

1 **Very fine roots differ among switchgrass (*Panicum virgatum* L.) cultivars and differentially
2 affect soil pores and carbon processes**

3

4 Jin Ho Lee^{1*}, Tayler C. Ulbrich^{2,3}, Maik Lucas^{1,4,5}, G. Philip Robertson^{1,2,5}, Andrey K. Guber¹,
5 and Alexandra N. Kravchenko^{1,5}

6

7 ¹Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing,
8 MI, USA

9 ²W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA

10 ³Department of Integrative Biology, Michigan State University, East Lansing, MI, USA

11 ⁴ Institute of Ecology, Chair of Soil Science, Technical University of Berlin, Berlin, Germany

12 ⁵Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA

13

14 *Correspondence: leejin28@msu.edu

15

16 Keywords: Switchgrass cultivar, fine root, distance to pore, distance to particulate organic
17 matter, X-ray computed micro-tomography

18

19

20 **Abstract**

21 Switchgrass (*Panicum virgatum* L.) is a promising feedstock for biofuel production, with
22 diverse cultivars representing several ecotypes adapted to different environmental conditions
23 within the contiguous USA. Multiple field studies have demonstrated that monoculture

24 switchgrass cultivation leads to slow to negligible soil carbon (C) gains, an outcome unexpected
25 for such a deep-rooted perennial. We hypothesize that different switchgrass cultivars have
26 disparate impacts on soil C gains, and one of the reasons is variations in physical characteristics
27 of their roots, where roots directly and indirectly influence formation of soil pores. We tested this
28 hypothesis at Great Lakes Bioenergy Research Center's research site in Michigan using two
29 lowland cultivars (Alamo and Kanlow) and four upland cultivars (Southlow, Cave-in-Rock,
30 Blackwell, and Trailblazer). Three types of soil samples were collected: 20cm diameter (\emptyset)
31 intact cores used for root analyses; 5cm \emptyset intact cores subjected to X-ray computed tomography
32 scanning used for pore characterization; and disturbed soil samples used for microbial biomass C
33 (MBC) and soil C measurements. Path analysis was used to explore interactive relationships
34 among roots, soil pores, and their impact on MBC, and ultimately, on soil C contents across six
35 cultivars. The abundance of very fine roots ($<200\mu\text{m}$ \emptyset) was positively associated with fractions
36 of pores in the same size range, but negatively with distances to pores and particulate organic
37 matter. Higher abundance of such roots also led to greater MBC, while greater volumes of
38 medium pores ($50\text{-}200\mu\text{m}$ \emptyset) and shorter distances to pores increased MBC. Results suggest that
39 the greater proportion of very fine roots is a trait that can potentially stimulate soil C gains, with
40 pore characteristics serving as links for the relationship between such roots and C gains.
41 However, at present, ten years of cultivation generated no differences in soil C among the
42 studied cultivars.

43

44

45

46 **Introduction**

47 Perennial grasses are more environmentally sustainable sources of bioenergy feedstock
48 production than annual crops (Robertson et al., 2017; Gelfand et al., 2020) because they require
49 fewer chemical inputs and generate fewer greenhouse gas emissions (Samson et al., 2005; Adler
50 et al., 2007; Oates et al., 2016). Switchgrass (*Panicum virgatum* L.) is recognized as a viable
51 biofuel feedstock due to its high biomass yield produced across a wide range of environmental
52 and climatic conditions and thus a greater energy production potential compared to many other
53 native perennial grasses (Parrish and Fike, 2005; Sanderson and Adler, 2008; Gelfand et al.,
54 2020). In addition, modeling studies project this deep-rooted perennial to increase soil carbon
55 (C) by as much as $0.78 \text{ Mg C ha}^{-1} \text{ yr}^{-1}$ in the eastern U.S. (McLaughlin et al., 2002; McLaughlin
56 and Adams Kszos, 2005). Liebig et al. (2008) reported that 5-year switchgrass cultivation
57 increased soil C by $\sim 1.1 \text{ Mg C ha}^{-1} \text{ yr}^{-1}$ in Great Plains states of U.S. (Nebraska, South Dakota,
58 and North Dakota). However, a number of recent field experiments showed that monoculture
59 switchgrass lags behind other candidate perennial bioenergy cropping systems in its C gains,
60 including mixtures of native grasses or restored prairie systems that involve switchgrass as one
61 of the plant species (Yang et al., 2019; Lee et al., 2023; Perry et al., 2023).

62 Switchgrass is a phenotypically diverse species with genetic variation among divergent
63 ecotypes and across environmental gradients of eastern North America (Casler et al., 2004, 2007;
64 Lovell et al., 2021). Lowland ecotype switchgrass originates from the southern U.S., which has a
65 warm and mesic climate, while the upland ecotype originates from more northern areas with a
66 drier and colder climate (Vogel et al., 2005; Zhang et al., 2011). Switchgrass cultivars of both
67 lowland and upland ecotypes have been selected for various bioenergy-related traits including
68 biomass yield, winter mortality, and drought tolerance (Haque et al., 2009; Mitchell et al., 2012;

69 Lowry et al., 2019). We surmise that within-species diversity may also give rise to differences in
70 soil C accrual, though Mosier et al. (2024) failed to find cultivar differences.

71 The plant's root system plays a critical role in plant contributions to soil C gains, and
72 indeed, root characteristics of switchgrass cultivars differ substantially (de Graaff et al., 2013;
73 Ulbrich et al., 2021; Mosier et al., 2024). Roots directly contribute to soil C gains by transferring
74 organic C to the soil through their turnover and released rhizodeposits and exudates (Liang et al.,
75 2018; Sokol et al., 2019; Panchal et al., 2022). The chemical composition of rhizodeposits and
76 exudates is known to vary among different plant genotypes (Huang et al., 2014; Semchenko et
77 al., 2021). In switchgrass, An et al. (2013) found that the concentration of exudates differed
78 among 11 cultivars, and Li et al., (2022) found distinct differences in concentrations of exudates
79 between lowland and upland ecotypes. Disparate root-derived C sources can have different
80 influences on soil microorganisms (Emmett et al., 2017; Jiang et al., 2017), and several studies
81 have documented varied impacts of different switchgrass cultivars on soil microbial biomass,
82 microbial diversity, and microbial community composition (Sawyer et al., 2019; Roley et al.,
83 2021; Ulbrich et al., 2021; da Costa et al., 2022).

84 Fine roots are particularly important for soil C cycling, contributing substantially to soil
85 organic matter through their rapid turnover and subsequent decomposition; and their persistent C
86 inputs can constitute 30-80% of soil C across various ecosystems (Ruess et al., 2003; Kalyn and
87 Van Rees, 2006). Switchgrass roots <1 mm diameter (\varnothing) contributed to approximately 77% of
88 the total root biomass, and such fine roots accounted for 50% of the total biomass in the 0-150
89 cm soil profile within the 0-20 cm profile (An et al., 2022), where C processing actively occurred
90 (Henneron et al., 2022). Moreover, fine roots led to lower priming effect and greater soil C
91 accumulation compared to coarser roots (de Graaff et al., 2013; Adkins et al., 2016). Since the

92 biomass and length of such fine roots were found to differ among various switchgrass cultivars
93 (de Graaff et al., 2013; Liu et al., 2016), we hypothesize that such differences can be an
94 important cause leading to their distinct contributions to soil C processing and gains.

95 Roots also play a role in the formation of soil pore structure, defining size distributions
96 and spatial locations of pores within the soil matrix (Bodner et al., 2014; Bacq-Labreuil et al.,
97 2019; Helliwell et al., 2019; Lucas et al., 2022). That occurs both through direct impacts of roots
98 on arrangement of soil particles and penetration of soil aggregates, and through water extraction
99 (Angers and Caron, 1998; Bengough et al., 2016; Oburger and Schmidt, 2016). The size of the
100 impact varies depending on root characteristics (Mahannopkul and Jotisankasa, 2019), because
101 roots determine the water extraction strength (Assadollahi and Nowamooz, 2020).

102 Pores in tens to hundreds of μm Ø size range are especially relevant for microbial
103 abundance and activity, and consequently, for the processing and protection of the newly added
104 C (Strong et al., 2004; Kravchenko et al., 2019a; Franklin et al., 2021). Plants with a higher
105 density of fine roots tend to form pore structures dominated by fine pores compared to plants
106 with coarser roots (Bengough et al., 2016; Bodner et al., 2021). Spatial distributions of pores and
107 organic C sources in soils define oxygen and nutrient supply for soil microbial functioning and
108 concomitant fate of the C sources (Borer et al., 2018; Li et al., 2024; Scheidweiler et al., 2024).

109 A ubiquitous spread of organic residues, likely roots in switchgrass, can promote the
110 development of micro-habitats that foster microbial hotspots (Kuzyakov and Blagodatskaya,
111 2015; Li et al., 2024). The complex web of fine roots also can reduce the distance between soil
112 pores, forming such pores throughout the areas occupied by the roots (Gyssels et al., 2005;
113 Reubens et al., 2007). The proximity to pores governs microbial accessibility to C sources
114 located on soil particles and regulates aeration for soil microorganisms (Dungait et al., 2012;

115 Schlüter and Vogel, 2016; Rohe et al., 2021), subsequently influencing their abundance and
116 activity (Ekschmitt et al., 2008; Schlüter et al., 2019).

117 The abundance of soil microorganisms promoted by optimal habitats with accessible
118 supplies of C can consequently lead to soil C accumulation upon their life and death. Microbially
119 processed organic matter can be more easily stabilized by soil mineral surfaces than that of plant-
120 originated C compounds (Grandy and Neff, 2008; Miltner et al., 2012). Microbial necromass
121 also contributes significantly to C accumulation, being transformed and stabilized within the soil
122 (Six et al., 2006; Miltner et al., 2012; Kallenbach et al., 2015; Liang et al., 2019).

123 Our objectives here are to quantify cultivar-level variations (i) in size distributions of
124 switchgrass roots, (ii) in size distributions of soil pores and spatial patterns of pores and
125 particulate organic matter (POM), and (iii) to estimate the impact of roots and pores on soil
126 microbial biomass C (MBC), and ultimately, on soil C gains. We hypothesize that differences in
127 root sizes among switchgrass cultivars lead to differences in sizes and spatial distributions of soil
128 pores and POM fragments and consequently different MBC and soil C contents.

129

130 **Materials and Methods**

131 *Experimental site and plant and soil sampling*

132 The Great Lake Bioenergy Research Center's Switchgrass Variety Experiment used in
133 this study is located at W.K. Kellogg Biological Station ($42^{\circ} 23'N$, $85^{\circ} 22'W$), Michigan,
134 United States. The soil of the experimental site belongs to the Kalamazoo series (fine-loamy,
135 mixed, active, mesic Typic Hapludalf). For several years prior to the experiment's establishment,
136 the field was in an alfalfa-soybean-maize rotation. In 2009, 12 switchgrass cultivars were
137 established in a randomized complete block design with plots $4.6\text{ m} \times 12.2\text{ m}$ arranged in four

138 replicated blocks. After the establishment year, all plots were annually fertilized with 56 kg ha⁻¹
139 of nitrogen as dry urea (46-0-0 NPK), and annually harvested post-frost following typical
140 practices (Sanford et al., 2016).

141 Four upland (Southlow, Cave-in-Rock, Blackwell, and Trailblazer) and two lowland
142 (Alamo and Kanlow) cultivars were selected for this study. We conducted two sampling
143 campaigns. First, three intact soil cores (20 cm height and 2 cm Ø), which we will refer to as tall
144 cores, were collected within 10 cm from crowns of three randomly selected plants in each block,
145 at 0-20 cm sampling depth. These tall cores were used for root scanning, and prior to analyses,
146 they were kept at -20 °C. While it is known that roots of switchgrass plants can grow to
147 substantial depths, most of the root biomass is often found within the topsoil across a comparable
148 set of switchgrass varieties (Anderson-Teixeira et al., 2013; de Graaff et al., 2014; Mosier et al.,
149 2024). Especially, switchgrass roots <500 µm Ø contributed to 77% of the total root biomass,
150 and approximately 50% of the fine roots were located within 0-20 cm depth (An et al., 2022).
151 Since the focus of our work was on the comparisons among the cultivars, root measurements in
152 the topsoil were expected to provide most representative and accurate data for such comparisons.
153 All cultivars were sampled in July of 2016. Belowground biomass of switchgrass is known to
154 stabilize in the first two years since establishment, and seasonal changes in root biomass
155 dynamics, particularly below the 5 cm soil depth, are reported as minimal (Garten et al., 2010;
156 Yang et al., 2016). While some differences in cultivar phenology were present at the sampling
157 time, no detectable impact on root systems was expected.

158 Second, in October 2019, two intact soil cores (5 cm height and 5 cm Ø), which will be
159 referred to as short cores, and surrounding bulk soil were collected within 10 cm from crowns of
160 randomly selected plants of each block. We decided to focus on the soil at 5-10 cm depth,

161 because it represents the portion of the soil profile most significantly affected by the roots with
162 the highest microbial biomass and soil organic C (Ma et al., 2000; Roosendaal et al., 2016). The
163 short cores were subjected to X-ray computed micro-tomography (μ CT) scanning, and the bulk
164 soil was used for measurements of MBC and soil C. All short cores were stored at 4 °C until
165 μ CT scanning.

166

167 *Root analyses*

168 Detailed description of the processing of the tall cores are provided in Ulbrich et al.
169 (2021). Briefly, soils of the tall cores were wet sieved (2 mm) with Nanopure (0.2 μ M) water to
170 separate roots from soil, and all visible roots were procured with tweezers. The cleaned roots
171 were scanned with an Epson perfection V600 scanner (Epson America Inc., Long Beach, CA,
172 USA) in a glass scanning bed with 200 ml of Nanopure water. Scanning resolution of root
173 images was 75 μ m.

174 Using RhizoVision software (version 2.0.3), binary images for roots and background
175 were obtained. Then, non-root object filtering and hole filling were conducted to remove
176 background noise and fill unsegmented holes in root portions of images, respectively. Tools in
177 RhizoVision allowed us to identify different size \varnothing of roots using distance transformation and
178 skeletonization of the root portions (Felzenszwalb and Huttenlocher, 2012). Upon the given
179 scanning resolution, the minimum \varnothing size of detectable roots was 75 μ m, thereby roots classified
180 as the 75 μ m size group is assumed to represent ~75-113 μ m roots, and the 150 μ m size group
181 represents ~113-187 μ m roots. Root volumes for each skeletal 2D root of the different \varnothing groups
182 were calculated by multiplying the length of the root by the cross-sectional area (Seethepalli et
183 al., 2021). Subsequently, volumes were used to determine size distributions of root volume

184 fractions (mm^3) in different \varnothing groups per total core (root + soil) volume (mm^3). Root size groups
185 finer than 500 μm \varnothing were only used in further analyses as such roots, which are generally
186 defined as fine roots, are particularly important for soil C cycling (Ruess et al., 2003; Kalyn and
187 Van Rees, 2006; de Graaff et al., 2013).

188

189 *X-ray μ CT scanning and image analyses*

190 Soil pore characteristics were measured using short cores via X-ray μ CT, a tool that
191 allows for visualization of soil structure in its intact state (Udawatta et al., 2008; Vogel et al.,
192 2010). Prior to X-ray μ CT scanning, all short cores were brought to the matric potential of -28
193 kPa to ensure that $>5 \mu\text{m}$ \varnothing pores were filled with air so easily detectable in the images. Thus,
194 cores were first saturated for 24 hours on a water filled sand bath and then kept in a pressure
195 chamber for two days at -28 kPa. The cores were scanned using an X-ray μ CT instrument (North
196 Star Imaging, X3000, Rogers, MN, USA) at the Horticulture Department of Michigan State
197 University. The scanning resolution was 18 μm , achieved using the Subpix-mode of the scanner,
198 and the projected energy level was 75 kV with 450 μA . Images from 3014 projections were
199 reconstructed by the efX software (North Star, Rogers, MN, USA).

200 A schematic summary of the steps for image pre-processing and analyses is outlined in
201 Figure 1. First, image pre-processing steps were conducted to remove artifacts and noise from
202 3D stacked soil images using ImageJ-Fiji software (Schindelin et al., 2012). In order to exclude
203 sampling artifacts near the soil core walls, the images were cropped into 2.7 x 2.7 x 4.1 cm (1500
204 \times 1500 \times 2240 pixels) centrally located parallelograms. Then, we removed ring artifacts on the
205 image polar domain using a stripe filter of the Xlib/Beat plugin. Finally, a 3D non-local mean

206 filter ($\sigma = 0.1$) was applied to reduce the noise using scikit-image in Python (Darbon et al., 2008;
207 Buades et al., 2011).

208 The pre-processed grayscale images were segmented into pore and solid binary images
209 for size distributions and spatial locations of pores. Mean threshold values for the segmentation
210 were obtained by averaging the thresholds between pore and solid phases derived from six
211 segmentation methods (Otsu, Triangle, Huang, ISO, Li, and Moments) using SimpleITK in
212 Python (Beare et al., 2018; Lucas et al., 2022). The rationale for averaging thresholds is to
213 mitigate biases of the individual methods, thus enhancing accuracy in pore threshold calculation
214 (Schlüter et al., 2014). The resolution level and steps of image-processing applied in this study
215 allow us to reliably identify pores larger than 36 μm \varnothing .

216 POM segmentation was carried out with a U-Net (convolutional neural network) model
217 under the deep learning engine pre-built in Dragonfly software (Ronneberger et al., 2015; Abadi
218 et al., 2016; Makovetsky et al., 2018). The model was trained using two cores randomly selected
219 from each experimental block (eight of total 48 cores). Seven frames with representative POM
220 fragments in each of the selected cores were used as input, and two slices directly below and
221 above the selected frames were also considered for generating segmentation outcomes. Then, the
222 trained model was applied on the entire cores. Segmented POM images were visually inspected
223 to ensure the integrity and accuracy of the process. The outcome of POM segmentation was de-
224 noised by removing clusters < 4 voxels from the images. Then, distances from the locations of
225 the segmented soil solid materials to the nearest pores and from such locations to the nearest
226 POM fragments were determined using the ‘Distance Transform 3D’ approach in ImageJ-Fiji
227 (Borgefors, 1996). Size distributions of pores in 3D binary images were determined by the

228 ‘Local Thickness’ approach, based on the maximum inscribed sphere method (Hildebrand and
229 Rüegsegger, 1997; Vogel et al., 2010) in ImageJ-Fiji.

230 To assess the relationships between size distributions of pores and roots based on
231 volumes at comparable scales, pore \varnothing sizes were grouped into interval classes as similar as
232 possible to the calculated \varnothing sizes of root fractions. For example, the 75 μm size group represents
233 the \sim 36-108 μm pores and the 150 μm size group – the \sim 108-180 μm pores, etc. Then, pore
234 fractions of each size group were determined by dividing the segmented pore volumes (mm^3) by
235 the total cropped soil (pore + solid) volumes (mm^3). The $> 500 \mu\text{m}$ \varnothing pores were not
236 quantitatively assessed in this study because of high uncertainty of their estimation in relatively
237 small and short cores.

238

239 *Soil microbial biomass and total carbon measurements*

240 We measured MBC by the chloroform fumigation-incubation method (Paul et al., 1999).
241 Two sets of 10 g soil samples were prepared by adding sufficient water to reach 50% water
242 holding capacity. The samples were pre-incubated for five days, after which one set was
243 fumigated with ethanol-free chloroform vapor for 24 hours, while the other set remained
244 unfumigated. Both sets were then incubated for 10 days in the dark at 20 °C. The emitted CO_2
245 was measured using Infrared Photoacoustic Spectroscopy (INNOVA Air Tech Instruments,
246 Ballerup, Denmark) in the gas circulation mode. The difference in CO_2 emissions between the
247 fumigated and non-fumigated samples was used to calculate the MBC. For soil C analysis,
248 sieved and ground soil samples were analyzed using a CHNSO Elemental Analyzer (Costech
249 Analytical Technologies, Valencia, CA, USA).

250

251 *Statistical analysis*

252 The differences in soil pores, root traits, MBC, and soil C contents were evaluated among
253 six switchgrass cultivars and between two ecotypes using PROC MIXED procedure of SAS 9.4
254 (SAS Institute Inc., Cary, NC, USA). All statistical models for comparisons among the six
255 cultivars included fixed effects of cultivars and random effects of experimental blocks. The
256 models for the analyses of the distance to pore and distance to POM data additionally included
257 the random effects of soil cores nested within the blocks. For comparisons between two
258 ecotypes, cultivars were considered as a random factor nested within the corresponding ecotypes.
259 Models for root and pore size distributions included fixed effects of cultivars, root/pore size
260 groups, and their interactions and another random effect of the cores nested within the blocks and
261 cultivars. Root/pore size groups were treated as a repeated measure factor, and cores nested
262 within cultivars were used as an error term for testing the cultivar effect and as a subject of the
263 repeated measurement. The statistical models for comparisons between two ecotypes were
264 similar to those used for cultivar comparisons, except that cultivars were treated as a random
265 effect nested within the ecotype and contributing to the error term for testing for the ecotype
266 effect.

267 For all datasets, normality of the residuals and homogeneity of the residual variances
268 were assessed by examining histograms, normal probability plots, and side-by-side box plots of
269 the residuals, and by conducting Levene's test for variances. Residuals were found to be
270 normally distributed in all studied variables. Since residual variances among six cultivars or
271 between two ecotypes were not significantly different at $\alpha = 0.1$ level in Levene's test, equal
272 variance models were used in subsequent data analyses. Multiple comparisons among the
273 cultivars or between the ecotypes were conducted using t-test.

274 *Post-hoc* power analysis was conducted to identify how many replications should have
275 been taken to be able to detect as statistically significant differences in soil C contents among the
276 six switchgrass cultivars (Stroup, 2002; Kravchenko and Robertson, 2011). The variance
277 component, which was the estimate of block variance in this randomized complete block design,
278 was estimated from the observed soil C contents. The size of the hypothesized difference used in
279 the power analysis was 0.26% of soil C content. Then, the number of samples needed for
280 statistical significance was calculated based on 0.05 probability of Type I error using PROC
281 MIXED procedure in SAS.

282 Relationships among root and pore fractions within each individual size group, MBC, and
283 soil C contents across all six cultivars were assessed using Pearson's correlation coefficients (r)
284 via the PROC CORR procedure in SAS. The correlation analysis enabled us to assess the
285 hypotheses that (1) roots of certain size groups contribute to the formation of soil pores of the
286 same size range, (2) roots of certain size groups contribute to increases in MBC and soil C
287 contents, and (3) pores of certain size groups contribute to increases in MBC and soil C contents.
288 Correlations were subsequently used for path analysis.

289

290 *Path analysis*

291 Path analysis is a statistical approach that can infer causal relationships allowing for
292 examination of direct and indirect effects among observed variables based on the theoretical
293 model hypothesized by the researcher (Schumacker and Lomax, 1996; Grace, 2006). Indirect
294 effects in path analysis are identified by estimating the relationship between two variables that is
295 mediated by one or more intervening variables (Preacher and Hayes, 2004). Thus, we used it in
296 this study to address hypotheses regarding relationships among root and pore traits and their

297 direct and indirect contributions to soil MBC and C contents. Since the model for path analysis is
298 constructed based on causal hypotheses between variables, the theoretical and empirical basis for
299 these hypotheses should be provided by peer-reviewed literatures. Overall, we hypothesized that
300 greater abundance of fine roots can lead to soil C gains by releasing more accessible C
301 substrates, and by stimulating the formation of pores, which in turn supports more abundant
302 microbial communities and facilitates greater soil C stabilization. Detailed descriptions of the
303 individual hypotheses, along with the literature supporting their path formulation, are provided in
304 Table 1.

305 The PROC CALIS procedure of SAS software was used for path analysis. A two-index
306 presentation strategy was utilized for the path analysis model evaluation (Hu and Bentler, 1999).
307 Model fitness and adequacy were determined through a chi-square test (χ^2) and goodness of fit
308 index (GFI) (Bentler, 1990), and acceptable models are characterized by χ^2 test p values >0.05
309 and GFI >0.90 (Hu and Bentler, 1999; Eisenhauer et al., 2015). The strength of the paths was
310 indicated using standardized coefficients (β). The rationale for using standardized coefficients is
311 to facilitate comparisons of relative impacts upon the initially incommensurable variables (Kwan
312 and Chan, 2011).

313

314 **Results**

315 *Root and pore size distributions*

316 Fraction of roots finer than 500 μm \varnothing did not show notable differences among the studied
317 six switchgrass cultivars ($p = 0.074$) (Figure S1). However, there were differences in the root
318 fraction of very fine size groups (75 and 150 μm \varnothing) among the six cultivars, while at sizes >200
319 μm \varnothing , the root fraction did not provide strong evidence for differences (Figure 2A). Specifically,

320 Kanlow and Cave-in-Rock had the highest fraction of very fine roots, i.e., 0.0009 ± 0.0001
321 mm^3/mm^3 in soil, followed by Southlow, Alamo, and Blackwell, while Trailblazer had the
322 smallest fraction of very fine roots, i.e., $0.0005 \pm 0.0001 \text{ mm}^3/\text{mm}^3$ (Table S1).

323 Consistent with the root size results, soil pore fractions in medium size groups (75 and
324 $150 \mu\text{m} \varnothing$) also differed among the cultivars (Figure 2B) and, likewise, no differences were
325 observed among cultivars in coarse pore size groups ($>200 \mu\text{m} \varnothing$) (Figure 3B). Soil under Cave-
326 in-Rock had the greatest fraction of medium pores, i.e., $0.04 \pm 0.006 \text{ mm}^3/\text{mm}^3$ in soil, followed
327 by Kanlow, Alamo, and Blackwell, with Southlow and Trailblazer having the smallest fractions
328 with $0.02 \pm 0.005 \text{ mm}^3/\text{mm}^3$ (Table S1).

329 Root fractions in very fine size groups were positively associated with pore fractions of
330 medium size groups ($r^2 = 0.21$ and $p = 0.023$ in $75 \mu\text{m}$; $r^2 = 0.22$ and $p = 0.020$ in $150 \mu\text{m} \varnothing$ size
331 group), while no correlations were observed between roots and pores of any other size groups
332 (Figure 3A).

333

334 *Distance to pores and POM*

335 The average distance to pores was the largest in the soil under the Trailblazer cultivar,
336 equal to $0.34 \pm 0.08 \text{ mm}$, while soils under the other five cultivars had similar distances to pores
337 of 0.19 mm on average (Figure 4A). Overall, distances to pores in the soils under upland ecotype
338 cultivars were 34% greater than those of lowland ecotype cultivars ($p = 0.019$).

339 The average distance to POM fragments was also the largest in the soil under Trailblazer,
340 i.e., $0.82 \pm 0.12 \text{ mm}$, while Cave-in-Rock and two lowland cultivars, Alamo and Kanlow, had the
341 lowest distances to POM of 0.54 ± 0.17 , 0.62 ± 0.14 , and $0.60 \pm 0.12 \text{ mm}$, respectively (Figure

342 4B). Overall, there were no differences in distances to POM between upland and lowland
343 cultivars ($p = 0.314$) (Figure 4B).

344

345 *Soil microbial biomass and carbon*

346 MBC in the soils under Alamo and Kanlow, the two lowland switchgrass cultivars, was
347 ~50-100% higher than under the other four cultivars; in particular MBC under Kanlow was more
348 than double that under Blackwell (Figure 4C). Overall, MBC in soils under the cultivars of the
349 lowland ecotype was 44% higher than that of the upland cultivars ($p = 0.002$). On the other hand,
350 soil C contents were not different among the six cultivars, and the difference between the two
351 ecotypes was also not significant ($p = 0.598$) (Figure 4D).

352 MBC across all six cultivars was positively associated with 75 μm Ø roots ($r^2 = 0.19$; $p =$
353 0.022) and with 75 μm Ø pores ($r^2 = 0.17$; $p = 0.036$), while MBC was not correlated with any
354 other size groups of roots and pores $>75 \mu\text{m}$ Ø (Figure 3B). MBC was negatively associated with
355 the distance to pores ($r^2 = 0.13$; $p = 0.046$), whereas not associated with the distance to POM
356 fragments (Table S2). Soil C was also positively associated with 75 and 150 μm Ø roots ($r^2 =$
357 0.17 and 0.31; $p = 0.035$ and 0.004, respectively), while no significant correlations were
358 observed with any size groups of pores (Figure 3B). Soil C was negatively associated with the
359 distance to POM fragments ($r^2 = 0.18$; $p = 0.024$), whereas not associated with the distance to
360 pores (Table S2). Notably, soil C was positively associated with MBC across all six cultivars (r^2
361 = 0.18; $p = 0.025$).

362

363 *Path analysis*

364 The very fine roots (sum of 75 and 150 μm \varnothing size groups) had a direct positive impact on
365 the fraction of medium pores (sum of 75 and 150 μm \varnothing size groups) ($\beta = 0.41$; $p = 0.008$), MBC
366 ($\beta = 0.41$; $p = 0.003$), and soil C contents ($\beta = 0.50$; $p = 0.0009$), and negative impact on the
367 distance to pores ($\beta = -0.47$; $p = 0.002$) and POM ($\beta = -0.52$; $p = 0.0003$) (Figure 5).
368 Additionally, such roots indirectly influenced MBC by increasing the fraction of medium pores
369 ($\beta = 0.19$; $p = 0.048$) and by decreasing the distances to pores ($\beta = -0.28$; $p = 0.021$) and POM (β
370 $= -0.19$; $p = 0.042$). Soil C contents increased by a shorter distance to POM ($\beta = -0.21$; $p =$
371 0.028), while neither the fraction of medium pores nor the distance to pores appeared to directly
372 influence soil C. Yet, increases in medium pore fractions and decreases in distances to pores and
373 POM indirectly fostered increases in soil C due to the rise in MBC ($\beta = 0.30$; $p = 0.017$) (Figure
374 5).
375

376 **Discussion**

377 After seven years of continuous growth, variations were observed among the six
378 switchgrass cultivars in volumes of very fine roots and of medium soil pores. Cultivars with a
379 greater volume of very fine roots stimulated formation of medium soil pores compared to the
380 cultivars with coarser root systems and led to a more ubiquitous spread of pores and POM within
381 the soil matrix. Volumes of very fine roots were strongly positively associated with soil C and
382 MBC. Abundance of the medium pores and spatial distribution patterns of the pore space were
383 directly related to MBC, but not to soil C. While the cultivars of the lowland switchgrass ecotype
384 increased soil MBC compared to that of the upland ecotype, in none of the studied lowland
385 cultivars did soil C exceed that of upland cultivars.

386

387 *Influence of very fine roots*

388 Past comparisons of root systems among switchgrass cultivars generated contradictory
389 results. For example, at experimental site in Michigan, Ulbrich et al. (2021) reported that cultivar
390 Kanlow had relatively high specific root length (root length/weight) compared to other cultivars,
391 while in Illinois Kanlow had lower specific root length than others (de Graaff et al., 2013). While
392 a meta-analysis demonstrated that phylogenetic characteristics can be the largest driver of root
393 traits (Valverde-Barrantes et al., 2017), the discrepancy suggests that root system development in
394 switchgrass cultivars might be influenced by environmental factors (Lovell et al., 2021; Griffiths
395 et al., 2022), that is, vary site-specifically.

396 The initial hypothesis for our path analysis focused on fine roots, generally defined as
397 roots $<500 \mu\text{m} \varnothing$ and well-established as key contributors to soil C cycling (de Graaff et al.,
398 2013; McCormack et al., 2015; Adkins et al., 2016; Panchal et al., 2022). However, Kelly-
399 Slatten et al. (2023) recently found that the differences in the abundance of the fine roots among
400 Kanlow, Southlow, and Cave-in-Rock were minor, and this aligns with the lack of meaningful
401 differences in fine roots observed here (Figure S1). As this study progressed, distinct variations
402 were observed in the abundance of the specific range of fine roots ($<200 \mu\text{m} \varnothing$), referred to as
403 very fine roots, across different switchgrass cultivars (Figure 2A & Table S1).

404 The abundance of very fine roots was the influential factor for microbial biomass and soil
405 C (Figure 5). The very fine roots also indirectly affected them by contributing to volumes of
406 medium ($50-200 \mu\text{m} \varnothing$) pores and spatial patterns in both pores and POM, the latter expressed
407 via distances to pores and POM (Figure 5). Fine roots typically provide greater amounts of root
408 exudates and rhizodeposits to soil (Xu and Juma, 1994; Paterson and Sim, 1999; Zhang et al.,
409 2022). Such labile C sources as well as fine roots themselves can be preferentially used by soil

410 microorganisms and contribute significantly to soil organic matter formation through their rapid
411 turnover and subsequent decomposition (Ruess et al., 2003; Kalyn and Van Rees, 2006). While
412 in the past many studies focused on a broadly defined size group of fine roots as those <1.0-2.5
413 mm Ø (Steinaker and Wilson, 2008; de Graaff et al., 2013; Sprunger et al., 2017; Sehgal et al.,
414 2021), findings from our study indicate that in monoculture switchgrass systems, it is only the
415 roots <200 µm Ø, i.e., very fine roots, that are particularly influential in promoting microbial
416 biomass and concomitant soil C production (Figure 3 & 5).

417 We found a greater volume of very fine roots in lowland than in the upland cultivars
418 (Figure 2A & Table S1). A single exception was Cave-in-Rock, the upland cultivar with a
419 volume of very fine roots comparable to that of lowland cultivars (Figure 2A & Table S1). Cave-
420 in-Rock, as a relatively drought-sensitive cultivar, possibly extends its fine roots more
421 aggressively to promote soil water access, thereby navigating this environmental challenge with
422 its fine roots (McCully, 1999; Liu et al., 2015; Fort and Freschet, 2020). Differences in very fine
423 roots among our cultivars led to differences in formation of soil pores and different spatial
424 distribution of the pores and POM through the soil matrix (Figure 2B, 4A, 4B, & 5). Root
425 thickness can significantly influence a root's capacity to penetrate soil (Chimungu et al., 2015;
426 Paez-Garcia et al., 2015), and differences in this trait are known to result in distinct pore
427 structures, with prevalence of certain pore size classes (Bodner et al., 2014, 2021). Positive
428 correlations between very fine roots and medium pores among six switchgrass cultivars support
429 the notion that cultivars with greater volumes of very fine roots form greater volumes of medium
430 pores (Figure 3A). Lowland cultivars possibly lead to the formation of more intricate soil pore
431 networks through their fine roots (Gyssels et al., 2005; Reubens et al., 2007), and thus distances
432 between individual pores are shorter than for those of upland cultivars (Figure 4A).

433 Roots are the major source of soil POM, thus shorter distances between the nearest POM
434 fragments in soils under Kanlow and Cave-in-Rock (Figure 4B), which were the two cultivars
435 with the greatest volumes of very fine roots (Figure 2A & Table S1), presumably resulted from a
436 more uniform spread of root residues throughout the soil (Bengough et al., 2016; Bodner et al.,
437 2021). Indeed, a significantly shorter distance was found in soils under prairie vegetation, which
438 was known to have extensive root systems (Sprunger et al., 2017), compared to that under
439 switchgrass (Cave-in-Rock) in a field adjacent to this study (Figure S2). Negative correlations
440 between volumes of very fine roots and distances to pores and POM further support this
441 conclusion (Table S2).

442

443 *Influence of medium pores and their spatial distribution*

444 Our results demonstrate that medium pores and distances to pores did not directly impact
445 measured soil C gains, even though they promoted soil microbial biomass, which was positively
446 associated with soil C (Figure 5 & Table S2). This is consistent with a direct effect of medium
447 pores on MBC and an indirect effect of such pores on soil C gains that were recently observed in
448 monoculture switchgrass (Cave-in-Rock) cultivated across a wide range of low fertility soils of
449 the U.S. Midwest (Lee et al., 2023). However, even though lowland switchgrass cultivars greatly
450 increased the proportion of medium pores as compared to the upland cultivars (Figure 2B &
451 Table S1), such increases did not translate into measured soil C gains (Figure 4D).

452 Pores in 30-180 μm \varnothing , which is very close to the range of medium pores in this study, are
453 suggested as optimal microbial habitats (Kravchenko et al., 2019b), since such pores facilitate
454 high microbial activity by ensuring oxygen and water flows, while allowing for easy access to
455 organic matter (Rawlins et al., 2016; Keiluweit et al., 2018). Since pores of this size range were

456 also identified as the primary sites for rhizodeposition (Quigley and Kravchenko, 2022), the
457 abundance of such pores likely facilitated the microbial growth in the soils under the lowland
458 cultivars (Figures 2B & 4C).

459 Another two key links between very fine roots and microbial biomass were the distances
460 from soil solid materials to the nearest pores and to the nearest POM fragments (Figure 5). The
461 shorter distances to pores and POM likely benefited microbial habitats, because such distances
462 imply closer proximity of microbes to water, oxygen, and C sources (Raynaud and Nunan, 2014;
463 Rohe et al., 2021; Bickel and Or, 2023). Therefore, we can surmise that the indirect contribution
464 of the extensive root systems in the two lowland cultivars as well as in Cave-in-Rock (Figure
465 2A) to increases in soil microbial biomass stemmed from decreasing distances to pores and POM
466 (Figures 4A & 4B). Shorter distances to POM can allow easier translocation of the processed C
467 during POM decomposition into surrounding soil (Védère et al., 2020; Schlüter et al., 2022),
468 likely contributing to soil C gains (Figure 5).

469

470 *Negligible soil C gains in switchgrass cropping systems*

471 Neither the two lowland cultivars nor Cave-in-Rock, the cultivars that promoted several
472 of the hypothesized drivers of soil C gains, including greater volumes of very fine roots and
473 medium pores, higher MBC, and shorter distances to POM and pores (Figure 5 & Table S2), led
474 to measurably greater soil C gains than other cultivars in this study (Figure 4D). Our results add
475 to a substantial body of research reporting very slow to negligible soil C gains in monoculture
476 switchgrass systems (Garten and Wullschleger, 2000; Liebig et al., 2005; Bates et al., 2022),
477 suggesting that 10 years were not a sufficiently long term for soil C gains to build under the
478 studied cultivars. In fact a 13-year study of switchgrass, recently conducted in a field adjacent to

479 this experiment, also observed that switchgrass only barely increased soil C contents since its
480 installation ($\sim 0.06 \text{ Mg C ha}^{-1} \text{ yr}^{-1}$) (Perry et al., 2023). Another recent study, conducted in the
481 same experimental site, showed that nine different switchgrass cultivars continuously grown for
482 11 years had no significant impact on soil C contents (Mosier et al., 2024).

483 There is an apparent discrepancy between the lack of the detected increases in soil C
484 contents and the implications of path analysis suggestions that such increases should have taken
485 place, at least in the cultivars with finer root systems (Figure. 5). We believe the discrepancy is
486 due to lower statistical power of the experimental work, i.e., the attempts to detect relatively
487 small changes in these soils C gains, given high variability, have been hampered by relatively
488 small sample size. Note that the 4 replicated blocks, i.e., n of 4, of the current experiment is a
489 common practice ubiquitously followed in field experimentation. Yet, *post-hoc* power analysis
490 of the soil C data in this study suggests that at least three more replicated blocks, i.e., n of 7,
491 would be required for detecting a statistically significant difference with the power of 75%, and
492 six more blocks, i.e., n of 10, with the power $> 90\%$ (Table S3). In other words, the nuanced
493 relationship between switchgrass cultivars and C gains, as revealed by the path analysis with
494 multifaceted factors, emphasizes the need to examine soil C gains with a greater number of
495 replications to better test the effects of switchgrass cultivars on soil C. Alternatively, as these
496 switchgrass stands mature and cultivars continue to differentially accumulate soil C, differences
497 should become evident with fewer replicates in next few years. Expanding the replication size, as
498 suggested by the power analysis, will also be important for better parameterizing process-level
499 models that, like our path analysis, also predict significant soil C gains under long-term
500 switchgrass cultivation (McLaughlin et al., 2002; McLaughlin and Adams Kszos, 2005;
501 Martinez-Feria and Basso, 2020).

502

503 **Conclusions**

504 Our study elucidates complex yet pivotal relationships among root traits, soil pore
505 structure, and microbial biomass for the potential accumulation of soil C using six switchgrass
506 cultivars with different root traits, representing two distinct ecotypes. Results suggest that
507 switchgrass cultivars with greater volumes of very fine roots have a greater capacity for soil C
508 accumulation, mediated by increases in medium pores and decreases in distances to pore and
509 POM that affect concomitant increases in MBC. However, 10 years were insufficient to
510 document measurable differences in soil C gains among cultivars. Overall, this study provides
511 critical insights for the relative impacts of root traits and pore structure for soil C gains in
512 bioenergy crop cultivation.

513

514 **Acknowledgements**

515 We thank Michelle Quigley for conducting X-ray μ CT scanning and Maxwell Oerther for
516 assistance with sample collection. Support for this research was provided by the Great Lakes
517 Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological
518 and Environmental Research (Award DE-SC0018409), by the National Science Foundation
519 Long-term Ecological Research Program (DEB 2224712) at the Kellogg Biological Station, and
520 by Michigan State University AgBioResearch.

521

522 **References**

523 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,
524 G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner,
525 B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., 2016.
526 TensorFlow: A System for Large-Scale Machine Learning. Presented at the 12th

527 USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp.
528 265–283.

529 Adkins, J., Jastrow, J.D., Morris, G.P., Six, J., de Graaff, M.-A., 2016. Effects of switchgrass
530 cultivars and intraspecific differences in root structure on soil carbon inputs and
531 accumulation. *Geoderma* 262, 147–154. doi:10.1016/j.geoderma.2015.08.019

532 Adler, P.R., Grosso, S.J.D., Parton, W.J., 2007. Life-Cycle Assessment of Net Greenhouse-Gas
533 Flux for Bioenergy Cropping Systems. *Ecological Applications* 17, 675–691.
534 doi:10.1890/05-2018

535 An, Q.-Q., Wang, S.-Q., Kang, J.-Y., Wang, Z., Chen, Y.-L., Xu, B.-C., 2022. Fine root
536 distribution and morphological characteristics of switchgrass under different row
537 spacings on semi-arid Loess Plateau, China. *Archives of Agronomy and Soil Science* 68,
538 1–17. doi:10.1080/03650340.2020.1820490

539 An, Y., Ma, Y., Shui, J., 2013. Switchgrass root exudates have allelopathic potential on lettuce
540 germination and seedling growth. *Acta Agriculturae Scandinavica, Section B — Soil &*
541 *Plant Science* 63, 497–505. doi:10.1080/09064710.2013.810770

542 Anderson-Teixeira, K.J., Masters, M.D., Black, C.K., Zeri, M., Hussain, M.Z., Bernacchi, C.J.,
543 DeLucia, E.H., 2013. Altered Belowground Carbon Cycling Following Land-Use Change
544 to Perennial Bioenergy Crops. *Ecosystems* 16, 508–520. doi:10.1007/s10021-012-9628-x

545 Angers, D.A., Caron, J., 1998. Plant-induced Changes in Soil Structure: Processes and
546 Feedbacks. *Biogeochemistry* 42, 55–72. doi:10.1023/A:1005944025343

547 Assadollahi, H., Nowamooz, H., 2020. Long-term analysis of the shrinkage and swelling of
548 clayey soils in a climate change context by numerical modelling and field monitoring.
549 *Computers and Geotechnics* 127, 103763. doi:10.1016/j.compgeo.2020.103763

550 Bacq-Labreuil, A., Crawford, J., Mooney, S.J., Neal, A.L., Ritz, K., 2019. Cover crop species
551 have contrasting influence upon soil structural genesis and microbial community
552 phenotype. *Scientific Reports* 9, 7473. doi:10.1038/s41598-019-43937-6

553 Bates, C.T., Escalas, A., Kuang, J., Hale, L., Wang, Y., Herman, D., Nuccio, E.E., Wan, X.,
554 Bhattacharyya, A., Fu, Y., Tian, R., Wang, G., Ning, D., Yang, Y., Wu, L., Pett-Ridge, J.,
555 Saha, M., Craven, K., Brodie, E.L., Firestone, M., Zhou, J., 2022. Conversion of marginal
556 land into switchgrass conditionally accrues soil carbon but reduces methane
557 consumption. *The ISME Journal* 16, 10–25. doi:10.1038/s41396-021-00916-y

558 Beare, R., Lowekamp, B., Yaniv, Z., 2018. Image Segmentation, Registration and
559 Characterization in R with SimpleITK. *Journal of Statistical Software* 86, 8.
560 doi:10.18637/jss.v086.i08

561 Bengough, A.G., Loades, K., McKenzie, B.M., 2016. Root hairs aid soil penetration by
562 anchoring the root surface to pore walls. *Journal of Experimental Botany* 67, 1071–1078.
563 doi:10.1093/jxb/erv560

564 Bentler, P.M., 1990. Comparative fit indexes in structural models. *Psychological Bulletin* 107,
565 238–246. doi:10.1037/0033-2909.107.2.238

566 Beschoren da Costa, P., Benucci, G.M.N., Chou, M.-Y., Van Wyk, J., Chretien, M., Bonito, G.,
567 2022. Soil Origin and Plant Genotype Modulate Switchgrass Aboveground Productivity
568 and Root Microbiome Assembly. *mBio* 13, e00079-22. doi:10.1128/mbio.00079-22

569 Bickel, S., Or, D., 2023. Aqueous habitats and carbon inputs shape the microscale geography and
570 interaction ranges of soil bacteria. *Communications Biology* 6, 1–10.
571 doi:10.1038/s42003-023-04703-7

572 Bodner, G., Leitner, D., Kaul, H.-P., 2014. Coarse and fine root plants affect pore size
573 distributions differently. *Plant and Soil* 380, 133–151. doi:10.1007/s11104-014-2079-8

574 Bodner, G., Mentler, A., Keiblinger, K., 2021. Plant Roots for Sustainable Soil Structure
575 Management in Cropping Systems, in: The Root Systems in Sustainable Agricultural
576 Intensification. John Wiley & Sons, Ltd, pp. 45–90. doi:10.1002/9781119525417.ch3

577 Borer, B., Tecon, R., Or, D., 2018. Spatial organization of bacterial populations in response to
578 oxygen and carbon counter-gradients in pore networks. *Nature Communications* 9, 769.
579 doi:10.1038/s41467-018-03187-y

580 Borgefors, G., 1996. On Digital Distance Transforms in Three Dimensions. *Computer Vision
581 and Image Understanding* 64, 368–376. doi:10.1006/cviu.1996.0065

582 Buades, A., Coll, B., Morel, J.-M., 2011. Non-Local Means Denoising. *Image Processing On
583 Line* 1, 208–212. doi:10.5201/ipol.2011.bcm_nlm

584 Casler, M.D., Vogel, K.P., Taliaferro, C.M., Ehlke, N.J., Berdahl, J.D., Brummer, E.C.,
585 Kallenbach, R.L., West, C.P., Mitchell, R.B., 2007. Latitudinal and Longitudinal
586 Adaptation of Switchgrass Populations. *Crop Science* 47, 2249–2260.
587 doi:10.2135/cropsci2006.12.0780

588 Casler, M.D., Vogel, K.P., Taliaferro, C.M., Wynia, R.L., 2004. Latitudinal Adaptation of
589 Switchgrass Populations. *Crop Science* 44, 293–303. doi:10.2135/cropsci2004.2930

590 Chimungu, J.G., Loades, K.W., Lynch, J.P., 2015. Root anatomical phenes predict root
591 penetration ability and biomechanical properties in maize (*Zea Mays*). *Journal of
592 Experimental Botany* 66, 3151–3162. doi:10.1093/jxb/erv121

593 Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J., 2008. Fast nonlocal filtering applied
594 to electron cryomicroscopy, in: 2008 5th IEEE International Symposium on Biomedical
595 Imaging: From Nano to Macro. Presented at the 2008 5th IEEE International Symposium
596 on Biomedical Imaging (ISBI 2008), IEEE, Paris, France, pp. 1331–1334.
597 doi:10.1109/ISBI.2008.4541250

598 de Graaff, M.-A., Jastrow, J.D., Gillette, S., Johns, A., Wullschleger, S.D., 2014. Differential
599 priming of soil carbon driven by soil depth and root impacts on carbon availability. *Soil
600 Biology and Biochemistry* 69, 147–156. doi:10.1016/j.soilbio.2013.10.047

601 de Graaff, M.-A., Six, J., Jastrow, J.D., Schadt, C.W., Wullschleger, S.D., 2013. Variation in root
602 architecture among switchgrass cultivars impacts root decomposition rates. *Soil Biology
603 and Biochemistry* 58, 198–206. doi:10.1016/j.soilbio.2012.11.015

604 Dungait, J.A.J., Hopkins, D.W., Gregory, A.S., Whitmore, A.P., 2012. Soil organic matter
605 turnover is governed by accessibility not recalcitrance. *Global Change Biology* 18, 1781–
606 1796. doi:10.1111/j.1365-2486.2012.02665.x

607 Eisenhauer, N., Bowker, M.A., Grace, J.B., Powell, J.R., 2015. From patterns to causal
608 understanding: Structural equation modeling (SEM) in soil ecology. *Pedobiologia* 58, 65–
609 72. doi:10.1016/j.pedobi.2015.03.002

610 Ekschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M., Gleixner, G.,
611 Hartmann, A., Kästner, M., Marhan, S., Miltner, A., Scheu, S., Wolters, V., 2008. Soil-
612 carbon preservation through habitat constraints and biological limitations on decomposer
613 activity. *Journal of Plant Nutrition and Soil Science* 171, 27–35.
614 doi:10.1002/jpln.200700051

615 Emmett, B.D., Youngblut, N.D., Buckley, D.H., Drinkwater, L.E., 2017. Plant Phylogeny and
616 Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an
617 Agricultural Field. *Frontiers in Microbiology* 8.

618 Felzenswalb, P.F., Huttenlocher, D.P., 2012. Distance Transforms of Sampled Functions.
619 Theory of Computing 8, 415–428. doi:10.4086/toc.2012.v008a019

620 Fort, F., Freschet, G.T., 2020. Plant ecological indicator values as predictors of fine-root trait
621 variations. Journal of Ecology 108, 1565–1577. doi:10.1111/1365-2745.13368

622 Franklin, S.M., Kravchenko, A.N., Vargas, R., Vasilas, B., Fuhrmann, J.J., Jin, Y., 2021. The
623 unexplored role of preferential flow in soil carbon dynamics. Soil Biology and
624 Biochemistry 161, 108398. doi:10.1016/j.soilbio.2021.108398

625 Garten, C.T., Smith, J.L., Tyler, D.D., Amonette, J.E., Bailey, V.L., Brice, D.J., Castro, H.F.,
626 Graham, R.L., Gunderson, C.A., Izaurrealde, R.C., Jardine, P.M., Jastrow, J.D., Kerley,
627 M.K., Matamala, R., Mayes, M.A., Metting, F.B., Miller, R.M., Moran, K.K., Post,
628 W.M., Sands, R.D., Schadt, C.W., Phillips, J.R., Thomson, A.M., Vugteveen, T., West,
629 T.O., Wullschleger, S.D., 2010. Intra-annual changes in biomass, carbon, and nitrogen
630 dynamics at 4-year old switchgrass field trials in west Tennessee, USA. Agriculture,
631 Ecosystems & Environment 136, 177–184. doi:10.1016/j.agee.2009.12.019

632 Garten, C.T., Wullschleger, S.D., 2000. Soil Carbon Dynamics beneath Switchgrass as Indicated
633 by Stable Isotope Analysis. Journal of Environmental Quality 29, 645–653.
634 doi:10.2134/jeq2000.00472425002900020036x

635 Gelfand, I., Hamilton, S.K., Kravchenko, A.N., Jackson, R.D., Thelen, K.D., Robertson, G.P.,
636 2020. Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light
637 Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and
638 without BECCS. Environmental Science & Technology 54, 2961–2974.
639 doi:10.1021/acs.est.9b07019

640 Grace, J.B., 2006. Structural Equation Modeling and Natural Systems. Cambridge University
641 Press, Cambridge. doi:10.1017/CBO9780511617799

642 Grandy, A.S., Neff, J.C., 2008. Molecular C dynamics downstream: The biochemical
643 decomposition sequence and its impact on soil organic matter structure and function.
644 Science of The Total Environment, BIOGEOCHEMISTRY OF FORESTED
645 ECOSYSTEM - Selected papers from BIOGEMON, the 5th International Symposium
646 on Ecosystem Behaviour, held at the University of California, Santa Cruz, on June 25–
647 30, 2006 404, 297–307. doi:10.1016/j.scitotenv.2007.11.013

648 Griffiths, M., Wang, X., Dhakal, K., Guo, H., Seethepalli, A., Kang, Y., York, L.M., 2022.
649 Interactions among rooting traits for deep water and nitrogen uptake in upland and
650 lowland ecotypes of switchgrass (*Panicum virgatum* L.). Journal of Experimental Botany
651 73, 967–979. doi:10.1093/jxb/erab437

652 Gyssels, G., Poesen, J., Bochet, E., Li, Y., 2005. Impact of plant roots on the resistance of soils
653 to erosion by water: a review. Progress in Physical Geography: Earth and Environment
654 29, 189–217. doi:10.1191/0309133305pp443ra

655 Haque, M., Epplin, F.M., Taliaferro, C.M., 2009. Nitrogen and Harvest Frequency Effect on
656 Yield and Cost for Four Perennial Grasses. Agronomy Journal 101, 1463–1469.
657 doi:10.2134/agronj2009.0193

658 Helliwell, J.R., Sturrock, C.J., Miller, A.J., Whalley, W.R., Mooney, S.J., 2019. The role of plant
659 species and soil condition in the structural development of the rhizosphere. Plant, Cell &
660 Environment 42, 1974–1986. doi:10.1111/pce.13529

661 Henneron, L., Balesdent, J., Alvarez, G., Barré, P., Baudin, F., Basile-Doelsch, I., Cécillon, L.,
662 Fernandez-Martinez, A., Hatté, C., Fontaine, S., 2022. Bioenergetic control of soil carbon

663 dynamics across depth. *Nature Communications* 13, 7676. doi:10.1038/s41467-022-
664 34951-w

665 Hildebrand, T., Rüegsegger, P., 1997. A new method for the model-independent assessment of
666 thickness in three-dimensional images. *Journal of Microscopy* 185, 67–75.
667 doi:10.1046/j.1365-2818.1997.1340694.x

668 Hu, L., Bentler, P.M., 1999. Cutoff criteria for fit indexes in covariance structure analysis:
669 Conventional criteria versus new alternatives. *Structural Equation Modeling: A
670 Multidisciplinary Journal* 6, 1–55. doi:10.1080/10705519909540118

671 Huang, X.-F., Chaparro, J.M., Reardon, K.F., Zhang, R., Shen, Q., Vivanco, J.M., 2014.
672 Rhizosphere interactions: root exudates, microbes, and microbial communities. *Botany*
673 92, 267–275. doi:10.1139/cjb-2013-0225

674 Jiang, Y., Li, S., Li, R., Zhang, J., Liu, Y., Lv, L., Zhu, H., Wu, W., Li, W., 2017. Plant cultivars
675 imprint the rhizosphere bacterial community composition and association networks. *Soil
676 Biology and Biochemistry* 109, 145–155. doi:10.1016/j.soilbio.2017.02.010

677 Kallenbach, C.M., Grandy, A.S., Frey, S.D., Diefendorf, A.F., 2015. Microbial physiology and
678 necromass regulate agricultural soil carbon accumulation. *Soil Biology and Biochemistry*
679 91, 279–290. doi:10.1016/j.soilbio.2015.09.005

680 Kalyn, A.L., Van Rees, K.C.J., 2006. Contribution of fine roots to ecosystem biomass and net
681 primary production in black spruce, aspen, and jack pine forests in Saskatchewan. The
682 Fluxnet-Canada Research Network: Influence of Climate and Disturbance on Carbon
683 Cycling in Forests and Peatlands 140, 236–243. doi:10.1016/j.agrformet.2005.08.019

684 Keiluweit, M., Gee, K., Denney, A., Fendorf, S., 2018. Anoxic microsites in upland soils
685 dominantly controlled by clay content. *Soil Biology & Biochemistry*.

686 Kelly-Slatten, M.J., Stewart, C.E., Tfaily, M.M., Jastrow, J.D., Sasso, A., de Graaff, M.-A.,
687 2023. Root traits of perennial C4 grasses contribute to cultivar variations in soil
688 chemistry and species patterns in particulate and mineral-associated carbon pool
689 formation. *GCB Bioenergy* 15, 613–629. doi:10.1111/gcbb.13041

690 Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Blagodatskaya, E.V., Kuzyakov, Y.,
691 2019a. Spatial patterns of extracellular enzymes: Combining X-ray computed micro-
692 tomography and 2D zymography. *Soil Biology and Biochemistry* 135, 411–419.
693 doi:10.1016/j.soilbio.2019.06.002

694 Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Quigley, M.Y., Robertson, G.P.,
695 Kuzyakov, Y., 2019b. Microbial spatial footprint as a driver of soil carbon stabilization.
696 *Nature Communications* 10, 3121. doi:10.1038/s41467-019-11057-4

697 Kravchenko, A.N., Robertson, G.P., 2011. Whole-Profile Soil Carbon Stocks: The Danger of
698 Assuming Too Much from Analyses of Too Little. *Soil Science Society of America
699 Journal* 75, 235–240. doi:10.2136/sssaj2010.0076

700 Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: Concept &
701 review. *Soil Biology and Biochemistry* 83, 184–199. doi:10.1016/j.soilbio.2015.01.025

702 Kwan, J.L.Y., Chan, W., 2011. Comparing standardized coefficients in structural equation
703 modeling: a model reparameterization approach. *Behavior Research Methods* 43, 730–
704 745. doi:10.3758/s13428-011-0088-6

705 Lee, J.H., Lucas, M., Guber, A.K., Li, X., Kravchenko, A.N., 2023. Interactions among soil
706 texture, pore structure, and labile carbon influence soil carbon gains. *Geoderma* 439,
707 116675. doi:10.1016/j.geoderma.2023.116675

708 Li, X., Sarma, S.J., Sumner, L.W., Jones, A.D., Last, R.L., 2022. Switchgrass Metabolomics
709 Reveals Striking Genotypic and Developmental Differences in Specialized Metabolic
710 Phenotypes. *Journal of Agricultural and Food Chemistry* 70, 8010–8023.
711 doi:10.1021/acs.jafc.2c01306

712 Li, Z., Kravchenko, A.N., Cupples, A., Guber, A.K., Kuzyakov, Y., Philip Robertson, G.,
713 Blagodatskaya, E., 2024. Composition and metabolism of microbial communities in soil
714 pores. *Nature Communications* 15, 3578. doi:10.1038/s41467-024-47755-x

715 Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial
716 necromass contribution to soil organic matter. *Global Change Biology* 25, 3578–3590.
717 doi:10.1111/gcb.14781

718 Liang, J., Zhou, Z., Huo, C., Shi, Z., Cole, J.R., Huang, L., Konstantinidis, K.T., Li, X., Liu, B.,
719 Luo, Z., Penton, C.R., Schuur, E.A.G., Tiedje, J.M., Wang, Y.-P., Wu, L., Xia, J., Zhou,
720 J., Luo, Y., 2018. More replenishment than priming loss of soil organic carbon with
721 additional carbon input. *Nature Communications* 9, 3175. doi:10.1038/s41467-018-
722 05667-7

723 Liebig, M.A., Johnson, H.A., Hanson, J.D., Frank, A.B., 2005. Soil carbon under switchgrass
724 stands and cultivated cropland. *Biomass and Bioenergy* 28, 347–354.
725 doi:10.1016/j.biombioe.2004.11.004

726 Liebig, M.A., Schmer, M.R., Vogel, K.P., Mitchell, R.B., 2008. Soil Carbon Storage by
727 Switchgrass Grown for Bioenergy. *BioEnergy Research* 1, 215–222. doi:10.1007/s12155-
728 008-9019-5

729 Liu, C., Lou, L., Deng, J., Li, D., Yuan, S., Cai, Q., 2016. Morph-physiological responses of two
730 switchgrass (*Panicum virgatum* L.) cultivars to cadmium stress. *Grassland Science* 62,
731 92–101. doi:10.1111/grs.12119

732 Liu, Y., Zhang, X., Tran, H., Shan, L., Kim, J., Childs, K., Ervin, E.H., Frazier, T., Zhao, B.,
733 2015. Assessment of drought tolerance of 49 switchgrass (*Panicum virgatum*) genotypes
734 using physiological and morphological parameters. *Biotechnology for Biofuels* 8, 152.
735 doi:10.1186/s13068-015-0342-8

736 Lovell, J.T., MacQueen, A.H., Mamidi, S., Bonnette, J., Jenkins, J., Napier, J.D., Sreedasyam,
737 A., Healey, A., Session, A., Shu, S., Barry, K., Bonos, S., Boston, L., Daum, C.,
738 Deshpande, S., Ewing, A., Grabowski, P.P., Haque, T., Harrison, M., Jiang, J., Kudrna,
739 D., Lipzen, A., Pendergast, T.H., Plott, C., Qi, P., Sasaki, C.A., Shakirov, E.V., Sims, D.,
740 Sharma, M., Sharma, R., Stewart, A., Singan, V.R., Tang, Y., Thibivillier, S., Webber, J.,
741 Weng, X., Williams, M., Wu, G.A., Yoshinaga, Y., Zane, M., Zhang, L., Zhang, J.,
742 Behrman, K.D., Boe, A.R., Fay, P.A., Fritschi, F.B., Jastrow, J.D., Lloyd-Reilley, J.,
743 Martínez-Reyna, J.M., Matamala, R., Mitchell, R.B., Rouquette, F.M., Ronald, P., Saha,
744 M., Tobias, C.M., Udvardi, M., Wing, R.A., Wu, Y., Bartley, L.E., Casler, M., Devos,
745 K.M., Lowry, D.B., Rokhsar, D.S., Grimwood, J., Juenger, T.E., Schmutz, J., 2021.
746 Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. *Nature*
747 590, 438–444. doi:10.1038/s41586-020-03127-1

748 Lowry, D.B., Lovell, J.T., Zhang, L., Bonnette, J., Fay, P.A., Mitchell, R.B., Lloyd-Reilley, J.,
749 Boe, A.R., Wu, Y., Rouquette, F.M., Wynia, R.L., Weng, X., Behrman, K.D., Healey, A.,
750 Barry, K., Lipzen, A., Bauer, D., Sharma, A., Jenkins, J., Schmutz, J., Fritschi, F.B.,
751 Juenger, T.E., 2019. QTL × environment interactions underlie adaptive divergence in
752 switchgrass across a large latitudinal gradient. *Proceedings of the National Academy of
753 Sciences* 116, 12933–12941. doi:10.1073/pnas.1821543116

754 Lucas, M., Nguyen, L.T.T., Guber, A., Kravchenko, A.N., 2022. Cover crop influence on pore
755 size distribution and biopore dynamics: Enumerating root and soil faunal effects.
756 *Frontiers in Plant Science* 13, 928569. doi:10.3389/fpls.2022.928569

757 Ma, Z., Wood, C.W., Bransby, D.I., 2000. Impacts of soil management on root characteristics of
758 switchgrass. *Biomass and Bioenergy* 18, 105–112. doi:10.1016/S0961-9534(99)00076-8

759 Mahannopkul, K., Jotisankasa, A., 2019. Influences of root concentration and suction on
760 *Chrysopogon zizanioides* reinforcement of soil. *Soils and Foundations* 59, 500–516.
761 doi:10.1016/j.sandf.2018.12.014

762 Makovetsky, R., Piche, N., Marsh, M., 2018. Dragonfly as a Platform for Easy Image-based
763 Deep Learning Applications. *Microscopy and Microanalysis* 24, 532–533.
764 doi:10.1017/S143192761800315X

765 Martinez-Feria, R., Basso, B., 2020. Predicting soil carbon changes in switchgrass grown on
766 marginal lands under climate change and adaptation strategies. *GCB Bioenergy* 12, 742–
767 755. doi:10.1111/gcbb.12726

768 McCormack, M.L., Dickie, I.A., Eissenstat, D.M., Fahey, T.J., Fernandez, C.W., Guo, D.,
769 Helmisaari, H.-S., Hobbie, E.A., Iversen, C.M., Jackson, R.B., Leppälämmi-Kujansuu, J.,
770 Norby, R.J., Phillips, R.P., Pregitzer, K.S., Pritchard, S.G., Rewald, B., Zadworny, M.,
771 2015. Redefining fine roots improves understanding of below-ground contributions to
772 terrestrial biosphere processes. *New Phytologist* 207, 505–518. doi:10.1111/nph.13363

773 McCully, M.E., 1999. ROOTS IN SOIL: Unearthing the Complexities of Roots and Their
774 Rhizospheres. *Annual Review of Plant Physiology and Plant Molecular Biology* 50, 695–
775 718. doi:10.1146/annurev.arplant.50.1.695

776 McLaughlin, S.B., Adams Kszos, L., 2005. Development of switchgrass (*Panicum virgatum*) as a
777 bioenergy feedstock in the United States. *Biomass and Bioenergy* 28, 515–535.
778 doi:10.1016/j.biombioe.2004.05.006

779 McLaughlin, S.B., de la Torre Ugarte, D.G., Garten, C.T., Lynd, L.R., Sanderson, M.A., Tolbert,
780 V.R., Wolf, D.D., 2002. High-Value Renewable Energy from Prairie Grasses.
781 *Environmental Science & Technology* 36, 2122–2129. doi:10.1021/es010963d

782 Miltner, A., Bombach, P., Schmidt-Brücken, B., Kästner, M., 2012. SOM genesis: microbial
783 biomass as a significant source. *Biogeochemistry* 111, 41–55. doi:10.1007/s10533-011-
784 9658-z

785 Mitchell, R., Vogel, K.P., Uden, D.R., 2012. The feasibility of switchgrass for biofuel
786 production. *Biofuels* 3, 47–59. doi:10.4155/bfs.11.153

787 Mosier, S., Kelly, L., Ozlu, E., Robertson, G.P., 2024. Switchgrass (*Panicum virgatum* L.)
788 cultivars have similar impacts on soil carbon and nitrogen stocks and microbial function.
789 *GCB Bioenergy* 16, e13125. doi:10.1111/gcbb.13125

790 Oates, L.G., Duncan, D.S., Gelfand, I., Millar, N., Robertson, G.P., Jackson, R.D., 2016. Nitrous
791 oxide emissions during establishment of eight alternative cellulosic bioenergy cropping
792 systems in the North Central United States. *GCB Bioenergy* 8, 539–549.
793 doi:10.1111/gcbb.12268

794 Oburger, E., Schmidt, H., 2016. New Methods To Unravel Rhizosphere Processes. *Trends in
795 Plant Science, Special Issue: Unravelling the Secrets of the Rhizosphere* 21, 243–255.
796 doi:10.1016/j.tplants.2015.12.005

797 Paez-Garcia, A., Motes, C.M., Scheible, W.-R., Chen, R., Blancaflor, E.B., Monteros, M.J.,
798 2015. Root Traits and Phenotyping Strategies for Plant Improvement. *Plants* 4, 334–355.
799 doi:10.3390/plants4020334

800 Panchal, P., Preece, C., Peñuelas, J., Giri, J., 2022. Soil carbon sequestration by root exudates.
801 Trends in Plant Science 27, 749–757. doi:10.1016/j.tplants.2022.04.009

802 Parrish, D.J., Fike, J.H., 2005. The Biology and Agronomy of Switchgrass for Biofuels. Critical
803 Reviews in Plant Sciences 24, 423–459. doi:10.1080/07352680500316433

804 Paterson, E., Sim, A., 1999. Rhizodeposition and C-partitioning of *Lolium perenne* in axenic
805 culture affected by nitrogen supply and defoliation. Plant and Soil 216, 155–164.
806 doi:10.1023/A:1004789407065

807 Paul, E.A., Harris, D., Klug, M., Ruess, R., 1999. The determination of microbial biomass, in:
808 Standard Soil Methods for Long-Term Ecological Research. Oxford University Press,
809 New York, NY, pp. 291–317.

810 Perry, S., Falvo, G., Mosier, S., Robertson, G.P., 2023. Long-term changes in soil carbon and
811 nitrogen fractions in switchgrass, native grasses, and no-till corn bioenergy production
812 systems. Soil Science Society of America Journal n/a. doi:10.1002/saj2.20575

813 Preacher, K.J., Hayes, A.F., 2004. SPSS and SAS procedures for estimating indirect effects in
814 simple mediation models. Behavior Research Methods, Instruments, & Computers 36,
815 717–731. doi:10.3758/BF03206553

816 Quigley, M.Y., Kravchenko, A.N., 2022. Inputs of root-derived carbon into soil and its losses are
817 associated with pore-size distributions. Geoderma 410, 115667.
818 doi:10.1016/j.geoderma.2021.115667

819 Rawlins, B.G., Wragg, J., Reinhard, C., Atwood, R.C., Houston, A., Lark, R.M., Rudolph, S.,
820 2016. Three-dimensional soil organic matter distribution, accessibility and microbial
821 respiration in macroaggregates using osmium staining and synchrotron X-ray computed
822 tomography. SOIL 2, 659–671. doi:10.5194/soil-2-659-2016

823 Raynaud, X., Nunan, N., 2014. Spatial Ecology of Bacteria at the Microscale in Soil. PLOS ONE
824 9, e87217. doi:10.1371/journal.pone.0087217

825 Reubens, B., Poesen, J., Danjon, F., Geudens, G., Muys, B., 2007. The role of fine and coarse
826 roots in shallow slope stability and soil erosion control with a focus on root system
827 architecture: a review. Trees 21, 385–402. doi:10.1007/s00468-007-0132-4

828 Robertson, G.P., Hamilton, S.K., Barham, B.L., Dale, B.E., Izaurrealde, R.C., Jackson, R.D.,
829 Landis, D.A., Swinton, S.M., Thelen, K.D., Tiedje, J.M., 2017. Cellulosic biofuel
830 contributions to a sustainable energy future: Choices and outcomes. Science 356,
831 eaal2324. doi:10.1126/science.aal2324

832 Rohe, L., Apelt, B., Vogel, H.-J., Well, R., Wu, G.-M., Schlüter, S., 2021. Denitrification in soil
833 as a function of oxygen availability at the microscale. Biogeosciences 18, 1185–1201.
834 doi:10.5194/bg-18-1185-2021

835 Roley, S.S., Ulbrich, T.C., Robertson, G.P., 2021. Nitrogen Fixation and Resorption Efficiency
836 Differences Among Twelve Upland and Lowland Switchgrass Cultivars. Phytobiomes
837 Journal 5, 97–107. doi:10.1094/PBIOMES-11-19-0064-FI

838 Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical
839 Image Segmentation, in: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (Eds.),
840 Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture
841 Notes in Computer Science. Springer International Publishing, Cham, pp. 234–241.
842 doi:10.1007/978-3-319-24574-4_28

843 Roosendaal, D., Stewart, C.E., Denef, K., Follett, R.F., Pruessner, E., Comas, L.H., Varvel, G.E.,
844 Saathoff, A., Palmer, N., Sarath, G., Jin, V.L., Schmer, M., Soundararajan, M., 2016.

845 Switchgrass ecotypes alter microbial contribution to deep-soil C. *SOIL* 2, 185–197.
 846 doi:10.5194/soil-2-185-2016

847 Ruess, R.W., Hendrick, R.L., Burton, A.J., Pregitzer, K.S., Sveinbjornsson, B., Allen, M.F.,
 848 Maurer, G.E., 2003. COUPLING FINE ROOT DYNAMICS WITH ECOSYSTEM
 849 CARBON CYCLING IN BLACK SPRUCE FORESTS OF INTERIOR ALASKA.
 850 *Ecological Monographs* 73, 643–662. doi:10.1890/02-4032

851 Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V., Ho Lem,
 852 C., 2005. The Potential of C4 Perennial Grasses for Developing a Global BIOHEAT
 853 Industry. *Critical Reviews in Plant Sciences* 24, 461–495.
 854 doi:10.1080/07352680500316508

855 Sanderson, M.A., Adler, P.R., 2008. Perennial Forages as Second Generation Bioenergy Crops.
 856 *International Journal of Molecular Sciences* 9, 768–788. doi:10.3390/ijms9050768

857 Sanford, G.R., Oates, L.G., Jasrotia, P., Thelen, K.D., Robertson, G.P., Jackson, R.D., 2016.
 858 Comparative productivity of alternative cellulosic bioenergy cropping systems in the
 859 North Central USA. *Agriculture, Ecosystems & Environment* 216, 344–355.
 860 doi:10.1016/j.agee.2015.10.018

861 Sawyer, A., Staley, C., Lamb, J., Sheaffer, C., Kaiser, T., Gutknecht, J., Sadowsky, M.J., Rosen,
 862 C., 2019. Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial
 863 diversity. *Applied Microbiology and Biotechnology* 103, 1973–1987.
 864 doi:10.1007/s00253-018-9535-y

865 Scheidweiler, D., Bordoloi, A.D., Jiao, W., Sentchilo, V., Bollani, M., Chhun, A., Engel, P., de
 866 Anna, P., 2024. Spatial structure, chemotaxis and quorum sensing shape bacterial
 867 biomass accumulation in complex porous media. *Nature Communications* 15, 191.
 868 doi:10.1038/s41467-023-44267-y

869 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
 870 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V.,
 871 Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for
 872 biological-image analysis. *Nature Methods* 9, 676–682. doi:10.1038/nmeth.2019

873 Schlüter, S., Leuther, F., Albrecht, L., Hoeschen, C., Kilian, R., Surey, R., Mikutta, R., Kaiser,
 874 K., Mueller, C.W., Vogel, H.-J., 2022. Microscale carbon distribution around pores and
 875 particulate organic matter varies with soil moisture regime. *Nature Communications* 13,
 876 2098. doi:10.1038/s41467-022-29605-w

877 Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D., 2014. Image processing of multiphase
 878 images obtained via X-ray microtomography: A review. *Water Resources Research* 50,
 879 3615–3639. doi:10.1002/2014WR015256

880 Schlüter, S., Vogel, H.-J., 2016. Analysis of Soil Structure Turnover with Garnet Particles and
 881 X-Ray Microtomography. *PLOS ONE* 11, e0159948. doi:10.1371/journal.pone.0159948

882 Schlüter, S., Zawallich, J., Vogel, H.-J., Dörsch, P., 2019. Physical constraints for respiration in
 883 microbial hotspots in soil and their importance for denitrification. *Biogeosciences* 16,
 884 3665–3678. doi:10.5194/bg-16-3665-2019

885 Schumacker, R.E., Lomax, R.G., 1996. A Beginner's Guide to Structural Equation Modeling:
 886 Fourth Edition, 2nd ed. Psychology Press, New York. doi:10.4324/9781410610904

887 Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G.T., York, L.M., 2021.
 888 RhizoVision Explorer: open-source software for root image analysis and measurement
 889 standardization. *AoB PLANTS* 13, plab056. doi:10.1093/aobpla/plab056

890 Sehgal, A., Sita, K., Rehman, A., Farooq, M., Kumar, S., Yadav, R., Nayyar, H., Singh, S.,
891 Siddique, K.H.M., 2021. Chapter 13 - Lentil, in: Sadras, V.O., Calderini, D.F. (Eds.),
892 Crop Physiology Case Histories for Major Crops. Academic Press, pp. 408–428.
893 doi:10.1016/B978-0-12-819194-1.00013-X

894 Semchenko, M., Xue, P., Leigh, T., 2021. Functional diversity and identity of plant genotypes
895 regulate rhizodeposition and soil microbial activity. *New Phytologist* 232, 776–787.
896 doi:10.1111/nph.17604

897 Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and Fungal Contributions to
898 Carbon Sequestration in Agroecosystems. *Soil Science Society of America Journal* 70,
899 555–569. doi:10.2136/sssaj2004.0347

900 Sokol, N.W., Kuebbing, Sara.E., Karlsen-Ayala, E., Bradford, M.A., 2019. Evidence for the
901 primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. *New
902 Phytologist* 221, 233–246. doi:10.1111/nph.15361

903 Sprunger, C.D., Oates, L.G., Jackson, R.D., Robertson, G.P., 2017. Plant community
904 composition influences fine root production and biomass allocation in perennial
905 bioenergy cropping systems of the upper Midwest, USA. *Biomass and Bioenergy* 105,
906 248–258. doi:10.1016/j.biombioe.2017.07.007

907 Steinaker, D.F., Wilson, S.D., 2008. Phenology of fine roots and leaves in forest and grassland.
908 *Journal of Ecology* 96, 1222–1229. doi:10.1111/j.1365-2745.2008.01439.x

909 Strong, D.T., Wever, H.D., Merckx, R., Recous, S., 2004. Spatial location of carbon
910 decomposition in the soil pore system: Spatial location of carbon decomposition.
911 *European Journal of Soil Science* 55, 739–750. doi:10.1111/j.1365-2389.2004.00639.x

912 Stroup, W.W., 2002. Power analysis based on spatial effects mixed models: A tool for
913 comparing design and analysis strategies in the presence of spatial variability. *Journal of
914 Agricultural, Biological, and Environmental Statistics* 7, 491–511.
915 doi:10.1198/108571102780

916 Udwatta, R.P., Anderson, S.H., Gantzer, C.J., Garrett, H.E., 2008. Influence of Prairie
917 Restoration on CT-Measured Soil Pore Characteristics. *Journal of Environmental Quality*
918 37, 219–228. doi:10.2134/jeq2007.0227

919 Ulbrich, T.C., Friesen, M.L., Roley, S.S., Tiemann, L.K., Evans, S.E., 2021. Intraspecific
920 Variability in Root Traits and Edaphic Conditions Influence Soil Microbiomes Across 12
921 Switchgrass Cultivars. *Phytobiomes Journal* 5, 108–120. doi:10.1094/PBIOMES-12-19-
922 0069-FI

923 Valverde-Barrantes, O.J., Freschet, G.T., Roumet, C., Blackwood, C.B., 2017. A worldview of
924 root traits: the influence of ancestry, growth form, climate and mycorrhizal association on
925 the functional trait variation of fine-root tissues in seed plants. *New Phytologist* 215,
926 1562–1573. doi:10.1111/nph.14571

927 Védère, C., Vieublé Gonod, L., Pouteau, V., Girardin, C., Chenu, C., 2020. Spatial and temporal
928 evolution of detritusphere hotspots at different soil moistures. *Soil Biology and
929 Biochemistry* 150, 107975. doi:10.1016/j.soilbio.2020.107975

930 Vogel, H.-J., Weller, U., Schlüter, S., 2010. Quantification of soil structure based on Minkowski
931 functions. *Computers & Geosciences* 36, 1236–1245. doi:10.1016/j.cageo.2010.03.007

932 Vogel, K.P., Schmer, M.R., Mitchell, R.B., 2005. Plant Adaptation Regions: Ecological and
933 Climatic Classification of Plant Materials. *Rangeland Ecology and Management* 58, 315–
934 319. doi:10.2111/1551-5028(2005)58[315:PAREAC]2.0.CO;2

935 Xu, J.G., Juma, N.G., 1994. Relations of shoot C, root C and root length with root-released C of
936 two barley cultivars and the decomposition of root-released C in soil. Canadian Journal of
937 Soil Science 74, 17–22. doi:10.4141/cjss94-002

938 Yang, J., Worley, E., Ma, Q., Li, J., Torres-Jerez, I., Li, G., Zhao, P.X., Xu, Y., Tang, Y.,
939 Udvardi, M., 2016. Nitrogen remobilization and conservation, and underlying
940 senescence-associated gene expression in the perennial switchgrass *Panicum virgatum*.
941 New Phytologist 211, 75–89. doi:10.1111/nph.13898

942 Yang, Y., Tilman, D., Furey, G., Lehman, C., 2019. Soil carbon sequestration accelerated by
943 restoration of grassland biodiversity. Nature Communications 10, 718.
944 doi:10.1038/s41467-019-108636-w

945 Zhang, P., Wang, Y., Xu, L., Sun, H., Li, R., Zhou, J., 2022. Factors controlling the spatial
946 variability of soil aggregates and associated organic carbon across a semi-humid
947 watershed. Science of The Total Environment 809, 151155.
948 doi:10.1016/j.scitotenv.2021.151155

949 Zhang, Y., Zalapa, J., Jakubowski, A.R., Price, D.L., Acharya, A., Wei, Y., Brummer, E.C.,
950 Kaeppeler, S.M., Casler, M.D., 2011. Natural Hybrids and Gene Flow between Upland
951 and Lowland Switchgrass. Crop Science 51, 2626–2641.
952 doi:10.2135/cropsci2011.02.0104

953

954

955