions support

TAs in remembering best practices, they do not seek to understand

or address barriers that TAs experience.

Outside of the �eld of computer science, one study[46] does

examine the e�ects of providing real-time problem-speci�c infor-

mation to the peer assistant. In this study, students worked through

algebra problems using an Intelligent Tutoring System (ITS), either

with or without peer help. When peer help was present, the ITS

presented student feedback to the peer tutor rather than the student

directly, and the peer tutor chose what information to pass on to

the student. They found no di�erence in outcomes, though there

were some qualitative di�erences in how the di�erent groups used

the system.

In this work, we explore the e�ects of providing problem-speci�c

information that is tailored to the target audience of a peer assistant.

2.3 Debugging

There is a large body of research on how programmers approach

debugging code including: (1) skills and competencies involved in

debugging, (2) programmers’ behavior patterns while debugging,

and (3) factors that a�ect how well programmers debugs code.

2.3.1 Skills and competencies. A 2008 literature review [29] iden-

ti�ed program comprehension and hypothesis generation as key

skills during debugging.

Program comprehension, the ability to reason about what the

code does, is unsurprisingly important in debugging code e�ec-

tively [1, 20, 24, 33]. Ducasse and Emde [12] distinguish two types

of reasoning about code behavior: “knowledge of the intended pro-

gram” and “knowledge of the actual program”. Here, the intended

program represents the solution the programmer had in mind while

writing the code. The actual program is what the code currently

does. This distinction is particularly important when the person

debugging the code is di�erent from the person who wrote the

code. Here, the author has no knowledge of the intended solution

and must thus infer it based on the current code.

E�ectively generating and testing hypotheses is also critical

to debugging [17, 19, 44]. Studies have found that novices tend

to hypothesize and test hypotheses more frequently, but have a

lower rate of correct hypotheses than experts [19]. Tubaishat [43]

distinguished between “deep reasoning” and “shallow reasoning”

when forming hypotheses and �nding bugs. Shallow reasoning

involves using heuristics to make guesses about the output and test

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

results of the code, while deep reasoning relies speci�cally on deep

program comprehension and recognition.

2.3.2 A�ention pa�erns when debugging. Knowing how program-

mers allocate their attention while debugging code, and how at-

tention patterns di�er between expert and novice debuggers, is

important for designing interfaces which help people debug more

e�ectively. Several studies use eye tracking to analyze these atten-

tion patterns.

Unsurprisingly, the code being debugged consistently attracts

the most attention [22, 42]. However, programmers with di�erent

expertise levels and di�erent success levels at debugging seem to

di�er in how they trace through the code, and how they relate the

code to other information, such as the output of the program and

the debugger diagnostics. Lin et al.[27] found that less successful

debuggers tend to trace through the code top-down rather than fol-

lowing the logical �ow of the code. Bednarik[3] found that experts

relied more on relating the code to the output of the program, while

beginners paid more attention to visualizations of the program state

which were displayed in the IDE side-by-side with the code.

Bednarik and Tukiainen[4] used a Restricted Focus Viewer(RFV)

to blur most of the interface, giving the user control over which

part to show using the mouse. They observed a “bookmarking”

behavior in participants, where the participant is not looking at the

unblurred portion of the screen, but rather is looking at a blurred

portion while retaining another portion in the RFV. This can be

interpreted as using the focused view as a form of external mem-

ory to temporarily “save” the information. They also found that

the blurring slows down expert but not novice debuggers, in that

experts �xate on individual elements of the UI for longer periods of

time when debugging with the RFV. This indicates that experts take

longer to process important information when they know that it

will not be immediately available to them visually. Together, these

�ndings suggest that visual cues in the interface can serve as an

important resource for alleviating some of the high cognitive load

associated with the debugging process.

2.3.3 Factors which a�ect debugging success. Several studies show

that increased cognitive load negatively impacts novices’ behav-

ior when making and resolving bugs. McKeever and McDaid[30]

demonstrated that students’ ability to �nd certain kinds of bugs in

spreadsheets decreases when the spreadsheets are formatted to pro-

vide additional information by giving meaningful names to ranges

of cells and using these names in place of cell references. Anderson

and Je�ries[2] found that arti�cially adding irrelevant complexity

increases the frequency of errors that students make in Lisp pro-

grams, and that these errors tend to be slips rather than the result

of misconceptions. They concluded that “errors occur when there is

a loss of information in the working memory representation of the

problem”. Robertson et al.[41] investigated the di�erence between

forcing users to react to debugging information immediately and

making the same information available at the user’s convenience.

They found that interrupting users reduced their e�ectiveness in

debugging, and attributed this to the way that frequent interrup-

tions a�ect short-term memory. Wilcox et al.[48] examined the

e�ect of continuous visual feedback on debugging, and found that

it both helped and hindered, depending on the context.

Our results suggest that the availability of automatically corrected

versions of students code help TAs to more readily reason about

student intent and provide help that aligns with that intent, an

important aspect of the debugging process [12]. We also found

that TAs experienced short term memory lapses when providing

feedback. Like programmers in Bednarik and Tukainen’s study [4],

TAs appeared to use student code as a form of external memory.

2.4 Automatic code correction

Researchers have explored the use of automatically generated hints

to help struggling students. These systems generate corrections

using a variety of strategies including mining solutions [18, 37, 40,

47, 49] or strategies [10, 21, 26, 34] from the work of other students,

and relying on instructor written tests to check for correctness [23,

39, 47]. Most systems have then used their generated corrections to

subsequently generate a student-facing hint that describes a step

to take, but does not explicitly show the correction. However, at

least one system instead applies this information to a teacher-facing

interface [21] to reduce repetitive work associated with providing

student feedback.

One study [38] evaluated the quality of next-step hints generated

by several algorithms by comparing the generated suggestions with

a corpus of “gold standard” edit suggestions generated by a group

of experts. They found that the best algorithms performed between

47.9% and 83.9% as well as human tutors. The human tutors, in turn,

performed between 75% and 90% as well as the gold standard. The

study identi�ed the ability to understand student intent as one of

the major aspects that present di�culty for automatic code-�xing

algorithms.

In this study, we found that poor automatic corrections slowed

TAs down but did not signi�cantly negatively impact the quality of

their feedback.

3 METHODS

We ran a pair of studies to explore the potential impact of auto-

matically generated code corrections on 1) TAs’ identi�cation of

student errors, 2) TAs’ debugging process, and 3) the quality of

TAs’ proposed solutions. In both studies, we asked TAs to evaluate

broken student code submissions, �x them, and then provide writ-

ten feedback to the student that would help them to move forward.

We chose to have TAs provide written feedback in order to allevi-

ate the time pressure that is inherent in live student interaction.

This setting required TAs to fully debug student submissions be-

fore deciding on what feedback to o�er. The �rst study focused on

high quality generated code and explored code problems of varying

complexity. The second study evaluated the potential impact of

non-optimal generated code.

Speci�cally, we addressed the following research questions:

RQ1. Does seeing a comparison of student codewith an automatically-

generated corrected version of the same code help TAs debug the

student code faster?

RQ2. Does seeing such a comparison help TAs debug the student

code better (more accurately and completely)?

RQ3. If the generated corrected version is problematic, (e.g. sug-

gests spurious changes or passes provided unit tests without being

correct), how does it a�ect the TAs’ ability to debug student code?

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

RQ4. Qualitatively, what presents the most di�culties for TAs

when debugging student code? What can be done to help/support

TAs as they debug student code?

3.1 Participants

We recruited study participants through a mailing list for current

and future undergraduate computer science TAs at Washington

University in St. Louis. Participants received a $15 gift card in

recognition of their participation in an hour-long study session.

3.2 Study Materials

For this study, we created a TA web interface1, selected eight real-

world buggy student solutions to programming problems, and cre-

ated two versions of corrections for each buggy student solution

through a mix of automatic correction generation and manual ad-

justments to �t our speci�c study needs. We describe each below.

3.2.1 TA Web Interface. During the study, we asked participants

to �rst �x incorrect student solutions and then provide feedback

to students. To support this and capture information about their

process, we created a simple web interface (see Figure 2).

At the top of the interface, we showed information about the

problem: the problem statement that the student saw, the buggy

student solution, and (in some conditions) the generated correction

to the student solution. Participants used the lower half of the

interface to debug the code and then write the explanation to the

student. They could test their modi�ed version of the code at any

time, and the interface required all unit tests to pass before they

could submit their answer.

3.2.2 Problem Data. To populate the TA web interface, we need

the following content for each problem: a problem description,

a buggy student solution to that problem, the unit tests used to

evaluate a solution’s correctness, and two di�erent versions of a

corrected solution to the student solution (described in more detail

in the “Corrections” section below).

To provide a realistic set of problems and student submissions

for TAs to debug and provide feedback on, we selected buggy solu-

tions from a public dataset of real-world beginners solving Python

problems[36]. We also used problem descriptions and unit tests

from the same source. The dataset was designed to capture how

novice programmers solved Python programming problems using

the ITAP intelligent tutoring system[40]. The ITAP system provides

on-demand hints to students when they are stuck and do not know

how to correct their code. Thus, we expect that the kinds of errors

that students maymake while working with the ITAP systemwould

be qualitatively similar to the kinds of errors a student might make

while working on programming exercises with a TA on hand to

assist them.

In order to mitigate the variance in di�culty inherent in de-

bugging real-world beginner code, we hand-selected eight buggy

student solutions to eight di�erent programming problems and

showed each participant the same eight problems. This way, all

participants would be addressing the same bugs in the same con-

text, and we could make consistent comparisons between di�erent

1The code for the TA web interface is available at https://github.com/yanamal/TA-
debug-interface

participants’ performance. The number of problems was chosen so

that most undergraduate TAs could feasibly complete all problems

within the one-hour study.

We used several criteria to select the eight problems: (1) Half of

the problems should have a small bug and half should have a larger

issue. We de�ned solutions with large issues as ones involving

errors in logical program �ow and/or multiple interacting bugs;

and solutions with small issues as not involving either of those.

(2) Taken together, the buggy student solutions should represent

a wide variety of types of bugs observed in the dataset, including

typos, arithmetic/computation errors, and di�erent types of logical

errors. (3) For each buggy student solution, it should be feasible to

come up with both a valid and a problematic, lower-quality version

of a “generated” correction (see the section below for more details

on the two di�erent types of corrections).

Appendix A summarizes the selected student solutions, bugs

present in each one, both versions of generated corrections, and

other associated data.

3.2.3 Corrections. In order to answer the research questions we

posed, we need to separately test the e�ect of high-quality and

low-quality generated corrections: RQ3 examines the e�ect of low-

quality corrections on TA behavior, while RQ1 and RQ2 explore the

e�ect of seeing a correct and valid correction to the student code.

Therefore, for each problem, we created both a valid correction

which adequately addressed the bugs in the student code, and a

problematic low-quality correction which, in some way, did not

address all bugs, but nevertheless did pass all unit tests.

For each problem and buggy student solution, we used a three-

step process to create both versions of the correction: (1) we au-

tomatically generated a correction using a custom algorithm; (2)

we decided whether it was a valid or problematic correction; (3)

�nally, we manually modi�ed the generated version to create the

other version. These steps are described in more detail below.

For each problem, we �rst used a heuristic algorithm to automat-

ically generate a candidate solution. This heuristic compares the

buggy student solution to other students’ correct solutions, which

were taken from the same dataset as the buggy solution. Using the

di�erence between the buggy and correct solutions, it tries to �nd

a small subset of the edits which, when applied to the student code,

allow it to pass all unit tests. This is a similar algorithm to the ones

used in other correction generators described in the Automatic

Code Correction sub-section of the Related Work section above,

although we developed our own set of strategies and heuristics to

compare the solutions and search for small sets of edits. The exact

design of the system is out of scope for this paper, since the goal

of this paper is not to evaluate a particular correction generation

algorithm, but rather to examine the e�ect of generated corrections

as a whole on TA behavior.

We then manually examined each generated solution to decide

whether it was a valid correction for all the bugs present in the stu-

dent code. In all cases but one, the latest iteration of our correction

generator created a valid solution which addressed the individual

bugs while respecting student intent. The exception was the student

solution to the sumOfDigits problem, which uses a very esoteric

approach to both iterate through the digits of a number and ex-

tract each individual digit. Since the generator could not match

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

Figure 2: The debugging interface used in the study: (A) problem statement show to the student who wrote the buggy solution;

(B) the student’s solution, which is not correct (does not pass all unit tests); (C) A generated correction - shown in all conditions

except the Control condition for the �rst experiment; (D) Countdown timer for a soft per-problem time limit; (E) Editable code

area where the participant creates their own solution; (F) Unit tests which must pass before the participant can submit their

answer; (G) text area where the participant writes the student-facing explanation of what is wrong with the student code.

this approach to any other student solutions, the automatically

generated correction used a simpli�ed and more common approach

to solving the problem. But the student approach, despite being

esoteric, would have worked if it weren’t for four individual bugs.

So for this study, we manually corrected each bug in the student

code to create the valid “generated” solution version, and reserved

the actual generated solution for the problematic solution. This

allows us to study how teaching assistants react to esoteric student

solutions in the presence or absence of information about what the

student intended.

Finally, for each of the seven problems where the generated

solution was valid, we created an alternative solution which was

problematic in some way. This was either a solution generated by a

previous version of the algorithm, or a manually-created problem-

atic solution where we introduced a problem representative of ones

that can result from code generation. Each problematic solution still

passes all unit tests, since this is a requirement of the correction

generator. The problems present in these problematic solutions

vary from code that contains unnecessary changes to objectively

incorrect code which exploits accidental loopholes in unit tests.

The resulting valid and problematic versions of the solution,

as well as a description of what is wrong with each problematic

version, are also shown in Appendix A.

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

Figure 3: Overview of the experiment design

Table 1: Overview of how experiments relate to RQs

Does experiment i address RQ j?

Experiment Participants RQ1 RQ2 RQ3 RQ4

Experiment 1 17 ✓ ✓ ✓

Experiment 2 5 ✓ ✓

3.3 Experiment Design

To answer the research questions, we conducted two separate

within-subject experiments with di�erent sets of participants. We

chose a within-subject design because undergraduate teaching as-

sistants have a very broad range of experience and ability in both

teaching and programming. This can make it very hard to draw

between-subject conclusions, since any variance induced by the

controlled variable can be overshadowed by the natural variance

in TA performance. Table 1 summarizes the relationship between

experiments and research questions, and the number of partici-

pants in each experiment. Figure 3 shows an overview of the two

experiments’ designs.

3.3.1 Experiment 1. In the �rst experiment, we presented each

participant with two versions of the interface. They �rst worked

through four problems using one version of the interface, then

switched to the other version for the other four problems. For prob-

lems in the experimental condition, the participant saw a compari-

son between the student code and the valid generated correction,

with standard side-by-side di� highlighting. The control version

did not show any correction or highlighting. For each participant,

we randomly selected two problems with large issues and two prob-

lems with small issues to be in the experimental condition, with

the other half of the problems in the control condition. We also

randomized which condition the participant saw �rst, to control

for any variance introduced by the learning curve of getting used

to the interface.

3.3.2 Experiment 2. For the second experiment, participants saw

a generated correction in both the experimental and the control

condition. In the control condition, they saw the same valid cor-

rection as in the experimental condition from experiment 1. In

the experimental condition, they saw the problematic correction

described above. For each participant, the problems were split ran-

domly between the two conditions the same way as in experiment

1: two small and two large problems in each condition. But unlike in

experiment one, we randomly shu�ed the resulting comparisons so

that the participants would see a mix of the two conditions instead

of switching between them midway through. The participants were

not made aware that there were two conditions, and did not know

whether the solution they were presented was valid.

3.4 Study Process

Figure 4: Overview of the study procedure

We conducted an individual one-on-one study session with each

participant. At the beginning of the session, the researcher gave

a 5-minute demonstration of the interface shown in Figure 2 and

explained the participant’s task, in order to minimize the time that

participants spent familiarizing themselves with the interface.

After the demo, the participant �lled out a short survey asking

about their experience with Python and with being a Teaching

Assistant, and then started working on the debugging tasks. For

each debugging task, the participant was asked to �rst edit the

student code until all tests pass, and then write an email to the

student explaining the errors. If the participant took too long to

�x the code for a particular problem, the requirement that all tests

should pass was lifted, and the participant could choose to move on

to the explanation at any time. We chose “too long” to be 8 minutes,

so that the participants could still feasibly �nish all 8 problems

in around an hour. Although this meant that it was technically

possible for a participant to take up to 64 minutes to debug all of

the problems, we counted on most participants �nishing at least a

few problems before the deadline. This assumption turned out to

be correct: most participants �nished all 8 problems well within the

1-hour limit, even in cases where one or two problems took longer

than 8 minutes.

The participant was not explicitly noti�ed if the 1-hour limit

passed while they were still working on the debugging tasks. But

once they submitted the response to their current task, they were

redirected to the post-survey stage, even if there were still problems

left which they did not solve. This meant that two out of 22 partici-

pants did not complete all 8 problems. One of these participants was

able to complete 7 problems in the hour-long study, while the other

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

only completed 6. All other participants completed all problems,

and many �nished early.

After each session, the participant �lled out a short post-survey

with two open-ended questions about what they found helpful and

di�cult in the process.

Figure 4 summarizes the study procedure described above.

3.5 Data Collection

We collected pre-survey and post-survey answers for each partici-

pant, as well as the logs from the debugging interface.

In the web interface, we recorded each time the participant ran

a unit test. For each of these events, we logged the code that was

executed, and the results of each unit test.

In addition, each time that the participant submitted an answer

to a problem, we logged their code, the unit test results, and the

full text of the explanation they wrote for the student.

3.6 Data Analysis

In order to evaluate the TAs’ performance across di�erent experi-

mental conditions regardless of which problems they saw in which

condition, we computed within-subject relative performance metrics

which seek to control for thewide variance in expected performance

between di�erent problems.

Additionally, in order to evaluate the quality and accuracy of

TAs’ answers, we performed two analyses: (1) We developed criteria

for evaluating whether the TA’s version of the code �xed each bug

present in the student solution, and (2) we coded each explanation

to determine whether the TA’s written explanation to the student

addressed each of the bugs.

3.6.1 Relative Performance Metrics. To analyze within-subject vari-

ance across experimental conditions, for each metric of interest, we

computed a problem-speci�c baseline across all participants. For

each participant, we then measured the di�erence between that

participant’s performance on that metric and the problem-speci�c

baseline. This strategy allowed us to capture, for each participant,

their relative performance on each problem - whether they did bet-

ter or worse than the baseline, and by how much. This allows us to

control for the large amount of between-problem variance when

performing a within-subject (paired) t-test to determine whether a

participant’s relative performance changed when the participant

was subjected to di�erent experimental conditions.

We performed this type analysis for two metrics: (1) the time to

solve a particular problem, and (2) the size of the di�erence (edit

distance) between the student’s original code and the TA’s corrected

version.

Relative response time:

RQ1 directly concerns TA debugging time. To evaluate debugging

time, we measured the time intervals between when the partici-

pant �rst saw the problem and when they submitted their student

feedback. We calculated a problem-speci�c baseline by computing

the average response time and standard deviation across all par-

ticipants who worked on that problem. We de�ne relative response

time as the distance from the average response time measured in

standard deviations for that problem. So, for example, a participant

who took one standard deviation longer to complete a problem

would have a relative response time of -1.

Relative edit distance:

To assess how well the participants addressed the student bugs,

we wanted to know how well TAs preserved the student’s original

intent when editing their buggy code. To do this, we �rst calculated

the edit distance between the original student code and the partici-

pant’s corrected version. We de�ne the edit distance as the number

of �ne-grained edits needed to change one version of the code into

the other. In all of the selected student solutions, each bug could

be corrected with a few edits, so smaller edit distances were more

likely to preserve the students’ original approaches. To calculate

the relative edit distance, we normalized each TA’s edit distance us-

ing the edit distance between the student’s solution and the “valid”

generated solution as the problem-speci�c baseline. Here, a positive

relative edit distance means that the participant’s correction made

more changes to the student code than the generated correction and

a negative relative edit signi�es a solution closer to the student’s

intent

3.6.2 Evaluating Code Fixes. As part of answering RQ2, we evalu-

ated whether each participant �xed each bug present in the student

code. In order to capture the distinction between correcting bugs

and working around them, we developed criteria which intention-

ally di�erentiate between �xing the speci�c expression that was

incorrect in the student code, and coming up with some other solu-

tion to the original problem which worked around the bug in the

student’s buggy expression.

The criterion for deciding whether each bug is “�xed” in some

modi�ed version of the student code depended on whether the

original bug was (1) an omission which could be corrected by in-

serting some code; or (2) an error which involved some incorrect

expression in the student code, and this expression needed to be

modi�ed or deleted in order to �x the bug.

In cases where the bug could be corrected with inserting some

speci�c code, e.g. a missing return condition, then the bug is con-

sidered “�xed” if the participant’s correction inserted the necessary

code. If the participant’s correction never inserted the expected

expression, the bug was considered “not �xed”.

In cases where �xing the bug involved modifying some expres-

sion(s) in the student code, the criterion for “�xing” the bug hinged

on the value of the expression in question. The bug was considered

“�xed” if and only if the corresponding expression in the edited

code evaluated to the same value as in the valid generated solution.

On the other hand, if the participant’s code completely removed

the buggy expression, or left it to evaluate to an incorrect value,

the speci�c bug was not considered “�xed” even if the participant’s

code correctly solved the original programming problem.

3.6.3 Coding of Explanations. We coded the participants’ explana-

tions to the hypothetical students to see whether they addressed

each bug present in the student code. Since we asked the partici-

pants to “Explain to [the student] why their solution is incorrect,

and what they could do to �x it”, we could feasibly expect them to

try to address each bug they were aware of. For each participant

response and each bug present in the student solution to the rel-

evant problem, we labeled the bug as either “addressed” or “not

addressed” in the response.

The criteria for “addressing” a bug were that the TA made an

attempt to explain or hint at the bug in the explanation, such that

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

if the student had understood the explanation and followed the

advice, they would be able to �x the bug.

To test interrater reliability, two researchers coded all participant

answers to the sumOfDigits problem. We chose to test interrater

reliability on a single problem because switching between prob-

lems (and the bugs relevant to each one) would have presented a

huge context switch to the rater, which could a�ect their accuracy

and reliability. To ensure that the interrater sample was valid, we

chose the problem which both had the most bugs and the most

varied quality of participant responses (sumOfDigits). The raters

achieved Fleiss’ kappa of 0.852, which is generally interpreted to in-

dicate “almost perfect agreement”. After establishing this interrater

reliability, one of the two researchers coded the rest of the data.

4 RESULTS

Table 2: t-test results for performance metrics in Experi-

ment 1

Metric t-statistic Cohen’s D p-value

Relative response time 2.73 0.683 0.015

Unit test runs 3.32 0.83 0.0043

Relative edit distance 2.389 0.60 0.030

In this section, we report our �ndings in answer to each of our

research questions: (RQ1) Does seeing a comparison of student code

with an automatically-generated corrected version of the same code

help TAs debug the student code faster? (RQ2) Does seeing such a

comparison help TAs debug the student code better? (RQ3) What is

the e�ect of seeing a problematic generated correction? (RQ4) What

presents the most di�culties for TAs when debugging student code,

and what can help alleviate these di�culties?

4.1 RQ1: Do generated corrections help TAs
debug faster?

RQ1 asks whether seeing a generated solution helps TAs debug

student code faster. To answer this, we used the relative response

speed metric described in the Data Analysis section to compare

the within-subject di�erence between the control and experimental

conditions in Experiment 1. We found that seeing a comparison to

a generated solution does help undergraduate TAs debug student

solutions faster, both in terms of elapsed time and amount of trial-

and-error involved. These results are summarized in Table 2.

We performed a paired t-test with the null hypothesis that the

within-subject relative response speed would not be a�ected by

whether the subject saw a comparison to a generated solution.

On average, participants performed 0.56 standard deviations faster

when they saw the generated solution. (t(17)=2.73, p=0.015, d=0.683

- moderate e�ect size). This corresponds to a 29% improvement in

average per-problem response speed.

To evaluate the amount of trial-and-error involved in �nding a

solution, we performed a similar paired t-test to analyze whether

seeing a generated solution a�ects the number of times the partici-

pant executes the unit tests while solving the problem. Again, for

each participant and problem, we calculated the number of tests

relative to the global average for that problem. We found that par-

ticipants who saw a generated solution used 2.02 fewer unit tests,

on average (t(17)=3.32, p=0.0043, d=0.83 - large e�ect size).

4.2 RQ2: Do generated corrections help TAs
debug better?

RQ2 asks whether seeing a generated correction helps TAs debug

code and write explanations that are better and more accurate than

they would without the generated correction.

Although the quality of a response can be very subjective, and

we can’t know the e�ect that a particular TA’s response would have

on the student who had written the original buggy solutions, we

can use several metrics to evaluate whether the TAs succeeded at

�nding and communicating the bugs in the student code.

Speci�cally, we compared the following measures of response

quality across the two conditions in Experiment 1: (1) was the TA’s

corrected code close to the student’s original solution? (2) was

the TA’s corrected code actually correct? (3) did the TA’s free-text

explanation to the student address all the bugs in the student’s

code?

These metrics are not meant to evaluate the pedagogical sound-

ness of the explanations that the TAs provided. Rather, we explicitly

limited the scope of our metrics to measure how thoroughly the

TA understood and internalized the issues with the student code.

This level of understanding de�nes a lower bound on how good the

TA’s explanation could possibly be. A TA cannot e�ectively address

an issue which they do not understand, or which they could not

remember at the time of discussing the code with the student.

We found that participant performance on all three measures

improved when the participant was able to see a generated correc-

tion.

4.2.1 Edit Distance from Student Solution. As described in the Data

Analysis section, we used the relative edit distance between the

buggy student solution and the TA’s corrected solution as a proxy

for whether the TA’s corrected code preserved the student’s original

intent. The eight sample student solutions that were chosen for this

study each had discrete bugs which could be corrected by a few

edits. So, if a correction successfully preserved student intent, it

would correct each of these bugs with few edits. On the other hand,

corrections which are vastly di�erent from the original code, and

require many edits, are very unlikely to have preserved the student

intent - they are much more likely to be rewrites that change the

way that the code solves the problem.

We found that seeing a comparison with a generated solution

enables TAs to come up with a smaller, more concise correction of

their own.

In 6 of the 133 problems in this data set, the participant did not

come up with a solution which passed all unit tests, because they

ran out of time. We omitted these 6 problems from this particular

analysis, since an incomplete solution could be arbitrarily close to

the student code.

We performed a within-subject t-test of relative improvement in

edit distance across conditions. We found that having a generated

solution available allowed participants to shorten their relative edit

distance by 5.70 edits on average (t(17)=2.389, p=0.030, d=0.60 -

moderate e�ect size).

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

Notably, even though the generated solutions were speci�cally

optimizing for a short edit distance, the participants in the study

often found solutions with shorter edit distances than the gener-

ated solution. This indicates that the improvement in edit distance

doesn’t just come from copying the exact edits in the generated

solution - rather, participants derived information from the gener-

ated solution which then helped them come up with short, concise

corrections.

4.2.2 Correctness of Solution. As mentioned above, in 6 out of

133 cases, the participant never came up with a solution which

passed all unit tests. In addition, 7 of the solutions that did pass all

provided unit tests had uncaught bugs in them which would have

been exposed by more comprehensive set of unit tests. For example,

in the howManyEggCartons problem, three of the participants saw

that only one unit test was failing, and chose to patch the code by

introducing a special case for just that one unit test. If the problem

had more unit tests where the number of eggs was even but not

divisible by 12, these solutions would not work.

We performed a two-tailed Fisher’s exact test to see whether

seeing a generated solution a�ected the odds of coming up with a

correct solution. We found that participants were more likely to

submit an incorrect solution in the control condition of Experiment

1 (when they did not see a generated correction). The odds ratio

for submitting an incorrect solution was 3.940 (p=0.042). So, the

participants’ odds of submitting an incorrect solution were nearly

4 times bigger in the control condition. This is usually interpreted

as a medium e�ect size, though guidelines for interpreting odds

ratios vary from source to source [8, 9].

4.2.3 Bugs Fixed and Addressed. Finally, we examined the data

from the participants’ code corrections and free-text explanations

to see whether seeing the generated correction helped participants

�x and address more of the bugs present in the student code.

Using all bugs present in the student code, we performed a two-

tailed Fisher’s exact test on both the bug-�xing and bug-addressing

data we describe in the Data Analysis section.

Table 4 shows a summary of the results. We found that partic-

ipants did have a much easier time both �xing the bugs in their

code, and subsequently addressing them in the explanation to the

student, when provided a code correction. The odds ratio for being

able to �x a bug at any point in the debugging process was 17.762

(p=1.583e-12). So, the odds of �xing a particular bug were nearly

18 times bigger when participants saw the code correction. This is

considered a very large e�ect size.

The odds ratio for addressing the bugs (regardless of whether

they were �xed) is 2.940 (p=0.000248), which is a less drastic dif-

ference, and is generally interpreted as a small-to-medium e�ect

size. Nevertheless, it is well within the bounds for being statistically

signi�cant.

We can see from the contingency data in Table 3 that participants

addressed 65% of bugs in the control condition. They were able to

address 84% of bugs in the experimental condition, or 1.30 times

the control condition; so the probability of addressing a given bug

improved by about 30% across conditions.

It is notable that participants often failed to address a bug in

their explanations even if they did �x it in the code. This interesting

result is explored further in the RQ4 results section below, which

provides the qualitative analysis of what is di�cult for TAs.

4.3 RQ3: What is the e�ect of seeing a
problematic generated correction?

In RQ3, we consider the e�ect of seeing a problematic solution on

TA performance. Any system for automatically generating �xes to

student code will necessarily use some heuristics to guess at the

�xes, and these heuristics will sometimes be wrong. In fact, as we

described in the Related Work section, the state-of-the-art hint gen-

eration algorithms tend to perform with around 50-85% accuracy.

But to what extent are these wrong generated solutions harmful?

Can the potential for incorrect generated solutions outweigh any

bene�t of generating the solutions at all?

To test this, we analyzed data from Experiment 2, which com-

pared showing the e�ect of a valid generated correction to the

e�ect of showing a problematic correction. We performed the same

analyses as we did for Experiment 1 when answering RQ1 and RQ2.

Participants performed 0.61 standard deviations slower with a

problematic correction (t(5)=-4.740, p=0.009, d=-2.370) and used

2.25 more unit tests (t(5)=-2.835, p=0.047, d=-1.418). Relative edit

distance increased by 0.25 edits when participants were shown a

problematic correction (t=-0.238, p=0.824). For �xing and address-

ing bugs, the odds ratios were 0.3 (p=0.0711) and 1.286 (p=0.777),

respectively. These statistics are summarized in Tables 6, 5, and 7.

We can conclude that seeing a problematic generated solution

does slow TAs down when debugging code. In fact, the e�ect of see-

ing a problematic solution on response speed seems to be stronger

than not seeing any solution at all - as discussed in section 4.1, the

di�erence in speed between not seeing a solution and seeing valid

generated solution was 0.56 standard deviations, which is a smaller

di�erence than the di�erence observed in this experiment between

participants seeing a valid or a problematic generated correction

(0.61 standard deviations). So, it may take longer for a TA to under-

stand an imperfect suggestion than it would if they had no solution

to look at at all.

On the other hand, we cannot conclude that introducing prob-

lems to a generated solution a�ects the quality of the TA’s own

solution - in fact, although the results above which concern ad-

dressing bugs show no statistical signi�cance, they lean toward

supporting the null hypothesis that seeing problematic solutions

does not have an e�ect on the TA’s ability to provide explanations

which address student bugs.

One interpretation is that although a problematic solution does

slow the TA down and make them fall back on manually debugging

the code, some parts of the generated solution are still informa-

tive, and still give the TA useful and usable ideas about what is

wrong with the student code, and how to address the issues while

preserving the original intent.

4.4 RQ4: What is di�cult for TAs, and what is
helpful?

RQ4 asks what presents the most di�culties for TAs, and what can

help alleviate these di�culties.

Given the small number of participants wewere able to recruit for

the study, it is di�cult to break down the data further for statistical

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

Table 3: Contingency tables for binary metrics in Experiment 1

Solution Bugs Bugs

Condition correct incorrect �xed un�xed addressed unaddressed

Control (no correction) 55 10 86 47 86 47

Experiment (valid correction) 65 3 130 4 113 21

Table 4: Fisher’s exact test results for binary metrics in Ex-

periment 1

Metric odds ratio p-value

Correctness of solution 3.940 0.042

Bugs �xed 17.762 1.583e-12

Bugs addressed 2.940 0.000248

analysis based on individual problems and bugs. However, the data

still suggest certain patterns in what aspects of the task were hard

or easy for participants.

To address what aspects of the task seem hard for TAs, we �rst

observe two particular aspects that do not seem to present many

di�culties to participants. Knowing what types of things tend to

be easy allows us to narrow down the reasons other tasks might be

hard.

We then examine those bugs in the student code which proved

the hardest to �x. For the three hardest bugs present in the study,

only half of the participants (11 out of 22) were able to �nd and �x

each one. Each of these bugs suggests a speci�c source of di�culty

for the TAs: understanding student intent; �nding and �xing the

same bug in multiple places; and noticing and addressing bugs that

are visually very small (the change a�ects a single operator in an

arithmetic expression).

Finally, we discuss what interventions and interface features

might be helpful in alleviating the di�culties that TAs have when

�nding and explaining issues in student code.

4.4.1 What is not di�icult? Two particular aspects of debugging

did not seem to present many di�culties to the participants, in that

most participants were able to perform these tasks correctly: (1)

creating a correct solution to the original programming problem

and (2) addressing bugs that do not interact with other bugs.

As we described in the results section for RQ2, the participants

in Experiment 1 wrote correct solutions for 120 of 133 problems

they were solving. Additionally, in Experiment 2, all participants

wrote correct solutions for all problems they attempted. The fact

that the majority of the participant-written solutions were correct

suggests that at least for introductory-level problems, the di�culties

that TAs encounter are not, in general, due to misconceptions or

lack of understanding about the programming task itself. These

participants are able to solve these types of programming problems

consistently, under a short time limit, and while devoting a large

part of their attention to other tasks involved in debugging and

communicating with students.

In addition, all participants were extremely successful at ad-

dressing the bugs in 5 of the 8 programming problems. For these

�ve problems, at most two participants failed to address each bug

present in the problem (see Table 8). All other TAs addressed all

bugs in their explanations. These problems covered a wide variety

of types of bugs: arithmetic errors, logical �ow errors, forgetting

to ful�ll part of the problem statement. Two of these problems

(anyLowercase and nearestBusStop) were labeled as having “large”

issues in the student code, because �xing these issues necessitated

signi�cant changes to the logic of the solution.

The common theme among the remaining 3 problems (how-

ManyEggCartons, middleElement, and sumOfDigits) was that they

involved bugs which interacted with each other in how they af-

fected the output.

This suggests that participants were familiar with, and capable

of dealing with, all kinds of bugs that are common to beginner

programming code. The task of �nding and explaining bugs only

starts presenting di�culties when the participant is overwhelmed

with the complexity that comes with interacting bugs.

4.4.2 Understanding Student Intent. In a post-survey, we asked

participants: “What was the hardest or most cumbersome part of the

task?” 11 out of 22 participants explicitly described understanding

and adapting to student intent as the hardest part. For example, one

participant described the hardest part of the task as: “Reviewing the

code and understanding the student’s logic. The student’s solution

sometimes does not approach the problem the same way I would,

so it takes me a moment to understand what they’re trying to do.”

There is also some support for this in the data: Two of the three

hardest-to-�x bugs appear in the sumOfDigits problem, which is

the only problem with a manually-written “valid” solution. As

described in the StudyMaterials section, this was necessary because

the student’s solution was extremely esoteric, and this was the only

case where the generated solution failed to preserve student intent.

One of these two bugs directly a�ected part of a calculation that

was very hard to interpret with that bug in place (the other one is

discussed below, in the section about single-character bugs). This

calculation was trying to use integer division by a power of 10

in order to “cut o�” the number at a certain digit (see Appendix

A.8 for details, including the buggy and corrected versions of the

code). However, as is, the calculation almost always resulted in 0,

because the power of 10 was too big. If, instead of n, the student

had used the number of digits of n, the calculation would have

worked correctly, making the subsequent calculations isolate the

ith digit of n. Knowing that, it seems likely that this is what the

student intended. But it is really hard to infer that intent from the

calculation itself.

Themanually-written “valid” correction substitutes len(str(n))

in place of n on that line of code, which makes that line of code

work correctly. Only one participant who saw the “valid” correction

did not �x this bug; and conversely, only one person who did not

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

Table 5: Contingency tables for binary metrics in Experiment 2

Bugs Bugs

Condition �xed un�xed addressed unaddressed

Control (valid correction) 40 4 35 9

Experiment (problematic correction) 27 9 30 6

Table 6: t-test results for performance metrics in Experi-

ment 2

Metric t-statistic Cohen’s D p-value

Relative response time -4.740 -2.370 0.009

Unit test runs -2.835 -1.418 0.047

Relative edit distance -0.238 -0.119 0.834

Table 7: Fisher’s exact test results for binary metrics in Ex-

periment 2

Metric odds ratio p-value

Bugs �xed 0.3 0.0711

Bugs addressed 1.286 0.777

see the valid correction did �x this bug. Of all the people who did

not �x this bug (according to the criteria for “�xing a bug” outlined

in the data analysis section), only two actually failed to come up

with a correct solution to the original programming problem. This

means that 9 of the participants worked around this bug, usually

by completely rewriting the calculation for the ith digit. Thus, most

people who saw the suggested change accepted it as the correct

thing to do; but most people who did not see the change could not

�gure out what the student intended with that line of code.

On the other hand, only 6 of the 11 people who �xed the bug

went on to address it in their explanation to the student. The other

5 omitted that bug from their explanation, and talked about the

other three bugs present in the student’s code. This may indicate

that even seeing a plausible correction to an esoteric calculation

does not always allow TAs to understand the reason for the error

and the correction well enough to be able to talk about it.

The participants’ behavior with respect to this bug highlights

both the di�culty and the importance of understanding the stu-

dent’s original intent when writing the code: when the intent is

non-standard, it can be di�cult for TAs to understand it well enough

to identify individual bugs in the code. And when the TAs do not

understand the student’s intent, this a�ects their ability to address

and explain the problem with the student code.

4.4.3 Finding and addressing single-operator bugs. The second of

the three hardest-to-�x bugs also appeared in the sumOfDigits prob-

lem, and involved a single-character �x to a comparison operator:

the student’s code compared two values with <= in the loop’s condi-

tion, but this created an unexpected extra iteration through the loop.

The simplest �x is to use < instead. This bug proved to be both hard

to �x and hard to address even when �xed. 6 of the 11 participants

who �xed this bug never addressed it in their explanation to the

student.

In fact, the only bug that was �xed but unaddressed more often

was also a bug with a single-operator �x: in middleElement, a calcu-

lation used % instead of //. This bug was �xed but left unaddressed

by 8 participants in the study.

Both of these bugs are visually very small (involving one or

two characters), and share the line of code with another, more

prominent bug. But qualitatively, these two bugs are quite di�erent:

one is a logical error which a�ects the overall control �ow of the

program, while the other one is likely a result of a slip or typo.

Yet the participants’ behavior with respect to these bugs is quite

similar: the participants tended to have a lot of di�culty �nding

each bug; and when they did �nd it, they were very likely to neglect

to address it in their explanation.

This is somewhat counter-intuitive: if the bug was di�cult to

�nd, we might expect the participant to consider it important to

alert the student to it. One plausible explanation is that participants

across conditions rely on visual cues in the interface (the code and,

when present, the di�) as a form of external memory to track bugs.

Since these bugs are visually small and hard to notice, they are

more likely to be missed both when looking for bugs and when

trying to recall what needs to be explained to the student.

This behavior highlights a de�ciency of a simple di� view be-

tween two versions of the code: the two bugs were highlighted in

the di�, but they were small enough and near enough to other bugs

that the participants could not e�ectively keep track of them as

separate entities, even if they did �nd them. If the interface instead

somehow explicitly identi�ed these changes as separate bugs, it

would be harder for the participants to forget about them when

composing an explanation to the student.

4.4.4 Fixing multiple instances of the same bug. The �nal of the

three hardest-to-�x bugs occurred in the middleElement problem.

The student solution for this problem omits parentheses in 3 near-

identical cases, when calculating (len(l) - 1)//2 or (len(l)

- 1)%2. When debugging the student code, 19 out of the 22 total

participants were able to �nd and �x at least one of these cases.

However, only 11 of those participants ended up �nding all 3 of the

cases.

The other participants would usually modify the code until the

parentheses were no longer necessary, by changing the expressions

to not use a -1 (except one participant who never �nished debug-

ging the code). This means that their solutions essentially masked

the parenthesis bugs instead of resolving them, which is suboptimal

from the point of view of knowing what is wrong with the student

code.

Moreover, out of the 11 participants who did �x all the paren-

thesis issues, only 4 found and �xed all 3 instances in one attempt,

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

Table 8: Per-bug statistics: for each bug, how many total participants (a) �xed that bug in the code; (b) addressed it in the

explanation; (c) �xed in code, but did not address in the explanation; (d) did not �x in code, but did address it in the explanation.

See appendix A for detailed description of each bug.

Problem Bug Fixed Addressed Fixed but unaddressed Un�xed but addressed

hasTwoDigits
upper bound 22 22 0 0

returns None 22 21 1 0

secondHalf o� by one 21 20 1 0

listOfLists not sorted 18 20 0 2

howManyEggCartons
uses quad 16 15 2 1

uses %2 15 13 4 2

nearestBusStop
rounding down 20 21 0 1

rounding up 20 21 0 1

anyLowercase all lowercase 22 21 1 0

middleElement

parentheses 11 13 3 5

% instead of // 19 11 8 0

returns index 21 18 3 0

sumOfDigits

nsize 17 18 2 3

r calculation 11 8 5 2

in�nite loop 17 17 2 2

extra iteration 11 5 6 0

without testing intermediate states with partial �xes. For the 7 who

�xed the bug in stages, it often took fewer tries to �nd, understand,

and �x the �rst instance than to �x the subsequent instances. On

average, it took these participants 2.18 unit test runs to �x the �rst

instance of missing parentheses, but 3.43 additional unit test runs

to �nd all subsequent near-identical instances.

This indicates that in general, the participants were capable

of conceptualizing and noticing the error. However, it was much

harder for participants to notice and �x subsequent instances of an

error they already found. Many participants either failed to �nd the

additional instances altogether, or took longer to �nd additional

instances than the �rst instance. When participants could not track

down the additional instances of the error, they compensated by

making larger-than-necessary changes to the student code, thus

masking the error.

4.4.5 What is helpful? In the post-survey, we also asked partici-

pants: “What was the most helpful part of the interface as you were

trying to identify the problems with the student code?”

In answer to this question, 15 participants mentioned the gener-

ated correction. For example, one participant said: “The suggested

solutions were helpful. They made it easier to tell what the pro-

gram was generally looking for in terms of correction, though not

always the exact change. ” (emphasis added). Additionally, 11

participants mentioned the clear and concise presentation of unit

tests (many participants chose to talk about several most helpful

part of the interface). Another participant said the following about

the unit tests: “The testing button was simple and intuitive, and I

liked how clearly it outlined the cases that succeeded and failed. It

would be nice if all testing was that easy, as a student and as a

teacher.” (again, emphasis added)

The fact that so many participants explicitly mentioned the unit

tests is particularly interesting, because this aspect of the interface

was not part of the intended study - it was just a simple design

chosen to facilitate using the rest of the interface.

The results for RQ1 and RQ2 described above support the idea

that the generated correction was helpful to TAs. Though we did

not test for this explicitly, the data also support the idea that the

unit test interface facilitated the TAs’ task.

In 81 of the 173 total problems solved as part of the study, the

participant continued changing and testing code after they arrived

at a version of the code which passed all unit tests. They changed

the code from a correct state to be more incorrect, even though

they knew they would need to �x the code again before submit-

ting their response. Examining the available video logs shows that

participants did this while writing explanations to the students,

in order to ensure that they are not making any mistakes in their

explanations, and sometimes in order to provide concrete examples

of buggy code behavior to the students.

The participants knew exactly what to test for in order to bring

up the information they needed, but they relied on the unit test-

ing interface to be able to recall the speci�cs of the information.

Arguably, they were relying on the simple and fast unit testing

interface to act as a source of external memory, so that they could

o�oad some of the contents of their working memory onto the

interface.

5 DISCUSSION

In general, undergraduate TAs who participated in the study do

not tend to struggle with the conceptual task of identifying and

reasoning about individual bugs present in student code. The major

di�culties seem to come from high cognitive load that is extrinsic

to code comprehension and “deep reasoning” about the code itself.

In particular, participants tended to do worse when there were

several bugs that interacted with each other; when they needed to

recognize and address additional instances of a bug they already

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

saw and understood; and when they needed to remember a bug

that was di�cult to �x, but also di�cult to see (because it only took

up one or two characters).

At the same time, the most helpful interface elements were those

that alleviated some of this extrinsic cognitive load, by giving par-

ticipants visual representations of the information they needed to

complete their tasks: a summary of the bugs they were trying to

address, in the case of the comparison to the generated code cor-

rection; and a concise, readable, and easy-to-access set of examples

for the consequences of the students’ bugs, in the case of the unit

tests.

The other major source of di�culty for participants was inferring

student intent from the code. This was both explicitly identi�ed

by the participants themselves in the post-survey, and seen in the

participants’ behavior when they tried to deal with an esoteric and

hard-to-parse student solution.

The fact that the participants emphasized the di�culty of infer-

ring student intent indicates that they were aware the importance

of understanding student intent, and self-re�ected on their ability to

do so. But although the participants did try to respect the student’s

original intent while debugging the code, they tended to fall back

on rewriting the solution when they ran into roadblocks because

of the extrinsic di�culties mentioned above.

This highlights the importance of mitigating these types of dif-

�culties in order to help TAs provide more e�ective assistance to

students. And although this study focused speci�cally on under-

graduate TAs, these �ndings can generalize to anybody trying to

help a student or beginner programmer with their code. Undergrad-

uate teaching assistants are not the only people who encounter the

kinds of di�culties described above. The frustration of spending

far too long looking for a really simple bug, and the temptation to

blow everything away and start over, are familiar to most people

who have engaged in debugging code, especially code written by

someone else. Although the impact of these types of di�culties may

be stronger for less experienced programmers like undergraduate

TAs, understanding and alleviating them could make the job of

helping students easier for everyone.

6 LIMITATIONS AND FUTUREWORK

The biggest limitation of this study is the small sample size of

participants. Although this set of data allowed us to draw statistical

conclusions about the overall e�ect of seeing di�erent types of code

corrections, in the future, we would like to conduct similar studies

at a larger scale. This would allow us to analyze more rigorously

how TAs approach debugging di�erent types of problems, what

di�culties they encounter, and how a generated correction can

help.

There are also some limitations in how realistically the experi-

ment design represented a TA’s real-world task of helping a student.

Although we used real-world student code, we presented the par-

ticipants with a task that doesn’t completely capture the teaching

practices a TA would need to engage in in order to e�ectively help

a student. The participants were not required to provide live as-

sistance to the student, and were not evaluated on whether the

explanations they provided constitute e�ective teaching of the un-

derlying concepts. On the other hand, theywere asked to completely

debug the code and also completely explain all the bugs in their

written explanation. In a real-world situation, a TA may choose to

focus on just some of the issues in their discussion with the student,

and give the student an opportunity to resolve the other issues

themselves. Further, providing a direct explanation of a bug - as

we asked the participants to do in this study - may not be the most

e�ective way to help the student learn how to �nd or avoid this

type of bug in the future. We made these design choices in order

to maximize the amount of information we could get about what

the TAs are capable of understanding and articulating in 8 minutes

of interacting with student code. But in future studies, we plan on

testing similar systems in more realistic environments.

Finally, as discussed in the section about single-operator bugs,

there seems to be a limitation in how useful a simple di� view is to

a TA debugging student code. Therefore, we are currently working

on a version of the correction-generating algorithm and interface

which would break up the di�erence into individual bug �xes, and

provide on-demand detailed information about how each bug �x

improves the outcome of running code.

7 CONCLUSION

This work contributes an understanding of how users interact with

code, speci�cally, how TAs in undergraduate computer science

courses interact with broken student code when they are tasked

with debugging it. It evaluates the e�ect of seeing a corrected ver-

sion of the student code on this interaction.

We showed that seeing a valid correction allows the TA to both

debug faster and write better student-facing explanations of their

bugs. We also showed that seeing a problematic correction slows

TAs down in comparison with seeing a valid correction. However,

we were not able to draw statistical conclusions about whether TAs

provide worse explanations when given a problematic correction.

Finally, we presented evidence that high cognitive load plays a

large role in TAs making mistakes and generally having di�culty

when helping a student with their code. We argued that tools which

help mitigate this cognitive load may help TAs be more e�ective in

helping students.

These �ndings can help inform the design of TA-facing interfaces

that assist TAs in understanding and addressing student issues in

CS courses.

REFERENCES
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An analysis of

patterns of debugging among novice computer science students. In Proceedings
of the 10th annual SIGCSE conference on Innovation and technology in computer
science education (ITiCSE ’05). Association for Computing Machinery, Caparica,
Portugal, 84–88. https://doi.org/10.1145/1067445.1067472

[2] John R. Anderson and Robin Je�ries. 1985. Novice LISP Errors: Undetected Losses
of Information from Working Memory. Human–Computer Interaction 1, 2 (June
1985), 107–131. https://doi.org/10.1207/s15327051hci0102_2 Publisher: Taylor &
Francis _eprint: https://doi.org/10.1207/s15327051hci0102_2.

[3] Roman Bednarik. 2012. Expertise-dependent visual attention strategies develop
over time during debugging with multiple code representations. International
Journal of Human-Computer Studies 70, 2 (2012), 143–155. Publisher: Elsevier.

[4] Roman Bednarik and Markku Tukiainen. 2005. E�ects of display blurring on the
behavior of novices and experts during program debugging. In CHI ’05 Extended
Abstracts on Human Factors in Computing Systems. ACM, Portland OR USA,
1204–1207. https://doi.org/10.1145/1056808.1056877

[5] Maureen Biggers, Tuba Yilmaz, and Monica Sweat. 2009. Using collaborative,
modi�ed peer led team learning to improve student success and retention in
intro cs. In Proceedings of the 40th ACM technical symposium on Computer science
education. 9–13.

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

[6] Rebecca Brent, Jason Maners, Dianne Raubenheimer, and Amy Craig. 2007.
Preparing undergraduates to teach computer applications to engineering fresh-
men. In 2007 37th Annual Frontiers In Education Conference-Global Engineering:
Knowledge Without Borders, Opportunities Without Passports. IEEE, F1J–19.

[7] Mark J. Canup and Russell L. Shackelford. 1998. Using software to solve problems
in large computing courses. ACM SIGCSE Bulletin 30, 1 (1998), 135–139. Publisher:
ACM New York, NY, USA.

[8] Henian Chen, Patricia Cohen, and Sophie Chen. 2010. How Big is a Big Odds
Ratio? Interpreting the Magnitudes of Odds Ratios in Epidemiological Studies.
Communications in Statistics - Simulation and Computation 39, 4 (March 2010),
860–864. https://doi.org/10.1080/03610911003650383

[9] Susan Chinn. 2000. A simple method for converting an odds ratio to e�ect
size for use in meta-analysis. Statistics in Medicine 19, 22 (2000), 3127–
3131. https://doi.org/10.1002/1097-0258(20001130)19:22<3127::AID-SIM784>
3.0.CO;2-M _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/1097-
0258%2820001130%2919%3A22%3C3127%3A%3AAID-SIM784%3E3.0.CO%3B2-
M.

[10] Sammi Chow, Kalina Yacef, Irena Koprinska, and James Curran. 2017. Automated
data-driven hints for computer programming students. In Adjunct Publication of
the 25th Conference on User Modeling, Adaptation and Personalization. 5–10.

[11] Adrienne Decker, Phil Ventura, and Christopher Egert. 2006. Through the looking
glass: re�ections on using undergraduate teaching assistants in CS1. In Proceed-
ings of the 37th SIGCSE technical symposium on Computer science education. 46–50.

[12] M. Ducasse and A.-M. Emde. 1988. A review of automated debugging systems:
knowledge, strategies and techniques. In Proceedings. [1989] 11th International
Conference on Software Engineering. 162–171. https://doi.org/10.1109/ICSE.1988.
93698

[13] Ronald Erdei, John A. Springer, and David M. Whittinghill. 2017. An impact com-
parison of two instructional sca�olding strategies employed in our programming
laboratories: Employment of a supplemental teaching assistant versus employ-
ment of the pair programming methodology. In 2017 IEEE Frontiers in Education
Conference (FIE). 1–6. https://doi.org/10.1109/FIE.2017.8190650

[14] Joseph Fong, Dawn Leung, and Donny Lai. 2009. A Peer-to-Peer eLearning
Supporting System for Computer Programming Debugging System. In Hybrid
Learning and Education, David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Ste�en, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, Fu Lee Wang, Joseph Fong, Liming
Zhang, and Victor S. K. Lee (Eds.). Vol. 5685. Springer Berlin Heidelberg, Berlin,
Heidelberg, 230–239. https://doi.org/10.1007/978-3-642-03697-2_22 Series Title:
Lecture Notes in Computer Science.

[15] Meg Fryling, MaryAnne Egan, Robin Y. Flatland, Scott Vandenberg, and Sharon
Small. 2018. Catch’em Early: Internship and Assistantship CS Mentoring Pro-
grams for Underclassmen. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. 658–663.

[16] Elena L. Glassman, Christopher J. Terman, and Robert C. Miller. 2015. Learner-
Sourcing in an Engineering Class at Scale. In Proceedings of the Second (2015) ACM
Conference on Learning @ Scale (L@S ’15). Association for Computing Machinery,
New York, NY, USA, 363–366. https://doi.org/10.1145/2724660.2728694

[17] John D. Gould and Paul Drongowski. 1974. An exploratory study of computer
program debugging. Human Factors 16, 3 (1974), 258–277. Publisher: SAGE
Publications Sage CA: Los Angeles, CA.

[18] Sebastian Gross, Bassam Mokbel, Benjamin Paaßen, Barbara Hammer, and Niels
Pinkwart. 2014. Example-based feedback provision using structured solution
spaces. International Journal of Learning Technology 10 9, 3 (2014), 248–280.
Publisher: Inderscience Publishers Ltd.

[19] L. Gugerty and G. Olson. 1986. Debugging by skilled and novice programmers.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’86). Association for Computing Machinery, Boston, Massachusetts, USA,
171–174. https://doi.org/10.1145/22627.22367

[20] Leo Gugerty and Gary M. Olson. 1986. Comprehension di�erences in debugging
by skilled and novice programmers. In Papers presented at the �rst workshop
on empirical studies of programmers on Empirical studies of programmers. Ablex
Publishing Corp., Washington, D.C., USA, 13–27.

[21] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing Reusable Code Feedback
at Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale - L@S ’17. ACM Press, Cambridge,
Massachusetts, USA, 89–98. https://doi.org/10.1145/3051457.3051467

[22] Prateek Hejmady and N. Hari Narayanan. 2012. Visual attention patterns during
program debugging with an IDE. In Proceedings of the Symposium on Eye Tracking
Research and Applications - ETRA ’12. ACM Press, Santa Barbara, California, 197.
https://doi.org/10.1145/2168556.2168592

[23] Wei Jin, Ti�any Barnes, John Stamper, Michael John Eagle, Matthew W. Johnson,
and Lorrie Lehmann. 2012. Program representation for automatic hint genera-
tion for a data-driven novice programming tutor. In International conference on
intelligent tutoring systems. Springer, 304–309.

[24] Irvin R. Katz and John R. Anderson. 1987. Debugging: An analysis of bug-location
strategies. Human-Computer Interaction 3, 4 (1987), 351–399. Publisher: Taylor
& Francis.

[25] Brittany Ann Kos. 2017. The collaborative learning framework: Sca�olding for
untrained peer-to-peer collaboration. (2017).

[26] Timotej Lazar, Aleksander Sadikov, and Ivan Bratko. 2017. Rewrite Rules for
Debugging Student Programs in Programming Tutors. IEEE Transactions on
Learning Technologies 11, 4 (2017), 429–440.

[27] Yu-Tzu Lin, Cheng-Chih Wu, Ting-Yun Hou, Yu-Chih Lin, Fang-Ying Yang, and
Chia-Hu Chang. 2016. Tracking Students’ Cognitive Processes During Program
Debugging—An Eye-Movement Approach. IEEE Transactions on Education 59,
3 (Aug. 2016), 175–186. https://doi.org/10.1109/TE.2015.2487341 Conference
Name: IEEE Transactions on Education.

[28] Yi Liu, Gita PhelpsA, and Fengxia Yan. 2019. Developing a guided peer-assisted
learning community for CS students. Journal of Computing Sciences in Colleges
34, 7 (2019), 72–80. Publisher: Consortium for Computing Sciences in Colleges.

[29] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the literature
from an educational perspective. Computer Science Education 18, 2 (2008), 67–92.
Publisher: Taylor & Francis.

[30] Ruth McKeever and Kevin McDaid. 2010. How do Range Names Hinder Novice
Spreadsheet Debugging Performance? arXiv:1009.2765 [cs] (Sept. 2010). http:
//arxiv.org/abs/1009.2765 arXiv: 1009.2765.

[31] Mia Minnes, Christine Alvarado, and Leo Porter. 2018. Lightweight Techniques
to Support Students in Large Classes. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, Baltimore Maryland USA,
122–127. https://doi.org/10.1145/3159450.3159601

[32] Diba Mirza, Phillip T. Conrad, Christian Lloyd, Ziad Matni, and Arthur Gatin.
2019. Undergraduate Teaching Assistants in Computer Science: A Systematic
Literature Review. In Proceedings of the 2019 ACM Conference on International
Computing Education Research (ICER ’19). Association for Computing Machinery,
New York, NY, USA, 31–40. https://doi.org/10.1145/3291279.3339422

[33] Murthi Nanja and Curtis R. Cook. 1987. An analysis of the on-line debugging
process. In Empirical studies of programmers: Second workshop. 172–184.

[34] Benjamin Paaßen, Barbara Hammer, Thomas William Price, Ti�any Barnes, Se-
bastian Gross, and Niels Pinkwart. 2018. The Continuous Hint Factory - Providing
Hints in Vast and Sparsely Populated Edit Distance Spaces. arXiv:1708.06564 [cs]
(June 2018). http://arxiv.org/abs/1708.06564 arXiv: 1708.06564.

[35] Inna Pivkina. 2016. Peer learning assistants in undergraduate computer science
courses. In 2016 IEEE Frontiers in Education Conference (FIE). IEEE, 1–4.

[36] Thomas Price. 2021. thomaswp/CSEDM2019-Data-Challenge. https://
github.com/thomaswp/CSEDM2019-Data-Challenge original-date: 2018-12-
30T21:05:59Z.

[37] Thomas Price, Rui Zhi, and Ti�any Barnes. 2017. Evaluation of a Data-Driven
Feedback Algorithm for Open-Ended Programming. International Educational
Data Mining Society (2017).

[38] ThomasW. Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-
ica Cateté, and Ti�any Barnes. 2019. A Comparison of the Quality of Data-driven
Programming Hint Generation Algorithms. International Journal of Arti�cial
Intelligence in Education 29, 3 (2019), 368–395. Publisher: Springer.

[39] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay.
2016. sk_p: a neural program corrector for MOOCs. In Companion Proceedings
of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity. 39–40.

[40] Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Arti�cial Intelligence in Education 27, 1 (March 2017), 37–64. https:
//doi.org/10.1007/s40593-015-0070-z

[41] T. J. Robertson, Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Joseph R.
Ruthru�, Laura Beckwith, and Amit Phalgune. 2004. Impact of interruption style
on end-user debugging. In Proceedings of the SIGCHI conference on Human factors
in computing systems. 287–294.

[42] Pablo Romero, Richard Cox, Benedict du Boulay, and Rudi Lutz. 2002. Visual
Attention and Representation Switching During Java Program Debugging: A
Study Using the Restricted Focus Viewer. In Diagrammatic Representation and
Inference (Lecture Notes in Computer Science), Mary Hegarty, Bernd Meyer, and
N. Hari Narayanan (Eds.). Springer, Berlin, Heidelberg, 221–235. https://doi.org/
10.1007/3-540-46037-3_23

[43] Abdallah Tubaishat. 2001. A knowledge base for program debugging. In Proceed-
ings ACS/IEEE International Conference on Computer Systems and Applications.
IEEE, 321–327.

[44] Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459–494. Publisher:
Elsevier.

[45] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Jaakko Kurhila. 2013.
Massive increase in eager TAs: Experiences from extreme apprenticeship-based
CS1. In Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. 123–128.

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

[46] Erin Walker, Nikol Rummel, and Kenneth R. Koedinger. 2009. Integrating col-
laboration and intelligent tutoring data in the evaluation of a reciprocal peer
tutoring environment. Research and Practice in Technology Enhanced Learning 4,
03 (2009), 221–251. Publisher: World Scienti�c.

[47] Ke Wang, Benjamin Lin, Bjorn Rettig, Paul Pardi, and Rishabh Singh. 2017. Data-
driven feedback generator for online programing courses. In Proceedings of the
Fourth (2017) ACM Conference on Learning@ Scale. 257–260.

[48] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook. 1997. Does
continuous visual feedback aid debugging in direct-manipulation programming
systems?. In Proceedings of the ACM SIGCHI Conference on Human factors in
computing systems. ACM, Atlanta Georgia USA, 258–265. https://doi.org/10.
1145/258549.258721

[49] Kurtis Zimmerman and Chandan R. Rupakheti. 2015. An automated framework
for recommending program elements to novices (n). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 283–
288.

A PROGRAMMING PROBLEMS AND
STUDENT SOLUTIONS USED IN THE
STUDY

A.1 hasTwoDigits

A.1.1 Problem Statement. Write a function that determineswhether

the given positive number has exactly two digits.

A.1.2 Solution versions.

Student solution

def hasTwoDigits(x):

if x >= 10:

return True

Valid generated correction

def hasTwoDigits(x):

if 10 <= x <= 99:

return True

else:

return False

Problematic generated correction

def hasTwoDigits(x):

if 1 <= x//10 < 10:

return True

else:

return False

A.1.3 Bugs in student code.

(1) No upper bound check for whether number has more than

two digits

(2) Returns None instead of False when two-digit test fails

A.1.4 Size of issue. Small

A.1.5 Problems with problematic solution.

(1) Esoteric math in if comparison: not wrong, but unnecessary

and hard to understand

A.2 secondHalf

A.2.1 Problem Statement. Given a list l, return the second half

of that list. If the list has an odd number of elements, include the

middle element.

A.2.2 Solution versions.

Student solution

def secondHalf(l):

lst=[]

for i in range(len(l)):

if i>=(len(l)-1)//2:

lst.append(l[i])

return lst

Valid generated correction

def secondHalf(l):

lst=[]

for i in range(len(l)):

if i>=len(l)//2:

lst.append(l[i])

return lst

Problematic generated correction

def secondHalf(l):

lst = len(l)

for i in range(len(l)):

if i >= 0:

return l[lst // 2:lst]

return l[(lst - 1) // 2:lst]

A.2.3 Bugs in student code.

(1) o�-by-one error in if condition: -1 is unnecessary. Adds an

extra element in even cases.

A.2.4 Size of issue. Small

A.2.5 Problems with problematic solution.

(1) Extremely esoteric sequence of code execution: always re-

turns the second time through the loop, second return state-

ment never happens and wouldn’t return the correct result,

loop and if are unnecessary for the actual logic of the solution

to work

(2) The variable name lst is not appropriate for how it’s used

in the code

A.3 listOfLists

A.3.1 Problem Statement. Given a list of lists, return a new (1D)

list that contains all of the elements present in the original lists,

with no duplicates. This single list should be sorted according to

the built-in Python sort method. Hint: This problem becomes fairly

simple if you use sets!

A.3.2 Solution versions.

Student solution

def listOfLists(l):

listSet = set()

lst = []

for i in range(len(l)):

for k in range(len(l[i])):

listSet.add(l[i][k])

for num in listSet:

lst += [num]

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

return lst

Valid generated correction

def listOfLists(l):

listSet = set()

lst = []

for i in range(len(l)):

for k in range(len(l[i])):

listSet.add(l[i][k])

for num in listSet:

lst += [num]

return sorted(lst)

Problematic generated correction

def listOfLists(l):

listSet = set()

for lst in l:

for elem in lst:

listSet.add(elem)

lst = []

for num in listSet:

lst += [num]

return sorted(list(listSet))

A.3.3 Bugs in student code.

(1) Did not sort the list before returning (forgot part of problem

statement?)

A.3.4 Size of issue. Small

A.3.5 Problems with problematic solution.

(1) Unnecessarily moves code around

(2) Computes lst, then doesn’t use it - uses list(listSet)

directly instead

A.4 howManyEggCartons

A.4.1 Problem Statement. Given a number of eggs (as an integer),

return the number of egg cartons needed to hold that many eggs.

Cartons hold 12 eggs each, so from 1 to 12 eggs requires one carton,

13 to 24 requires two, etc.

A.4.2 Solution versions.

Student solution

def howManyEggCartons(eggs):

quad = eggs // 12

if quad % 2 != 0:

return quad + 1

else:

return quad

Valid generated correction

def howManyEggCartons(eggs):

quad = eggs // 12

if eggs % 12 != 0:

return quad + 1

else:

return quad

Problematic generated correction

def howManyEggCartons(eggs):

quad = eggs // 12

if eggs % 2 != 0:

return quad + 1

else:

return quad

A.4.3 Bugs in student code. Comparing the wrong quantities in if

modulo expression:

(1) quad instead of eggs

(2) 2 instead of 12

A.4.4 Size of issue. Small

A.4.5 Problems with problematic solution.

(1) Incorrect solution: %2 instead of %12 (passes unit tests by

chance)

A.5 nearestBusStop

A.5.1 Problem Statement. Write a function that takes a non-negative

street number and returns the nearest bus stop to the given street.

Buses stop every 8th street, including street 0, and ties go to the

lower street, so the nearest bus stop to 12th street is 8th street, and

the nearest bus stop to the 13th street is 16th street.

A.5.2 Solution versions.

Student solution

def nearestBusStop(street):

if street % 8 == 0:

stop = street

if street % 8 <= 4:

stop = street

if street % 8 > 4:

stop = street +1

return stop

Valid generated correction

def nearestBusStop(street):

if street % 8 == 0:

stop = street

if street % 8 <= 4:

stop = street - street % 8

if street % 8 > 4:

stop = street - street % 8 + 8

return stop

Problematic generated correction

def nearestBusStop(street):

if street % 8 > 4:

stop = street

if street % 8 > 4:

return street + 8 - street % 8

else:

return street - street % 8

A.5.3 Bugs in student code.

(1) Incorrect computation for nearest bus stop in “rounding

down” case

Assisting Teaching Assistants with Automatic Code Corrections CHI ’22, April 30 - May 6 2022, New Orleans, LA

(2) Incorrect computation for nearest bus stop in “rounding up”

case

A.5.4 Size of issue. Large

A.5.5 Problems with problematic solution.

(1) First if is extraneous and doesn’t a�ect output

(2) Too many unnecessary changes to the student code

A.6 anyLowercase

A.6.1 Problem Statement. Given a string s, return True if any char-

acter in that string is lowercase (between ’a’ and ’z’), and False

otherwise.

A.6.2 Solution versions.

Student solution

import string

def anyLowercase(s):

for i in range(len(s)):

if (s[i] not in

string.ascii_lowercase):

return False

return True

Valid generated correction

import string

def anyLowercase(s):

for i in range(len(s)):

if (s[i] in

string.ascii_lowercase):

return True

return False

Problematic generated correction

import string

def anyLowercase(s):

for i in s:

if (i in

string.ascii_lowercase):

return True

return False

A.6.3 Bugs in student code.

(1) Conceptual issue: returns True if and only if all lowercase,

instead of any. (Problem with interpreting problem state-

ment?)

A.6.4 Size of issue. Large

A.6.5 Problems with problematic solution.

(1) Unnecessary change: iterating through items instead of in-

dices

A.7 middleElement

A.7.1 Problem Statement. Given a non-empty list, l, return the mid-

dle element of that list. If the list has an even number of elements,

return the middle-right element.

A.7.2 Solution versions.

Student solution

def middleElement(l):

if len(l)-1%2==0:

return len(l)-1%2

else:

return len(l)-1//2 +1

Valid generated correction

def middleElement(l):

if (len(l)-1)%2==0:

mid_index = (len(l)-1)//2

else:

mid_index = (len(l)-1)//2 +1

return l[mid_index]

Problematic generated correction

def middleElement(l):

length = len(l)

if len(l) / (1 % 2) == 0:

return len(l) - 1 % 2

else:

return l[length // 2]

A.7.3 Bugs in student code.

(1) Missing parentheses (3 separate times)

(2) %2 instead of //2 in if body (copy-paste issue?)

(3) Returns index, not element

A.7.4 Size of issue. Large

A.7.5 Problems with problematic solution.

(1) Esoteric and unnecessary if statement: it’s almost always

false, and would return the wrong result if true (e.g. with list

of length 0)

(2) length variable is used inconsistently, and is arguably un-

necessary

A.8 sumOfDigits

A.8.1 Problem Statement. Given a number n, return the sum of

n’s digits.

A.8.2 Solution versions.

Student solution

def sumOfDigits(n):

i=0

summation=0

while i<=nsize(n):

r=n//(10**(n-i-1))

remain= r%10

summation+=remain

return summation

Valid generated correction

def sumOfDigits(n):

i=0

summation=0

while i<len(str(n)):

CHI ’22, April 30 - May 6 2022, New Orleans, LA Yana Malysheva and Caitlin Kelleher

r=n//(10**(len(str(n))-i-1))

remain= r%10

summation+=remain

i+=1

return summation

Problematic generated correction

def sumOfDigits(n):

i = abs(n)

summation = 0

while n > 0:

r = n % 10

n = n // 10

summation += r

return summation

A.8.3 Bugs in student code.

(1) nsize(n) should be an expression which evaluates to num-

ber of digits in n, e.g. len(str(n))

(2) When calculating r, n should also be replaced with the num-

ber of digits in n

(3) Loop doesn’t terminate because i doesn’t update

(4) If loop did terminate (by starting i at 0 and incrementing by

1), it would iterate one more time than needed

A.8.4 Size of issue. Large

A.8.5 Problems with problematic solution.

(1) Line 2 (i = abs(n)) is extraneous, the value is never used

(2) Doesn’t preserve student intent on how to iterate through

digits and extract them

B PRE-SURVEY

The pre-survey given to participants consisted of two multiple-

choice questions.

B.1 Question 1. Have you ever been a Teaching
Assistant for a CSE course before? If you
have, then for how many total semesters?

• 0: I haven’t been a TA yet

• 1: I have been a TA once

• 2: I have been a TA for two semesters

• >2: I have been a TA for more than two semesters

B.2 Question 2. How much experience do you
have with Python?

• None: never tried it

• A little: I have used it once or twice

• Some: I have used it before, but amnot extremely comfortable

with it

• Lots: I am quite comfortable with Python

C POST-SURVEY

The post-survey given to participants consisted of two free text

questions.

C.1 Question 1. What was the most helpful
part of the interface as you were trying to
identify the problems with the student
code?

C.2 Question 2. What was the hardest or most
cumbersome part of the task?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Undergraduate CS TAs
	2.2 Scaffolding peer tutoring
	2.3 Debugging
	2.4 Automatic code correction

	3 Methods
	3.1 Participants
	3.2 Study Materials
	3.3 Experiment Design
	3.4 Study Process
	3.5 Data Collection
	3.6 Data Analysis

	4 Results
	4.1 RQ1: Do generated corrections help TAs debug faster?
	4.2 RQ2: Do generated corrections help TAs debug better?
	4.3 RQ3: What is the effect of seeing a problematic generated correction?
	4.4 RQ4: What is difficult for TAs, and what is helpful?

	5 Discussion
	6 Limitations and Future Work
	7 Conclusion
	References
	A Programming problems and student solutions used in the study
	A.1 hasTwoDigits
	A.2 secondHalf
	A.3 listOfLists
	A.4 howManyEggCartons
	A.5 nearestBusStop
	A.6 anyLowercase
	A.7 middleElement
	A.8 sumOfDigits

	B Pre-survey
	B.1 Question 1. Have you ever been a Teaching Assistant for a CSE course before? If you have, then for how many total semesters?
	B.2 Question 2. How much experience do you have with Python?

	C Post-survey
	C.1 Question 1. What was the most helpful part of the interface as you were trying to identify the problems with the student code?
	C.2 Question 2. What was the hardest or most cumbersome part of the task?

