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ABSTRACT Deepfakes, which emerge from advanced deep learning techniques, present complex ethical
and security challenges across media and communication landscapes. While offering creative potential in
education and entertainment, synthetic media technologies simultaneously threaten societal trust through
potential misinformation, opinionmanipulation, privacy violations, and identity fraud.With the advancement
of deep learning models, creating deepfake images has become easier and more convincing, resulting in the
development of reliable deepfake detection models. This research works with a method that combines multi-
head self-attention (MHSA)with a custom-designed convolutional neural network (CNN) to develop a robust
deepfake detection model. We created a dataset called the Center for Cyber Defense DeepFake (CCDDF)
dataset by generating fake images using publicly available Artificial Intelligence (AI) tools and trained our
model on these data, achieving a detection accuracy of 97% and an AUC score of 99.58. Additionally,
we evaluated our model on the 140K Real and Fake Faces dataset and the Celeb-DF v2 dataset, where it
demonstrated exceptional performance with accuracies of 98% and 94% respectively, and corresponding
AUC scores of 99.75 and 98.72. We utilized attention heatmap visualizations to analyze the model’s
decision-making process to enhance qualitative interpretability. Our results demonstrate the effectiveness of
combiningmulti-head self-attentionwith a convolutional neural network for deepfake detection, highlighting
its strong performance across multiple datasets and its potential for real-world applications.

INDEX TERMS Deepfake detection, convolutional neural networks (CNNs), multi-head self attention
(MHSA), attention heatmap visualization, hybrid CNN-attention model.

I. INTRODUCTION
The rapid evolution of AI has given rise to an intrigu-
ing yet potentially concerning phenomenon known as
‘deepfakes.’ These synthetic media creations, whose name
derives from the fusion of ‘deep learning’ and ‘fake,’
represent a sophisticated application of AI technology that
can convincingly replicate a person’s appearance, voice,
or actions. As computational power and AI capabilities have
advanced, deepfakes have transformed from experimental
curiosity to a widespread technological phenomenon,
bringing both promising opportunities and significant
societal challenges [1]. Deepfakes are generally made with
Generative Adversarial Networks (GANs), which are
composed of a generator and discriminator [2]. The generator
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produces synthetic content by learning patterns from data
such as facial expressions. In contrast, the discriminator
assesses the authenticity of the generated material by
comparing it to authentic images and provides input to help
the generator improve its output. These networks improve
the quality of the generated media through iterative training
until they are nearly identical to the actual content [3].
Other methods include the use of autoencoders, in which
an encoder compresses the input data and a decoder
reconstructs them to simulate real-world scenarios [4].
The applications of deepfake technology span a broad
spectrum, from beneficial innovations to potentially harmful
misuses. On the positive side, researchers have developed
interactive digital twins that can serve as human substitutes
in cyber-physical systems [5]. The entertainment industry
has embraced deepfakes to create sophisticated visual effects,
whereas language learning platforms use them to synchronize

101980
2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0009-0000-0399-1952
https://orcid.org/0000-0001-7249-2049
https://orcid.org/0000-0002-9026-5322
https://orcid.org/0000-0002-8718-111X


S. Dasgupta et al.: Attention-Enhanced CNN for High-Performance Deepfake Detection: A Multi-Dataset Study

lip movements for seamless content dubbing [6], [7], [8].
However, this technology has also been used to disseminate
misinformation, often manifesting as viral social media
content featuring manipulated videos of public figures [9].
More concerning are malicious applications, including the
creation of non-consensual intimate content and attempts at
political manipulation using fabricated videos [1].
To address these challenges, researchers have developed

various deepfake detection methods that are, broadly cat-
egorized into detection and prevention approaches. Our
research focuses specifically on spatial artifact-based detec-
tion, emphasizing on human imagemanipulation. Several key
inconsistencies in spatial artifacts provide crucial indicators
for deepfake detection [1].
Our research experiments combine a sequential convolu-

tional neural network (CNN) architecture with Multi-Head
Self-Attention (MHSA) for deepfake detection [10]. While
CNN excels in extracting local features, the self-attention
mechanism enhances the model’s capability to identify
crucial features and capture long-range dependencies that
might elude traditional CNN analysis [10]. Although
existing approaches, such as Vision Transformers (ViTs)
employ multi-head attention, they often require substantial
computational resources and training overhead [11]. Our
methodology aims to achieve superior detection accuracy
while maintaining computational efficiency. The integra-
tion of MHSA mechanisms (proposed in [10]) into CNN
architectures represents a significant advancement in feature
extraction capabilities. This combination allows our model
to capture global contextual information dynamically while
emphasizing relevant features, resulting in more effective and
efficient data processing [10]. The MHSA component acts
as an intelligent filter, amplifying informative features while
suppressing less significant ones, leading to a more robust
feature extraction from the input data. Our experimental
results demonstrate that this streamlined architecture, com-
bining CNN with MHSA, achieves comparable performance
to state-of-the-art methodologies while potentially offering
better computational efficiency.

A. RESEARCH CONTRIBUTION
The following are the significant contributions of this study:

• Experimental CNN-MHSA hybrid architecture for
deepfake detection that combines local feature extrac-
tion with attention mechanisms

• Comprehensive model evaluation using both custom-
generated synthetic images and two benchmark deep-
fake datasets

• Model interpretability analysis through heatmap visual-
izations of prediction outputs

B. ARTICLE LAYOUT
The remainder of this paper is organized as follows. Section II
discusses the existing approaches for deepfake detection.
Section III presents the data collection and preprocessing
steps and the methodologies used for the problem. Section IV

discusses the experimental results and performance evalua-
tion of the model based on various metrics, and Section V
presents the conclusion of our work.

II. RELATED WORKS
The following section discusses existing studies in the
domain of deepfake detection. This section is subdivided
into preliminary work II-A and existing challenges II-B,
followed by a comprehensive table summarizing the deepfake
detection works in Table 1.

A. PRELIMINARY WORK
Traditional machine learning (ML) approaches offer distinct
advantages in deepfake detection owning to their inherent
interpretability and straightforward parameter-tuning capa-
bilities. Tree-based algorithms, such as Decision Trees,
Random Forests, and Extremely Randomized Trees, provide
transparent decision processes, making them particularly
valuable for understanding detection mechanisms. These
methods have proven to be effective in identifying artificial
patterns generated by GANs in synthetic media. Early
ML-based detection methods focused on identifying specific
facial manipulations, such as alterations in eye shading or
ear features. However, these single-feature approaches have
proven to be limited in their detection capabilities. To address
this limitation, researchers have developed comprehensive
methods. Research advances inML-based deepfake detection
have evolved from single-feature analysis to more sophis-
ticated approaches. [12] pioneered multi-feature detection
by combining various facial characteristics, whereas [13],
[14], [15] enhanced detection through biological signal
analysis across spatial-temporal dimensions using facial
landmarks. Further innovations include 3D head pose esti-
mation [16] and Habeeba et al.’s efficient MLP model which
analyzes facial artifacts with minimal computation [17].
One significant approach examines blending artifacts that
occur when the generated content is integrated back into
the frame, leading to the development of CNN models that
utilize edge detection techniques [18]. Another promising
strategy analyzes the relationship between facial features
and their surrounding context, as demonstrated by Nirkin
et al.’s framework, which not only contrasts foreground
and background information but also enables networks to
automatically identify discriminative features [19]. Addi-
tionally, GAN-generated deepfakes often leave distinctive
fingerprints that can be identified through a careful analysis
of subtle patterns and features [1]. Although these ML
methods can achieve up to 98% accuracy, their performance
varies significantly based on the dataset characteristics and
feature selection. Testing on heterogeneous datasets often
reduces accuracy to approximately 50%, underscoring the
challenge of developing generalizable detection systems.

Deep-learning approaches have dominated recent advances
in deepfake detection research. Initial methods focused on
identifying GAN-generated artifacts [20] and extracting
features from RGB data [21], [22], while subsequent work
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incorporated physiological measurements such as heartbeat
patterns [23]. A significant milestone was the develop-
ment of inception module-based networks (Meso-4 and
MesoInception-4) [24], which established the effectiveness
of deep learning in video-based detection. Research has
shown that deep CNNs consistently outperform shallow
architectures [25], [26], [27] in supervised scenarios. Feature
extraction has emerged as a crucial focus, with researchers
developing methods for analyzing handcrafted features [28],
spatiotemporal patterns [29], and facial landmarks [30].
Innovation continued with the introduction of capsule
networks [31], [32] and ensemble learning techniques
achieving accuracy rates exceeding 99% [33]. RNN-based
approaches [34] have advanced the field by enabling
feature extraction at both the micro and macroscopic levels.
To address the overfitting challenges, researchers have
developed optical flow techniques [35] and autoencoder
architectures [36], [37]. Recent developments have signifi-
cantly expanded detection capabilities through multimodal
analysis combining audio and visual features [38]. The
introduction of attention-based architectures has further
revolutionized this domain, enabling more nuanced and
context-aware detection mechanisms [39], [40]. Although
these approaches have demonstrated impressive results,
the field continues to grapple with challenges in model
generalization and robustness across diverse datasets.

B. CHALLENGES
Prior research on deepfake detection has encountered
several fundamental challenges that continue to shape
the trajectory of current research. Recent studies have
highlighted the persistent difficulty in achieving robust
generalization across diverse deepfake variants. Although
contemporary approaches incorporate sophisticated neural
architectures, including Convolutional Neural Networks
(CNNs) and attention mechanisms, the rapid evolution of
deepfake generation techniques frequently outpaces detection
capabilities. For instance, Wang et al. [41] demonstrated
that traditional CNN-based models, despite employing
extensive data augmentation strategies, struggle to identify
novel manipulation patterns that deviate from their training
distributions. The challenges of dataset quality and repre-
sentation have emerged as critical bottlenecks in advancing
deepfake detection research. Rossler et al. [25] revealed that
publicly available datasets often exhibit limited diversity
in manipulation techniques, potentially leading to models
that overfit specific artifact patterns rather than learning
generalizable detection features. This limitation is particu-
larly pronounced in binary classification approaches, which,
although computationally efficient, may oversimplify the
complex spectrum of deepfake manipulations present in real-
world scenarios. Feature extraction andmodel interpretability
are significant research challenges. Although attention-based
architectures have shown promise in improving feature
localization, as demonstrated by Zhao et al. [10], the field
still grapples with effectively identifying and explaining

fine-grained manipulation artifacts. This challenge becomes
particularly acute when models are trained on datasets
with limited samples or when dealing with sophisticated
deepfake generation techniques that produce nearly imper-
ceptible alterations. Growing concern regarding adversarial
attacks has introduced additional complexity to the detection
landscape. Studies by Li et al. [42] demonstrated that
current detection models remain vulnerable to carefully
crafted adversarial perturbations, post-processing modifica-
tions, and compression artifacts. Although data augmentation
and regularization techniques offer protection, developing
robust defenses against adversarial manipulation continues
to be an active area of research. Computational efficiency
in real-world applications presents a practical challenge
that intersects with theoretical advances. Although state-
of-the-art models achieve impressive accuracy rates, their
deployment in real-time systems often requires significant
computational resources. Nguyen et al. [6] highlighted the
inherent trade-off between model complexity and inference
speed, particularly when implementing attentionmechanisms
along with traditional CNN architectures. Table 1 provides a
summary of the existing work on deepfake detection.

III. METHODOLOGY
Deepfake content poses an increasing threat to digital media
authenticity; however, current state-of-the-art detectionmeth-
ods often require substantial computational resources owning
to their complex parallel architectures and dense intercon-
nections, limiting their practical deployment. This study
aims to develop a memory-efficient deepfake detection
framework through the sequential integration of CNN and
MHSA mechanisms (MHSA proposed in [55] is combined
with Deep Learning (DL) models [10] to leverage both
local feature extraction capabilities and global contextual
understanding for enhanced detection accuracy. In this
research, we modified the traditional attention mechanism
by implementing a lightweight sequential architecture),
optimizing resource utilization while maintaining robust
detection performance through effective feature extraction
and spatial relationship modeling. This section presents the
data collection and preprocessing steps and the architectural
framework of the proposed approach. This study proposes a
CNN-MHSA integration for robust deepfake detection. Our
model employs 696,001 parameters (2.66 MB) is shown in
Table 2, representing a streamlined architecture compared to
many contemporary approaches. The sequential integration
design, where the multi-head attention mechanism follows
convolutional feature extraction, allows the model to benefit
from attention-based contextual modeling while maintaining
a focused architectural design.

Our primary objective in this study was to develop and
evaluate a detection framework that performs effectively
across diverse deepfake datasets, which our experimental
results demonstrate through high accuracy and AUC scores
on the Celeb-DF v2, Custom Center for Cyber Defense
DeepFake (CCDDF), and 140K datasets.
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TABLE 1. Summary of deepfake detection techniques.

A. DATA COLLECTION
The experimental validation of our framework was conducted
across three distinct datasets, each chosen to evaluate specific
aspects of the model’s performance. Our initial experiment
utilized the CCDDF dataset we created, comprising synthetic
and authentic facial images. We generated 5,000 synthetic
images via the generated.photos platform using automated
scripts for this dataset while sourcing an equivalent number
of real photographs from the FFHQ dataset [52]. The CCDDF
dataset used in this study is publicly available through IEEE
DataPort [53].To enhance the training process, we performed
data augmentation on both classes, expanding each to 8,000
images, resulting in a balanced dataset of 16,000 samples.

The second phase of the experiment employed a large-scale
dataset sourced from Kaggle, encompassing 140,000 images
equally divided between authentic and synthetic faces [44].
The synthetic portion was created using StyleGAN tech-
nology, whereas authentic images were sourced from the
FFHQ dataset. This extensive collection enables a thorough
assessment of the capability of our model to handle diverse
facial characteristics and generation patterns at scale.

Our final experimental phase utilized the Celeb-DF v2
dataset [42], which presents a unique challenge because of
its class imbalance. This collection comprises manipulated
celebrity videos alongside their original counterparts sourced
from YouTube. The dataset’s composition of real celebrity
footage and its corresponding deepfake versions provided an
ideal testbed for evaluating our model’s performance against
high-quality manipulated content under varying conditions.

We conducted separate experiments on each dataset to
ensure thorough evaluation across different data distributions
and manipulation techniques. This method enabled us to
validate the consistency and effectiveness of our model
across diverse scenarios. The distribution of images across
classes for each dataset is illustrated in Figure 1, while
the representative samples from our experiments are shown
in Figure 2.

B. DATA PREPROCESSING
Our data preprocessing methodology focuses on standard-
izing diverse datasets while preserving their unique charac-
teristics for effective model evaluation. The Celeb-DF v2
dataset presents unique challenges because it contains video
content rather than static images. We extracted facial regions
from these videos using Multi-task Cascaded Convolutional

FIGURE 1. Total Number of images in each class for the datasets used in
the experiments.

FIGURE 2. Samples of the data used in the experiments [42], [44], [53].

Networks (MTCNN) [54], implementing a strategic sampling
approach to address the inherent class imbalance between real
and fake videos and extracting more frames from real videos
to create a more balanced training set.

The Celeb-DF v2 dataset exhibited a lower resolution than
other datasets in our study. To compensate for this limitation,
we modified our face extraction parameters to include
additional contextual information around the facial region.
This modification proved beneficial as the surrounding visual
information often contained subtle artifacts that could aid in
deepfake detection. After face extraction, we normalized all
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images across the three datasets to a uniform dimension of
224× 224 pixels to maintain consistency in model input size.
We further refined our dataset using targeted data augmen-

tation techniques to address any remaining class imbalances.
These augmentations were specifically chosen to preserve
the critical facial features while introducing meaningful
variations in the training data. Through this comprehensive
preprocessing approach, we successfully standardized our
diverse datasets into a uniform format while retaining their
distinctive characteristics, thereby enabling a thorough eval-
uation of our detection framework across various conditions.

C. CNN ARCHITECTURE
Our model employs a custom-designed sequential CNN
architecture rather than a pre-trained model or established
architecture (such as VGG, ResNet, or Inception). This
custom approach was chosen to optimize the balance between
computational efficiency and feature extraction capabilities,
which was critical for the subsequent integration with our
Multi-Head Self-Attention (MHSA) mechanism. The custom
architecture allows us to precisely control network depth and
feature dimensionality at each layer, ensuring compatibility
with the MHSA component while maintaining memory
efficiency.

The CNN component of our architecture serves as the
primary feature extractor and is designed to capture both the
local and hierarchical patterns in the input data. The network
architecture begins with an input layer that accepts image data
of dimensions 224 × 224 × 3. The network’s core consists
of four sequential convolutional blocks with progressively
increasing filter sizes of 32, 64, 128, and 256 filters,
respectively. This gradual expansion in the number of filters
enables the network to learn increasingly complex feature
representations at different scales. Each convolutional block
in our architecture implements a systematic combination
of layers to ensure optimal feature extraction and model
regularization. The convolutional layers utilize 3 × 3 kernels
initialized using the He normal initialization scheme, which
helps maintain stable gradient flow during training. To pre-
vent overfitting, we incorporate L2 kernel regularization with
a coefficient of 1e-4. Following each convolution operation,
a batch normalization layer is applied to stabilize the learning
process and accelerate training. The normalized features are
then passed through a ReLU activation function to introduce
non-linearity. Spatial dimensionality reduction is achieved
through max-pooling layers with a pool size of 2 × 2,
effectively halving the spatial dimensions while retaining
the most salient features. A dropout layer is included after
each block to further enhance the model’s generalization
capabilities. The features extracted by the convolutional
blocks are flattened into a one-dimensional vector before
being fed into a series of dense layers. The dense layer
configuration consists of two fully connected layers with
128 and 64 neurons, respectively, providing progressive
dimensionality reduction while maintaining essential feature
relationships. The network culminates in a final output layer

FIGURE 3. Diagrammatic representation of the CNN module.

designed for binary classification, distinguishing between
real and fake images. A diagrammatic representation of the
CNN module of the full architecture is given in Figure 3.

D. MHSA MECHANISM
Following the fourth convolutional block, we implemented
an MHSA mechanism to capture long-range dependencies
and contextual relationships within the extracted feature
space. The feature maps from the final convolutional layer,
which contained 256 channels, were reshaped to prepare
them for the attention mechanism. This reshaping operation
flattens the spatial dimensions while preserving channel
information, resulting in a sequence of feature vectors that
can be processed by the attention mechanism. The MHSA
module employed four attention heads, each operating with
a key dimension of 64. This configuration allows the model
to capture different types of relationships and patterns in
parallel, because each head can potentially focus on different
aspects of the feature space. To prevent overfitting and
ensure robust learning, we incorporated dropout mechanisms
at multiple stages: a dropout rate of 0.3 is applied before
the attention operation, and an additional dropout rate of
0.2 is implemented within the attention mechanism itself.
To maintain the network’s ability to preserve important
low-level features, we implemented a residual connection
that adds the attention output back to the input features.
This skip connection helps mitigate the potential loss of
information during the attention operation and facilitates
a better gradient flow during training. The combined
features are then normalized using layer normalization,
which helps stabilize the training process by normalizing
the activations across the feature dimensions. Following
the attention mechanism, the features are aggregated using
global average pooling, which reduces the spatial dimensions
while maintaining learned feature relationships. This pooled
representation serves as a compact, informative feature vector
that captures both the local patterns from the CNN and
long-range dependencies from the attention mechanism.
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FIGURE 4. Diagrammatic representation of the MHSA module.

Figure 4. shows a diagrammatic representation of the MHSA
module.

The mathematical formulation of the MHSA module, as
described in [55] and used in our model, is given as follows:

MHA(Q,K ,V ) = Concat(head1, . . . , headh)WO, (1)

where each attention head is computed as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ). (2)

The scaled dot-product attention is given by:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V , (3)

where Q ∈ Rn×d , K ∈ Rn×d , and V ∈ Rn×d are the
query, key, and value matrices, respectively; and dk is the key
dimension.

A residual connection and layer normalization are applied:

X ′
= LayerNorm(X + MHA(X ,X ,X )). (4)

E. ATTENTION HEATMAP VISUALIZATION
To provide interpretability and insights into the model’s
decision-making process, we implemented an attention
heatmap visualization methodology that reveals the regions
of focus during image classification. The visualization
process extracts intermediate outputs from the final convo-
lutional layer and the multi-head attention layer through an
intermediate model, enabling the analysis of both spatial
features and attention weights. For each input image,

FIGURE 5. Proposed architecture.

we compute a spatial attention map by averaging the attention
weights across all attention heads, followed by normalization
to the range [0, 1]. The normalized attention map is then
resized to match the original input image dimensions using
bilinear interpolation and overlaid on the original image
using a color-coded scheme with controlled transparency.
This visualization approach is applied to both correctly and
incorrectly classified images, enabling direct observation of
the model’s attention patterns and providing insights into the
regions that influence classification decisions. The resulting
heatmaps offer valuable insights into the model’s behavior,
highlighting areas that contribute to successful classification
or potential misclassification, thereby enhancing our under-
standing of the model’s decision-making process.

F. DESCRIPTION OF THE PROPOSED MODEL
ARCHITECTURE
Wepresent a novel deepfake detection architecture that strate-
gically combines Convolutional Neural Networks (CNN)
with Multi-Head Self-Attention (MHSA) mechanisms. Our
design introduces MHSA after the fourth CNN layer,
enabling sophisticated contextual feature extraction while
maintaining low computational overhead. We evaluated this
architecture across three diverse datasets: a custom dataset
built from FFHQ images, the 140_K Real and Fake Faces
dataset, and CelebDF-V2 dataset. Through extensive testing,
our model achieved classification accuracy and AUC scores
comparable to those of state-of-the-art approaches while
significantly reducing memory requirements. The complete
model architecture is illustrated in Figure 5.

The model processes RGB input images through a series
of four convolutional layers, each employing increasing filter
sizes to capture the hierarchical features. These features were
refined using batch normalization and max pooling opera-
tions before being processed by a 4-headed self-attention
mechanism. This unique integration of MHSA enables our
model to simultaneously analyze local spatial patterns and
global image dependencies. The final classification was
achieved through a series of dense layers that output a binary
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TABLE 2. Model architecture summary.

decision that distinguishes between authentic and synthetic
images. A detailed summary of the model architecture is
provided in Table 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we evaluate the performance of the proposed
CNN-MHSA architecture using three distinct experimental
datasets. Our analysis focused on both quantitative and
qualitative insights of the model’s detection capabilities.
The custom dataset experiment validated our model’s ability
to identify AI-generated images from generated.photos AI
tool against authentic FFHQ images, thereby establishing a
baseline for synthetic image detection. The evaluation on
the larger 140_K Real and Fake Faces dataset demonstrated
the scalability and robustness of our model in handling
diverse facial features and StyleGAN-generated images.
The challenging CelebDF-V2 dataset provided insights into
the effectiveness of our model in detecting video-based
deepfakes despite variations in image quality and lighting
conditions. Notably, our sequential integration of MHSA
after the fourth CNN layer achieved competitive performance
while significantly reducing memory overhead compared to
conventional parallel architectures. The attention visualiza-
tion maps, shown in Figure 12, Figure 13, and Figure 14

reveal that our model effectively identifies discriminative
facial regions and potential manipulation artifacts, particu-
larly focusing on areas around the eyes, mouth, and facial
boundaries where synthetic patterns are most prevalent.
These results demonstrate that our architecture successfully
balances the computational efficiency with the detection
accuracy across various datasets and generation techniques.

A. EXPERIMENTAL SETUP
Our experimental framework was implemented on a
high-performance computing system running the Ubuntu
22.04 LTS (64-bit) operating system. The hardware
configuration consisted of dual NVIDIA GeForce RTX
4090 graphics cards, each equipped with 24 GB of VRAM,
enabling the efficient parallel processing of deep learning
operations. The system was powered by an AMD Ryzen
Threadripper Pro processor with 134.9 GB RAM, providing
ample memory resources for handling large-scale datasets
and complex model architectures. This robust computational
environment ensured efficient training and evaluation of our
proposed CNN-MHSA framework across multiple datasets
while maintaining stable performance during extensive
experimentation.
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Our model uses a specialized version of focal loss, which
improves upon regular binary cross-entropy by focusingmore
on hard-to-classify examples. We set it up with two main
control knobs: an alpha value of 0.25 to help with unbalanced
classes, and a gamma value of 2 to control howmuchwe focus
on the tricky cases. The function operates in an intelligent
manner and first assesses the model’s confidence in each
prediction by using binary cross-entropy. Then, it adjusts
the loss value such that when the model is very confident
(but wrong), it becomes penalized more heavily. This helps
prevent the model from becoming complacent with ‘easy’
examples, and keeps it focused on improving its performance
in challenging cases. Considering it as a teaching strategy—
rather than giving equal attention to all examples, we focus
more on those where the model has difficulty. This is
especially useful in our deepfake detection work, where we
might have many more examples of one class than the other,
and we must ensure that our model learns effectively from
both types. To ensure consistent data preprocessing across all
datasets, we implemented a comprehensive image augmen-
tation strategy. This included rescaling pixel values, rotating
images up to 30 degrees, shifting them both horizontally and
vertically by up to 20%, and applying shear transformations,
random zooming, horizontal flipping, and subtle brightness
adjustments. When required, any missing pixels were filled
using the nearest neighbor approach. For the CelebDF-v2 and
140_K real-and-fake faces datasets, we found that processing
images in batches of 64 worked the best, with a learning
rate of 0.0001. We used the Adam optimizer and Focal
Loss function, incorporating both early stopping and learning
rate scheduling to prevent overfitting. The models were
trained for 50 epochs, although for our CCDDF dataset,
we deliberately adjusted the hyperparameter configuration
to optimize performance. Unlike the CelebDF-v2 and 140K
datasets, CCDDF exhibited better convergence with a larger
batch size of 128 and a reduced learning rate of 0.00001.
While we maintained the same Adam optimizer, Focal
Loss function, and callback mechanisms across all datasets,
we found that the CCDDF dataset required only 10 epochs to
reach optimal results compared to the 50 epochs needed for
the other datasets. Though we conducted experiments using
identical hyperparameter settings across all datasets, these
dataset-specific adjustments consistently yielded superior
performance metrics for CCDDF, highlighting the impor-
tance of tailored optimization strategies for different data
distributions. Table 3 summarizes the hyperparameters used
while training our model.

B. RESULTS
In this subsection, we present and analyze the experi-
mental results of our proposed CNN-MHSA framework
across three distinct datasets. We evaluate our model’s
performance using standard metrics including accuracy,
precision, recall, and Area Under the Curve (AUC) scores.
The results demonstrate the effectiveness of our sequential
integration approach in deepfake detection while maintaining

TABLE 3. Hyperparameters and their descriptions.

computational efficiency. We also examine the model’s
attention mechanisms through visualization maps, providing
insights into the regions of interest identified during the
detection process. Detailed analysis of these results and
comparisons with state-of-the-art methods are presented in
the following subsections.

1) CCDDF
The experimental results demonstrate excellent performance
in our binary classification task. The confusion matrix shows
that out of 600 total samples, our model correctly identified
297 fake images and 285 real images. There were only
3 false positives (fake images classified as real) and 15 false
negatives (real images classified as fake), resulting in an
overall accuracy of 97% The model’s strong performance is
further validated by the ROC curve analysis, which yielded
an impressive Area Under the Curve (AUC) of 0.9958.
The ROC curve’s shape shows a sharp rise toward the
top-left corner of the plot, indicating excellent discrimination
ability across different classification thresholds. This is
substantially better than a random classifier (shown by the
dashed diagonal line), demonstrating that our model has
learned meaningful patterns to distinguish between real and
fake images. The high AUC score, combined with the low
number of misclassifications shown in the confusion matrix,
suggests that our model has achieved robust and reliable
performance for this deepfake detection task, though there
is still a small margin for potential improvement in reducing
false negatives. Figure:6 and Figure:7 show the confusion
matrix and AUC curve when our proposed model is evaluated
on the test set of the generated dataset.

2) 140K REAL AND FAKE FACES DATASET
Our model demonstrated strong performance in distinguish-
ing between real and AI-generated images. The confusion
matrix revealed robust classification results across 2000 test
samples, with 987 accurate detections of fake images and
967 correct identifications of real images. The model shows
relatively low error rates, with only 13 false positives (fake
images misclassified as real) and 33 false negatives (real
images misclassified as fake), achieving an overall accuracy
of 97.7%. The model’s exceptional discriminative ability
is further validated by an AUC score of 0.9975 on the
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FIGURE 6. Confusion matrix (Own dataset).

FIGURE 7. ROC curve (Custom dataset).

ROC curve. The curve’s shape shows a sharp rise to the
top-left corner, maintaining high true positive rates while
keeping false positive rates minimal. This performance
substantially exceeds random classification (indicated by
the dashed diagonal line), demonstrating the model’s robust
ability to distinguish between real and fake images. Figure:8
and Figure:9 show the confusionmatrix and AUC curve when
our proposed model is evaluated on the test set of the 140k
real and fake faces dataset.

3) CelebDF-V2
Our model demonstrated a strong performance in detecting
manipulated images. The confusion matrix shows that out of
600 total samples, the model correctly identified 285 fake
images and 279 real images. In terms of errors, there
were 15 false positives (real images incorrectly classified
as fake) and 21 false negatives (fake images missed by
the model), resulting in an overall accuracy of 94%.

FIGURE 8. Confusion matrix (140k real and fake faces dataset).

FIGURE 9. ROC curve (140k real and fake faces dataset).

The effectiveness of the model was further validated by ROC
curve analysis, which yielded an AUC score of 0.9872. The
sharp rise of the curve towards the top-left corner indicates
the model’s strong ability to maintain a high true positive rate
while keeping false positives low. This significantly outper-
forms random classification (shown by the dashed diagonal
line), demonstrating that our model learns meaningful
patterns to distinguish between real and manipulated images.
Figure:10 and 11 show the confusion matrix and AUC curve
when the proposed model was evaluated on the test set of the
Celeb-DF v2 dataset.

4) ATTENTION HEATMAP VIZUALIZATION
The attention heatmap visualizations reveal distinct pat-
terns across different classification scenarios. In correctly
classified fake images (True: 0, Pred: 0), we observe
concentrated attention on facial features that typically exhibit
manipulation artifacts. Particularly in the 140K dataset,
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FIGURE 10. Confusion matrix (Celeb DF-v2).

FIGURE 11. ROC curve (Celeb DF-v2).

Figure 13, attention focuses on facial boundaries, unnatural
skin smoothness, and inconsistent lighting patterns that are
characteristic of synthetic generation.

For correctly classified real images (True: 1, Pred: 1),
attention distributes more evenly across facial features with
particular emphasis on eyes, nose, and mouth regions.
This balanced pattern is evident across all three datasets,
suggesting the model has learned to identify authentic facial
characteristics regardless of individual differences.

The misclassification cases provide critical insights into
the model’s limitations. In fake images incorrectly classified
as real (True: 0, Pred: 1), we observe diffused attention or
focus on non-discriminative features. For example, in the
Celeb-DF v2 dataset, Figure 12, attention often shifts toward
background elements rather than facial inconsistencies.

Conversely, in real images incorrectly classified as fake
(True: 1, Pred: 0), attention becomes abnormally concen-
trated on specific facial regions that may resemble synthetic
patterns. This is particularly evident in our custom dataset,

FIGURE 12. Heatmap Visualization of celeb DF V2 dataset.

FIGURE 13. Heatmap Visualization of 140k dataset.

Figure 14, where the model frequently focuses intensely on
eye regions and facial contours in misclassified real images.

Each dataset exhibits distinctive attention patterns reflec-
tive of its unique characteristics. The 140K dataset shows
more uniform attention on central facial features, the
Celeb-DF v2 dataset demonstrates attention influenced by
diverse filming conditions, and our custom dataset reveals
particularly strong attention to textural details.

C. CROSS-DATASET GENERALIZATION ANALYSIS
To evaluate the real-world robustness of our proposed CNN-
MHSA architecture, we conducted rigorous cross-dataset
experiments by training models on each dataset and testing
their performance on the others. This approach provides
critical insights into the model’s ability to generalize to
unknown deepfake generation techniques.

Table 4 presents the comprehensive results of our cross-
dataset evaluation:
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TABLE 4. Cross-dataset performance evaluation of deepfake detection models.

FIGURE 14. Heatmap Visualisation of custom dataset.

The results reveal several important findings. First, our
model achieves excellent performance when tested on the
same dataset it was trained on, with accuracies ranging from
94.0% to 97.7% and AUC scores between 98.7% and 99.7%.
However, there is a significant performance drop in cross-
dataset scenarios, with accuracies falling to approximately
50% in most cases. This substantial performance degradation
highlights the challenge of cross-dataset generalization. The
different deepfake generation techniques used across datasets
create distinct artifacts that models learn during training, but
these learned patterns may not transfer effectively to other
manipulation methods.

To address this limitation, we explored two ensemble
approaches:

• Equal Weights Ensemble: In this approach, we com-
bined predictions from all three models (trained on
140K, Celeb-DF v2, and CCDDF datasets) with equal
weighting (1/3 each) regardless of the test dataset.
This simple averaging of predictions yielded noticeable
improvements over individual cross-dataset perfor-
mance, particularly for the Celeb-DF v2 test set where
accuracy increased to 77.5% and AUC score to 85.6%.
This suggests that even a basic ensemble can capture
more generalizable features across different deepfake
generation techniques.

• Dataset-Weighted Ensemble: This more sophisticated
approach assigns weights to each model based on the

test dataset being evaluated. Specifically, we assigned
a weight of 0.6 to the model trained on the same
dataset as the test set and 0.2 to each of the other
models. For example, when testing on the 140K dataset,
the 140K-trained model received 0.6 weight while
Celeb-DF v2 and CCDDF models received 0.2 weight
each. This weighted ensemble demonstrated remarkable
performance, achieving accuracies between 91.3% and
97.5% across all test datasets, with AUC scores ranging
from 97.1% to 99.6%.

Table 5 summarizes the results of the ensemble model
performance

The impressive performance of the dataset-weighted
ensemble suggests that while individual models may spe-
cialize in detecting specific types of manipulation artifacts,
combining their predictions allows for more robust detec-
tion across diverse generation techniques. This ensemble
approach effectively leverages the strengths of each model
while compensating for their individual limitations.

These findings highlight an important direction for practi-
cal deepfake detection systems: rather than relying on a single
model, deploying an ensemble of models trained on diverse
datasets can significantly improve real-world performance
when encountering unknown manipulation techniques. The
weighted ensemble approach in particular shows promise
as a strategy for developing more generalizable deepfake
detection systems.

D. COMPARISON OF RESULTS
In this section, we present a comprehensive evaluation of
the proposed models using the three distinct datasets. First,
we showcase the performance metrics of our experimental
configurations, highlighting the effectiveness of each model
variant under different conditions. Subsequently, we con-
textualize our findings by comparing them with existing
approaches in the literature, demonstrating how our work
advances the current understanding in this domain. The
comparative analysis not only validates our methodological
choices but also illustrates the key advantages and potential
limitations of our approach relative to existing solutions.
Our comparison studies were strategically selected based
on the dataset commonality and methodological diversity,
with most utilizing the same 140k dataset to ensure direct
benchmarking against established approaches like CNN +

SVM [43] and the CustomCNNmodel [48].We also included
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TABLE 5. Ensemble model performance.

TABLE 6. Classification report results from the experiments conducted.

recent high-performers such as the Fusion Network [51] on
the Celeb-DF v2 dataset to position our work within cutting-
edge research.

It is important to note that while our model demon-
strates competitive performance, we identified two recent
approaches that have achieved superior results specifically
on the Celeb-DF v2 dataset [56]. Li et al. [57] achieved
a remarkable accuracy of 94.51% using their innovative
GAN-based detection framework on the Celeb-DF v2
dataset, slightly outperforming our 94.0% accuracy on the
same dataset. More significantly, Khormali and Yuan [58]
reported an impressive 99.47% accuracy on Celeb-DF v2 by
leveraging a sophisticated GCN + Transformer architecture,
which represents the current state-of-the-art performance on
this specific dataset.

The results presented in Table 7 reveal important insights
about model performance across different contexts. While
our base CNN + MHSA model achieves strong results when
trained and tested on the same dataset (97.7% accuracy
on 140k, 94.0% on Celeb-DF v2, and 97.0% on CCDDF),
our cross-dataset evaluation in Table 4 exposes a critical
challenge in the field: most models, including ours, suffer
dramatic performance degradation when tested on datasets
different from their training data. For instance, our model
trained on 140k achieves only 49.7% accuracy when tested on
Celeb-DF v2, revealing the substantial domain gap between
these datasets. This limitation motivated our development of
an ensemble approach, with results presented in Table 5. Our
dataset-weighted ensemble strategy significantly improves
cross-dataset generalization, achieving 97.5% accuracy on
140k, 91.3% on Celeb-DF v2, and 96.7% on CCDDF.
This represents a substantial improvement over both our
base model and competing approaches when considering
performance across multiple datasets simultaneously. The
MHSA mechanism remains a key strength of our archi-
tecture, enabling effective capture of spatial relationships
and manipulation artifacts that often elude traditional con-
volutional approaches. This advantage is particularly evident
in the dataset-weighted ensemble’s balanced performance
across all evaluation metrics - accuracy, AUC, precision,
and recall - demonstrating robust detection capabilities

TABLE 7. Comparison of our results with existing work.

across varied deepfake generation techniques and image
characteristics.

V. CONCLUSION
This study presents an experimental approach to deepfake
detection by combining multi-head self-attention mecha-
nisms with convolutional neural networks. The proposed
model demonstrated remarkable effectiveness acrossmultiple
datasets, achieving high accuracy and AUC scores that
validated its robustness and reliability. Specifically, themodel
achieved 98% accuracy with an AUC of 99.75 on the 140K
Real and Fake Faces dataset, 94% accuracy with an AUC of
98.72 on the Celeb-DF v2 dataset, and 97% accuracy with an
AUC of 99.58 on our custom-generated dataset. These results
significantly outperform many existing approaches and
demonstrate the model’s ability to generalize across different
types of deepfake content.We recognize that our evaluation of
the Celeb-DF v2 dataset would be strengthened by explicitly
testing across different compression levels, as deepfake
content in real-world scenarios often undergoes compression
when shared on social media platforms. While our current
model has shown robust performance on the standard Celeb-
DF v2 dataset, future workwill specifically evaluate degraded
image quality scenarios and incorporate compression-aware
training strategies to enhance real-world applicability.
The integration of attention heatmap visualizations has
provided valuable insights into the model’s decision-making
process, enhancing our approach’s interpretability and trust-
worthiness. This transparency is crucial for the practical
deployment of deepfake detection systems in real-world sce-
narios. The strong performance across diverse datasets sug-
gests that our model is robust to various deepfake generation
techniques and can adapt to new forms of synthetic media.
This study demonstrates that an architecture combining CNN
and MHSA mechanisms can achieve effective deepfake
detection across diverse datasets. With 696,001 parameters,
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our model provides strong detection performance on multiple
benchmark datasets, contributing to the ongoing research
in identifying manipulated media content. Future work
could focus on expanding the model’s capabilities to handle
video content, exploring real-time detection capabilities,
and investigating the model’s resilience to newly emerging
deepfake generation technologies. Additionally, developing
lightweight versions of the model could facilitate deployment
on resource-constrained devices, making reliable deepfake
detection more accessible to end-users. As deepfake tech-
nology continues to evolve, our work provides a strong
foundation for developing increasingly sophisticated detec-
tion methods to help maintain trust in digital media.
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