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Abstract—Thanks to advancements in wireless networks,
robotics, and artificial intelligence, future manufacturing and
agriculture processes may be capable of producing more out-
put with lower costs through automation. With ultra fast 5G
mmWave wireless networks, data can be transferred to and from
servers within a few milliseconds for real-time control loops,
while robotics and artificial intelligence can allow robots to work
alongside humans in factory and agriculture environments. One
important consideration for these applications is whether the
“intelligence” that processes data from the environment and
decides how to react should be located directly on the robotic
device that interacts with the environment - a scenario called
“edge computing” - or whether it should be located on more
powerful centralized servers that communicate with the robotic
device over a network - ‘“cloud computing.”’ For applications
that require a fast response time, such as a robot that is moving
and reacting to an agricultural environment in real time, there
are two important tradeoffs to consider. On the one hand, the
processor on the edge device is likely not as powerful as the
cloud server, and may take longer to generate the result. On the
other hand, cloud computing requires both the input data and
the response to traverse a network, which adds some delay that
may cancel out the faster processing time of the cloud server.
Even with ultra-fast SG mmWave wireless links, the frequent
blockages that are characteristic of this band can still add delay.
To explore this issue, we run a series of experiments on the
Chameleon testbed emulating both the edge and cloud scenarios
under various conditions, including different types of hardware
acceleration at the edge and the cloud, and different types of
network configurations between the edge device and the cloud.
These experiments will inform future use of these technologies
and serve as a jumping off point for further research.

I. INTRODUCTION

New technology in areas such as wireless networks,
robotics, and artificial intelligence, can help increase produc-
tivity in agriculture and in similar applications. However, there
remains the question of where the intelligence underlying
these advances should be placed - should inference happen
on edge devices, or in the cloud? A key factor influencing
this decision is the required response time, which depends on
the application - for example, an autonomous vehicle moving
at high speeds is likely to require a very fast response time.

We consider both paradigms (illustrated in Fig. [TI) with
respect to the response time of the service. In edge computing,
the intelligence is placed at the edge where the result of the
computation will be translated into action, so there is no delay
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Fig. 1. Edge and cloud computing paradigms.

due to transferring data or results across a network. However,
because the edge device is not as powerful, the time required
for a machine learning model to return a result (inference
time) may be longer. In contrast, a cloud computing service
may have a faster inference time because the service runs on
a powerful server, typically with GPU acceleration. But in
addition to inference time, the total response time for the cloud
service also includes network transfer time, since the input data
is sent over a network to the machine learning model, and the
prediction of the model is sent back over a network to the
edge where it will be translated into action.

Since the overall response time depends on the network and
compute resources that are deployed, the preferred option will
depend on business considerations: what is the inference task,
what is the required response time for this inference task, and
what is the cost to deploy the network and compute resources
necessary to achieve this response time. Previous studies
have considered these tradeoffs for specific applications, for
example [1] for an environmental science workload.

In this work, we consider the specific application of person
detection in an outdoor agricultural setting, where machine
learning models may be deployed on edge devices or accessed
in the cloud via a private 5G mmWave network. We train
a model for this task and then compute the response time
for different deployment options, and report the results as a
case study for consideration of these tradeoffs. All artifacts
necessary to reproduce this work on Chameleon [2]], a public
cloud computing research testbed, are made available at [3].

II. METHODOLOGY

In this section, we describe the details of our experimental
methodology.



Dataset: We used the National Robotics Engineering Center
agricultural person-detection dataset [4], which includes im-
ages from the point of view of the front of a vehicle in an
orchard settings. Each frame is labeled as “person” (in front
of the vehicle) or “no person”.

Model: Using the training subset of this data, we train an
object detection model on Google’s Teachable Machine [3]
using its default settings. The trained model is available at [3]].
Network scenarios: We use netem and tc htb to emulate
a mmWave wireless network link, using traces collected and
published in [6]. The data includes four trace scenarios: a static
link, a link with short blockages (e.g. a person walking through
the signal path), a link with long blockages (e.g. a person or
vehicle walking through the signal path), and a scenario with
both mobility and blockages.

Inference devices: We measured inference time on three
device types, as shown in Table [l Raspberry Pi 4 and Coral
Dev Board are considered edge devices. We included two
devices capable of hardware acceleration (Coral Dev Board
with TPU, and cloud server with NVIDIA RTX6000 GPU).
The cloud server is on the CHI@UC site of the Chameleon [2]
testbed, and the edge device is on the the CHI@Edge [7] site.

Device Inference type
Raspberry Pi 4 CPU
Coral Dev Board CPU, TPU

Cloud Server (RTX6000) GPU, GPU + TensorRT optimization

TABLE I
DEVICE TYPES USED FOR MEASURING INFERENCE TIME.

Other inference optimizations: For the cloud server deploy-
ment, we also consider a model with TensorRT [8]] optimiza-
tions for fast inference.

III. RESULTS

The results of our experiments are illustrated in Figure [2]
The fastest overall response time is achieved by the Coral Dev
Board edge device with TPU hardware acceleration. However,
this deployment option would require a TPU-equipped edge
device on each vehicle, which could be costly. When the model
is deployed on edge devices without hardware acceleration, the
response time is 40-50 ms. The cloud server equipped with
GPU with TensorRT optimization also achieves a sub-10 ms
median response time. However, during instances of block-
age of the mmWave link, the response time could increase
substantially, so this alternative would be acceptable only if
occasional response times above 10 ms could be tolerated.

IV. ARTIFACT DESCRIPTION
The Github repository at [3] includes the following items:
« trained models in Keras and TFLite format
o a small set of images used for measuring data transfer
time across the emulated network

o and detailed instructions for running our experiment on
Chameleon [2].
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Fig. 2. Experiment results: median response time including inference time in
both edge and cloud scenarios, and network transfer time for cloud scenarios.

These artifacts may be used in combination with other pre-
existing artifacts for Chameleon [9], [7]], [10] to reproduce our
experimental results.
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