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Abstract
Switchgrass (Panicum virgatum L.) is a promising feedstock for biofuel production, with
diverse cultivars representing several ecotypes adapted to different environmental conditions

within the contiguous USA. Multiple field studies have demonstrated that monoculture
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switchgrass cultivation leads to slow to negligible soil carbon (C) gains, an outcome unexpected
for such a deep-rooted perennial. We hypothesize that different switchgrass cultivars have
disparate impacts on soil C gains, and one of the reasons is variations in physical characteristics
of their roots, where roots directly and indirectly influence formation of soil pores. We tested this
hypothesis at Great Lakes Bioenergy Research Center’s research site in Michigan using two
lowland cultivars (Alamo and Kanlow) and four upland cultivars (Southlow, Cave-in-Rock,
Blackwell, and Trailblazer). Three types of soil samples were collected: 20cm diameter (Q)
intact cores used for root analyses; Scm @ intact cores subjected to X-ray computed tomography
scanning used for pore characterization; and disturbed soil samples used for microbial biomass C
(MBC) and soil C measurements. Path analysis was used to explore interactive relationships
among roots, soil pores, and their impact on MBC, and ultimately, on soil C contents across six
cultivars. The abundance of very fine roots (<200pum ) was positively associated with fractions
of pores in the same size range, but negatively with distances to pores and particulate organic
matter. Higher abundance of such roots also led to greater MBC, while greater volumes of
medium pores (50-200pm ) and shorter distances to pores increased MBC. Results suggest that
the greater proportion of very fine roots is a trait that can potentially stimulate soil C gains, with
pore characteristics serving as links for the relationship between such roots and C gains.
However, at present, ten years of cultivation generated no differences in soil C among the

studied cultivars.
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Introduction

Perennial grasses are more environmentally sustainable sources of bioenergy feedstock
production than annual crops (Robertson et al., 2017; Gelfand et al., 2020) because they require
fewer chemical inputs and generate fewer greenhouse gas emissions (Samson et al., 2005; Adler
et al., 2007; Oates et al., 2016). Switchgrass (Panicum virgatum L.) is recognized as a viable
biofuel feedstock due to its high biomass yield produced across a wide range of environmental
and climatic conditions and thus a greater energy production potential compared to many other
native perennial grasses (Parrish and Fike, 2005; Sanderson and Adler, 2008; Gelfand et al.,
2020). In addition, modeling studies project this deep-rooted perennial to increase soil carbon
(C) by as much as 0.78 Mg C ha! yr'! in the eastern U.S. (McLaughlin et al., 2002; McLaughlin
and Adams Kszos, 2005). Liebig et al. (2008) reported that 5-year switchgrass cultivation
increased soil C by ~1.1 Mg C ha'yr! in Great Plains states of U.S. (Nebraska, South Dakota,
and North Dakota). However, a number of recent field experiments showed that monoculture
switchgrass lags behind other candidate perennial bioenergy cropping systems in its C gains,
including mixtures of native grasses or restored prairie systems that involve switchgrass as one
of the plant species (Yang et al., 2019; Lee et al., 2023; Perry et al., 2023).

Switchgrass is a phenotypically diverse species with genetic variation among divergent
ecotypes and across environmental gradients of eastern North America (Casler et al., 2004, 2007,
Lovell et al., 2021). Lowland ecotype switchgrass originates from the southern U.S., which has a
warm and mesic climate, while the upland ecotype originates from more northern areas with a
drier and colder climate (Vogel et al., 2005; Zhang et al., 2011). Switchgrass cultivars of both
lowland and upland ecotypes have been selected for various bioenergy-related traits including

biomass yield, winter mortality, and drought tolerance (Haque et al., 2009; Mitchell et al., 2012;
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Lowry et al., 2019). We surmise that within-species diversity may also give rise to differences in
soil C accrual, though Mosier et al. (2024) failed to find cultivar differences.

The plant's root system plays a critical role in plant contributions to soil C gains, and
indeed, root characteristics of switchgrass cultivars differ substantially (de Graaff et al., 2013;
Ulbrich et al., 2021; Mosier et al., 2024). Roots directly contribute to soil C gains by transferring
organic C to the soil through their turnover and released rhizodeposits and exudates (Liang et al.,
2018; Sokol et al., 2019; Panchal et al., 2022). The chemical composition of rhizodeposits and
exudates is known to vary among different plant genotypes (Huang et al., 2014; Semchenko et
al., 2021). In switchgrass, An et al. (2013) found that the concentration of exudates differed
among 11 cultivars, and Li et al., (2022) found distinct differences in concentrations of exudates
between lowland and upland ecotypes. Disparate root-derived C sources can have different
influences on soil microorganisms (Emmett et al., 2017; Jiang et al., 2017), and several studies
have documented varied impacts of different switchgrass cultivars on soil microbial biomass,
microbial diversity, and microbial community composition (Sawyer et al., 2019; Roley et al.,
2021; Ulbrich et al., 2021; da Costa et al., 2022).

Fine roots are particularly important for soil C cycling, contributing substantially to soil
organic matter through their rapid turnover and subsequent decomposition; and their persistent C
inputs can constitute 30-80% of soil C across various ecosystems (Ruess et al., 2003; Kalyn and
Van Rees, 2006). Switchgrass roots <1 mm diameter () contributed to approximately 77% of
the total root biomass, and such fine roots accounted for 50% of the total biomass in the 0-150
cm soil profile within the 0-20 cm profile (An et al., 2022), where C processing actively occurred
(Henneron et al., 2022). Moreover, fine roots led to lower priming effect and greater soil C

accumulation compared to coarser roots (de Graaff et al., 2013; Adkins et al., 2016). Since the



92  biomass and length of such fine roots were found to differ among various switchgrass cultivars
93  (de Graaffetal., 2013; Liu et al., 2016), we hypothesize that such differences can be an
94  important cause leading to their distinct contributions to soil C processing and gains.
95 Roots also play a role in the formation of soil pore structure, defining size distributions
96 and spatial locations of pores within the soil matrix (Bodner et al., 2014; Bacq-Labreuil et al.,
97  2019; Helliwell et al., 2019; Lucas et al., 2022). That occurs both through direct impacts of roots
98 on arrangement of soil particles and penetration of soil aggregates, and through water extraction
99  (Angers and Caron, 1998; Bengough et al., 2016; Oburger and Schmidt, 2016). The size of the
100 impact varies depending on root characteristics (Mahannopkul and Jotisankasa, 2019), because
101  roots determine the water extraction strength (Assadollahi and Nowamooz, 2020).
102 Pores in tens to hundreds of pm O size range are especially relevant for microbial
103  abundance and activity, and consequently, for the processing and protection of the newly added
104  C (Strong et al., 2004; Kravchenko et al., 2019a; Franklin et al., 2021). Plants with a higher
105  density of fine roots tend to form pore structures dominated by fine pores compared to plants
106  with coarser roots (Bengough et al., 2016; Bodner et al., 2021). Spatial distributions of pores and
107  organic C sources in soils define oxygen and nutrient supply for soil microbial functioning and
108 concomitant fate of the C sources (Borer et al., 2018; Li et al., 2024; Scheidweiler et al., 2024).
109 A ubiquitous spread of organic residues, likely roots in switchgrass, can promote the
110  development of micro-habitats that foster microbial hotspots (Kuzyakov and Blagodatskaya,
111  2015; Li et al., 2024). The complex web of fine roots also can reduce the distance between soil
112 pores, forming such pores throughout the areas occupied by the roots (Gyssels et al., 2005;
113  Reubens et al., 2007). The proximity to pores governs microbial accessibility to C sources

114  located on soil particles and regulates aeration for soil microorganisms (Dungait et al., 2012;
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Schliiter and Vogel, 2016; Rohe et al., 2021), subsequently influencing their abundance and
activity (Ekschmitt et al., 2008; Schliiter et al., 2019).

The abundance of soil microorganisms promoted by optimal habitats with accessible
supplies of C can consequently lead to soil C accumulation upon their life and death. Microbially
processed organic matter can be more easily stabilized by soil mineral surfaces than that of plant-
originated C compounds (Grandy and Neff, 2008; Miltner et al., 2012). Microbial necromass
also contributes significantly to C accumulation, being transformed and stabilized within the soil
(Six et al., 2006; Miltner et al., 2012; Kallenbach et al., 2015; Liang et al., 2019).

Our objectives here are to quantify cultivar-level variations (i) in size distributions of
switchgrass roots, (i) in size distributions of soil pores and spatial patterns of pores and
particulate organic matter (POM), and (iii) to estimate the impact of roots and pores on soil
microbial biomass C (MBC), and ultimately, on soil C gains. We hypothesize that differences in
root sizes among switchgrass cultivars lead to differences in sizes and spatial distributions of soil

pores and POM fragments and consequently different MBC and soil C contents.

Materials and Methods
Experimental site and plant and soil sampling
The Great Lake Bioenergy Research Center’s Switchgrass Variety Experiment used in

this study is located at W.K. Kellogg Biological Station (42° 23°N, 85° 22°W), Michigan,

United States. The soil of the experimental site belongs to the Kalamazoo series (fine-loamy,
mixed, active, mesic Typic Hapludalf). For several years prior to the experiment’s establishment,
the field was in an alfalfa-soybean-maize rotation. In 2009, 12 switchgrass cultivars were

established in a randomized complete block design with plots 4.6 m % 12.2 m arranged in four
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replicated blocks. After the establishment year, all plots were annually fertilized with 56 kg ha!
of nitrogen as dry urea (46-0-0 NPK), and annually harvested post-frost following typical
practices (Sanford et al., 2016).

Four upland (Southlow, Cave-in-Rock, Blackwell, and Trailblazer) and two lowland
(Alamo and Kanlow) cultivars were selected for this study. We conducted two sampling
campaigns. First, three intact soil cores (20 cm height and 2 cm @), which we will refer to as tall
cores, were collected within 10 cm from crowns of three randomly selected plants in each block,
at 0-20 cm sampling depth. These tall cores were used for root scanning, and prior to analyses,
they were kept at -20 °C. While it is known that roots of switchgrass plants can grow to
substantial depths, most of the root biomass is often found within the topsoil across a comparable
set of switchgrass varieties (Anderson-Teixeira et al., 2013; de Graaff et al., 2014; Mosier et al.,
2024). Especially, switchgrass roots <500 pm @ contributed to 77% of the total root biomass,
and approximately 50% of the fine roots were located within 0-20 cm depth (An et al., 2022).
Since the focus of our work was on the comparisons among the cultivars, root measurements in
the topsoil were expected to provide most representative and accurate data for such comparisons.
All cultivars were sampled in July of 2016. Belowground biomass of switchgrass is known to
stabilize in the first two years since establishment, and seasonal changes in root biomass
dynamics, particularly below the 5 cm soil depth, are reported as minimal (Garten et al., 2010;
Yang et al., 2016). While some differences in cultivar phenology were present at the sampling
time, no detectable impact on root systems was expected.

Second, in October 2019, two intact soil cores (5 cm height and 5 cm ), which will be
referred to as short cores, and surrounding bulk soil were collected within 10 cm from crowns of

randomly selected plants of each block. We decided to focus on the soil at 5-10 cm depth,
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because it represents the portion of the soil profile most significantly affected by the roots with

the highest microbial biomass and soil organic C (Ma et al., 2000; Roosendaal et al., 2016). The
short cores were subjected to X-ray computed micro-tomography (LCT) scanning, and the bulk
soil was used for measurements of MBC and soil C. All short cores were stored at 4 °C until

uCT scanning.

Root analyses

Detailed description of the processing of the tall cores are provided in Ulbrich et al.
(2021). Briefly, soils of the tall cores were wet sieved (2 mm) with Nanopure (0.2 uM) water to
separate roots from soil, and all visible roots were procured with tweezers. The cleaned roots
were scanned with an Epson perfection V600 scanner (Epson America Inc., Long Beach, CA,
USA) in a glass scanning bed with 200 ml of Nanopure water. Scanning resolution of root
images was 75 pm.

Using RhizoVision software (version 2.0.3), binary images for roots and background
were obtained. Then, non-root object filtering and hole filling were conducted to remove
background noise and fill unsegmented holes in root portions of images, respectively. Tools in
RhizoVision allowed us to identify different size @ of roots using distance transformation and
skeletonization of the root portions (Felzenszwalb and Huttenlocher, 2012). Upon the given
scanning resolution, the minimum O size of detectable roots was 75 um, thereby roots classified
as the 75 pm size group is assumed to represent ~75-113 pm roots, and the 150 um size group
represents ~113-187 um roots. Root volumes for each skeletal 2D root of the different @ groups
were calculated by multiplying the length of the root by the cross-sectional area (Seethepalli et

al., 2021). Subsequently, volumes were used to determine size distributions of root volume
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fractions (mm?) in different @ groups per total core (root + soil) volume (mm?). Root size groups
finer than 500 um @ were only used in further analyses as such roots, which are generally
defined as fine roots, are particularly important for soil C cycling (Ruess et al., 2003; Kalyn and

Van Rees, 2006; de Graaff et al., 2013).

X-ray uCT scanning and image analyses

Soil pore characteristics were measured using short cores via X-ray uCT, a tool that
allows for visualization of soil structure in its intact state (Udawatta et al., 2008; Vogel et al.,
2010). Prior to X-ray pnCT scanning, all short cores were brought to the matric potential of -28
kPa to ensure that >5 um @ pores were filled with air so easily detectable in the images. Thus,
cores were first saturated for 24 hours on a water filled sand bath and then kept in a pressure
chamber for two days at -28 kPa. The cores were scanned using an X-ray uCT instrument (North
Star Imaging, X3000, Rogers, MN, USA) at the Horticulture Department of Michigan State
University. The scanning resolution was 18 um, achieved using the Subpix-mode of the scanner,
and the projected energy level was 75 kV with 450 pA. Images from 3014 projections were
reconstructed by the efX software (North Star, Rogers, MN, USA).

A schematic summary of the steps for image pre-processing and analyses is outlined in
Figure 1. First, image pre-processing steps were conducted to remove artifacts and noise from
3D stacked soil images using ImageJ-Fiji software (Schindelin et al., 2012). In order to exclude
sampling artifacts near the soil core walls, the images were cropped into 2.7 x 2.7 x 4.1 cm (1500
x 1500 x 2240 pixels) centrally located parallelograms. Then, we removed ring artifacts on the

image polar domain using a stripe filter of the Xlib/Beat plugin. Finally, a 3D non-local mean
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filter (6 =0.1) was applied to reduce the noise using scikit-image in Python (Darbon et al., 2008;
Buades et al., 2011).

The pre-processed grayscale images were segmented into pore and solid binary images
for size distributions and spatial locations of pores. Mean threshold values for the segmentation
were obtained by averaging the thresholds between pore and solid phases derived from six
segmentation methods (Otsu, Triangle, Huang, ISO, Li, and Moments) using SimpleITK in
Python (Beare et al., 2018; Lucas et al., 2022). The rationale for averaging thresholds is to
mitigate biases of the individual methods, thus enhancing accuracy in pore threshold calculation
(Schliiter et al., 2014). The resolution level and steps of image-processing applied in this study
allow us to reliably identify pores larger than 36 um O.

POM segmentation was carried out with a U-Net (convolutional neural network) model
under the deep learning engine pre-built in Dragonfly software (Ronneberger et al., 2015; Abadi
et al., 2016; Makovetsky et al., 2018). The model was trained using two cores randomly selected
from each experimental block (eight of total 48 cores). Seven frames with representative POM
fragments in each of the selected cores were used as input, and two slices directly below and
above the selected frames were also considered for generating segmentation outcomes. Then, the
trained model was applied on the entire cores. Segmented POM images were visually inspected
to ensure the integrity and accuracy of the process. The outcome of POM segmentation was de-
noised by removing clusters <4 voxels from the images. Then, distances from the locations of
the segmented soil solid materials to the nearest pores and from such locations to the nearest
POM fragments were determined using the ‘Distance Transform 3D’ approach in ImagelJ-Fiji

(Borgefors, 1996). Size distributions of pores in 3D binary images were determined by the
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‘Local Thickness’ approach, based on the maximum inscribed sphere method (Hildebrand and
Riiegsegger, 1997; Vogel et al., 2010) in ImageJ-Fiji.

To assess the relationships between size distributions of pores and roots based on
volumes at comparable scales, pore O sizes were grouped into interval classes as similar as
possible to the calculated @ sizes of root fractions. For example, the 75 pm size group represents
the ~36-108 um pores and the 150 um size group — the ~108-180 um pores, etc. Then, pore
fractions of each size group were determined by dividing the segmented pore volumes (mm?) by
the total cropped soil (pore + solid) volumes (mm?). The > 500 um @ pores were not
quantitatively assessed in this study because of high uncertainty of their estimation in relatively

small and short cores.

Soil microbial biomass and total carbon measurements

We measured MBC by the chloroform fumigation-incubation method (Paul et al., 1999).
Two sets of 10 g soil samples were prepared by adding sufficient water to reach 50% water
holding capacity. The samples were pre-incubated for five days, after which one set was
fumigated with ethanol-free chloroform vapor for 24 hours, while the other set remained
unfumigated. Both sets were then incubated for 10 days in the dark at 20 °C. The emitted CO>
was measured using Infrared Photoacoustic Spectroscopy (INNOVA Air Tech Instruments,
Ballerup, Denmark) in the gas circulation mode. The difference in CO2 emissions between the
fumigated and non-fumigated samples was used to calculate the MBC. For soil C analysis,
sieved and ground soil samples were analyzed using a CHNSO Elemental Analyzer (Costech

Analytical Technologies, Valencia, CA, USA).



251  Statistical analysis

252 The differences in soil pores, root traits, MBC, and soil C contents were evaluated among
253  six switchgrass cultivars and between two ecotypes using PROC MIXED procedure of SAS 9.4
254  (SAS Institute Inc., Cary, NC, USA). All statistical models for comparisons among the six

255  cultivars included fixed effects of cultivars and random effects of experimental blocks. The

256  models for the analyses of the distance to pore and distance to POM data additionally included
257  the random effects of soil cores nested within the blocks. For comparisons between two

258  ecotypes, cultivars were considered as a random factor nested within the corresponding ecotypes.
259  Models for root and pore size distributions included fixed effects of cultivars, root/pore size

260  groups, and their interactions and another random effect of the cores nested within the blocks and
261  cultivars. Root/pore size groups were treated as a repeated measure factor, and cores nested

262  within cultivars were used as an error term for testing the cultivar effect and as a subject of the
263  repeated measurement. The statistical models for comparisons between two ecotypes were

264  similar to those used for cultivar comparisons, except that cultivars were treated as a random

265  effect nested within the ecotype and contributing to the error term for testing for the ecotype

266  effect.

267 For all datasets, normality of the residuals and homogeneity of the residual variances

268  were assessed by examining histograms, normal probability plots, and side-by-side box plots of
269  the residuals, and by conducting Levene’s test for variances. Residuals were found to be

270  normally distributed in all studied variables. Since residual variances among six cultivars or

271  between two ecotypes were not significantly different at oo = 0.1 level in Levene’s test, equal

272  variance models were used in subsequent data analyses. Multiple comparisons among the

273 cultivars or between the ecotypes were conducted using t-test.
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Post-hoc power analysis was conducted to identify how many replications should have
been taken to be able to detect as statistically significant differences in soil C contents among the
six switchgrass cultivars (Stroup, 2002; Kravchenko and Robertson, 2011). The variance
component, which was the estimate of block variance in this randomized complete block design,
was estimated from the observed soil C contents. The size of the hypothesized difference used in
the power analysis was 0.26% of soil C content. Then, the number of samples needed for
statistical significance was calculated based on 0.05 probability of Type I error using PROC
MIXED procedure in SAS.

Relationships among root and pore fractions within each individual size group, MBC, and
soil C contents across all six cultivars were assessed using Pearson’s correlation coefficients (7)
via the PROC CORR procedure in SAS. The correlation analysis enabled us to assess the
hypotheses that (1) roots of certain size groups contribute to the formation of soil pores of the
same size range, (2) roots of certain size groups contribute to increases in MBC and soil C
contents, and (3) pores of certain size groups contribute to increases in MBC and soil C contents.

Correlations were subsequently used for path analysis.

Path analysis

Path analysis is a statistical approach that can infer causal relationships allowing for
examination of direct and indirect effects among observed variables based on the theoretical
model hypothesized by the researcher (Schumacker and Lomax, 1996; Grace, 2006). Indirect
effects in path analysis are identified by estimating the relationship between two variables that is
mediated by one or more intervening variables (Preacher and Hayes, 2004). Thus, we used it in

this study to address hypotheses regarding relationships among root and pore traits and their
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direct and indirect contributions to soil MBC and C contents. Since the model for path analysis is
constructed based on causal hypotheses between variables, the theoretical and empirical basis for
these hypotheses should be provided by peer-reviewed literatures. Overall, we hypothesized that
greater abundance of fine roots can lead to soil C gains by releasing more accessible C
substrates, and by stimulating the formation of pores, which in turn supports more abundant
microbial communities and facilitates greater soil C stabilization. Detailed descriptions of the
individual hypotheses, along with the literature supporting their path formulation, are provided in
Table 1.

The PROC CALIS procedure of SAS software was used for path analysis. A two-index
presentation strategy was utilized for the path analysis model evaluation (Hu and Bentler, 1999).
Model fitness and adequacy were determined through a chi-square test (y°) and goodness of fit
index (GFI) (Bentler, 1990), and acceptable models are characterized by %> test p values >0.05
and GFI >0.90 (Hu and Bentler, 1999; Eisenhauer et al., 2015). The strength of the paths was
indicated using standardized coefficients (). The rationale for using standardized coefficients is
to facilitate comparisons of relative impacts upon the initially incommensurable variables (Kwan

and Chan, 2011).

Results
Root and pore size distributions

Fraction of roots finer than 500 um © did not show notable differences among the studied
six switchgrass cultivars (p = 0.074) (Figure S1). However, there were differences in the root
fraction of very fine size groups (75 and 150 pm @) among the six cultivars, while at sizes >200

um @, the root fraction did not provide strong evidence for differences (Figure 2A). Specifically,
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Kanlow and Cave-in-Rock had the highest fraction of very fine roots, i.e., 0.0009 £0.0001
mm?*/mm? in soil, followed by Southlow, Alamo, and Blackwell, while Trailblazer had the
smallest fraction of very fine roots, i.e., 0.0005 £0.0001 mm?*/mm? (Table S1).

Consistent with the root size results, soil pore fractions in medium size groups (75 and
150 um ©) also differed among the cultivars (Figure 2B) and, likewise, no differences were
observed among cultivars in coarse pore size groups (>200 um @) (Figure 3B). Soil under Cave-
in-Rock had the greatest fraction of medium pores, i.e., 0.04 £0.006 mm?/mm? in soil, followed
by Kanlow, Alamo, and Blackwell, with Southlow and Trailblazer having the smallest fractions
with 0.02 £0.005 mm?/mm? (Table S1).

Root fractions in very fine size groups were positively associated with pore fractions of
medium size groups (#* = 0.21 and p = 0.023 in 75 um; * = 0.22 and p = 0.020 in 150 um @ size
group), while no correlations were observed between roots and pores of any other size groups

(Figure 3A).

Distance to pores and POM

The average distance to pores was the largest in the soil under the Trailblazer cultivar,
equal to 0.34 £0.08 mm, while soils under the other five cultivars had similar distances to pores
of 0.19 mm on average (Figure 4A). Overall, distances to pores in the soils under upland ecotype
cultivars were 34% greater than those of lowland ecotype cultivars (p = 0.019).

The average distance to POM fragments was also the largest in the soil under Trailblazer,

1.e., 0.82 £0.12 mm, while Cave-in-Rock and two lowland cultivars, Alamo and Kanlow, had the

lowest distances to POM of 0.54 £0.17, 0.62 +0.14, and 0.60 £0.12 mm, respectively (Figure
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4B). Overall, there were no differences in distances to POM between upland and lowland

cultivars (p = 0.314) (Figure 4B).

Soil microbial biomass and carbon

MBC in the soils under Alamo and Kanlow, the two lowland switchgrass cultivars, was
~50-100% higher than under the other four cultivars; in particular MBC under Kanlow was more
than double that under Blackwell (Figure 4C). Overall, MBC in soils under the cultivars of the
lowland ecotype was 44% higher than that of the upland cultivars (p = 0.002). On the other hand,
soil C contents were not different among the six cultivars, and the difference between the two
ecotypes was also not significant (p = 0.598) (Figure 4D).

MBC across all six cultivars was positively associated with 75 um @ roots (#* = 0.19; p =
0.022) and with 75 pm @ pores (#* = 0.17; p = 0.036), while MBC was not correlated with any
other size groups of roots and pores >75 um O (Figure 3B). MBC was negatively associated with
the distance to pores (7* = 0.13; p = 0.046), whereas not associated with the distance to POM
fragments (Table S2). Soil C was also positively associated with 75 and 150 um @ roots (* =
0.17 and 0.31; p = 0.035 and 0.004, respectively), while no significant correlations were
observed with any size groups of pores (Figure 3B). Soil C was negatively associated with the
distance to POM fragments (7% = 0.18; p = 0.024), whereas not associated with the distance to
pores (Table S2). Notably, soil C was positively associated with MBC across all six cultivars (°

=0.18; p = 0.025).

Path analysis
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The very fine roots (sum of 75 and 150 um O size groups) had a direct positive impact on
the fraction of medium pores (sum of 75 and 150 pm @ size groups) (f = 0.41; p = 0.008), MBC
(B=0.41; p=0.003), and soil C contents (f = 0.50; p = 0.0009), and negative impact on the
distance to pores (f =-0.47; p = 0.002) and POM (B =-0.52; p = 0.0003) (Figure 5).
Additionally, such roots indirectly influenced MBC by increasing the fraction of medium pores
(B=0.19; p =0.048) and by decreasing the distances to pores ( =-0.28; p =0.021) and POM (B
=-0.19; p = 0.042). Soil C contents increased by a shorter distance to POM (f =-0.21; p =
0.028), while neither the fraction of medium pores nor the distance to pores appeared to directly
influence soil C. Yet, increases in medium pore fractions and decreases in distances to pores and

POM indirectly fostered increases in soil C due to the rise in MBC (B = 0.30; p = 0.017) (Figure

5).

Discussion

After seven years of continuous growth, variations were observed among the six
switchgrass cultivars in volumes of very fine roots and of medium soil pores. Cultivars with a
greater volume of very fine roots stimulated formation of medium soil pores compared to the
cultivars with coarser root systems and led to a more ubiquitous spread of pores and POM within
the soil matrix. Volumes of very fine roots were strongly positively associated with soil C and
MBC. Abundance of the medium pores and spatial distribution patterns of the pore space were
directly related to MBC, but not to soil C. While the cultivars of the lowland switchgrass ecotype
increased soil MBC compared to that of the upland ecotype, in none of the studied lowland

cultivars did soil C exceed that of upland cultivars.
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Influence of very fine roots

Past comparisons of root systems among switchgrass cultivars generated contradictory
results. For example, at experimental site in Michigan, Ulbrich et al. (2021) reported that cultivar
Kanlow had relatively high specific root length (root length/weight) compared to other cultivars,
while in Illinois Kanlow had lower specific root length than others (de Graaff et al., 2013). While
a meta-analysis demonstrated that phylogenetic characteristics can be the largest driver of root
traits (Valverde-Barrantes et al., 2017), the discrepancy suggests that root system development in
switchgrass cultivars might be influenced by environmental factors (Lovell et al., 2021; Griffiths
et al., 2022), that is, vary site-specifically.

The initial hypothesis for our path analysis focused on fine roots, generally defined as
roots <500 um O and well-established as key contributors to soil C cycling (de Graaff et al.,
2013; McCormack et al., 2015; Adkins et al., 2016; Panchal et al., 2022). However, Kelly-
Slatten et al. (2023) recently found that the differences in the abundance of the fine roots among
Kanlow, Southlow, and Cave-in-Rock were minor, and this aligns with the lack of meaningful
differences in fine roots observed here (Figure S1). As this study progressed, distinct variations
were observed in the abundance of the specific range of fine roots (<200 pm @), referred to as
very fine roots, across different switchgrass cultivars (Figure 2A & Table S1).

The abundance of very fine roots was the influential factor for microbial biomass and soil
C (Figure 5). The very fine roots also indirectly affected them by contributing to volumes of
medium (50-200 um ) pores and spatial patterns in both pores and POM, the latter expressed
via distances to pores and POM (Figure 5). Fine roots typically provide greater amounts of root
exudates and rhizodeposits to soil (Xu and Juma, 1994; Paterson and Sim, 1999; Zhang et al.,

2022). Such labile C sources as well as fine roots themselves can be preferentially used by soil
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microorganisms and contribute significantly to soil organic matter formation through their rapid
turnover and subsequent decomposition (Ruess et al., 2003; Kalyn and Van Rees, 2006). While
in the past many studies focused on a broadly defined size group of fine roots as those <1.0-2.5
mm O (Steinaker and Wilson, 2008; de Graaff et al., 2013; Sprunger et al., 2017; Sehgal et al.,
2021), findings from our study indicate that in monoculture switchgrass systems, it is only the
roots <200 um @, i.e., very fine roots, that are particularly influential in promoting microbial
biomass and concomitant soil C production (Figure 3 & 5).

We found a greater volume of very fine roots in lowland than in the upland cultivars
(Figure 2A & Table S1). A single exception was Cave-in-Rock, the upland cultivar with a
volume of very fine roots comparable to that of lowland cultivars (Figure 2A & Table S1). Cave-
in-Rock, as a relatively drought-sensitive cultivar, possibly extends its fine roots more
aggressively to promote soil water access, thereby navigating this environmental challenge with
its fine roots (McCully, 1999; Liu et al., 2015; Fort and Freschet, 2020). Differences in very fine
roots among our cultivars led to differences in formation of soil pores and different spatial
distribution of the pores and POM through the soil matrix (Figure 2B, 4A, 4B, & 5). Root
thickness can significantly influence a root’s capacity to penetrate soil (Chimungu et al., 2015;
Paez-Garcia et al., 2015), and differences in this trait are known to result in distinct pore
structures, with prevalence of certain pore size classes (Bodner et al., 2014, 2021). Positive
correlations between very fine roots and medium pores among six switchgrass cultivars support
the notion that cultivars with greater volumes of very fine roots form greater volumes of medium
pores (Figure 3A). Lowland cultivars possibly lead to the formation of more intricate soil pore
networks through their fine roots (Gyssels et al., 2005; Reubens et al., 2007), and thus distances

between individual pores are shorter than for those of upland cultivars (Figure 4A).
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Roots are the major source of soil POM, thus shorter distances between the nearest POM
fragments in soils under Kanlow and Cave-in-Rock (Figure 4B), which were the two cultivars
with the greatest volumes of very fine roots (Figure 2A & Table S1), presumably resulted from a
more uniform spread of root residues throughout the soil (Bengough et al., 2016; Bodner et al.,
2021). Indeed, a significantly shorter distance was found in soils under prairie vegetation, which
was known to have extensive root systems (Sprunger et al., 2017), compared to that under
switchgrass (Cave-in-Rock) in a field adjacent to this study (Figure S2). Negative correlations
between volumes of very fine roots and distances to pores and POM further support this

conclusion (Table S2).

Influence of medium pores and their spatial distribution

Our results demonstrate that medium pores and distances to pores did not directly impact
measured soil C gains, even though they promoted soil microbial biomass, which was positively
associated with soil C (Figure 5 & Table S2). This is consistent with a direct effect of medium
pores on MBC and an indirect effect of such pores on soil C gains that were recently observed in
monoculture switchgrass (Cave-in-Rock) cultivated across a wide range of low fertility soils of
the U.S. Midwest (Lee et al., 2023). However, even though lowland switchgrass cultivars greatly
increased the proportion of medium pores as compared to the upland cultivars (Figure 2B &
Table S1), such increases did not translate into measured soil C gains (Figure 4D).

Pores in 30-180 um O, which is very close to the range of medium pores in this study, are
suggested as optimal microbial habitats (Kravchenko et al., 2019b), since such pores facilitate
high microbial activity by ensuring oxygen and water flows, while allowing for easy access to

organic matter (Rawlins et al., 2016; Keiluweit et al., 2018). Since pores of this size range were
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also identified as the primary sites for rhizodeposition (Quigley and Kravchenko, 2022), the
abundance of such pores likely facilitated the microbial growth in the soils under the lowland
cultivars (Figures 2B & 4C).

Another two key links between very fine roots and microbial biomass were the distances
from soil solid materials to the nearest pores and to the nearest POM fragments (Figure 5). The
shorter distances to pores and POM likely benefited microbial habitats, because such distances
imply closer proximity of microbes to water, oxygen, and C sources (Raynaud and Nunan, 2014;
Rohe et al., 2021; Bickel and Or, 2023). Therefore, we can surmise that the indirect contribution
of the extensive root systems in the two lowland cultivars as well as in Cave-in-Rock (Figure
2A) to increases in soil microbial biomass stemmed from decreasing distances to pores and POM
(Figures 4A & 4B). Shorter distances to POM can allow easier translocation of the processed C
during POM decomposition into surrounding soil (Védere et al., 2020; Schliiter et al., 2022),

likely contributing to soil C gains (Figure 5).

Negligible soil C gains in switchgrass cropping systems

Neither the two lowland cultivars nor Cave-in-Rock, the cultivars that promoted several
of the hypothesized drivers of soil C gains, including greater volumes of very fine roots and
medium pores, higher MBC, and shorter distances to POM and pores (Figure 5 & Table S2), led
to measurably greater soil C gains than other cultivars in this study (Figure 4D). Our results add
to a substantial body of research reporting very slow to negligible soil C gains in monoculture
switchgrass systems (Garten and Wullschleger, 2000; Liebig et al., 2005; Bates et al., 2022),
suggesting that 10 years were not a sufficiently long term for soil C gains to build under the

studied cultivars. In fact a 13-year study of switchgrass, recently conducted in a field adjacent to



479  this experiment, also observed that switchgrass only barely increased soil C contents since its
480 installation (~0.06 Mg C ha™! yr'!") (Perry et al., 2023). Another recent study, conducted in the
481  same experimental site, showed that nine different switchgrass cultivars continuously grown for
482 11 years had no significant impact on soil C contents (Mosier et al., 2024).

483 There is an apparent discrepancy between the lack of the detected increases in soil C
484  contents and the implications of path analysis suggestions that such increases should have taken
485  place, at least in the cultivars with finer root systems (Figure. 5). We believe the discrepancy is
486  due to lower statistical power of the experimental work, i.e., the attempts to detect relatively
487  small changes in these soils C gains, given high variability, have been hampered by relatively
488  small sample size. Note that the 4 replicated blocks, i.e., n of 4, of the current experiment is a
489  common practice ubiquitously followed in field experimentation. Yet, post-hoc power analysis
490  ofthe soil C data in this study suggests that at least three more replicated blocks, i.e., n of 7,
491  would be required for detecting a statistically significant difference with the power of 75%, and
492  six more blocks, i.e., n of 10, with the power > 90% (Table S3). In other words, the nuanced
493  relationship between switchgrass cultivars and C gains, as revealed by the path analysis with
494  multifaceted factors, emphasizes the need to examine soil C gains with a greater number of

495  replications to better test the effects of switchgrass cultivars on soil C. Alternatively, as these
496  switchgrass stands mature and cultivars continue to differentially accumulate soil C, differences
497  should become evident with fewer replicates in next few years. Expanding the replication size, as
498  suggested by the power analysis, will also be important for better parameterizing process-level
499  models that, like our path analysis, also predict significant soil C gains under long-term

500 switchgrass cultivation (McLaughlin et al., 2002; McLaughlin and Adams Kszos, 2005;

501 Martinez-Feria and Basso, 2020).
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Conclusions

Our study elucidates complex yet pivotal relationships among root traits, soil pore
structure, and microbial biomass for the potential accumulation of soil C using six switchgrass
cultivars with different root traits, representing two distinct ecotypes. Results suggest that
switchgrass cultivars with greater volumes of very fine roots have a greater capacity for soil C
accumulation, mediated by increases in medium pores and decreases in distances to pore and
POM that affect concomitant increases in MBC. However, 10 years were insufficient to
document measurable differences in soil C gains among cultivars. Overall, this study provides
critical insights for the relative impacts of root traits and pore structure for soil C gains in

bioenergy crop cultivation.
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