)]
Check for
Updates

Assisting Teaching Assistants with Automatic Code Corrections

Yana Malysheva
Caitlin Kelleher

Washington University in St. Louis
St. Louis, Missouri, USA

(Incorrect) student solution:

1. Fix the code

Student code Generated correction
def hasTwoDigits(x): def hasTwoDigits(x):
o if x >= 10: > if 10 <= x <= 99:
return True return True
i else:
+ return False
Tasks

In the code editor below, edit the student solution until it is correct. Try to preserve the original intent of the code as much as possible. Use the "Test" button to run the unit tests and check for correctness.

‘ 1+ def hasTwoDigits(x):
5 ic 20

Figure 1: A fragment of the debugging interface used in the study

ABSTRACT

Undergraduate Teaching Assistants(TAs) in Computer Science courses
are often the first and only point of contact when a student gets
stuck on a programming problem. But these TAs are often relative
beginners themselves, both in programming and in teaching. In this
paper, we examine the impact of availability of corrected code on
TAs’ ability to find, fix, and address bugs in student code. We found
that seeing a corrected version of the student code helps TAs debug
code 29% faster, and write more accurate and complete student-
facing explanations of the bugs (30% more likely to correctly address
a given bug). We also observed that TAs do not generally strug-
gle with the conceptual understanding of the underlying material.
Rather, their difficulties seem more related to issues with working
memory, attention, and overall high cognitive load.

ACM Reference Format:

Yana Malysheva and Caitlin Kelleher. 2022. Assisting Teaching Assistants
with Automatic Code Corrections. In ACM CHI Conference on Human Factors
in Computing Systems, April 30 - May 6 2022, New Orleans, LA. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3491102.3501820

1 INTRODUCTION

Undergraduate teaching assistants (TAs) are often the first and only
point of contact when a student gets stuck on a programming prob-
lem as a part of their class assignment. In order to effectively help
a student overcome their difficulties and advance their understand-
ing of the subject matter, the TA needs to perform several tasks
simultaneously, within a limited amount of time: reason about the

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22, April 30 - May 6 2022, New Orleans, LA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3501820

student’s intentions in writing their code; find the mistakes that
prevent the student’s current code from fulfilling those intentions;
and explain the problem to the student, striving to reinforce the con-
cepts that the original problem was intended to address. Handling
all of these disparate tasks at the same time can be challenging even
for an experienced educator, but TAs are often new to teaching, and
relatively new to programming. Therefore, it is not surprising that
they may have difficulties managing all of these responsibilities at
once.

To better assist TAs, it is important to understand which aspects
of these tasks serve as barriers. Yet, little is known about how TAs
approach helping students, where they struggle, and how those
struggles impact their interaction with learners.

In this paper, we examine the impact of the availability of auto-
generated, corrected code on TA behavior when the TA is engaged
in finding and explaining bugs in student code. Seeing a comparison
between the buggy student code and a corrected version of the same
code (as illustrated in Figure 1) can quickly provide TAs with a sense
of the student’s intention and an overview of their mistakes. This
may enable TAs to invest more time and mental energy in providing
a good explanation to the student.

In order to evaluate the effect of seeing the corrected code, we
ran a series of studies in which TAs first debugged code written by
introductory computer science students, and then wrote a helpful
explanation to the student who wrote the code. Results show that
TAs who saw a corrected version of the student code completed
the tasks faster and more accurately than those who did not.

We also discuss the patterns we observed in TA behavior when
they debug student code, the difficulties they tend to have, and
what kinds of tools may be able to address these difficulties. We
believe that the major source of difficulty in this task comes from
high cognitive effort, and associated slips and lapses of attention,
rather than a lack of conceptual understanding of the underlying

CHI ’22, April 30 - May 6 2022, New Orleans, LA

material. For example, we found that TAs actually have more dif-
ficulty finding the second and third instance of the same bug in
a short snippet of code than the first instance. If this is true, then
tools that help reduce cognitive demands on TAs may be able to
improve TAs’ impact on student learning.

2 RELATED WORK

This work builds on and contributes to research in four areas: Un-
dergraduate Teaching Assistant (UTA) programs, peer tutoring,
debugging, and automatic code correction.

2.1 Undergraduate CS TAs

The existing literature on TAs and learning is small and focused
on the evaluation of programs rather than in-depth analyses of
TA-student interactions. A recent review of the literature [32] in
this area finds that undergraduate TA programs claim benefits that
fall into three broad categories: 1) benefits to student learners, 2)
benefits to teaching assistants, and 3) benefits to the instructor and
organization.

2.1.1 Benefits to student learners. Researchers evaluating the im-
pact of different TA programs have found improvements in student
performance [5, 13, 35] and student satisfaction [11, 31].

Biggers et al found that changing recitation sections to be prob-
lem solving driven rather than a re-lecture improved student’s grade
performance [5]. Erdei found that an additional undergraduate TA
to support labs was comparable to a peer programming approach in
supporting student understanding on a programming assessment
[13]. Pivkina found that the availability of peer learning assistants
(in addition to the instructor and TAs) improved students’ average
course score [35].

Both Decker et. al and Minnes et al. found that additional ac-
cess to undergraduate TAs (UTAs) can improve student experience.
Decker et al found that the use of UTAs in CS1 was associated with
higher subjective student satisfaction [11]. Minnes found that the
availability of individually assigned near-peer tutors improved the
sense of community among learners [31].

2.1.2 Benefits to TAs. Several studies have also documented bene-
fits for the students who serve as TAs. Fryling et al. found in focus
groups that the experience of serving as a mentor during lecture
and lab improved TAs skills and confidence [15] Brent et al. found
a a similar boost in teaching confidence for TAs who attended an
eight hour training before starting their TA assignment [6]. Finally,
[45] found that after serving as a TA, students rated their own
interpersonal skills more highly.

2.1.3 Benefits to the instructor/organization. Finally, some research
points to benefits for the instructors and organizations offering
courses. UTAs can make the operation of large classes with limited
staff more feasible [7]. A number of these papers discuss departmen-
tal practices in hiring, training, and evaluating TAs [6, 11, 15, 35].
However, we note that the 2019 literature review notes that “we
found limited research that links specific practices to benefits and
program goals” [32].

Overall, our understanding of TAs is sparse and largely informed by
studies of programs. Studies of the interactions between students

Yana Malysheva and Caitlin Kelleher

and TAs could potentially identify opportunities to improve TA
efficiency, student learning, and student experience.

2.2 Scaffolding peer tutoring

Several studies explore how best to scaffold interactions between
students in a programming or CS course and peer or near-peer
assistants who can help students make progress on their tasks.
The interventions proposed in these studies target a variety of
potential roadblocks to effective peer help. Kos [25] seeks to ex-
plicitly scaffold good peer tutor practices through a “Collaborative
Learning Framework” poster. Liu et al.[28] and Fong et al.[14] or-
ganize and motivate potential peer tutors to provide assistance to
students. Glassman et al.[16] describe several ways of organizing
peer-created information to be more discoverable and useful to the
students who need it. However, while these interventions support
TAs in remembering best practices, they do not seek to understand
or address barriers that TAs experience.

Outside of the field of computer science, one study[46] does
examine the effects of providing real-time problem-specific infor-
mation to the peer assistant. In this study, students worked through
algebra problems using an Intelligent Tutoring System (ITS), either
with or without peer help. When peer help was present, the ITS
presented student feedback to the peer tutor rather than the student
directly, and the peer tutor chose what information to pass on to
the student. They found no difference in outcomes, though there
were some qualitative differences in how the different groups used
the system.

In this work, we explore the effects of providing problem-specific
information that is tailored to the target audience of a peer assistant.

2.3 Debugging

There is a large body of research on how programmers approach
debugging code including: (1) skills and competencies involved in
debugging, (2) programmers’ behavior patterns while debugging,
and (3) factors that affect how well programmers debugs code.

2.3.1 Skills and competencies. A 2008 literature review [29] iden-
tified program comprehension and hypothesis generation as key
skills during debugging.

Program comprehension, the ability to reason about what the
code does, is unsurprisingly important in debugging code effec-
tively [1, 20, 24, 33]. Ducasse and Emde [12] distinguish two types
of reasoning about code behavior: “knowledge of the intended pro-
gram” and “knowledge of the actual program”. Here, the intended
program represents the solution the programmer had in mind while
writing the code. The actual program is what the code currently
does. This distinction is particularly important when the person
debugging the code is different from the person who wrote the
code. Here, the author has no knowledge of the intended solution
and must thus infer it based on the current code.

Effectively generating and testing hypotheses is also critical
to debugging [17, 19, 44]. Studies have found that novices tend
to hypothesize and test hypotheses more frequently, but have a
lower rate of correct hypotheses than experts [19]. Tubaishat [43]
distinguished between “deep reasoning” and “shallow reasoning”
when forming hypotheses and finding bugs. Shallow reasoning
involves using heuristics to make guesses about the output and test

Assisting Teaching Assistants with Automatic Code Corrections

results of the code, while deep reasoning relies specifically on deep
program comprehension and recognition.

2.3.2 Attention patterns when debugging. Knowing how program-
mers allocate their attention while debugging code, and how at-
tention patterns differ between expert and novice debuggers, is
important for designing interfaces which help people debug more
effectively. Several studies use eye tracking to analyze these atten-
tion patterns.

Unsurprisingly, the code being debugged consistently attracts
the most attention [22, 42]. However, programmers with different
expertise levels and different success levels at debugging seem to
differ in how they trace through the code, and how they relate the
code to other information, such as the output of the program and
the debugger diagnostics. Lin et al.[27] found that less successful
debuggers tend to trace through the code top-down rather than fol-
lowing the logical flow of the code. Bednarik[3] found that experts
relied more on relating the code to the output of the program, while
beginners paid more attention to visualizations of the program state
which were displayed in the IDE side-by-side with the code.

Bednarik and Tukiainen[4] used a Restricted Focus Viewer(RFV)
to blur most of the interface, giving the user control over which
part to show using the mouse. They observed a “bookmarking”
behavior in participants, where the participant is not looking at the
unblurred portion of the screen, but rather is looking at a blurred
portion while retaining another portion in the RFV. This can be
interpreted as using the focused view as a form of external mem-
ory to temporarily “save” the information. They also found that
the blurring slows down expert but not novice debuggers, in that
experts fixate on individual elements of the Ul for longer periods of
time when debugging with the RFV. This indicates that experts take
longer to process important information when they know that it
will not be immediately available to them visually. Together, these
findings suggest that visual cues in the interface can serve as an
important resource for alleviating some of the high cognitive load
associated with the debugging process.

2.3.3 Factors which affect debugging success. Several studies show
that increased cognitive load negatively impacts novices’ behav-
ior when making and resolving bugs. McKeever and McDaid[30]
demonstrated that students’ ability to find certain kinds of bugs in
spreadsheets decreases when the spreadsheets are formatted to pro-
vide additional information by giving meaningful names to ranges
of cells and using these names in place of cell references. Anderson
and Jeffries[2] found that artificially adding irrelevant complexity
increases the frequency of errors that students make in Lisp pro-
grams, and that these errors tend to be slips rather than the result
of misconceptions. They concluded that “errors occur when there is
a loss of information in the working memory representation of the
problem”. Robertson et al.[41] investigated the difference between
forcing users to react to debugging information immediately and
making the same information available at the user’s convenience.
They found that interrupting users reduced their effectiveness in
debugging, and attributed this to the way that frequent interrup-
tions affect short-term memory. Wilcox et al.[48] examined the
effect of continuous visual feedback on debugging, and found that
it both helped and hindered, depending on the context.

CHI 22, April 30 - May 6 2022, New Orleans, LA

Our results suggest that the availability of automatically corrected
versions of students code help TAs to more readily reason about
student intent and provide help that aligns with that intent, an
important aspect of the debugging process [12]. We also found
that TAs experienced short term memory lapses when providing
feedback. Like programmers in Bednarik and Tukainen’s study [4],
TAs appeared to use student code as a form of external memory.

2.4 Automatic code correction

Researchers have explored the use of automatically generated hints
to help struggling students. These systems generate corrections
using a variety of strategies including mining solutions [18, 37, 40,
47, 49] or strategies [10, 21, 26, 34] from the work of other students,
and relying on instructor written tests to check for correctness [23,
39, 47]. Most systems have then used their generated corrections to
subsequently generate a student-facing hint that describes a step
to take, but does not explicitly show the correction. However, at
least one system instead applies this information to a teacher-facing
interface [21] to reduce repetitive work associated with providing
student feedback.

One study [38] evaluated the quality of next-step hints generated
by several algorithms by comparing the generated suggestions with
a corpus of “gold standard” edit suggestions generated by a group
of experts. They found that the best algorithms performed between
47.9% and 83.9% as well as human tutors. The human tutors, in turn,
performed between 75% and 90% as well as the gold standard. The
study identified the ability to understand student intent as one of
the major aspects that present difficulty for automatic code-fixing
algorithms.

In this study, we found that poor automatic corrections slowed
TAs down but did not significantly negatively impact the quality of
their feedback.

3 METHODS

We ran a pair of studies to explore the potential impact of auto-
matically generated code corrections on 1) TAs’ identification of
student errors, 2) TAs” debugging process, and 3) the quality of
TAs’ proposed solutions. In both studies, we asked TAs to evaluate
broken student code submissions, fix them, and then provide writ-
ten feedback to the student that would help them to move forward.
We chose to have TAs provide written feedback in order to allevi-
ate the time pressure that is inherent in live student interaction.
This setting required TAs to fully debug student submissions be-
fore deciding on what feedback to offer. The first study focused on
high quality generated code and explored code problems of varying
complexity. The second study evaluated the potential impact of
non-optimal generated code.
Specifically, we addressed the following research questions:

RQ1. Does seeing a comparison of student code with an automatically-

generated corrected version of the same code help TAs debug the
student code faster?

RQ2. Does seeing such a comparison help TAs debug the student
code better (more accurately and completely)?

RQ3. If the generated corrected version is problematic, (e.g. sug-
gests spurious changes or passes provided unit tests without being
correct), how does it affect the TAs’ ability to debug student code?

CHI ’22, April 30 - May 6 2022, New Orleans, LA

RQ4. Qualitatively, what presents the most difficulties for TAs
when debugging student code? What can be done to help/support
TAs as they debug student code?

3.1 Participants

We recruited study participants through a mailing list for current
and future undergraduate computer science TAs at Washington
University in St. Louis. Participants received a $15 gift card in
recognition of their participation in an hour-long study session.

3.2 Study Materials

For this study, we created a TA web interface!, selected eight real-
world buggy student solutions to programming problems, and cre-
ated two versions of corrections for each buggy student solution
through a mix of automatic correction generation and manual ad-
justments to fit our specific study needs. We describe each below.

3.2.1 TA Web Interface. During the study, we asked participants
to first fix incorrect student solutions and then provide feedback
to students. To support this and capture information about their
process, we created a simple web interface (see Figure 2).

At the top of the interface, we showed information about the
problem: the problem statement that the student saw, the buggy
student solution, and (in some conditions) the generated correction
to the student solution. Participants used the lower half of the
interface to debug the code and then write the explanation to the
student. They could test their modified version of the code at any
time, and the interface required all unit tests to pass before they
could submit their answer.

3.2.2 Problem Data. To populate the TA web interface, we need
the following content for each problem: a problem description,
a buggy student solution to that problem, the unit tests used to
evaluate a solution’s correctness, and two different versions of a
corrected solution to the student solution (described in more detail
in the “Corrections” section below).

To provide a realistic set of problems and student submissions
for TAs to debug and provide feedback on, we selected buggy solu-
tions from a public dataset of real-world beginners solving Python
problems[36]. We also used problem descriptions and unit tests
from the same source. The dataset was designed to capture how
novice programmers solved Python programming problems using
the ITAP intelligent tutoring system[40]. The ITAP system provides
on-demand hints to students when they are stuck and do not know
how to correct their code. Thus, we expect that the kinds of errors
that students may make while working with the ITAP system would
be qualitatively similar to the kinds of errors a student might make
while working on programming exercises with a TA on hand to
assist them.

In order to mitigate the variance in difficulty inherent in de-
bugging real-world beginner code, we hand-selected eight buggy
student solutions to eight different programming problems and
showed each participant the same eight problems. This way, all
participants would be addressing the same bugs in the same con-
text, and we could make consistent comparisons between different

The code for the TA web interface is available at https://github.com/yanamal/TA-
debug-interface

Yana Malysheva and Caitlin Kelleher

participants’ performance. The number of problems was chosen so
that most undergraduate TAs could feasibly complete all problems
within the one-hour study.

We used several criteria to select the eight problems: (1) Half of
the problems should have a small bug and half should have a larger
issue. We defined solutions with large issues as ones involving
errors in logical program flow and/or multiple interacting bugs;
and solutions with small issues as not involving either of those.
(2) Taken together, the buggy student solutions should represent
a wide variety of types of bugs observed in the dataset, including
typos, arithmetic/computation errors, and different types of logical
errors. (3) For each buggy student solution, it should be feasible to
come up with both a valid and a problematic, lower-quality version
of a “generated” correction (see the section below for more details
on the two different types of corrections).

Appendix A summarizes the selected student solutions, bugs
present in each one, both versions of generated corrections, and
other associated data.

3.2.3 Corrections. In order to answer the research questions we
posed, we need to separately test the effect of high-quality and
low-quality generated corrections: RQ3 examines the effect of low-
quality corrections on TA behavior, while RQ1 and RQ2 explore the
effect of seeing a correct and valid correction to the student code.
Therefore, for each problem, we created both a valid correction
which adequately addressed the bugs in the student code, and a
problematic low-quality correction which, in some way, did not
address all bugs, but nevertheless did pass all unit tests.

For each problem and buggy student solution, we used a three-
step process to create both versions of the correction: (1) we au-
tomatically generated a correction using a custom algorithm; (2)
we decided whether it was a valid or problematic correction; (3)
finally, we manually modified the generated version to create the
other version. These steps are described in more detail below.

For each problem, we first used a heuristic algorithm to automat-
ically generate a candidate solution. This heuristic compares the
buggy student solution to other students’ correct solutions, which
were taken from the same dataset as the buggy solution. Using the
difference between the buggy and correct solutions, it tries to find
a small subset of the edits which, when applied to the student code,
allow it to pass all unit tests. This is a similar algorithm to the ones
used in other correction generators described in the Automatic
Code Correction sub-section of the Related Work section above,
although we developed our own set of strategies and heuristics to
compare the solutions and search for small sets of edits. The exact
design of the system is out of scope for this paper, since the goal
of this paper is not to evaluate a particular correction generation
algorithm, but rather to examine the effect of generated corrections
as a whole on TA behavior.

We then manually examined each generated solution to decide
whether it was a valid correction for all the bugs present in the stu-
dent code. In all cases but one, the latest iteration of our correction
generator created a valid solution which addressed the individual
bugs while respecting student intent. The exception was the student
solution to the sumOfDigits problem, which uses a very esoteric
approach to both iterate through the digits of a number and ex-
tract each individual digit. Since the generator could not match

Assisting Teaching Assistants with Automatic Code Corrections

CHI 22, April 30 - May 6 2022, New Orleans, LA

Problem statement: @

(Incorrect) student solution:

Student code

def middleElement(1):
= if len(l) - 1% 2 == 0:
= return len(l) - 1% 2
else:
= return len(l) -1 // 2+ 1

«

Given a non-empty list, 1, return the middle element of that list. If the list has an even number of elements, return the middle-right element.

Generated correction @

(D)7:14

def middleElement(1):
+ if (len(l) - 1) % 2 == 0:

+ mid_index = (len(l) - 1) // 2
else:

+ mid_index = (len(l) - 1) // 2 + 1

i3 return l[mid_index]

Tasks

1. Fix the code

In the code editor below, edit the student solution until it is correct. Try to preserve the original intent of the code as much as possible. Use the "Test" button to run the unit tests and check for correctness.

1~ def middleElement(l):

2~ if len(l) - 1% 2 == 0:

3 return len(l) - 1 % 2

4~ else:

5 return len(1) - 1// 2 + 1

6

7|

Test case [Expected output||Actual output| ®

middleElement([1,2,3]) (|2

imiddleElement ([6]) 6

imiddleElement([2,9,1,0])|/1

2. Explain the error

Imagine you are writing an email to the student who wrote this incorrect code. Explain to them why their solution is incorrect, and what they could do to fix it, without giving away the actual answer.

®

Figure 2: The debugging interface used in the study: (A) problem statement show to the student who wrote the buggy solution;
(B) the student’s solution, which is not correct (does not pass all unit tests); (C) A generated correction - shown in all conditions
except the Control condition for the first experiment; (D) Countdown timer for a soft per-problem time limit; (E) Editable code
area where the participant creates their own solution; (F) Unit tests which must pass before the participant can submit their
answer; (G) text area where the participant writes the student-facing explanation of what is wrong with the student code.

this approach to any other student solutions, the automatically
generated correction used a simplified and more common approach
to solving the problem. But the student approach, despite being

esoteric, would have worked if it weren’t for four individual bugs.

So for this study, we manually corrected each bug in the student
code to create the valid “generated” solution version, and reserved
the actual generated solution for the problematic solution. This
allows us to study how teaching assistants react to esoteric student
solutions in the presence or absence of information about what the
student intended.

Finally, for each of the seven problems where the generated
solution was valid, we created an alternative solution which was
problematic in some way. This was either a solution generated by a

previous version of the algorithm, or a manually-created problem-
atic solution where we introduced a problem representative of ones
that can result from code generation. Each problematic solution still
passes all unit tests, since this is a requirement of the correction
generator. The problems present in these problematic solutions
vary from code that contains unnecessary changes to objectively
incorrect code which exploits accidental loopholes in unit tests.

The resulting valid and problematic versions of the solution,
as well as a description of what is wrong with each problematic
version, are also shown in Appendix A.

CHI ’22, April 30 - May 6 2022, New Orleans, LA

Experiment 1 Experiment 2

Problems with small issue | | Problems with large issue | | Problems with small issue | | Problems with large issue

2 large 2 small - > 2 large
\ s oy

Control:
“Good" 9

2 small
e 2
\ s oy

Control:

Experiment:
No correction

Experiment:
"Good" correction i i

Choose order Shuffle

- control - [~ Experiment —

- 4 or F .
- Experiment—{ Control -

Figure 3: Overview of the experiment design

Table 1: Overview of how experiments relate to RQs

Does experiment i address RQ j?

Experiment Participants RQ1 RQ2 RQ3 RQ4
Experiment 1 17 v v v
Experiment 2 5 v v

3.3 Experiment Design

To answer the research questions, we conducted two separate
within-subject experiments with different sets of participants. We
chose a within-subject design because undergraduate teaching as-
sistants have a very broad range of experience and ability in both
teaching and programming. This can make it very hard to draw
between-subject conclusions, since any variance induced by the
controlled variable can be overshadowed by the natural variance
in TA performance. Table 1 summarizes the relationship between
experiments and research questions, and the number of partici-
pants in each experiment. Figure 3 shows an overview of the two
experiments’ designs.

3.3.1 Experiment 1. In the first experiment, we presented each
participant with two versions of the interface. They first worked
through four problems using one version of the interface, then
switched to the other version for the other four problems. For prob-
lems in the experimental condition, the participant saw a compari-
son between the student code and the valid generated correction,
with standard side-by-side diff highlighting. The control version
did not show any correction or highlighting. For each participant,
we randomly selected two problems with large issues and two prob-
lems with small issues to be in the experimental condition, with
the other half of the problems in the control condition. We also
randomized which condition the participant saw first, to control
for any variance introduced by the learning curve of getting used
to the interface.

3.3.2 Experiment 2. For the second experiment, participants saw
a generated correction in both the experimental and the control
condition. In the control condition, they saw the same valid cor-
rection as in the experimental condition from experiment 1. In

Yana Malysheva and Caitlin Kelleher

the experimental condition, they saw the problematic correction
described above. For each participant, the problems were split ran-
domly between the two conditions the same way as in experiment
1: two small and two large problems in each condition. But unlike in
experiment one, we randomly shuffled the resulting comparisons so
that the participants would see a mix of the two conditions instead
of switching between them midway through. The participants were
not made aware that there were two conditions, and did not know
whether the solution they were presented was valid.

3.4 Study Process

interface b
demo a lout
5 minutes
pre-survey

B — 8 minutes
8 problems:_/ per problem
~ debug]
B and - One hour
— explain — for all problems

post-survey

Figure 4: Overview of the study procedure

We conducted an individual one-on-one study session with each
participant. At the beginning of the session, the researcher gave
a 5-minute demonstration of the interface shown in Figure 2 and
explained the participant’s task, in order to minimize the time that
participants spent familiarizing themselves with the interface.

After the demo, the participant filled out a short survey asking
about their experience with Python and with being a Teaching
Assistant, and then started working on the debugging tasks. For
each debugging task, the participant was asked to first edit the
student code until all tests pass, and then write an email to the
student explaining the errors. If the participant took too long to
fix the code for a particular problem, the requirement that all tests
should pass was lifted, and the participant could choose to move on
to the explanation at any time. We chose “too long” to be 8 minutes,
so that the participants could still feasibly finish all 8 problems
in around an hour. Although this meant that it was technically
possible for a participant to take up to 64 minutes to debug all of
the problems, we counted on most participants finishing at least a
few problems before the deadline. This assumption turned out to
be correct: most participants finished all 8 problems well within the
1-hour limit, even in cases where one or two problems took longer
than 8 minutes.

The participant was not explicitly notified if the 1-hour limit
passed while they were still working on the debugging tasks. But
once they submitted the response to their current task, they were
redirected to the post-survey stage, even if there were still problems
left which they did not solve. This meant that two out of 22 partici-
pants did not complete all 8 problems. One of these participants was
able to complete 7 problems in the hour-long study, while the other

Assisting Teaching Assistants with Automatic Code Corrections

only completed 6. All other participants completed all problems,
and many finished early.

After each session, the participant filled out a short post-survey
with two open-ended questions about what they found helpful and
difficult in the process.

Figure 4 summarizes the study procedure described above.

3.5 Data Collection

We collected pre-survey and post-survey answers for each partici-
pant, as well as the logs from the debugging interface.

In the web interface, we recorded each time the participant ran
a unit test. For each of these events, we logged the code that was
executed, and the results of each unit test.

In addition, each time that the participant submitted an answer
to a problem, we logged their code, the unit test results, and the
full text of the explanation they wrote for the student.

3.6 Data Analysis

In order to evaluate the TAs’ performance across different experi-
mental conditions regardless of which problems they saw in which
condition, we computed within-subject relative performance metrics
which seek to control for the wide variance in expected performance
between different problems.

Additionally, in order to evaluate the quality and accuracy of
TAs’ answers, we performed two analyses: (1) We developed criteria
for evaluating whether the TA’s version of the code fixed each bug
present in the student solution, and (2) we coded each explanation
to determine whether the TA’s written explanation to the student
addressed each of the bugs.

3.6.1 Relative Performance Metrics. To analyze within-subject vari-
ance across experimental conditions, for each metric of interest, we
computed a problem-specific baseline across all participants. For
each participant, we then measured the difference between that
participant’s performance on that metric and the problem-specific
baseline. This strategy allowed us to capture, for each participant,
their relative performance on each problem - whether they did bet-
ter or worse than the baseline, and by how much. This allows us to
control for the large amount of between-problem variance when
performing a within-subject (paired) t-test to determine whether a
participant’s relative performance changed when the participant
was subjected to different experimental conditions.

We performed this type analysis for two metrics: (1) the time to
solve a particular problem, and (2) the size of the difference (edit
distance) between the student’s original code and the TA’s corrected
version.

Relative response time:

RQ1 directly concerns TA debugging time. To evaluate debugging
time, we measured the time intervals between when the partici-
pant first saw the problem and when they submitted their student
feedback. We calculated a problem-specific baseline by computing
the average response time and standard deviation across all par-
ticipants who worked on that problem. We define relative response
time as the distance from the average response time measured in
standard deviations for that problem. So, for example, a participant
who took one standard deviation longer to complete a problem
would have a relative response time of -1.

CHI 22, April 30 - May 6 2022, New Orleans, LA

Relative edit distance:

To assess how well the participants addressed the student bugs,
we wanted to know how well TAs preserved the student’s original
intent when editing their buggy code. To do this, we first calculated
the edit distance between the original student code and the partici-
pant’s corrected version. We define the edit distance as the number
of fine-grained edits needed to change one version of the code into
the other. In all of the selected student solutions, each bug could
be corrected with a few edits, so smaller edit distances were more
likely to preserve the students’ original approaches. To calculate
the relative edit distance, we normalized each TA’s edit distance us-
ing the edit distance between the student’s solution and the “valid”
generated solution as the problem-specific baseline. Here, a positive
relative edit distance means that the participant’s correction made
more changes to the student code than the generated correction and
a negative relative edit signifies a solution closer to the student’s
intent

3.6.2 Evaluating Code Fixes. As part of answering RQ2, we evalu-
ated whether each participant fixed each bug present in the student
code. In order to capture the distinction between correcting bugs
and working around them, we developed criteria which intention-
ally differentiate between fixing the specific expression that was
incorrect in the student code, and coming up with some other solu-
tion to the original problem which worked around the bug in the
student’s buggy expression.

The criterion for deciding whether each bug is “fixed” in some
modified version of the student code depended on whether the
original bug was (1) an omission which could be corrected by in-
serting some code; or (2) an error which involved some incorrect
expression in the student code, and this expression needed to be
modified or deleted in order to fix the bug.

In cases where the bug could be corrected with inserting some
specific code, e.g. a missing return condition, then the bug is con-
sidered “fixed” if the participant’s correction inserted the necessary
code. If the participant’s correction never inserted the expected
expression, the bug was considered “not fixed”.

In cases where fixing the bug involved modifying some expres-
sion(s) in the student code, the criterion for “fixing” the bug hinged
on the value of the expression in question. The bug was considered
“fixed” if and only if the corresponding expression in the edited
code evaluated to the same value as in the valid generated solution.
On the other hand, if the participant’s code completely removed
the buggy expression, or left it to evaluate to an incorrect value,
the specific bug was not considered “fixed” even if the participant’s
code correctly solved the original programming problem.

3.6.3 Coding of Explanations. We coded the participants’ explana-
tions to the hypothetical students to see whether they addressed
each bug present in the student code. Since we asked the partici-
pants to “Explain to [the student] why their solution is incorrect,
and what they could do to fix it”, we could feasibly expect them to
try to address each bug they were aware of. For each participant
response and each bug present in the student solution to the rel-
evant problem, we labeled the bug as either “addressed” or “not
addressed” in the response.

The criteria for “addressing” a bug were that the TA made an
attempt to explain or hint at the bug in the explanation, such that

CHI ’22, April 30 - May 6 2022, New Orleans, LA

if the student had understood the explanation and followed the
advice, they would be able to fix the bug.

To test interrater reliability, two researchers coded all participant
answers to the sumOfDigits problem. We chose to test interrater
reliability on a single problem because switching between prob-
lems (and the bugs relevant to each one) would have presented a
huge context switch to the rater, which could affect their accuracy
and reliability. To ensure that the interrater sample was valid, we
chose the problem which both had the most bugs and the most
varied quality of participant responses (sumOfDigits). The raters
achieved Fleiss’ kappa of 0.852, which is generally interpreted to in-
dicate “almost perfect agreement”. After establishing this interrater
reliability, one of the two researchers coded the rest of the data.

4 RESULTS

Table 2: t-test results for performance metrics in Experi-
ment 1

Metric t-statistic Cohen’sD p-value
Relative response time 2.73 0.683 0.015
Unit test runs 3.32 0.83 0.0043
Relative edit distance 2.389 0.60 0.030

In this section, we report our findings in answer to each of our
research questions: (RQ1) Does seeing a comparison of student code
with an automatically-generated corrected version of the same code
help TAs debug the student code faster? (RQ2) Does seeing such a
comparison help TAs debug the student code better? (RQ3) What is
the effect of seeing a problematic generated correction? (RQ4) What
presents the most difficulties for TAs when debugging student code,
and what can help alleviate these difficulties?

4.1 RQ1: Do generated corrections help TAs
debug faster?

RQ1 asks whether seeing a generated solution helps TAs debug
student code faster. To answer this, we used the relative response
speed metric described in the Data Analysis section to compare
the within-subject difference between the control and experimental
conditions in Experiment 1. We found that seeing a comparison to
a generated solution does help undergraduate TAs debug student
solutions faster, both in terms of elapsed time and amount of trial-
and-error involved. These results are summarized in Table 2.

We performed a paired t-test with the null hypothesis that the
within-subject relative response speed would not be affected by
whether the subject saw a comparison to a generated solution.
On average, participants performed 0.56 standard deviations faster
when they saw the generated solution. (t(17)=2.73, p=0.015, d=0.683
- moderate effect size). This corresponds to a 29% improvement in
average per-problem response speed.

To evaluate the amount of trial-and-error involved in finding a
solution, we performed a similar paired t-test to analyze whether
seeing a generated solution affects the number of times the partici-
pant executes the unit tests while solving the problem. Again, for
each participant and problem, we calculated the number of tests

Yana Malysheva and Caitlin Kelleher

relative to the global average for that problem. We found that par-
ticipants who saw a generated solution used 2.02 fewer unit tests,
on average (t(17)=3.32, p=0.0043, d=0.83 - large effect size).

4.2 RQ2: Do generated corrections help TAs
debug better?

RQ2 asks whether seeing a generated correction helps TAs debug
code and write explanations that are better and more accurate than
they would without the generated correction.

Although the quality of a response can be very subjective, and
we can’t know the effect that a particular TA’s response would have
on the student who had written the original buggy solutions, we
can use several metrics to evaluate whether the TAs succeeded at
finding and communicating the bugs in the student code.

Specifically, we compared the following measures of response
quality across the two conditions in Experiment 1: (1) was the TA’s
corrected code close to the student’s original solution? (2) was
the TA’s corrected code actually correct? (3) did the TA’s free-text
explanation to the student address all the bugs in the student’s
code?

These metrics are not meant to evaluate the pedagogical sound-
ness of the explanations that the TAs provided. Rather, we explicitly
limited the scope of our metrics to measure how thoroughly the
TA understood and internalized the issues with the student code.
This level of understanding defines a lower bound on how good the
TA’s explanation could possibly be. A TA cannot effectively address
an issue which they do not understand, or which they could not
remember at the time of discussing the code with the student.

We found that participant performance on all three measures
improved when the participant was able to see a generated correc-
tion.

4.2.1 Edit Distance from Student Solution. As described in the Data
Analysis section, we used the relative edit distance between the
buggy student solution and the TA’s corrected solution as a proxy
for whether the TA’s corrected code preserved the student’s original
intent. The eight sample student solutions that were chosen for this
study each had discrete bugs which could be corrected by a few
edits. So, if a correction successfully preserved student intent, it
would correct each of these bugs with few edits. On the other hand,
corrections which are vastly different from the original code, and
require many edits, are very unlikely to have preserved the student
intent - they are much more likely to be rewrites that change the
way that the code solves the problem.

We found that seeing a comparison with a generated solution
enables TAs to come up with a smaller, more concise correction of
their own.

In 6 of the 133 problems in this data set, the participant did not
come up with a solution which passed all unit tests, because they
ran out of time. We omitted these 6 problems from this particular
analysis, since an incomplete solution could be arbitrarily close to
the student code.

We performed a within-subject t-test of relative improvement in
edit distance across conditions. We found that having a generated
solution available allowed participants to shorten their relative edit
distance by 5.70 edits on average (t(17)=2.389, p=0.030, d=0.60 -
moderate effect size).

Assisting Teaching Assistants with Automatic Code Corrections

Notably, even though the generated solutions were specifically
optimizing for a short edit distance, the participants in the study
often found solutions with shorter edit distances than the gener-
ated solution. This indicates that the improvement in edit distance
doesn’t just come from copying the exact edits in the generated
solution - rather, participants derived information from the gener-
ated solution which then helped them come up with short, concise
corrections.

4.2.2 Correctness of Solution. As mentioned above, in 6 out of
133 cases, the participant never came up with a solution which
passed all unit tests. In addition, 7 of the solutions that did pass all
provided unit tests had uncaught bugs in them which would have
been exposed by more comprehensive set of unit tests. For example,
in the howManyEggCartons problem, three of the participants saw
that only one unit test was failing, and chose to patch the code by
introducing a special case for just that one unit test. If the problem
had more unit tests where the number of eggs was even but not
divisible by 12, these solutions would not work.

We performed a two-tailed Fisher’s exact test to see whether
seeing a generated solution affected the odds of coming up with a
correct solution. We found that participants were more likely to
submit an incorrect solution in the control condition of Experiment
1 (when they did not see a generated correction). The odds ratio
for submitting an incorrect solution was 3.940 (p=0.042). So, the
participants’ odds of submitting an incorrect solution were nearly
4 times bigger in the control condition. This is usually interpreted
as a medium effect size, though guidelines for interpreting odds
ratios vary from source to source [8, 9].

4.2.3 Bugs Fixed and Addressed. Finally, we examined the data
from the participants’ code corrections and free-text explanations
to see whether seeing the generated correction helped participants
fix and address more of the bugs present in the student code.

Using all bugs present in the student code, we performed a two-
tailed Fisher’s exact test on both the bug-fixing and bug-addressing
data we describe in the Data Analysis section.

Table 4 shows a summary of the results. We found that partic-
ipants did have a much easier time both fixing the bugs in their
code, and subsequently addressing them in the explanation to the
student, when provided a code correction. The odds ratio for being
able to fix a bug at any point in the debugging process was 17.762
(p=1.583e-12). So, the odds of fixing a particular bug were nearly
18 times bigger when participants saw the code correction. This is
considered a very large effect size.

The odds ratio for addressing the bugs (regardless of whether
they were fixed) is 2.940 (p=0.000248), which is a less drastic dif-
ference, and is generally interpreted as a small-to-medium effect
size. Nevertheless, it is well within the bounds for being statistically
significant.

We can see from the contingency data in Table 3 that participants
addressed 65% of bugs in the control condition. They were able to
address 84% of bugs in the experimental condition, or 1.30 times
the control condition; so the probability of addressing a given bug
improved by about 30% across conditions.

It is notable that participants often failed to address a bug in
their explanations even if they did fix it in the code. This interesting

CHI 22, April 30 - May 6 2022, New Orleans, LA

result is explored further in the RQ4 results section below, which
provides the qualitative analysis of what is difficult for TAs.

4.3 RQ3: What is the effect of seeing a
problematic generated correction?

In RQ3, we consider the effect of seeing a problematic solution on
TA performance. Any system for automatically generating fixes to
student code will necessarily use some heuristics to guess at the
fixes, and these heuristics will sometimes be wrong. In fact, as we
described in the Related Work section, the state-of-the-art hint gen-
eration algorithms tend to perform with around 50-85% accuracy.
But to what extent are these wrong generated solutions harmful?
Can the potential for incorrect generated solutions outweigh any
benefit of generating the solutions at all?

To test this, we analyzed data from Experiment 2, which com-
pared showing the effect of a valid generated correction to the
effect of showing a problematic correction. We performed the same
analyses as we did for Experiment 1 when answering RQ1 and RQ2.

Participants performed 0.61 standard deviations slower with a
problematic correction (t(5)=-4.740, p=0.009, d=-2.370) and used
2.25 more unit tests (t(5)=-2.835, p=0.047, d=-1.418). Relative edit
distance increased by 0.25 edits when participants were shown a
problematic correction (t=-0.238, p=0.824). For fixing and address-
ing bugs, the odds ratios were 0.3 (p=0.0711) and 1.286 (p=0.777),
respectively. These statistics are summarized in Tables 6, 5, and 7.

We can conclude that seeing a problematic generated solution
does slow TAs down when debugging code. In fact, the effect of see-
ing a problematic solution on response speed seems to be stronger
than not seeing any solution at all - as discussed in section 4.1, the
difference in speed between not seeing a solution and seeing valid
generated solution was 0.56 standard deviations, which is a smaller
difference than the difference observed in this experiment between
participants seeing a valid or a problematic generated correction
(0.61 standard deviations). So, it may take longer for a TA to under-
stand an imperfect suggestion than it would if they had no solution
to look at at all.

On the other hand, we cannot conclude that introducing prob-
lems to a generated solution affects the quality of the TA’s own
solution - in fact, although the results above which concern ad-
dressing bugs show no statistical significance, they lean toward
supporting the null hypothesis that seeing problematic solutions
does not have an effect on the TA’s ability to provide explanations
which address student bugs.

One interpretation is that although a problematic solution does
slow the TA down and make them fall back on manually debugging
the code, some parts of the generated solution are still informa-
tive, and still give the TA useful and usable ideas about what is
wrong with the student code, and how to address the issues while
preserving the original intent.

4.4 RQ4: What is difficult for TAs, and what is
helpful?

RQ4 asks what presents the most difficulties for TAs, and what can

help alleviate these difficulties.

Given the small number of participants we were able to recruit for
the study;, it is difficult to break down the data further for statistical

CHI ’22, April 30 - May 6 2022, New Orleans, LA

Yana Malysheva and Caitlin Kelleher

Table 3: Contingency tables for binary metrics in Experiment 1

Solution Bugs Bugs
Condition correct incorrect | fixed unfixed | addressed unaddressed
Control (no correction) 55 10 86 47 86 47
Experiment (valid correction) 65 3 130 4 113 21

Table 4: Fisher’s exact test results for binary metrics in Ex-
periment 1

Metric odds ratio p-value
Correctness of solution 3.940 0.042
Bugs fixed 17.762 1.583e-12
Bugs addressed 2.940 0.000248

analysis based on individual problems and bugs. However, the data
still suggest certain patterns in what aspects of the task were hard
or easy for participants.

To address what aspects of the task seem hard for TAs, we first
observe two particular aspects that do not seem to present many
difficulties to participants. Knowing what types of things tend to
be easy allows us to narrow down the reasons other tasks might be
hard.

We then examine those bugs in the student code which proved
the hardest to fix. For the three hardest bugs present in the study,
only half of the participants (11 out of 22) were able to find and fix
each one. Each of these bugs suggests a specific source of difficulty
for the TAs: understanding student intent; finding and fixing the
same bug in multiple places; and noticing and addressing bugs that
are visually very small (the change affects a single operator in an
arithmetic expression).

Finally, we discuss what interventions and interface features
might be helpful in alleviating the difficulties that TAs have when
finding and explaining issues in student code.

4.4.1 What is not difficult? Two particular aspects of debugging
did not seem to present many difficulties to the participants, in that
most participants were able to perform these tasks correctly: (1)
creating a correct solution to the original programming problem
and (2) addressing bugs that do not interact with other bugs.

As we described in the results section for RQ2, the participants
in Experiment 1 wrote correct solutions for 120 of 133 problems
they were solving. Additionally, in Experiment 2, all participants
wrote correct solutions for all problems they attempted. The fact
that the majority of the participant-written solutions were correct
suggests that at least for introductory-level problems, the difficulties
that TAs encounter are not, in general, due to misconceptions or
lack of understanding about the programming task itself. These
participants are able to solve these types of programming problems
consistently, under a short time limit, and while devoting a large
part of their attention to other tasks involved in debugging and
communicating with students.

In addition, all participants were extremely successful at ad-
dressing the bugs in 5 of the 8 programming problems. For these

five problems, at most two participants failed to address each bug
present in the problem (see Table 8). All other TAs addressed all
bugs in their explanations. These problems covered a wide variety
of types of bugs: arithmetic errors, logical flow errors, forgetting
to fulfill part of the problem statement. Two of these problems
(anyLowercase and nearestBusStop) were labeled as having “large”
issues in the student code, because fixing these issues necessitated
significant changes to the logic of the solution.

The common theme among the remaining 3 problems (how-
ManyEggCartons, middleElement, and sumOfDigits) was that they
involved bugs which interacted with each other in how they af-
fected the output.

This suggests that participants were familiar with, and capable
of dealing with, all kinds of bugs that are common to beginner
programming code. The task of finding and explaining bugs only
starts presenting difficulties when the participant is overwhelmed
with the complexity that comes with interacting bugs.

4.4.2 Understanding Student Intent. In a post-survey, we asked
participants: “What was the hardest or most cumbersome part of the
task?” 11 out of 22 participants explicitly described understanding
and adapting to student intent as the hardest part. For example, one
participant described the hardest part of the task as: “Reviewing the
code and understanding the student’s logic. The student’s solution
sometimes does not approach the problem the same way I would,
so it takes me a moment to understand what they’re trying to do”

There is also some support for this in the data: Two of the three
hardest-to-fix bugs appear in the sumOfDigits problem, which is
the only problem with a manually-written “valid” solution. As
described in the Study Materials section, this was necessary because
the student’s solution was extremely esoteric, and this was the only
case where the generated solution failed to preserve student intent.

One of these two bugs directly affected part of a calculation that
was very hard to interpret with that bug in place (the other one is
discussed below, in the section about single-character bugs). This
calculation was trying to use integer division by a power of 10
in order to “cut off” the number at a certain digit (see Appendix
A8 for details, including the buggy and corrected versions of the
code). However, as is, the calculation almost always resulted in 0,
because the power of 10 was too big. If, instead of n, the student
had used the number of digits of n, the calculation would have
worked correctly, making the subsequent calculations isolate the
ith digit of n. Knowing that, it seems likely that this is what the
student intended. But it is really hard to infer that intent from the
calculation itself.

The manually-written “valid” correction substitutes len(str(n))
in place of n on that line of code, which makes that line of code
work correctly. Only one participant who saw the “valid” correction
did not fix this bug; and conversely, only one person who did not

Assisting Teaching Assistants with Automatic Code Corrections

CHI 22, April 30 - May 6 2022, New Orleans, LA

Table 5: Contingency tables for binary metrics in Experiment 2

Condition ‘

Control (valid correction)
Experiment (problematic correction)

Bugs Bugs
fixed unfixed | addressed unaddressed
40 4 35 9
27 9 30 6

Table 6: t-test results for performance metrics in Experi-
ment 2

Metric t-statistic Cohen’sD p-value
Relative response time -4.740 -2.370 0.009
Unit test runs -2.835 -1.418 0.047
Relative edit distance -0.238 -0.119 0.834

Table 7: Fisher’s exact test results for binary metrics in Ex-
periment 2

Metric odds ratio p-value
Bugs fixed 0.3 0.0711
Bugs addressed 1.286 0.777

see the valid correction did fix this bug. Of all the people who did
not fix this bug (according to the criteria for “fixing a bug” outlined
in the data analysis section), only two actually failed to come up
with a correct solution to the original programming problem. This
means that 9 of the participants worked around this bug, usually
by completely rewriting the calculation for the ith digit. Thus, most
people who saw the suggested change accepted it as the correct
thing to do; but most people who did not see the change could not
figure out what the student intended with that line of code.

On the other hand, only 6 of the 11 people who fixed the bug
went on to address it in their explanation to the student. The other
5 omitted that bug from their explanation, and talked about the
other three bugs present in the student’s code. This may indicate
that even seeing a plausible correction to an esoteric calculation
does not always allow TAs to understand the reason for the error
and the correction well enough to be able to talk about it.

The participants’ behavior with respect to this bug highlights
both the difficulty and the importance of understanding the stu-
dent’s original intent when writing the code: when the intent is
non-standard, it can be difficult for TAs to understand it well enough
to identify individual bugs in the code. And when the TAs do not
understand the student’s intent, this affects their ability to address
and explain the problem with the student code.

4.4.3 Finding and addressing single-operator bugs. The second of
the three hardest-to-fix bugs also appeared in the sumOfDigits prob-
lem, and involved a single-character fix to a comparison operator:
the student’s code compared two values with <= in the loop’s condi-
tion, but this created an unexpected extra iteration through the loop.
The simplest fix is to use < instead. This bug proved to be both hard
to fix and hard to address even when fixed. 6 of the 11 participants

who fixed this bug never addressed it in their explanation to the
student.

In fact, the only bug that was fixed but unaddressed more often
was also a bug with a single-operator fix: in middleElement, a calcu-
lation used % instead of //. This bug was fixed but left unaddressed
by 8 participants in the study.

Both of these bugs are visually very small (involving one or
two characters), and share the line of code with another, more
prominent bug. But qualitatively, these two bugs are quite different:
one is a logical error which affects the overall control flow of the
program, while the other one is likely a result of a slip or typo.
Yet the participants’ behavior with respect to these bugs is quite
similar: the participants tended to have a lot of difficulty finding
each bug; and when they did find it, they were very likely to neglect
to address it in their explanation.

This is somewhat counter-intuitive: if the bug was difficult to
find, we might expect the participant to consider it important to
alert the student to it. One plausible explanation is that participants
across conditions rely on visual cues in the interface (the code and,
when present, the diff) as a form of external memory to track bugs.
Since these bugs are visually small and hard to notice, they are
more likely to be missed both when looking for bugs and when
trying to recall what needs to be explained to the student.

This behavior highlights a deficiency of a simple diff view be-
tween two versions of the code: the two bugs were highlighted in
the diff, but they were small enough and near enough to other bugs
that the participants could not effectively keep track of them as
separate entities, even if they did find them. If the interface instead
somehow explicitly identified these changes as separate bugs, it
would be harder for the participants to forget about them when
composing an explanation to the student.

4.4.4 Fixing multiple instances of the same bug. The final of the
three hardest-to-fix bugs occurred in the middleElement problem.
The student solution for this problem omits parentheses in 3 near-
identical cases, when calculating (len(1) - 1)//2 or (len(1l)
- 1)%2. When debugging the student code, 19 out of the 22 total
participants were able to find and fix at least one of these cases.
However, only 11 of those participants ended up finding all 3 of the
cases.

The other participants would usually modify the code until the
parentheses were no longer necessary, by changing the expressions
to not use a -1 (except one participant who never finished debug-
ging the code). This means that their solutions essentially masked
the parenthesis bugs instead of resolving them, which is suboptimal
from the point of view of knowing what is wrong with the student
code.

Moreover, out of the 11 participants who did fix all the paren-
thesis issues, only 4 found and fixed all 3 instances in one attempt,

CHI ’22, April 30 - May 6 2022, New Orleans, LA

Yana Malysheva and Caitlin Kelleher

Table 8: Per-bug statistics: for each bug, how many total participants (a) fixed that bug in the code; (b) addressed it in the
explanation; (c) fixed in code, but did not address in the explanation; (d) did not fix in code, but did address it in the explanation.

See appendix A for detailed description of each bug.

Problem Bug Fixed Addressed Fixed but unaddressed Unfixed but addressed
. upper bound 22 22 0 0
hasTwoDigits returns None 22 21 1 0
secondHalf off by one 21 20 1 0
listOfLists not sorted 18 20 0 2
uses quad 16 15 2 1
howManyEggCartons uses %2 15 13 B)
nearestBusStop rounding down 20 21 0 1
rounding up 20 21 0 1
anyLowercase all lowercase 22 21 1 0
parentheses 11 13 3 5
middleElement % instead of // 19 11 8 0
returns index 21 18 3 0
nsize 17 18 2 3
.. r calculation 11 8 5 2
sumOfDigits infinite loop 17 17 2 2
extra iteration 11 5 6 0

without testing intermediate states with partial fixes. For the 7 who
fixed the bug in stages, it often took fewer tries to find, understand,
and fix the first instance than to fix the subsequent instances. On
average, it took these participants 2.18 unit test runs to fix the first
instance of missing parentheses, but 3.43 additional unit test runs
to find all subsequent near-identical instances.

This indicates that in general, the participants were capable
of conceptualizing and noticing the error. However, it was much
harder for participants to notice and fix subsequent instances of an
error they already found. Many participants either failed to find the
additional instances altogether, or took longer to find additional
instances than the first instance. When participants could not track
down the additional instances of the error, they compensated by
making larger-than-necessary changes to the student code, thus
masking the error.

4.4.5 What is helpful? In the post-survey, we also asked partici-
pants: “What was the most helpful part of the interface as you were
trying to identify the problems with the student code?”

In answer to this question, 15 participants mentioned the gener-
ated correction. For example, one participant said: “The suggested
solutions were helpful. They made it easier to tell what the pro-
gram was generally looking for in terms of correction, though not
always the exact change. ” (emphasis added). Additionally, 11
participants mentioned the clear and concise presentation of unit
tests (many participants chose to talk about several most helpful
part of the interface). Another participant said the following about
the unit tests: “The testing button was simple and intuitive, and I
liked how clearly it outlined the cases that succeeded and failed. It
would be nice if all testing was that easy, as a student and as a
teacher” (again, emphasis added)

The fact that so many participants explicitly mentioned the unit
tests is particularly interesting, because this aspect of the interface

was not part of the intended study - it was just a simple design
chosen to facilitate using the rest of the interface.

The results for RQ1 and RQ2 described above support the idea
that the generated correction was helpful to TAs. Though we did
not test for this explicitly, the data also support the idea that the
unit test interface facilitated the TAs’ task.

In 81 of the 173 total problems solved as part of the study, the
participant continued changing and testing code after they arrived
at a version of the code which passed all unit tests. They changed
the code from a correct state to be more incorrect, even though
they knew they would need to fix the code again before submit-
ting their response. Examining the available video logs shows that
participants did this while writing explanations to the students,
in order to ensure that they are not making any mistakes in their
explanations, and sometimes in order to provide concrete examples
of buggy code behavior to the students.

The participants knew exactly what to test for in order to bring
up the information they needed, but they relied on the unit test-
ing interface to be able to recall the specifics of the information.
Arguably, they were relying on the simple and fast unit testing
interface to act as a source of external memory, so that they could
offload some of the contents of their working memory onto the
interface.

5 DISCUSSION

In general, undergraduate TAs who participated in the study do
not tend to struggle with the conceptual task of identifying and
reasoning about individual bugs present in student code. The major
difficulties seem to come from high cognitive load that is extrinsic
to code comprehension and “deep reasoning” about the code itself.

In particular, participants tended to do worse when there were
several bugs that interacted with each other; when they needed to
recognize and address additional instances of a bug they already

Assisting Teaching Assistants with Automatic Code Corrections

saw and understood; and when they needed to remember a bug
that was difficult to fix, but also difficult to see (because it only took
up one or two characters).

At the same time, the most helpful interface elements were those
that alleviated some of this extrinsic cognitive load, by giving par-
ticipants visual representations of the information they needed to
complete their tasks: a summary of the bugs they were trying to
address, in the case of the comparison to the generated code cor-
rection; and a concise, readable, and easy-to-access set of examples
for the consequences of the students’ bugs, in the case of the unit
tests.

The other major source of difficulty for participants was inferring
student intent from the code. This was both explicitly identified
by the participants themselves in the post-survey, and seen in the
participants’ behavior when they tried to deal with an esoteric and
hard-to-parse student solution.

The fact that the participants emphasized the difficulty of infer-
ring student intent indicates that they were aware the importance
of understanding student intent, and self-reflected on their ability to
do so. But although the participants did try to respect the student’s
original intent while debugging the code, they tended to fall back
on rewriting the solution when they ran into roadblocks because
of the extrinsic difficulties mentioned above.

This highlights the importance of mitigating these types of dif-
ficulties in order to help TAs provide more effective assistance to
students. And although this study focused specifically on under-
graduate TAs, these findings can generalize to anybody trying to
help a student or beginner programmer with their code. Undergrad-
uate teaching assistants are not the only people who encounter the
kinds of difficulties described above. The frustration of spending
far too long looking for a really simple bug, and the temptation to
blow everything away and start over, are familiar to most people
who have engaged in debugging code, especially code written by
someone else. Although the impact of these types of difficulties may
be stronger for less experienced programmers like undergraduate
TAs, understanding and alleviating them could make the job of
helping students easier for everyone.

6 LIMITATIONS AND FUTURE WORK

The biggest limitation of this study is the small sample size of
participants. Although this set of data allowed us to draw statistical
conclusions about the overall effect of seeing different types of code
corrections, in the future, we would like to conduct similar studies
at a larger scale. This would allow us to analyze more rigorously
how TAs approach debugging different types of problems, what
difficulties they encounter, and how a generated correction can
help.

There are also some limitations in how realistically the experi-
ment design represented a TA’s real-world task of helping a student.
Although we used real-world student code, we presented the par-
ticipants with a task that doesn’t completely capture the teaching
practices a TA would need to engage in in order to effectively help
a student. The participants were not required to provide live as-
sistance to the student, and were not evaluated on whether the
explanations they provided constitute effective teaching of the un-
derlying concepts. On the other hand, they were asked to completely

CHI 22, April 30 - May 6 2022, New Orleans, LA

debug the code and also completely explain all the bugs in their
written explanation. In a real-world situation, a TA may choose to
focus on just some of the issues in their discussion with the student,
and give the student an opportunity to resolve the other issues
themselves. Further, providing a direct explanation of a bug - as
we asked the participants to do in this study - may not be the most
effective way to help the student learn how to find or avoid this
type of bug in the future. We made these design choices in order
to maximize the amount of information we could get about what
the TAs are capable of understanding and articulating in 8 minutes
of interacting with student code. But in future studies, we plan on
testing similar systems in more realistic environments.

Finally, as discussed in the section about single-operator bugs,
there seems to be a limitation in how useful a simple diff view is to
a TA debugging student code. Therefore, we are currently working
on a version of the correction-generating algorithm and interface
which would break up the difference into individual bug fixes, and
provide on-demand detailed information about how each bug fix
improves the outcome of running code.

7 CONCLUSION

This work contributes an understanding of how users interact with
code, specifically, how TAs in undergraduate computer science
courses interact with broken student code when they are tasked
with debugging it. It evaluates the effect of seeing a corrected ver-
sion of the student code on this interaction.

We showed that seeing a valid correction allows the TA to both
debug faster and write better student-facing explanations of their
bugs. We also showed that seeing a problematic correction slows
TAs down in comparison with seeing a valid correction. However,
we were not able to draw statistical conclusions about whether TAs
provide worse explanations when given a problematic correction.

Finally, we presented evidence that high cognitive load plays a
large role in TAs making mistakes and generally having difficulty
when helping a student with their code. We argued that tools which
help mitigate this cognitive load may help TAs be more effective in
helping students.

These findings can help inform the design of TA-facing interfaces
that assist TAs in understanding and addressing student issues in
CS courses.

REFERENCES

[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An analysis of
patterns of debugging among novice computer science students. In Proceedings
of the 10th annual SIGCSE conference on Innovation and technology in computer
science education (ITiCSE °05). Association for Computing Machinery, Caparica,
Portugal, 84-88. https://doi.org/10.1145/1067445.1067472

[2] JohnR. Anderson and Robin Jeffries. 1985. Novice LISP Errors: Undetected Losses
of Information from Working Memory. Human—Computer Interaction 1, 2 (June
1985), 107-131. https://doi.org/10.1207/s15327051hci0102_2 Publisher: Taylor &
Francis _eprint: https://doi.org/10.1207/s15327051hci0102_2.

[3] Roman Bednarik. 2012. Expertise-dependent visual attention strategies develop
over time during debugging with multiple code representations. International
Journal of Human-Computer Studies 70, 2 (2012), 143-155. Publisher: Elsevier.

[4] Roman Bednarik and Markku Tukiainen. 2005. Effects of display blurring on the
behavior of novices and experts during program debugging. In CHI "05 Extended
Abstracts on Human Factors in Computing Systems. ACM, Portland OR USA,
1204-1207. https://doi.org/10.1145/1056808.1056877

[5] Maureen Biggers, Tuba Yilmaz, and Monica Sweat. 2009. Using collaborative,
modified peer led team learning to improve student success and retention in
intro cs. In Proceedings of the 40th ACM technical symposium on Computer science
education. 9-13.

CHI ’22, April 30 - May 6 2022, New Orleans, LA

(6]

[10]

(1]

(12]

[13

Rebecca Brent, Jason Maners, Dianne Raubenheimer, and Amy Craig. 2007.
Preparing undergraduates to teach computer applications to engineering fresh-
men. In 2007 37th Annual Frontiers In Education Conference-Global Engineering:
Knowledge Without Borders, Opportunities Without Passports. IEEE, F1J-19.
Mark J. Canup and Russell L. Shackelford. 1998. Using software to solve problems
in large computing courses. ACM SIGCSE Bulletin 30, 1 (1998), 135-139. Publisher:
ACM New York, NY, USA.

Henian Chen, Patricia Cohen, and Sophie Chen. 2010. How Big is a Big Odds
Ratio? Interpreting the Magnitudes of Odds Ratios in Epidemiological Studies.
Communications in Statistics - Simulation and Computation 39, 4 (March 2010),
860-864. https://doi.org/10.1080/03610911003650383

Susan Chinn. 2000. A simple method for converting an odds ratio to effect
size for use in meta-analysis. Statistics in Medicine 19, 22 (2000), 3127—
3131. https://doi.org/10.1002/1097-0258(20001130)19:22<3127::AID-SIM784>
3.0.CO;2-M _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/1097-
0258%2820001130%2919%3A22%3C3127%3A%3AAID-SIM784%3E3.0.CO%3B2-
M.

Sammi Chow, Kalina Yacef, Irena Koprinska, and James Curran. 2017. Automated
data-driven hints for computer programming students. In Adjunct Publication of
the 25th Conference on User Modeling, Adaptation and Personalization. 5-10.
Adrienne Decker, Phil Ventura, and Christopher Egert. 2006. Through the looking
glass: reflections on using undergraduate teaching assistants in CS1. In Proceed-
ings of the 37th SIGCSE technical symposium on Computer science education. 46-50.
M. Ducasse and A.-M. Emde. 1988. A review of automated debugging systems:
knowledge, strategies and techniques. In Proceedings. [1989] 11th International
Conference on Software Engineering. 162-171. https://doi.org/10.1109/ICSE.1988.
93698

Ronald Erdei, John A. Springer, and David M. Whittinghill. 2017. An impact com-
parison of two instructional scaffolding strategies employed in our programming
laboratories: Employment of a supplemental teaching assistant versus employ-
ment of the pair programming methodology. In 2017 IEEE Frontiers in Education
Conference (FIE). 1-6. https://doi.org/10.1109/FIE.2017.8190650

[14] Joseph Fong, Dawn Leung, and Donny Lai. 2009. A Peer-to-Peer eLearning

=
i)

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23]

Supporting System for Computer Programming Debugging System. In Hybrid
Learning and Education, David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, Fu Lee Wang, Joseph Fong, Liming
Zhang, and Victor S. K. Lee (Eds.). Vol. 5685. Springer Berlin Heidelberg, Berlin,
Heidelberg, 230-239. https://doi.org/10.1007/978-3-642-03697-2_22 Series Title:
Lecture Notes in Computer Science.

Meg Fryling, MaryAnne Egan, Robin Y. Flatland, Scott Vandenberg, and Sharon
Small. 2018. Catch’em Early: Internship and Assistantship CS Mentoring Pro-
grams for Underclassmen. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. 658—663.

Elena L. Glassman, Christopher J. Terman, and Robert C. Miller. 2015. Learner-
Sourcing in an Engineering Class at Scale. In Proceedings of the Second (2015) ACM
Conference on Learning @ Scale (L@S °15). Association for Computing Machinery,
New York, NY, USA, 363-366. https://doi.org/10.1145/2724660.2728694

John D. Gould and Paul Drongowski. 1974. An exploratory study of computer
program debugging. Human Factors 16, 3 (1974), 258-277. Publisher: SAGE
Publications Sage CA: Los Angeles, CA.

Sebastian Gross, Bassam Mokbel, Benjamin Paaflen, Barbara Hammer, and Niels
Pinkwart. 2014. Example-based feedback provision using structured solution
spaces. International Journal of Learning Technology 10 9, 3 (2014), 248-280.
Publisher: Inderscience Publishers Ltd.

L. Gugerty and G. Olson. 1986. Debugging by skilled and novice programmers.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’86). Association for Computing Machinery, Boston, Massachusetts, USA,
171-174. https://doi.org/10.1145/22627.22367

Leo Gugerty and Gary M. Olson. 1986. Comprehension differences in debugging
by skilled and novice programmers. In Papers presented at the first workshop
on empirical studies of programmers on Empirical studies of programmers. Ablex
Publishing Corp., Washington, D.C., USA, 13-27.

Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Bjorn Hartmann. 2017. Writing Reusable Code Feedback
at Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale - L@S ’17. ACM Press, Cambridge,
Massachusetts, USA, 89-98. https://doi.org/10.1145/3051457.3051467

Prateek Hejmady and N. Hari Narayanan. 2012. Visual attention patterns during
program debugging with an IDE. In Proceedings of the Symposium on Eye Tracking
Research and Applications - ETRA ’12. ACM Press, Santa Barbara, California, 197.
https://doi.org/10.1145/2168556.2168592

Wei Jin, Tiffany Barnes, John Stamper, Michael John Eagle, Matthew W. Johnson,
and Lorrie Lehmann. 2012. Program representation for automatic hint genera-
tion for a data-driven novice programming tutor. In International conference on
intelligent tutoring systems. Springer, 304-309.

[24

[25

[26

[27]

[28

[29

[30

(31]

[32

[33

(34

[38

[39

[41]

[42]

[43

[44

Yana Malysheva and Caitlin Kelleher

Irvin R. Katz and John R. Anderson. 1987. Debugging: An analysis of bug-location
strategies. Human-Computer Interaction 3, 4 (1987), 351-399. Publisher: Taylor
& Francis.

Brittany Ann Kos. 2017. The collaborative learning framework: Scaffolding for
untrained peer-to-peer collaboration. (2017).

Timotej Lazar, Aleksander Sadikov, and Ivan Bratko. 2017. Rewrite Rules for
Debugging Student Programs in Programming Tutors. IEEE Transactions on
Learning Technologies 11, 4 (2017), 429-440.

Yu-Tzu Lin, Cheng-Chih Wu, Ting-Yun Hou, Yu-Chih Lin, Fang-Ying Yang, and
Chia-Hu Chang. 2016. Tracking Students’ Cognitive Processes During Program
Debugging—An Eye-Movement Approach. IEEE Transactions on Education 59,
3 (Aug. 2016), 175-186. https://doi.org/10.1109/TE.2015.2487341 Conference
Name: IEEE Transactions on Education.

Yi Liu, Gita PhelpsA, and Fengxia Yan. 2019. Developing a guided peer-assisted
learning community for CS students. Journal of Computing Sciences in Colleges
34,7 (2019), 72-80. Publisher: Consortium for Computing Sciences in Colleges.
Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the literature
from an educational perspective. Computer Science Education 18, 2 (2008), 67-92.
Publisher: Taylor & Francis.

Ruth McKeever and Kevin McDaid. 2010. How do Range Names Hinder Novice
Spreadsheet Debugging Performance? arXiv:1009.2765 [cs] (Sept. 2010). http:
//arxiv.org/abs/1009.2765 arXiv: 1009.2765.

Mia Minnes, Christine Alvarado, and Leo Porter. 2018. Lightweight Techniques
to Support Students in Large Classes. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, Baltimore Maryland USA,
122-127. https://doi.org/10.1145/3159450.3159601

Diba Mirza, Phillip T. Conrad, Christian Lloyd, Ziad Matni, and Arthur Gatin.
2019. Undergraduate Teaching Assistants in Computer Science: A Systematic
Literature Review. In Proceedings of the 2019 ACM Conference on International
Computing Education Research (ICER ’19). Association for Computing Machinery,
New York, NY, USA, 31-40. https://doi.org/10.1145/3291279.3339422

Murthi Nanja and Curtis R. Cook. 1987. An analysis of the on-line debugging
process. In Empirical studies of programmers: Second workshop. 172-184.
Benjamin Paaflen, Barbara Hammer, Thomas William Price, Tiffany Barnes, Se-
bastian Gross, and Niels Pinkwart. 2018. The Continuous Hint Factory - Providing
Hints in Vast and Sparsely Populated Edit Distance Spaces. arXiv:1708.06564 [cs]
(June 2018). http://arxiv.org/abs/1708.06564 arXiv: 1708.06564.

Inna Pivkina. 2016. Peer learning assistants in undergraduate computer science
courses. In 2016 IEEE Frontiers in Education Conference (FIE). IEEE, 1-4.
Thomas Price. 2021. thomaswp/CSEDM2019-Data-Challenge. https://
github.com/thomaswp/CSEDM2019-Data-Challenge original-date: 2018-12-
30T21:05:59Z.

Thomas Price, Rui Zhi, and Tiffany Barnes. 2017. Evaluation of a Data-Driven
Feedback Algorithm for Open-Ended Programming. International Educational
Data Mining Society (2017).

Thomas W. Price, Yihuan Dong, Rui Zhi, Benjamin Paafien, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A Comparison of the Quality of Data-driven
Programming Hint Generation Algorithms. International Journal of Artificial
Intelligence in Education 29, 3 (2019), 368—-395. Publisher: Springer.

Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay.
2016. sk_p: a neural program corrector for MOOCs. In Companion Proceedings
of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity. 39-40.

Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Artificial Intelligence in Education 27, 1 (March 2017), 37-64. https:
//doi.org/10.1007/s40593-015-0070-z

T. J. Robertson, Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Joseph R.
Ruthruff, Laura Beckwith, and Amit Phalgune. 2004. Impact of interruption style
on end-user debugging. In Proceedings of the SIGCHI conference on Human factors
in computing systems. 287-294.

Pablo Romero, Richard Cox, Benedict du Boulay, and Rudi Lutz. 2002. Visual
Attention and Representation Switching During Java Program Debugging: A
Study Using the Restricted Focus Viewer. In Diagrammatic Representation and
Inference (Lecture Notes in Computer Science), Mary Hegarty, Bernd Meyer, and
N. Hari Narayanan (Eds.). Springer, Berlin, Heidelberg, 221-235. https://doi.org/
10.1007/3-540-46037-3_23

Abdallah Tubaishat. 2001. A knowledge base for program debugging. In Proceed-
ings ACS/IEEE International Conference on Computer Systems and Applications.
IEEE, 321-327.

Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459-494. Publisher:
Elsevier.

Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Jaakko Kurhila. 2013.
Massive increase in eager TAs: Experiences from extreme apprenticeship-based
CS1. In Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. 123-128.

Assisting Teaching Assistants with Automatic Code Corrections

[46] Erin Walker, Nikol Rummel, and Kenneth R. Koedinger. 2009. Integrating col-

laboration and intelligent tutoring data in the evaluation of a reciprocal peer

tutoring environment. Research and Practice in Technology Enhanced Learning 4,

03 (2009), 221-251. Publisher: World Scientific.

Ke Wang, Benjamin Lin, Bjorn Rettig, Paul Pardi, and Rishabh Singh. 2017. Data-

driven feedback generator for online programing courses. In Proceedings of the

Fourth (2017) ACM Conference on Learning@ Scale. 257-260.

[48] E.M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook. 1997. Does
continuous visual feedback aid debugging in direct-manipulation programming
systems?. In Proceedings of the ACM SIGCHI Conference on Human factors in
computing systems. ACM, Atlanta Georgia USA, 258-265. https://doi.org/10.
1145/258549.258721

[49] Kurtis Zimmerman and Chandan R. Rupakheti. 2015. An automated framework
for recommending program elements to novices (n). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 283—
288.

[47

A PROGRAMMING PROBLEMS AND
STUDENT SOLUTIONS USED IN THE
STUDY

A.1 hasTwoDigits

A.1.1 Problem Statement. Write a function that determines whether
the given positive number has exactly two digits.

A.1.2 Solution versions.

Student solution

def hasTwoDigits(x):
if x >= 10:
return True
Valid generated correction

def hasTwoDigits(x):
if 10 <= x <= 99:
return True
else:
return False

Problematic generated correction

def hasTwoDigits(x):
if 1 <= x//10 < 10:
return True
else:
return False

A.1.3 Bugs in student code.

(1) No upper bound check for whether number has more than
two digits
(2) Returns None instead of False when two-digit test fails

A.1.4 Size of issue. Small

A.1.5 Problems with problematic solution.

(1) Esoteric math in if comparison: not wrong, but unnecessary
and hard to understand

A.2 secondHalf

A.2.1 Problem Statement. Given a list 1, return the second half
of that list. If the list has an odd number of elements, include the
middle element.

CHI 22, April 30 - May 6 2022, New Orleans, LA

A.2.2 Solution versions.

Student solution

def secondHalf(1l):
1st=[]
for i in range(len(l)):
if i>=(len(1)-1)//2:
1st.append(1[i])
return lst
Valid generated correction

def secondHalf(1l):
1st=[]
for i in range(len(l)):
if i>=len(l)//2:
1st.append(1[i])
return lst

Problematic generated correction

def secondHalf(l):
1st = len(l)
for i in range(len(l)):
if i >= 0:
return 1[1st // 2:1st]
return 1[(1st - 1) // 2:1st]

A.2.3 Bugs in student code.

(1) off-by-one error in if condition: -1 is unnecessary. Adds an
extra element in even cases.

A.2.4 Size of issue. Small

A.2.5 Problems with problematic solution.

(1) Extremely esoteric sequence of code execution: always re-
turns the second time through the loop, second return state-
ment never happens and wouldn’t return the correct result,
loop and if are unnecessary for the actual logic of the solution
to work

(2) The variable name 1st is not appropriate for how it’s used
in the code

A.3 listOfLists

A.3.1 Problem Statement. Given a list of lists, return a new (1D)
list that contains all of the elements present in the original lists,
with no duplicates. This single list should be sorted according to
the built-in Python sort method. Hint: This problem becomes fairly
simple if you use sets!

A.3.2 Solution versions.

Student solution

def listOfLists(1l):
listSet = set()
1st = []
for i in range(len(l)):
for k in range(len(1l[il)):
listSet.add(1[i1[k]1)
for num in listSet:
1st += [num]

CHI ’22, April 30 - May 6 2022, New Orleans, LA

return lst
Valid generated correction

def listOfLists(l):
listSet = set()
1st = []
for i in range(len(l)):
for k in range(len(1[il)):
listSet.add(1[i][k])
for num in listSet:
1st += [num]
return sorted(lst)
Problematic generated correction

def listOfLists(l):
listSet = set()
for 1st in 1:
for elem in 1st:
listSet.add(elem)
1st = []
for num in listSet:
1st += [num]
return sorted(list(listSet))

A.3.3 Bugs in student code.
(1) Did not sort the list before returning (forgot part of problem
statement?)

A.3.4 Size of issue. Small

A.3.5 Problems with problematic solution.

(1) Unnecessarily moves code around
(2) Computes 1st, then doesn’t use it - uses list(listSet)
directly instead

A.4 howManyEggCartons

A.4.1 Problem Statement. Given a number of eggs (as an integer),

return the number of egg cartons needed to hold that many eggs.

Cartons hold 12 eggs each, so from 1 to 12 eggs requires one carton,
13 to 24 requires two, etc.

A.4.2 Solution versions.

Student solution

def howManyEggCartons(eggs):
quad = eggs // 12
if quad % 2 !'= @:
return quad + 1
else:
return quad
Valid generated correction
def howManyEggCartons(eggs):
quad = eggs // 12
if eggs % 12 != 0:
return quad + 1
else:
return quad

Problematic generated correction

Yana Malysheva and Caitlin Kelleher

def howManyEggCartons(eggs):
quad = eggs // 12
if eggs % 2 !'= 0:
return quad + 1
else:
return quad

A.4.3 Bugs in student code. Comparing the wrong quantities in if
modulo expression:

(1) quad instead of eggs
(2) 2 instead of 12

A.4.4 Size of issue. Small

A.4.5 Problems with problematic solution.

(1) Incorrect solution: %2 instead of %12 (passes unit tests by
chance)

A.5 nearestBusStop

A.5.1 Problem Statement. Write a function that takes a non-negative
street number and returns the nearest bus stop to the given street.
Buses stop every 8th street, including street 0, and ties go to the
lower street, so the nearest bus stop to 12th street is 8th street, and
the nearest bus stop to the 13th street is 16th street.

A.5.2 Solution versions.

Student solution

def nearestBusStop(street):

if street % 8 == 0:
stop = street

if street % 8 <= 4:
stop = street

if street % 8 > 4:
stop = street +1

return stop

Valid generated correction

def nearestBusStop(street):
if street % 8 == 0:
stop = street
if street % 8 <= 4:
stop = street - street % 8
if street % 8 > 4:
stop = street - street % 8 + 8
return stop

Problematic generated correction

def nearestBusStop(street):
if street % 8 > 4:
stop = street
if street % 8 > 4:
return street + 8 - street % 8
else:
return street - street % 8

A.5.3 Bugs in student code.

(1) Incorrect computation for nearest bus stop in “rounding
down” case

Assisting Teaching Assistants with Automatic Code Corrections

(2) Incorrect computation for nearest bus stop in “rounding up”
case

A.5.4 Size of issue. Large

A.5.5 Problems with problematic solution.

(1) First if is extraneous and doesn’t affect output
(2) Too many unnecessary changes to the student code

A.6 anyLowercase

A.6.1 Problem Statement. Given a string s, return True if any char-
acter in that string is lowercase (between ’a’ and ’z’), and False
otherwise.

A.6.2 Solution versions.

Student solution

import string
def anyLowercase(s):
for i in range(len(s)):
if (s[i] not in
string.ascii_lowercase):
return False
return True

Valid generated correction

import string
def anyLowercase(s):
for i in range(len(s)):
if (s[i] in
string.ascii_lowercase):
return True
return False
Problematic generated correction
import string
def anylLowercase(s):
for i in s:
if (i in
string.ascii_lowercase):
return True
return False

A.6.3 Bugs in student code.

(1) Conceptual issue: returns True if and only if all lowercase,
instead of any. (Problem with interpreting problem state-
ment?)

A.6.4 Size of issue. Large

A.6.5 Problems with problematic solution.

(1) Unnecessary change: iterating through items instead of in-
dices

A.7 middleElement

A.7.1 Problem Statement. Given a non-empty list, |, return the mid-
dle element of that list. If the list has an even number of elements,
return the middle-right element.

CHI 22, April 30 - May 6 2022, New Orleans, LA

A.7.2 Solution versions.

Student solution
def middleElement(l):
if len(1)-1%2==0:
return len(1l)-1%2
else:
return len(1l)-1//2 +1

Valid generated correction

def middleElement(l):
if (len(1)-1)%2==0:
mid_index

(len(1)-1)//2
else:
mid_index = (len(1)-1)//2 +1
return 1[mid_index]
Problematic generated correction

def middleElement(l):
length = len(l)
if len(l) /7 (1 % 2) == 0:
return len(l) - 1 % 2
else:
return 1[length // 2]

A.7.3 Bugs in student code.

(1) Missing parentheses (3 separate times)
(2) %2 instead of //2 in if body (copy-paste issue?)
(3) Returns index, not element

A.7.4 Size of issue. Large

A.7.5 Problems with problematic solution.

(1) Esoteric and unnecessary if statement: it’s almost always
false, and would return the wrong result if true (e.g. with list
of length 0)

(2) length variable is used inconsistently, and is arguably un-
necessary

A.8 sumOfDigits

A.8.1 Problem Statement. Given a number n, return the sum of
n’s digits.

A.8.2 Solution versions.

Student solution
def sumOfDigits(n):
i=0
summation=0
while i<=nsize(n):
r=n//(10**(n-i-1))
remain= r%10
summation+=remain
return summation
Valid generated correction
def sumOfDigits(n):
i=0
summation=0
while i<len(str(n)):

CHI ’22, April 30 - May 6 2022, New Orleans, LA

r=n//(10x*(len(str(n))-i-1))
remain= r%10
summation+=remain
i+=1

return summation

Problematic generated correction
def sumOfDigits(n):

i = abs(n)

summation = @

while n > 0:
r=n%10
n=n//10
summation += r

return summation

A.8.3 Bugs in student code.

(1) nsize(n) should be an expression which evaluates to num-
ber of digits in n, e.g. len(str(n))

(2) When calculating r, n should also be replaced with the num-
ber of digits in n

(3) Loop doesn’t terminate because i doesn’t update

(4) If loop did terminate (by starting i at 0 and incrementing by
1), it would iterate one more time than needed

A.8.4 Size of issue. Large

A.8.5 Problems with problematic solution.
(1) Line 2 (i = abs(n)) is extraneous, the value is never used
(2) Doesn’t preserve student intent on how to iterate through
digits and extract them

Yana Malysheva and Caitlin Kelleher

B PRE-SURVEY

The pre-survey given to participants consisted of two multiple-
choice questions.

B.1 Question 1. Have you ever been a Teaching
Assistant for a CSE course before? If you
have, then for how many total semesters?
0: T haven’t been a TA yet

1: Thave been a TA once

2: T have been a TA for two semesters
>2: I have been a TA for more than two semesters

B.2 Question 2. How much experience do you
have with Python?

None: never tried it

A little: T have used it once or twice

Some: I have used it before, but am not extremely comfortable
with it

Lots: I am quite comfortable with Python

C POST-SURVEY

The post-survey given to participants consisted of two free text
questions.

C.1 Question 1. What was the most helpful
part of the interface as you were trying to
identify the problems with the student
code?

C.2 Question 2. What was the hardest or most
cumbersome part of the task?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Undergraduate CS TAs
	2.2 Scaffolding peer tutoring
	2.3 Debugging
	2.4 Automatic code correction

	3 Methods
	3.1 Participants
	3.2 Study Materials
	3.3 Experiment Design
	3.4 Study Process
	3.5 Data Collection
	3.6 Data Analysis

	4 Results
	4.1 RQ1: Do generated corrections help TAs debug faster?
	4.2 RQ2: Do generated corrections help TAs debug better?
	4.3 RQ3: What is the effect of seeing a problematic generated correction?
	4.4 RQ4: What is difficult for TAs, and what is helpful?

	5 Discussion
	6 Limitations and Future Work
	7 Conclusion
	References
	A Programming problems and student solutions used in the study
	A.1 hasTwoDigits
	A.2 secondHalf
	A.3 listOfLists
	A.4 howManyEggCartons
	A.5 nearestBusStop
	A.6 anyLowercase
	A.7 middleElement
	A.8 sumOfDigits

	B Pre-survey
	B.1 Question 1. Have you ever been a Teaching Assistant for a CSE course before? If you have, then for how many total semesters?
	B.2 Question 2. How much experience do you have with Python?

	C Post-survey
	C.1 Question 1. What was the most helpful part of the interface as you were trying to identify the problems with the student code?
	C.2 Question 2. What was the hardest or most cumbersome part of the task?

