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ABSTRACT 
 Manhole covers are potential “dancers”. They may leave 
their resting state and start “dancing”. They may hover, move 
up and down, tilt, rotate, bounce, make noise, flip over, or even 
fly up into the air. In general, their motion looks chaotic, 
probably due to the nonlinear dynamics governing the system. 
 The authors have previously derived basic models of 
dancing manhole covers covering the translational vertical 
motion of free covers and the rotational motion of hinged 
covers. In the current contribution the basic model is extended 
with tilting (without hinge) and bouncing behavior. Some 
fundamental problems and assumptions are discussed. 

Preliminary numerical results are shown together with 3D 
visualizations. 
 Scientific curiosity into a mysterious phenomenon has been 
the motivation for this study. The obtained equations governing 
the manhole cover’s motion may serve as boundary conditions 
in hydraulic-pneumatic models of sewer-manhole systems 
(think of geysering and ventilation). 
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INTRODUCTION 
 Manhole covers are heavy, in the order of 100 kg, and their 
coming out of position forms a danger to pedestrians and road 
traffic. Most displacement events occur under heavy (wet) 
weather conditions when sewers are overloaded, and large 
amounts of air and water need a way to escape. Geysering, 
where spectacular fountains of water come out of the manholes, 
is another − even more extreme − event occurring under these 
circumstances. The dancing motion of manhole covers is 
studied herein, because it is a mysterious phenomenon that is  
not yet fully understood. It is something difficult to prevent: 
gluing or locking are not realistic options, because it is 
expensive and restricts access. Under heavy storm conditions 
the pressures in the sewer system will exist regardless of the 
manhole being “loose” or “fixed”. Fixing would trap the high 
pressures and potentially cause other problems like damage to 
surrounding pavement or a more explosive ejection of the cover 
if the restraints are broken. 
 The first extensive study of the subject known to the authors 
is by Satoshi Yamamoto [1] who showed the danger and damage 
caused by displaced and ejected manhole covers. Jue Wang and 
our third author presented pioneering work on the dislodging of 
manhole covers [2, 3]. 
 Air flows from a sewer into a covered manhole and 
compresses the air. A high-enough pressure will dislodge the 
cover, which – under certain conditions – may start to dance 
(vertical motion, tilting, rotating, bouncing). The dancing is 
modeled by pure vertical motion of a free cover [4, 5] or by pure 
rotation of a hinged cover [6]. These are one-dimensional models 
of the cover (governing either displacement xc or rotation θc). 
When the free cover is allowed to tilt, we have a two-dimensional 
model (with both xc and θc). Tilting of a free cover was added in 
[7] and this model is extended herein with bouncing behavior. The 
two-dimensional model leads to interesting complications, most 
of them related to the cover hitting its support. 
 
 
MODEL DESCRIPTION 
 The model (see Fig. 1) consists of 6 ordinary differential 
equations for the 6 main unknowns: the air mass m in the 
manhole and its uniform (in axial direction) pressure P, the 
cover’s vertical displacement xc and velocity vc, together with 
tilting angle θc and angular velocity ηc. We start with the 
driving force behind the system, i.e. the incoming air mass and 
its (ideal gas) absolute pressure (see Nomenclature for 
symbols): 
 

 ( )d
d in vent d atm
m Av A C P P
t

ρ ρ= − −           (1) 

 

 d d
d d
P nP m
t m t
=               (2) 

 

The vent area Avent is assumed to be small compared to the 
manhole area A, which means that cover displacement and 
rotation are small. In the current model, the net force exerted by 
the air inside the manhole acts on the cover, which is a uniform 
circular disk, but slightly out of the center of mass (gravity). 
This can be seen as a representation of the fact that the air 
pressure acts non-uniformly (in radial direction) on the cover. 
The vector rc identifies the position of the center of mass and is 
therefore the pivot of rotational motion. Gravity acts at position 
rc. We define another vector ra to be the point of application of 
the net air force; this is − to keep things simple − a fixed point 
on the cover. Since the pressure is assumed to be distributed 
non-uniformly on the cover’s surface, these two vectors will in 
general not be the same. The distance between them, that is ║ra 

− rc║, plays a crucial role in the model and its sensitivity to 
tilting. 

 

        
Fig. 1  Figure 1 from Ref. [8]. 
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 The net force resulting from air pressure and gravity causes 
a vertical displacement (xc) of the manhole cover and a rotation 
(of angle θc) around pivot rc. The vertical displacement is 
described similarly to the pure-vertical-motion model [4-6] but 
gains an extra cosine factor due to the variable angle θc 
(because, neglecting shear forces, the air force is perpendicular 
to the cover). This also means that there will be a horizontal 
component (with a sine factor) of the air force and 
corresponding horizontal motion, which can indeed be seen in 
some of the videos of dancing manhole covers (in which the 
cover bumps sideways against its supporting ring). This 
horizontal component is − to keep things simple − disregarded 
herein. Thus: 
 

 
d
d

c
c

x
v

t
=                (3) 

 

 ( )d
cos

d
c c

atm c
c

v A
g P P

t m
θ= − + −            (4) 

 
 The torque acting on the cover is defined similarly to the 
one-dimensional rotational model for a hinged cover [6] but 
differs in two aspects. First, the distance between pivot and 
point of application of the air force is (much) smaller. Second, 
the gravitational force acts on the pivot (by definition), so it 
does not result in any torque. Since the pivot itself is now at 
point rc, the cover’s moment of inertia is: 
 

 2 2
1

1 1
16 12c c c cI m D m d= +             (5) 

 
This leads to the ODEs: 
 

 
d
d
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            (7) 

 
 Equation (7) (which has an incorrect factor cos(θc) in [6]) 
only holds when the cover can rotate freely, which is  not 
always the case as the cover's tip cannot rotate below its 
supporting ring, see Fig. 2. This rotational constraint is linked 
to the vertical constraint xc ≥ 0, namely: 
 

 sin
2

c
c c c

D
x xθ− ≤ ≤              (8) 

 
 The vertical side of the triangle made by the cover can 
never be larger than the vertical displacement xc, for otherwise 
the cover would be partially underground. This argument 

should also hold when the cover is rotated the other way 
around, hence the negative part of Eq. (8). 
 

 
 
Fig. 2  Schematic representation of the situation from side-
view. The bold (red) dot represents the geometric center of the 
cover, which is also the pivot point herein. The blue part 
represents the manhole with outflowing air. 
 
 When the angle θc is such that one of the inequalities in Eq. 
(8) becomes an equality, the cover touches the ground and 
something interesting happens. Assume that the lowest point of 
the cover remains in contact with the ground for some time. In 
this case, the cover actually rotates about the point in contact 
with the ground (like in the model for hinged covers). The pivot 
point is then the point at which the cover makes contact with 
the ground. The moment of inertia of the cover is different for 
this different pivot, as it is now the same one as for pure 
rotational motion around a hinge: 
 

 2 2
2

5 1
16 12c c c cI m D m d= +             (9) 

 
 This situation only exists for a small period of time (because 
the cover bounces back), i.e. as long as the constraint in Eq. (8) 
is not satisfied numerically. Although such a temporary hinge 
may be considered, it is not expected to have a significant effect 
on the overall behavior of the system. 
 It is an interesting situation, when the system reaches one of 
the limits of constraint (8) and the cover is about to cross it, as 
this means that its edge hits the ground or supporting ring. At 
this point, the energy that the cover has does not disappear all at 
once (as in the pure vertical motion presented in [4-6] where 
the cover reaches its resting position without bouncing back, 
i.e. inelastic collision). Instead, (a part of) the energy remains in 
the system as the cover bounces back after the collision. What 
follows are the first steps in the modeling of a complex matter 
(snooker ball analogy). 
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 Theoretically, we first assume and apply conservation of 
energy in the system and see how the linear and angular 
momentum of the cover are distributed before and after 
collision. The energy of the cover is defined by the sum of the 
linear (vertical) and angular kinetic energy: 
 

 2 2
1

1 1
2 2c c cE m v I η= +            (10) 

 
 When the cover hits the ground, a vertical impulse J is 
delivered onto the cover by the upward normal force Fn with 
size ║Fn║ = Fn, resulting in a change in momentum and 
energy. We assume this happens instantaneously, i.e. within one 
time-step numerically, but a Dirac pulse theoretically. Since the 
mass mc is constant we get the following equation for the 
applied linear momentum: 
 
 c c c cJ m v m v= −             (11) 
 
where cv  is the vertical velocity of the cover after impact.  The 
normal force also results in a torque τ = r × Fn, where we 
define r = ri − rc as the vector from geometric center rc  to point 
of contact ri. Due to the geometry of the cover, we assume that, 
when tilted, it can only hit the ground at its outer side. 
Therefore, with the cover’s geometric center in the middle, the 
length of the vector is always ║r║ = Dc / 2, except when the 
cover falls down flat, in which case the distance is taken 0. 
Hence the torque τ = ║τ║  for collision at angle θc is: 
 

 sign( ) cos( ) : ( )
2

c
c c n c n

D
F r Fτ θ θ θ= − =         (12) 

 
 This equation also holds for θc = 0, as r(0) = 0 due to the 
sign function. We use Eq. (12) in the resulting equation for the 
angular momentum: 
 
 1 1( )c c cr J I Iθ η η= −            (13) 
 
where cη  is the angular velocity of the cover after impact. To 
complete the system, we assume elastic collision and 
conservation of energy: 
 

 2 2 2 2
1 1

1 1 1 1
2 2 2 2c c c c c cE m v I m v I Eη η= + = + =         (14) 

 
 Now we have Eqs (11), (13) and (14) governing the three 
unknowns J, cv  and cη . Substituting the first two equations 
into the latter gives an equation for J: 
 

 
2

1

( ( ))1 ( ) 0
2 2

c
c c c

c

r
J J v r

m I
θ

η θ
  

+ + + =      
       (15) 

 

 So, we either get the arbitrary solution J = 0 for a situation 
without impulse, i.e. no impact, which we are not interested in, 
or we find: 
 

 1
2

1

2 ( ( ))
( ( ))

c c c c

c c

m I v r
J

I m r
η θ
θ

+
= −

+
          (16) 

 
and consequently, once we have found J, from Eqs (11) and 
(13): 

 1
c c

c
v v J

m
= +             (17) 

 

 
1

( )c
c c

r
J

I
θ

η η= +             (18) 

 
 In the case of pure vertical motion, these equations hold as 
well. We then have by definition θc = ηc = 0. Consequently r(0) 
= 0 and J = −2mcvc, which yields cη  = 0 and more importantly 

cv  = −vc. The cover bounces back up with the same speed after 
hitting the ground. This is a nice verification to see that the 
derived equations make sense. 
 We do not expect manhole covers to bounce like a rubber 
ball would. Furthermore, due to unevenness, dirt and roughness 
of the cover and its supporting ring, friction and damping 
cannot be ignored during collision. Therefore, as a gross 
simplification, we introduce ’damping factors’ α and β in Eqs 
(17) and (18): 

 1
c c

c
v v J

m
α
 

= + 
 

            (19) 

 

 
1

( )c
c c

r
J

I
θ

η β η
 

= + 
 

            (20) 

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. This is a significant assumption, 
and the values of α and β need to be researched more in depth. 
However, for now it is key to the realism of the proposed 
model. Perhaps other more elaborate ways of modeling friction 
and inelasticity can be considered, but this requires more 
advanced analysis. 
 
 
ASSUMPTIONS, CONSTRAINTS AND 
NUMERICAL DIFFICULTIES 
 Numerically, the proposed model comes with some inherent 
difficulties. To start with, we have the constraint that the cover 
cannot drop below the ground level, i.e. xc ≥ 0 all the time, as 
well as the constraint that vc ≥ 0 when xc = 0. 
 Furthermore, the vertical velocity vc changes only like 
described by Eq. (4) when the cover xc > 0 or if the air pressure 
P inside the manhole is large enough to lift the cover. If these 
conditions both do not hold, the cover is at rest on the ground 
and the velocity does not change at all because the normal force 
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from the supporting ring counterbalances the gravitational 
force. 
 Something similar is the case for the angular velocity. 
Equation (7) only holds when the cover is able to rotate freely, 
i.e. when xc > 0 and the inequality in Eq. (8) holds. Otherwise, 
the cover cannot gain any angular velocity. 
 Lastly, after evaluating the new values for xc and θc, we 
check if the constraint from Eq. (8) is violated in the new time-
step while it was not violated in the old time-step. This would 
imply the cover is hitting the ground somewhere between the 
two time-steps. If this is the case, we use Eqs (19) and (20) to 
reevaluate the new values for variables vc and ηc. 
 For simplicity and to be able to maintain control over all 
these different constraints and conditions, the forward Euler 
method has been used for the tilting cover model. This method 
is not preferable due to low accuracy and stability concerns, but 
with a time-step of 0.00001 s the method yields acceptable 
results (Fig. 3) and corresponding animations (Fig. 4). Gauge 
pressures up to 0.07 bar (Fig. 3a) are sufficient to make a 100 
kg cover dance with a displacement amplitude of 0.1 m (Fig. 
3b) and whimsical tilting behavior (Fig. 3c). 
 An important choice that was made for this implementation 
was to keep the distance ║ra − rc║ fixed at all times. Only 3D 
CFD simulations may shed light on this issue, i.e. the unsteady 
pressure distribution on the cover. 
 
 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
(c) 

 
 
Fig. 3  Simulated dancing manhole cover: (a) driving pressure, 

(b) vertical displacement, (c) angle of rotation. 
   Input parameters 
   Constant inflow velocity vin = 5 m/s, ║ra − rc║= Dc / 80, 

α = β = 0.6, D = 0.5 m, Dc = 0.55 m,  dc = 0.055, mc = 
100 kg, Patm = 1 bar, L = 50 m, g = 9.81 kg/m3, Cd = 1; n 
= 1.4. 
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Fig. 4  Snapshots from model animation. 
 
 
DISCUSSION 
 The proposed model is work in progress, and there are still 
difficulties and problems to overcome. Most of them are related 
to catching 3D phenomena in a 1D model. For example, when 
the cover is rotated 90 degrees, the air pressure has no effect on 
the vertical displacement of the cover anymore as the cosine 
factor in Eq. (4) amounts to 0. However, the angular velocity in 
Eq. (7) is still impacted in the same way as previously. Perhaps, 
this equation should include a term taking into account the 
angle as well. Furthermore, the vertical displacement of the 
cover does not affect the differential equations themselves 
directly. This is odd, because it is unlikely that the air coming 
out of the manhole has any effect on the cover when it is blown 
up a meter in the sky. Actually, in this case the area Avent would 
simply be the gap left by the cover. The current assumptions 
may be justified by noting that the model only holds for small 
displacements, both angular and vertical. 

FUTURE WORK 
 Sideways behavior, introducing a y-axis. Like mentioned 
earlier, the air pressure exerts a force which also has a 
horizontal component when the cover is tilted. It might be 
worth the effort to try and implement this into the model, as it is 
something that is indeed seen in real life footage. The difficulty 
lies in the lack of understanding how the cover somehow does 
get back on the supporting ring. This definitely needs some 
more research, perhaps also practical testing, but a preliminary 
model might already give some insight into the mechanism 
behind this behavior. 
 Rotation of the cover around the vertical xc-axis, as seen in 
many of the videos. It is difficult to initiate this behavior in a 
model, as the cover will probably start in an unstable 
equilibrium. Therefore, some additional feature is necessary to 
get the cover out of the equilibrium and initiate the rotation. 
Perhaps an option would be to define a center of mass that is 
different from the geometric center, but this results in new other 
problems. We might also need a y-axis to model this. 
 Point of application ra(t) and therefore distance ║ra(t) − rc║ 
changes over time, instead of maintaining fixed value. This 
makes sense physically with the behavior of the air inside, and 
this idea can be extended to 3D, possibly resulting in the 
rotation mentioned in the previous point. 
 
 
PREVENTION 
 Of course, the main question is how to prevent “dancing” or 
displacement in general. Large-enough permanent vents 
(orifices) may help [2, 3]. Limiting the displacement by means 
of a strap, string or chain may be another option; at least, this 
will prevent complete ejection. Locking the cover seems a 
sensible option, as this is already being done to prevent theft 
(Fig. 5). However, Klaver et al. [9] reported “displacement of 
manhole covers at two locations and, at one location where the 
manhole cover was bolted down, by pavement deformation”. 
Under heavy storm conditions the pressures in the sewer system 
will exist regardless of the manhole being open or not. "Fixing" 
it would trap the high pressures potentially causing other 
problems − or worse, a more "explosive" ejection of the cover 
if the restraints are broken. The most extreme solution is to glue 
the covers to their supporting rings, as done on Formula 1 street 
racing circuits (see Appendix). 
 
 

6 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/PVP/proceedings-pdf/PVP2024/88490/V003T04A002/7405093/v003t04a002-pvp2024-123054.pdf by Auburn U

niversity user on 19 Septem
ber 2025



 

 
 
Fig. 5  Manhole cover with lock (patent Dmitry Rod, Ukraine). 
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NOMENCLATURE 
A = cross-sectional manhole area (m2) 
Ac = manhole cover area (m2) 
Acar = car floor area (m2) 
Avent = venting area (m2) 
Cd  = orifice discharge coefficient 
D  = manhole diameter (m) 
Dc  = manhole cover diameter (m) 
dc  = depth of manhole cover (m) 
dcar  = clearance (m) 
E  = energy (J) 
F  = force (N) 
g  = acceleration due to gravity (m/s2) 
I  = moment of inertia (kg m2) 
J  = impulse (N s) 
L  = length of gas column in manhole (m) 
Lcar = length of car (m) 
mc  = mass of manhole cover (kg) 
mcar = mass of car (kg) 
m  = mass of gas (kg) 
n  = constant polytropic exponent 
P  = absolute pressure (cross-sectional average) (Pa) 
r  = function of θc defined in Eq. (12) 
r  = position vector 
t  = time (s) 
vc  = vertical velocity of manhole cover (m/s) 
vcar  = horizontal velocity of car (m/s) 
vin  = inflow velocity at bottom of manhole (m/s) 

wcar  = width of car (m) 
xc  = vertical displacement of manhole cover (m) 
ηc  = rotational velocity of cover (rad/s) 
α, β = damping coefficients 
γ  = downforce factor 
θc  = angle of  rotation of cover (rad) 
ρ  = mass density of gas (kg/m3) 
ρc  = mass density of cover (kg/m3) 
τ  = torque (N m) 
 
Subscripts and Overbar 
a  = application point of force 
atm = atmospheric 
c  = cover, center 
car  = racing car 
down = down force 
i  = impact 
in  = inflow 
n  = normal 
vent = orifice, opening 
~  = after impact 
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APPENDIX  FORMULA.1 
 A manhole cover made it to the headlines during the 
Formula 1 race weekend in Las Vegas, November 2023. It came 
loose and hit the car of Carlos Sainz. The same happened to 
George Russell in Baku, April 2019. 
 Formula 1 cars have a lot of “down force”, which includes 
low pressure underneath them. When racing over a manhole on 
a street circuit, the cover may come loose and hit the car; such 
an event causes a lot of expensive damage. The solution in Las 
Vegas was to glue the loose manhole covers (Fig. 6). In Baku 
they had to fix 300 covers. Both solutions were expensive and 
not durable. 
 Cars, i.e. "ordinary traffic", driving over covers keep them 
"loose" thereby increasing their potential to dance. 
 

 
Fig. 6  Manhole cover with glue (Las Vegas 2023 F1). 

 
 Let us do a basic calculation assuming uniform 
acceleration, based on the data (found on the internet) listed in 
Table A.1. The key parameter is the very short time ∆t that the 
car is located above the manhole cover. Within this time of Lcar 
/ vcar = 0.05 s the cover moves upwards 2.5 mm, which is much 
too short to hit the car’s front clearance of 30 mm (let alone the 
back clearance of 80 mm), unless the cover has tilted by an 
angle θc = arcsin(0.0275 m / (Dc / 2)) = 3.9°, which seems not 
impossible. 
 The key formula in dimensionless form is: 
 

 
2( )1

2
c c car

car car c car

x A m g t
d A m d

γ
  ∆

= − 
 

       (A.1) 

 
This number must be smaller than 1 for safe racing. 

A similar formula for the tilting angle θc would complete the 
model. 
 
 

Table A.1  Input and derived data. 

F1 racing car manhole cover 
vcar = 360 km/h = 100 m/s 
mcar = 800 kg 
Lcar = 5 m 
wcar = 2 m 
Acar = Lcar wcar = 10 m2 
dcar = 0.03 m – 0.08 m 
γ = 3 
Fdown = γ  mcar g = 24 kN 
Pdown = Fdown / Acar = 2.4 kPa 
∆t = Lcar / vcar = 0.05 s 

g = 10 m/s2 
mc = 100 kg 
Dc = 0.8 m 
Ac = π Dc

2 / 4 = 0.5 m2 
dc = 0.025 m 
ρc = 8000 kg/m3 
ac = Pdown Ac / mc − g = 
    = 2 m/s2 
vc = ac ∆t = 0.1 m/s 
xc = vc ∆t / 2 = 0.0025 m 
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