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A B S T R A C T

Research over the last 70 years has led to a better understanding of fixed-abrasive machining processes.
This knowledge is often expressed in the form of physical and empirical models that cover forces, power,
specific energy, wheel/workpiece topography, wear, thermal aspects, cooling, dressing, and more. This
paper first examines the established models that continue to constitute the fundamental knowledge base
in fixed-abrasive technology. Special attention is given to geometry, kinematics, and thermomechanical
modeling. Recent advances in process monitoring and big data analytics provide new opportunities to fur-
ther strengthen the state of the art in modeling through data-driven approaches. In addition, examples on
how models ! implemented in simulation software ! can be used to predict and optimize industrial
operations have been demonstrated. This is illustrated by several use cases from real production, includ-
ing bearing, creep-feed form, gear, camshaft, crankshaft, and centerless grinding, along with diamond-
wheel truing.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the
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1. Introduction

Machining with fixed abrasives remains one of the least-
understood machining processes. This perception has been pres-
ent since at least the 1950s, when investigations into its funda-
mental mechanics began to be published. Early grinding pioneer
Tarasov wrote: “grinding is such a complex process to analyze
mathematically” [17]. Decades later, new grinding models are
being developed and established models are becoming ever
more complex. Macro-scale quantities, such as process kinemat-
ics, are being integrated alongside micro-scale properties, such
as wheel topography. More recently, in-process monitoring data
has been integrated as a feedback into these models [34]. Model-
ing is a useful tool for overcoming the complexity that hinders
process understanding. Here, the term “modeling” refers to the
derivation of equations and functions that quantify the relation-
ships within the process. The resulting “model” describes and
quantifies the interrelation of input and output parameters in
the process. Once developed, the model is used in trials to simu-
late the process behavior, typically through a computer program.
Such “simulation” with the model provides predictive insights
about the process.

Models can be broadly categorized as (i) physical or (ii) empir-
ical, as defined in previous CIRP keynote papers, published in
1992 [255] and 2006 [44]. Physical models rely strictly on first

principles and physical laws. In classical grinding research, an
essential part of physical modeling is the application of funda-
mental mechanics, such as the proportionality of force to specific
energy and cross-sectional chip area [17]. Such underlying laws
have general validity and lead to a better understanding of funda-
mental process mechanics. However, many analytical problems in
grinding cannot be solved with general validity, so approxima-
tions are obtained through numerical calculations. This consti-
tutes numerical modeling, which is ever-increasing due to the
wide availability of computers and software, which allow for
modeling of complex processes [113]. For example, the finite ele-
ment method (FEM) is used extensively to solve partial differen-
tial equations by a series of approximations that satisfy the
governing equation and boundary conditions within a small
region of a grinding zone/contact interface [134]. In this context,
a semi-analytical model uses theoretical principles as a founda-
tion and then couples it with numerical methods to deal with the
complexities of the process [277]. Empirical models are developed
through experimentation on the actual grinding system or its
analog. This approach treats the process as a “black box” and
focuses on data analysis, including fitting models to data and
making model inferences based on data. Examples of empirical
models are numerous, including regression analysis [76,166],
Monte Carlo method [291], Bayesian data analysis [195], explor-
atory data analysis [253], and artificial neural networks (ANN)
[275] ! a cornerstone of machine learning (ML). Here, ML is con-
sidered a subset of artificial intelligence (AI), which is based on
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supervised, unsupervised, and deep learning from data [279].
Such data-driven modeling now plays a pivotal role in empirical
efforts. One drawback of empirical models is their limited
ability to accurately predict outcomes beyond the range of given
experimental data, as these models are built on interpolation
of observed values rather than on the underlying physical
principles.

This keynote paper aims to demonstrate how modeling can lead
to accurate predictions of fixed-abrasive processes. To this end, a
variety of physical and empirical models that describe key process
aspects ! such as specific energy/forces, wheel wear, temperatures,
thermal damage and surface roughness ! are described. While the
focus is on the modeling of grinding and dressing processes, the prin-
ciples extend to other fixed-abrasive processes, such as honing
[33,48,106] and superfinishing [155,156], due to similar underlying
mechanisms. Modeling on a macro-scale extends to a micro-scale,
with significant advancements being made in both domains
[60,149,150,242]. Abrasive machining is used to finish precision com-
ponents, mainly in metals, but also in ceramics, composites, and
other functional materials. For example, modeling has advanced the
understanding of the kinematics in cup-wheel grinding of silicon
wafers [137] and kinematics in contour-grinding of PVD-coated opti-
cal molds [129]. Similarly, models of ceramic grinding can quantify
the undeformed chip thickness [4,281] and predict surface integrity
[62].

The key sections of the paper (Fig. 1) are as follows: Section 2
begins with a brief review of the evolution of fundamental models
that describe grinding mechanisms. It then continues with a discus-
sion on the fundamentals of geometry and kinematics for a variety of
fixed-abrasive processes, covering aspects of wheel truing and dress-
ing as well as wheel and workpiece topography. Section 3 discusses
thermomechanical modeling of grinding based on physical laws,
including material removal, wear, thermal aspects and fluid flow
(effect of grinding fluid). The process-machine interactions are dis-
cussed only briefly because modeling of chatter is considered outside
the scope of this work. Section 4 addresses emerging data-driven
modeling, which aids empirical predictions of wear, grinding burn
and surface roughness. Section 5 discusses the use of simulation
models that have impacted real production in the bearing, automo-
tive, and aerospace sectors.

2. Modeling ! geometry and kinematics

2.1. Evolution of grinding models

Early grinding models were derived from metal-cutting mod-
els [208]. For example, Merchant proposed a system of forces act-
ing on an abrasive grit where the radial and tangential forces are
in equilibrium with the normal and frictional forces [17]. How-
ever, the situation is complicated by the unknown three-dimen-
sional grit geometry and rake angle, which is in contrast to the
geometrically defined cutting edge in two-dimensional orthogo-
nal cutting. Two distinctive characteristics of grinding compared
to metal cutting are: (i) the magnitude of shearing; and (ii) the
relatively large increase in specific energy with decrease in unde-
formed chip thickness, known as the size effect [16]. The specific
energy is a fundamental process parameter, defined as the energy

required to remove unit volume of material [206]. The original
investigation of the specific energy was purely experimental,
from surface-grinding tests at the Timken Company. A dynamom-
eter mounted to a surface grinder measured the normal Fn and
tangential Ft forces for various depths of cut ae, workpiece speeds
vw , wheel speeds vs, and grinding widths bD. Based on the results,
the specific energy was established as:

ec ¼
Ft ¢ vs

vw ¢ ae ¢ bD
¼ P

Qw
ð1Þ

where the numerator is the grinding power P, and the denominator is
the volumetric material removal rate Qw . The specific energy can be
derived from the power (or force) measurements and grinding condi-
tions, and it can be associated with the three distinct abrasive mecha-
nisms of sliding, plowing, and chip formation. Therefore, it quantifies
the efficiency of material removal. The same authors [16] further
defined the geometric contact length:

lg ¼
!!!!!!!!!!!!
ae ¢ de

p
ð2Þ

where de is the equivalent wheel diameter calculated as
de ¼ dw ¢ ds=ðdw §dsÞ ¼ ds=ð1§ds=dwÞ, where the plus sign is for out-
side-diameter (OD) grinding and the minus sign for internal-diame-
ter (ID) grinding, and de ¼ ds for surface grinding (as dw!1). For
practical purposes, there is no need to distinguish between the lg and
the kinematic-contact length lk as the difference is extremely small
for typical vw and vs values. The other fundamental parameter,
derived in 1952 [16], is the maximum undeformed chip thickness, or
the “grit depth of cut”, defined as:

hm ¼

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4

C ¢ r
vw
vs

" # !!!!!
ae
de

rs

ð3Þ

where C is the number of cutting points per unit area (cutting-point
density) and r is the chip-shape ratio (ratio of chip width to chip
thickness). Quantifying these two wheel-topography parameters has
proven to be difficult.

The role of chip thickness in grinding was first investigated
already in 1914 [7] by George I. Alden, who co-founded the Norton
Company. His work is considered the first grinding-modeling paper.
Alden derived a mathematical relationship for the “grit depth of cut”
as a function of the grinding conditions for cylindrical OD grinding
(Fig. 2). This model translates to maximum undeformed chip thick-
ness as hm ¼ ð2=NÞðvw=vsÞ

!!!!!!!!!!!!
ae=de

p
using established symbols (as per

[202]), where N is the number of cutting points per unit length of cir-
cumference. Note that the inverse of N corresponds to the cutting-
point spacing L.

In 1943, the hm ¼ 2Lðvw=vsÞ
!!!!!!!!!!!!
ae=de

p
model was adopted in Ger-

many [216], see Fig. 3. Researchers identified the importance and the
role of geometrical (ae; de) and kinematical (vw, vs) parameters (and
their ratios) on process mechanics [223].

The dimensionless parameter that accounts for the process geom-
etry and kinematics ðvw=vsÞ

!!!!!!!!!!!!
ae=de

p
was termed chip-thickness

Fig. 1. Systemic approach to modeling of fixed-abrasive processes.

Fig. 2. Geometry and kinematics of cylindrical OD grinding according to Alden
(adapted from [7]).
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coefficient [274]. Peklenik postulated that the cutting points are not
equally spaced (i.e., L 6¼const.) and do not protrude uniformly. This
leads to stochastic, topography-dependent, models that are largely
used today. The number of active cutting points depends on both the
topography of the wheel (grit protrusion), and the grinding condi-
tions. This was studied in detail by [153]. The analysis of the “static”
cutting-point density, as determined from measurements of the
wheel topography, was integrated into the “dynamic” cutting-point
density, Cdyn, which also takes into account geometry and kinematics.
To further investigate this, Tigerstr€om [254] developed a method to
measure Cdyn and then correlate it against the dimensionless parame-
ter ðvw=vsÞ

!!!!!!!!!!!!
ae=de

p
. Malkin labeled this quantity the infeed angle e,

representing the material flow relative to a contact point on the
periphery of the wheel [202].

As a contact point on the grinding wheel moves through the
grinding zone, its motion will intersect with that of the moving work-
piece, which is a necessary condition for cutting. The level of interfer-
ence at any point along the cutting path is determined by the infeed
angle between the normal vn and tangential vt components of the rel-
ative velocity vector, as shown in Fig. 4. The infeed angle decreases
from the top of the cutting path, where the maximum value of the
infeed angle can be calculated as [273]:

tan emax ¼ 2
vw
vs

" # !!!!!
ae
de

r
ð4Þ

towards e ¼ 0 at the bottom of the cutting path; with the average
value e halfway through the contact length being equal to tane ¼ ðvw
=vsÞ

!!!!!!!!!!!!
ae=de

p
[202] because of the extremely small values for e. It was

not until 2008 that this dimensionless quantity was given a new
name: the aggressiveness number, Aggr, quantified as [18]:

Aggr ¼ vw
vs

" # !!!!!
ae
de

r
ð5Þ

However, in 1974, despite the prevalent use of this dimensionless
parameter, the ðvw=vsÞ

!!!!!!!!!!!!
ae=de

p
was replaced by a dimensional

parameter ! the equivalent chip thickness [246]:

heq ¼ vw ¢ ae=vs ¼ Q 0
w=vs ð6Þ

The parameter heq can be interpreted as the thickness of a contin-
uous ribbon of material being removed from a ground workpiece
flowing away along the grinding wheel at the wheel speed vs and the
volume of which is equal to that of the material removal Vw during
the same time period. Unfortunately, heq ignores the contact length.
This limitation is illustrated in Fig. 5, where the correlation of surface
finish with Aggr (Fig. 5b) is significantly better than with heq (Fig. 5a),
because Aggr considers contact length.

The introduction of equivalent chip thickness led to empirical
curve-fitting, such as Ra ¼ R1heq

r and Q 0
w ¼ Q1heq

q [246]. Based on
this, a large number of empirical models were reduced to “basic mod-
els” [255], such as for maximum undeformed chip thickness and
total-height surface roughness parameter Rt:

hm ¼ Cs
vw
vs

" #e1
aeð Þ

e1
2

1
de

" #e1
2

ð7Þ

Rt ¼ CsCw
vw
vs

" #e1
aeð Þe2 1

de

" #!e3
ð8Þ

where Cs is a constant for a specific grinding wheel, Cw is a constant
for a given workpiece, and e1, e2, and e3 are exponents that must be
experimentally determined for a given wheel-workpiece combina-
tion. The practical application of such empirical models can be time-
consuming due to the identification of unknown parameters and is
nowadays seldom used.

2.2. Dimensionless parameters

Considering that the dimensionless quantity ðvw=vsÞ
!!!!!!!!!!!!
ae=de

p
(i) has

been utilized in various models since 1914 [7], (ii) is featured in
empirical “basic” models [255], and (iii) is of greater practical utility
than heq, it is explored in greater detail here.

The fundamental definition of aggressiveness for any abrasive
process (tool-workpiece contact) is simply the ratio of the normal
component vn and the tangential component vt of the relative-veloc-
ity vector (shown in Fig. 4) at a contact point [89]:

Aggr% ¼ vn
vt

¼
*v ¢*n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

*v ¢*v ! *v ¢*n
$ %2q ð9Þ

Fig. 4. Illustration of infeed angle of material flow relative to a cutting point on the
wheel periphery (adapted from [202]).

Fig. 5. Surface finish results charted over heq and Aggr (data from [214]).

Fig. 3. Illustration of material removal by simultaneous engagement of several abra-
sive grits during cylindrical OD grinding (adapted from [216]).
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This fundamental parameter is termed point-aggressiveness
Aggr%. The process geometry is captured by the vector field of surface
normal *n at a contact point. The process kinematics is captured by
the vector field of relative velocity *v. The theory of aggressiveness
can be applied to any abrasive process where the process geometry
(*n) and kinematics (vn, vt) are analytically described for an arbitrary
contact point. From the mechanics perspective, the shear at any point
in the abrasive contact can be expressed as t ¼ ec ¢Aggr%. This is con-
sistent with the model for tangential force [17], which is proportional
to specific energy and cross-sectional chip area Ach (where
Ach ¼ Aggr%=C).

The simplified quantity needed for optimization of grinding and
dressing operations is the aggressiveness number Aggr (Eq. (5)),
which is the average point aggressiveness (Aggr%). Formulas to calcu-
late Aggr in grinding operations are given in [20]. The application of
Aggr to optimize complex processes has to date included camshaft
[163] and crankshaft grinding [91], saw-tip grinding [19], flute grind-
ing [88], double-disc grinding [85], diamond-wheel truing [86] and
face grinding [257,258].

The Aggr% or Aggr numbers do not incorporate wheel-topography
parameters. Nevertheless, in cases where wheel topography needs to
be included, Aggr% can be replaced with hm by adding the C and r
parameters, such as hm ¼

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4=ðC ¢ rÞAggr%

p
.

2.3. Kinematic simulation

To conduct any grinding simulation, it is essential to model the
kinematics of the wheel and workpiece bodies that move relative to
each other. Grinding involves the interference of the two surfaces,
both of which have a complex and time-dependent topography.
Transforming the movement of the bodies into the relative move-
ment of the contact points poses a significant challenge. The wheel
comprises grits and pores, while the workpiece consists of long
scratches that are quantified via various roughness parameters (dis-
cussed in Section 2.5). Therefore, a considerable amount of geometric
data must be considered. The surface descriptions and kinematics,
however, are closely interrelated, regardless of whether the interac-
tion is described analytically or by field equations. After each time
step, the interactions between each relevant grit and all relevant
workpiece planes are calculated based on the current and previous
tool positions, as shown in Fig. 6.

This concept introduces a generalized kinematics framework that
facilitates the description of any fixed-abrasive process, for example
diamond-wire sawing, abrasive-disc cutting, glass grinding, rail
grinding, and core drilling with an abrasive tool.

2.4. Wheel truing, dressing, and topography

At the system level, grinding needs to be treated as a process
chain shown in Fig. 7. The goal is to predict the outcome of grinding

by accounting for the contributions of interacting abrasive subsys-
tems ! or, inversely, to deduce the input parameters required to
obtain the desired grinding results. This requires also modeling the
interaction between the workpiece and the grinding wheel, as well
as the interaction between the dresser and the grinding wheel !
while identifying the necessary process windows and the topography
of the grinding wheel. For example, [103] developed a kinematic
model for rotary dressing that considered the stochastic topography
of the grinding wheel as well as the topography of the dresser. The
model also included material removal. These aspects were integrated
in MATLAB.

Due to grinding-wheel wear, models must be capable of
accommodating the transient grinding-wheel topography (e.g.,
wear) as work material is removed. A 3D surface is typically char-
acterized by measurements taken with a microscope capable of
mapping the 3D topography. Different descriptors are used to
characterize this complex surface: (i) stochastic parameters, such
as the Abbott-Firestone curve, or (ii) statistical data, such as the
moments of height distribution. Based on the derived descriptors
of the surface, the surface topography can be reconstructed. This
requires additional information, which can be obtained from the
geometry and positioning of abrasive grits with their stochastic
shape, orientation, and density. The wheel surface can be digitally
recreated by scanning real grits and stochastically placing them
on the cylindrical reference surface by randomly rotating them
about the normal to the reference plane [276]. For example, a
grinding wheel topography was created by randomly selecting
the diamond-grit morphology shown in Fig. 8. based on a normal
distribution of the shape parameter and size [230]. The grits were
positioned in a defined pattern with random rotation. The same
morphology variable was used, but wear and/or dressing effect
was added to represent shape change [205].

The (macroscopic) wheel shape and the (microscopic) grinding-
wheel topography are created by truing and dressing. Truing involves
making the wheel round. It sometimes also involves putting a specific
shape/profile into the wheel. Dressing involves creating a specific
topography on the wheel, usually to achieve the desired grinding
performance [202].

Malkin conducted a fundamental study of rotary-plunge dress-
ing [203], focusing primarily on experimental analysis. The

Fig. 6. Simulation of face-grinding kinematics in iBRUS software (ETH Z€urich), where
the wheel’s grits are depicted as 3D meshes (purple) and the workpiece is discretized
as a stack of 2D planes (blue). The coordinate axes represent the wheel's position and
orientation with respect to time.

Fig. 7. System interactions in grinding.

Fig. 8. Morphology of diamond hexa-octahedrons with the grit-shape variable for ran-
domization [261].
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parameters used were the dressing speed ratio qd ¼ vr=vs (where
vr is the dresser speed and vs is the wheel speed), the dressing
direction (uni-directional or anti-directional), and the equivalent
dresser infeed ar . The dressing process was assessed based on spe-
cific dressing energy and surface roughness across different speed
ratios and infeeds. For this, Malkin introduced the interference
angle, d, which describes the angle at which the diamonds impact
the wheel’s periphery:

d ¼ tan!1 ar
pdsj1! qdj

" #
ð10Þ

where ds is the grinding wheel diameter. This model, however, does
not account for the contact length between the dresser and the grind-
ing wheel. Nevertheless, a good correlation between the specific
dressing energy and the interference angle was obtained. It was also
found that a larger d (i.e. coarser dressing) results in lower grinding
forces and produces rougher surface finishes. Brinksmeier introduced
the collision number id [45] to quantify interactions between the dia-
monds on a traverse dresser and the grits on the grinding wheel. In
the context of traverse dressing, the collision number is proportional
to Udj1! qdj, where Ud is the dressing overlap ratio. The collision
number captures a complex interplay of factors, including dressing
geometry and kinematics, the contact length, the size of grits on the
grinding wheel and the dresser, and the number of diamond points
per unit area of the dresser. A larger d [203] and id [45] both lead to
higher abrasive grit or bond fracture and less grit dulling, resulting in
lower specific grinding energies. Linke expanded the collision num-
ber model [183] by incorporating time-dependency and using acous-
tic emission (AE) to monitor the dressing process. The collision
number showed a good correlation with the root mean square (RMS)
value of the AE signal. Further research quantified the topographies
of dressers and grinding wheels in terms of grit size and protrusion
probabilities [247]. The determination of contact length required
experimental calibration to account for the deflection in the abrasive
contact. Discrete element method (DEM) was used for modeling
these interactions. Most recently, the dressing aggressiveness num-
ber AggrD was used to analytically model both traverse [191] and
plunge-roll rotary dressing [21], combining the various dressing
parameters into a single dimensionless parameter. Advances in
wheel conditioning have been reviewed in [271]. It concluded that
modeling of the dressing process is difficult due to: (i) the undefined
cutting edges with complex grit morphology, (ii) the distribution,
and (iii) the transient wear. Since then, various new approaches for
modeling grinding wheel topography and dressing have been
reported.

The typical distribution of grits on a grinding wheel is irregu-
lar, non-deterministic, and subject to changes over time due to
wear. Therefore, active grits are not only randomly distributed,
but their number and shape change during the process. A grit
density function was introduced in [52] to describe the distribu-
tion of all active grits on the wheel, considering the total grinding
force as the superposition of all engaging active single-grit forces.
Analysis of wheel topography is critical for incorporating micro-
scopic process effects. One method for analyzing grinding wheel
topography involved using digital image processing and struc-
tured light microscopy [133]. Although not a modeling technique,
it enabled 3D mapping of the wheel surface, which facilitated grit
recognition after data processing and smoothing. This analysis
provided information on grit size and rake angle distribution for
the grits, allowing for the characterization of wheel-surface prop-
erties independent of process-specific parameters. A similar
grinding-wheel surface reconstruction using measured data and a
moving-average model to improve accuracy was described in
[58]. The motion-trajectory equations for abrasive grits were
established based on grinding kinematics. A model to represent
grinding-wheel topography was proposed by introducing the
degree of grit protrusion and grit-protrusion area, combined with
topography parameters representing grit size and cutting-point
spacing [186]. A neural network was utilized to predict wheel
topography based on AE signals and feature extraction techniques

[64]. Confocal microscopy was applied to measure the grinding
wheel profile [290]. DEM was also utilized to model wheel topog-
raphy to study, for example, wheel load bearing [179], as illus-
trated in Fig. 9. Similarly, a bonding bridge between grits was
introduced to represent the bond and load-bearing capacity
[215].

2.5. Workpiece topography

The first order workpiece deviations include flatness and
roundness, which can originate from machine kinematic errors,
improper clamping, thermal expansion, etc. Models addressing
shape deviations often use multi-scale approaches to describe the
global effects of local changes. Thermal-load effects in internal
traverse grinding were modeled by combining thermomechani-
cally coupled FE models and kinematic simulation [38]. Shape
deviations were modeled by combining FEM with an experimen-
tally obtained spindle-compliance response [74]. Workpiece dis-
tortion [241] was investigated with respect to thermally and
mechanically induced residual stress in profile grinding. The
impact of assembly errors on form deviation were investigated in
gear profile-grinding machines [79].

Waviness parameters are derived from the surface profile after
form deviation is reduced and high-frequency waveforms are filtered
out. Because waviness can stem from forced vibrations (e.g., wheel
imbalance/eccentricity, spindle runout), self-excited vibration, and
periodical machine compliance, prediction of waviness requires
models to consider specific sources of waviness. This often necessi-
tates considering multiple scales [68]. The pre-existing workpiece
waviness from previous machining operations was considered when
modeling the grinding system response and waviness removal effec-
tiveness [148]. Forced oscillations, acceleration, and audio measure-
ments were measured to detect wheel eccentricity in a model that
used a scallop-profile of workpiece waviness to predict the final scal-
lop-shape profile [22].

The abrasive-grit tool path imparts marks on the workpiece
from the plowing and cutting interactions, which produce a kine-
matic roughness. Various kinematic model-based approaches for
calculating these parameters have been published. Grinding
marks were analyzed based on surface function, typically consid-
ering spatial period and amplitude. The height of kinematic traces
in conventional grinding [115] was modeled, while [56] adapted
their model to account for the grinding marks on spherical and
aspherical surfaces. [266] proposed a model for ball-end grinding
of spherical surfaces. Numerous models have been developed for

Fig. 9. Illustration of a DEM simulation [179].
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analyzing grinding marks in wafer grinding [54,138,288], while
[219,289] modeled the kinematic roughness in parallel grinding
and [226] developed a model to minimize error in optical-compo-
nent grinding.

As previously mentioned, surface roughness is a vital quality
requirement and key output of the grinding process. Its prediction is
crucial [197]. The surface-roughness profile ! filtered by form, wavi-
ness, and kinematic roughness ! results in a high-frequency-spec-
trum profile that was generated by the interaction of the workpiece
and the stochastically distributed grits. In a study by Peklenik pub-
lished in 1964, the grinding process was treated as a linear transfer
system with random inputs [224]. He postulated that wheel topogra-
phies are statistically independent, noting that the outputs ! surface
roughness (and wheel wear) ! appear as stationary random pro-
cesses that could be described in terms of averages and correlation
functions. Sixty years later, the treatment of the correlation between
wheel topography and surface roughness in probabilistic terms is still
omnipresent. For example, a stochastic surface-roughness model was
developed, where the resulting arithmetic-mean surface profile is
directly calculated from the grooves generated during grit engage-
ments, regardless of whether a grit is plowing or cutting [181]. A sim-
ilar approach was applied to grinding with electroplated wheels
[228], where a non-Gaussian wheel topography was generated using
a numerical model! adopting a grit-distribution model that random-
ized grit size, protrusion height, and spacing while maintaining a uni-
form cutting-point density throughout the wheel. By integrating
process kinematics, surface roughness could be predicted ! con-
strained by the assumption that grits have a spherical shape. Another
model for the prediction of surface roughness, based on probability-
density functions for the undeformed chip thickness, considered
elasto-plastic material behavior [251].

Surface texture profile and/or areal parameters are the main out-
put quantities for almost all surface-roughness models. The primary
differences between the models lie in their application to ductile or
brittle materials and the material-removal phenomena: ductile
removal (via elastic recovery, plowing and chip formation) or brittle
removal (via elastic recovery and brittle fracture). [220] gave an over-
view of the extensive number of models available in the literature.
Models focusing primarily on brittle-material behavior are found in
[217,250, 292].

A model for predicting the impact of wheel topography on
surface roughness in tool grinding was made by [81]. The topog-
raphy that results from the overlay of kinematic paths while
using ultrasonic excitation is positioned between micro-rough-
ness and kinematic roughness. Several models were proposed for
evaluating the impact of ultrasonic excitation on this topography
[227]. The bearing ratio (Abbott-Firestone) curve is the cumula-
tive density function of the profile and is often used to character-
ize grinding wheel topographies. Theoretically, it is also suitable
for characterizing workpiece topography, as shown in [55]. This
approach is sometimes used when modeling honing processes
[102,106,107]. In theory, whenever roughness of a profile or sur-
face is evaluated, the bearing-ratio curve can be derived, and
related parameters may be used for surface comparison.

From a theoretical modeling perspective, it is possible to pre-
dict surface roughness by describing how abrasive cutting points
kinematically interact with the workpiece. [280] derived a model
for the total-height surface roughness ! Rt ¼ hm

4=3=ae1=3 ! which
already accounted for wheel topography, since their expression for
hm included parameters of C and r. Malkin and Guo derived a similar
basic model of an ideal ground surface profile, assuming uniform
cutting-point spacing L and no wear [202]:

Rt ¼
1
4

vwL

vsds
1=2

 !2

ð11Þ

These basic models imply that surface roughness mainly
depends on the speed ratio vw=vs and the spacing L, less on the
wheel diameter ds, and not at all on the depth of cut. However, this
ideal surface roughness is far from roughness values obtained in

production grinding, which suggests the necessity to account for
real wheel topography (including dressing), height differences
between the tips of the active grits, and wear (e.g., grit dulling).

3. Modeling ! thermomechanical

3.1. Thermomechanical modeling framework

Predicting grinding outputs solely through models of geome-
try and kinematics is challenging due to the interconnected and
non-stationary nature of the process. Thermomechanical model-
ing commences with the grinding wheel, defining the grit-work-
piece contact, material removal, and thermal aspects of the
process. Grinding kinematics is a necessary component of ther-
momechanical modeling, as it involves the relative motion
between the grinding wheel and the workpiece (see Fig. 6). This
must also take into account the potential impact of machine
vibrations. In order to establish a process signature (characteriz-
ing the impact of a process on the work material [152]), the
geometry and topography of the workpiece must be inputted. An
ideal surface is typically used as a starting point, however, the
contact with the grinding wheel inevitably leaves abrasive traces
on the workpiece, with a certain surface roughness as an output.
In addition, the effects of the fluid flow, phenomena of wear and
heat release must also be included. An overview is shown in
Fig. 10, which gives a more comprehensive understanding of the
scope of the thermomechanical modules being discussed in this
section.

3.2. Material behavior and the mechanics of abrasive processing

Material-removal mechanisms with fixed-abrasives typically
fall into either (i) chip formation via plastic deformation in duc-
tile materials or (ii) multiple crack generation (lateral and Hert-
zian) via brittle fracture in brittle materials [295]. Brittle
materials can exhibit both brittle behavior and ductile behavior.
Therefore, it is crucial to consider both. The material-removal
mechanism in composite materials, such as Al-metal matrix
composites reinforced by SiC particles, is understandably much
more complex. It can involve a range of mechanisms, including
refinement of Al grains (via dynamic recrystallization and dislo-
cation) and stacking faults of SiC particles [120]. Accurate
modeling of material removal requires models that describe a
material’s behavior under stress, strain, and temperature. Con-
stitutive equations connect material parameters to material
behavior under external loading. Any constitutive model in con-
tinuum mechanics can potentially be useful for simulating mate-
rial removal. Models of many material types are readily
available in commercial numerical-simulation software. How-
ever, their use requires knowledge of material parameters that
can be obtained from standard material tests or machining
experiments [249].

Fig. 10. Thermomechanical modeling modules.
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3.2.1. Ductile material removal
Ductile constitutive equations require addressing aspects such

as elastic behavior, hardening law, flow limit, flow rule, energy
dissipation, recovery, damage, and failure. These aspects depend
on temperature, which increases due to plastic deformation. Fric-
tion, stress, strain and chip formation during plastic flow ! taking
into account its dependence on temperature were modeled in
[189]. This work emphasized the necessity of integrating material
physics with the fundamental process mechanics. For a given
material with a known yield shear stress and strain rate, the tem-
perature in the plastic-deformation zone was derived, and the
chip-formation was analyzed.

The Johnson-Cook (J-C) constitutive material model [145] is
commonly used due to its simplicity and completeness. The hard-
ening law defines isotropic hardening as a flow stress, which
depends on strain, strain rate, and temperature. It accounts for
the effects of strain hardening and thermal softening. The J-C
model can also be extended to account for fracture by factoring
in its dependence on strain. The extended model has been suc-
cessfully applied to grinding, as demonstrated in [96,122]. Fur-
thermore, a damage term can be included in the J-C model by
defining a corresponding damage evolution equation. Formulating
a failure model is thus possible, taking into account the gradual
degradation and eventual failure of the material under loading
conditions. All modules can be substituted, and in the case of the
hardening law, either kinematic hardening or formative harden-
ing can be employed [300]. However, the material behavior can-
not be accurately described by isotropic hardening alone due to
effects such as the Bauschinger effect. This is especially evident in
cyclic loading. In the case of grinding, it results in deviating nor-
mal forces. Material models have been implemented in various
environments such as FEM and smoothed-particle hydrodynamics
(SPH). These models have been utilized to derive forces [101],
temperature [6], chip shape [65], surface topography [260], resid-
ual stress [256], and burr [177,230].

3.2.2. Brittle material removal
The behavior of brittle material is more complex to model than

ductile material. In brittle materials under specific conditions ! such
as high compressive stress ! ductile behavior can be observed prior
to the onset of brittle fracture. Various approaches have been adopted
to describe this phenomenon. One approach includes incorporating
isotropic hardening and damage evolution, as in the Johnson-Holm-
quist (JH-2) [146], Johnson-Holmquist-Beissel [147], and Simha [245]
constitutive models for brittle materials. These approaches are often
used to describe material behavior in ballistics tests [61]. Using simi-
lar strain rates, these models have also been applied to grinding pro-
cesses [180,187]. The Drucker-Prager model [92], which considers an
idealized material that behaves elastically until slip or yielding
occurs, represents another useful approach. In some cases, the
Drucker-Prager model has been extended to consider phase transfor-
mations. These modifications were employed to examine phase
transformations that take place during loading [263] and cutting of
silicon [262,265]. The bi-linear elastic yield curve accounts for crack-
opening/displacement and shear modulus degradation. This
approach has been implemented in contexts such as Vickers indenta-
tion [294] and single-grit scratching [51].

When grinding brittle materials, the workpiece strength has been
shown to decrease due to subsurface cracking inherent in the brittle-
fracture material-removal mechanism [282]. In addition, the scratch
left by grit interaction cannot be described as Boolean removal of the
projection surface, but is much larger due to chipping effects [175].
Lastly, the energy (and therefore heat) produced when grinding brit-
tle materials is significantly lower compared to ductile materials:
energy is proportional to the second power of the depth of cut for
brittle removal and proportional to the third power for ductile
removal [39].

Even for brittle materials, ductile cutting is possible under certain
process conditions. The limit for the critical depth of indentation dc at
which the ductile-to-brittle transition occurs is usually attributed to

the Bifano [39] equation:

dc ¼ 0:15
E
H

" #
Kc

H

" #2

ð12Þ

where E is the modulus of elasticity, H is the indentation hardness,
and Kc is the fracture toughness. The constant (0.15) applies except
for materials in which Kc varies significantly with indentation
depth. This equation, although simple, provides a reasonable esti-
mate of the ductile-to-brittle transition. However, its predictive
accuracy is limited. Extensions that can enhance predictive accu-
racy include: (i) additional physical effects (such as dynamic viscos-
ity, heat capacity, thermal conductivity and grinding-fluid enthalpy
of vaporization), (ii) geometric parameters (rake angle and tool
radius [82]), and (iii) phase transformations [265]. An extended
ductile-to-brittle transition model was presented in [213]. A review
of the mechanisms of ductile removal in brittle-material grinding
indicates that while many experimental studies confirm the poten-
tial for ductile machining of brittle materials, the specifics are still
being debated [134].

The primary challenges when modeling material behavior are (i)
the accurate representation of the physical microstructural effects,
and (ii) the reliable determination of the material-model parameters.
Unfortunately, standard material testing cannot attain high-enough
deformation rates in the shear zone to accurately mimic shear rates
in grinding. Therefore, some researchers aim to identify the parame-
ters directly from machining experiments [2,35,104,249]. While
physically correct modeling of material removal involves the use of
constitutive equations from continuum mechanics to describe plastic
deformation and material separation, simplified analytical models
utilize Kienzle-based equations for forces [15,244], scratch geome-
tries as Boolean interaction [15,225,244,268], elastic springback, and
analytical descriptions of burr formation (in ductile materials)
[13,132], and shelling (in brittle materials) [217]. While parameter
identification for modeling is generally performed using single-grit
scratch tests, many studies use literature-reported parameter values
for their constitutive models. These values can sometimes deviate
significantly from the actual behavior of the work material due to
batch variations and different heat treatments. For example, [49]
used the JH-2 model to simulate ultrasonic-assisted grinding of sili-
con. This was done as a single-grit interaction with SPH, while the
tool was assumed rigid and represented by an FEM mesh. However,
thermal effects, crack growth or phase transformation were not con-
sidered. In contrast, [36] used a single-grit simulation utilizing a con-
stitutive equation from [131]. The underlying material model to
account for the high temperatures (exceeding 1300 °C) was obtained
from the Split-Hopkinson Pressure Bar (SHPB) test. For silicon-car-
bide-fiber reinforced silicon-carbide (SiCf/SiC), the JH-2 material
parameters were identified for SiC matrix and SiCf and configured
within SPH simulation in LS-DYNA, providing predictions for the nor-
mal force in single-grit scratching of SiCf/SiC that closely aligned with
empirical observations [178].

3.3. Grinding mechanics by field equations and numerical solutions

The workpiece surface is generated by a large number of geomet-
rically undefined cutting edges. Thus, tangential and normal forces
are calculated by summing the individual forces of all grit-workpiece
interactions in the contact zone. Power and specific energy are com-
puted by adding up power and energy expended in the grinding zone
for all grit interactions. The stochastic behavior is accounted for using
the Monte Carlo method, requiring many tool generations and subse-
quent numerical solutions. Given the extensive number of stochastic
elementary tool-workpiece interactions, it is typically assumed that
the behavior of all grinding wheels generated from one stochastic
distribution is the same. However, this traces back the problem of
solving the continuum-mechanics equations for different geometries
of single grits. To synthesize the behavior of the grinding wheel, the
solutions of the single-grit interaction are condensed into surrogate
models to reduce the numerical effort required for simulating the
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grinding process. The basic assumption is that individual grits do not
interfere with each other. All simulations, however, only compute a
representative surface area and never the whole geometry. Single-
grit interactions can be computed with FEM, SPH, DEM, and molecu-
lar dynamics (MD). While the latter suffers from small model sizes,
FEM requires significant remeshing effort. A recent overview of simu-
lation techniques, especially on DEM for brittle materials, is given in
[143], including frequently used calibration and parameter identifica-
tion techniques.

Simulating single-grit interactions is needed for accurate predic-
tions of grinding results, particularly in the case of engineered grind-
ing tools. The analysis of chip morphology is a fundamental approach
that enables a better understanding of abrasive processes. This type
of analysis offers insight into the underlying mechanisms (sliding,
plowing, cutting) as well as their transitions. Several authors pre-
sented different strategies for understanding chip formation and its
morphology. A MDmodel was proposed in [204] to analyze the nano-
scale grinding of copper using diamond grits. In this work, the Morse
potential function was used to simulate the process interactions. It
was observed that increasing the depth of cut results in rougher
machined surface and more frequent voids in the workpiece. Further-
more, utilizing a negative rake angle (!45°) generated compressive
stress that caused the material to pile up in front of and underneath
the grit. [53] developed a 2D FEM for ultrasonic-vibration-assisted
grinding. This model considered the effects of ultrasonic vibration
and infeed on chip formation, temperature, force, and stress. The
results suggested that the hybrid process produced shorter, straighter
chips and caused less plastic deformation of the ground surface,
potentially improving the grindability of the tool steel. In [298], a 3D
FEM model was developed to investigate the morphological evolu-
tion of grinding chips from a nickel-based superalloy using a single
grit. The results indicated that as the cutting speed increased, the
chips progressed from segmented to continuous. The chip segmenta-
tion frequency appears to be mainly determined by cutting depth
and speed.

Meshless computational methods, such as SPH, which are not lim-
ited by deformation amounts, are a promising alternative for simulat-
ing chip formation and shape [230]. Further reinforcing this
perspective, [159] presented a model that used a graphics processing
unit, i.e. (GPU)-accelerated code with meshless methods to optimize
diamond-wire sawing of silicon wafers. The goal was to reduce cut-
ting loss and surface damage. The simulation results were compared
to single-grit scratch experiments using real, non-idealized grit
geometry. The J-C flow stress model was utilized to evaluate the
applicability of the model to estimate the ductile-to-brittle transition
zone. Fig. 11 shows an example: SPH simulation of material removal
using the J-C model to describe material behavior. A friction model
and local heat release have already been included. By applying the
Corrective Smoothed Particle Method (CSPM) scheme to the SPH,
chip curling could be simulated following the obtained experimental
results [229,230].

A similar approach was used to model single-grit scratching
and compare chip formation and shape for different diamond ori-
entations, as shown in Fig. 12. The results indicate that diamond

orientation affects chip-formation behavior and chip morphology,
which underscores the suitability and efficiency of the SPH
method for modeling single-grit scratching [98]. The capabilities
of SPH were further demonstrated in [188], where the debris size
of the removed material was computed for bone cutting, along
with the material separation based on both stress and strain
criteria.

3.4. Synthetization of grinding wheels from single grits

Different grit orientations result in different chip shapes, surface
traces and burrs. This must be taken into account when simulating
the interaction between a grinding wheel and a workpiece. Consider-
able wear effects can be expected when subsequent grit paths over-
lap, as the trailing grits come into contact with the work material and
burrs from the previous grit paths. To reduce computational time, a
GPU can be used for parallel computing to simulate a complete grind-
ing wheel with numerous grits in contact. Fig. 13 illustrates the sto-
chastic distribution of grits on the grinding wheel interacting in
sequence with the workpiece material, which has been altered by the
previous grits.

The synthetization of the grinding wheel, comprising geomet-
rically simplified grits for the simulation of material removal with
SPH in LS-DYNA, was presented in [297]. The approach is shown
in Fig. 14. This application refers to the dynamic tool behavior for
plaque removal in rotational atherectomy. The interaction
between different grits occurs through overlapping grooves. The
calculated grinding forces were in good agreement with experi-
mental results after identifying J-C material parameters.

Single-grit scratch tests with overlap between leading and trailing
grits were conducted by [58]. This work, however, did not specify the
hardening law. Therefore, the model predicted the influence of the

Fig. 11. Simulation of burr and chip formation with SPH solution on the GPU for a geo-
metrically defined grit shape as hexa-octahedron [230].

Fig. 12. Temperature distribution chip formation simulated with SPH at different pen-
etration depths and grit orientations [98].

Fig. 13. GPU-based SPH simulation showing the parallelization capabilities of GPU [229].
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preceding grit only by the change in workpiece surface topography.
[66] investigated the interaction between two subsequent grits for
the grinding of SiC. The overlap of von Mises stress fields of the two
grits was seen as the reason for an increase in tangential forces,
although no hardening law was specified. On the other hand [80]
included phase transformations between ferrite, austenite and mar-
tensite according to the transformation law [110] which included
phase transformations induced by plastic strains. By considering the
phase change, it was possible to calculate the residual stress field
(Fig. 15) and select process parameters to reduce tensile residual
stresses.

The interference between two grits scratching simultaneously in
close proximity to each other in brittle-hard materials (such as SiC)
was studied using a Johnson-Holmquist approach for the constitutive
equations (damage and failure model) by [93]. When the process
zones of two different grits are in proximity, the crack systems inter-
fere. This creates a larger damage zone than what is observed from
two single-grit scratches, as shown in Fig. 16. Here, a coupled FEM-
SPH model was employed ! where SPH was used in the areas where
material removal occurs, and FEM was used in the areas below the
material removal.

By using FEM and the J-C constitutive model, [96] showed how
subsurface damage changes with increasing cutting-edge radius.
[114] developed a single-grit scratch model using the J-C approach to
study the cutting of SiC-particle reinforced aluminum alloy. Bonding
behavior was identified through a SHPB testing. Additionally, [142]
examined the interaction between a DEM represented workpiece
and a grinding wheel composed of equally-shaped, evenly-spaced
grits, while [185] analyzed exit burr with a J-C constitutive equation
that incorporated damage.

3.5. Grinding forces

As discussed in Section 2.1, the fundamental parameter that char-
acterizes the efficiency of material removal is the specific energy (Eq.
(1)). Therefore, process mechanics must account for this parameter.
The specific energy is directly related to the tangential force, and it is
well established that the total force is comprised of the sum of the
forces of the three component grit-workpiece interactions: sliding,
plowing, and chip formation (cutting) [202].

Macerol et al. [191] recently introduced new wheel-workpiece
interface laws based on the established Malkin and Cook models for
the cutting and sliding force components [199]. Instead of power der-
ivations, a first-principles approach was used to obtain the stress
relationships in the abrasive contact. By accounting for the effects of
process geometry and kinematics via the use of the aggressiveness
number (from Eq. (5)), the effect of different grit types and dressing
conditions on grinding-wheel topography was evaluated. For exam-
ple, the effects of grit protrusion and wear-flat area were correlated
to parameters such as (i) the intrinsic specific grinding energy, (ii)
the sliding component of tangential stress, (iii) the force ratio, and
(iv) the friction coefficient. This work showed that by considering the
above parameters, it was possible to accurately quantify the influence
of grit properties and dressing conditions on the performance of the
grinding wheel.

The Kienzle model [157,158], applied to a range of processes
including grinding [47,112,169,244], can be expressed as:

Fc ¼ kc1:1 ¢ bD ¢hD1!mc ; Fc ¼ kc ¢Ach
1!m ð13Þ

where Fc represents the cutting force. The factor kc1:1 is the unit spe-
cific cutting force, bD the undeformed chip width, hD the undeformed
chip thickness, and mc is a work material-dependent parameter that
needs to be determined experimentally. The specific cutting force is
denoted by kc , whereas Ach is the cross-sectional chip area. In grind-
ing, the exponentm is often set to 0.

The utilization of the Kienzle equation provides a “surrogate”
model where the interaction of individual grits with the work mate-
rial is simplified to the removal of the interference volume. This
implies that the grits are reduced to their projection area in the cut-
ting speed direction, as shown in Fig. 17.

A recent review [207] discussed the advances and methodologies
in grinding-force modeling over the past 15!25 years. Models were
categorized into macro and micro types.

Fig. 16. Overlap of damage fields (highlighted in red) and cracks during a double-
scratch scenario, as illustrated in SPH simulation [93].

Fig. 15. Residual stresses in tangential (XX) and lateral (YY) direction. EPE excluding
phase transformation, IPE including phase transformation [80].

Fig. 14. Synthetization of a grinding wheel from stochastic placement and orientation
of grits [297].

Fig. 17. Simplified two-dimensional depiction of grits for modeling a complete grind-
ing wheel in face grinding [10].
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3.6. Wear modeling

Wheel wear is an inevitable phenomenon in grinding. It results in
size and form errors in the workpiece and increased forces (and heat)
due to grit dulling. As a result, the workpiece quality suffers. Fig. 18
provides an illustration of the various wear phenomena.

Wheel wear predominantly manifests in two forms: attritious
wear and fracture wear, each with distinct mechanisms and con-
sequences, as shown by Malkin [199,200]. Attritious wear ! also
called flattening and dulling ! arises from high mechanical-ther-
mal loading and chemical interactions between the abrasive grit
and workpiece. This type of wear typically increases the grinding
forces, which can lead to grit fracture and bond fracture (grit
pullout). Grit fracture wear entails the loss of abrasive material as
fragments break from the grit, either on a micro scale or a macro
scale. Such fracture occurs when the induced stresses on the grit
exceed its rupture strength [109]. When a bond fails, the grits are
pulled out from the grinding wheel. In addition, the bond is sub-
jected to erosion and abrasion. This reduces the grit-retention
strength, which can result in premature grit pullout [182]. The
bond strength and grit strength influence the likelihood of frac-
ture, with the weaker of the two precipitating the loss. The pri-
mary determinants for a grit pullout are the shear stresses at the
grit-bond material interface and the interfacial strength of the
bond along with the associated retention forces [47]. Loading of
the intergranular space ! i.e., the pores ! increases friction and
normal forces, thereby limiting the material removal by the grits,
which can be considered a wear phenomenon as well. Therefore,
any model attempting to describe wear must consider these
series of actions, particularly emphasizing the increasing forces
due to dulling as the main catalyst for other wear mechanisms.

Most wear investigations are experimental. For example, to
optimize the wheel specification and consider wheels with dif-
ferent specifications along the profile, research has been carried
out to investigate the effects of cBN grit shape [192], grit concen-
tration and grit toughness on grinding performance. Abrasive
grits with higher aspect ratios (elongated grits) exhibit higher
wear rates and vice-versa. Tougher grits generally exhibit lower
wear rates, but only if they are combined with an appropriate
bond [190,191]. Nevertheless, wear investigations can also com-
bine experiments with theory, including modeling. A study on
the impact of wheel wear on the grinding performance of elec-
troplated cBN wheels was conducted by [119]. An analytical
model was used and power was measured to predict wheel
wear-flat area for wheels at different states of wear. A similar
study [132] aimed to explore the correlation between grinding
specific energy and wear. The findings indicated that variations
in specific energy correlate with wear-flat area. Another theoreti-
cal study analyzed the number of active cutting edges and the
grit-workpiece interference area on the wheel-profile wear [50].
The cutting-point spacing between grits as measure for pullouts
was determined through SEM observation, while the height dis-
tribution of cutting-edge protrusions was measured with 3D con-
focal microscopy.

In grinding of cemented carbide and, in particular, superhard
materials (PcBN and PCD) for cutting inserts, the diamond wheels
are subjected to severe wear. Unfortunately, modeling of wear in
insert grinding is limited. Denkena et al. [72] modeled the wheel

and workpiece geometry, kinematics, and oscillation. In the kine-
matic simulation, the path of the contact point was first calcu-
lated. This resulted in multiple path overlaps. Subsequently, the
contact area along the calculated path was represented by pro-
gressively smaller elements until sufficient convergence was
achieved. The simulation outputs included the accumulated num-
ber of grit engagements and the proportion of the area with the
same number of grit engagements in the total grinding layer
area. The distribution of the predicted G ratios was determined
from these calculated area proportions. The assumed wear mech-
anisms were grit micro fracture and grit pullout.

Wear investigations using model-based methods often focus
on considering several mechanisms within the modeling parame-
ters to determine the dominant wear mechanism ! while avoid-
ing excessive complexity and computational effort. Models for
attritious wear are generally adopted from metal cutting. These
consider parameters such as contact stress, relative sliding speed,
and temperature. Temperature has a significant effect on activa-
tion energy, especially for diffusion processes. One approach to
account for the wear of abrasives is to simulate the recession of
the surface of the individual grits during grinding, as in case with
geometrically defined cutting edges. Usui's model [259] can be
used to predict the wear rate due to normal stress, sliding speed,
and temperature, based on:

dW
dt

¼ A1snvslexp !A2

T

" #
ð14Þ

where W is the depth of wear, sn is the normal stress on the contact
surface, vsl is the sliding speed, and T is the absolute thermodynamic
temperature, with A1 and A2 being constants. The determination of
these constants requires a significant number of experiments for
different tool-work material combinations. Therefore, attempts
have been made to develop physics-based models utilizing ther-
modynamic calculations with reduced experimental effort [198].
Physics-based models, however, are not widely used. Instead,
simpler methods integrating Usui’s model into FEM simulations
are preferred. As an example, a 2D-FEM simulation [286], utilizing
Usui’s model, was developed where the individual nodes of the
tool mesh were moved along the inward normal to the tool sur-
face by the calculated wear rate at each time step. Another
approach combined temperatures obtained from a 3D-FEM with
the modified Usui's model, which resulted in an improved model
for wear prediction [196]. However, such approaches are likely
overly complex when applied from a cutting insert to a large
number of grits. Therefore, the wear models should be applied in
a more generalized manner, where forces (instead of normal
stress) are simulated, sliding speed is derived from the process
kinematics, and temperature is derived from a simplified energy
model [169,170], which can describe dulling and force increase,
as well as the modification of the grit geometry.

Malkin [243] established that fracture is the main factor in the
wear of a single grit. In a related study, [287] used an FEM simu-
lation to model the fracture of a single cBN grit, integrating the J-
C model [145] to simulate chip formation. Brittle fracture in cBN
was found to be primarily caused by the maximum tensile stress
[139,140]. The detection of crack initiation was accomplished
using the Rankine criterion, which detects when the maximum
principal tensile stress surpasses the tensile strength of the brittle
material. In this case, simplifying assumptions were made regard-
ing the stress distribution in the grit. During the simulation, the
grit’s geometry was updated by removing the failed elements and
adjusting the boundary nodes in accordance with the shape mod-
ification. Two studies [109,140] found that compressive failure
occurs at the tip of the grit, in addition to tensile failure. This
compressive failure was integrated into FEM simulation [264]
that can simulate different phenomena, such as the propagation
of cracks, volume loss resulting from macro fractures, and micro-
fractures near the abrasive tip [287].

The wear behavior of a grit modeled using DEM [105] proved
more suitable than FEM due to the simplicity of detaching

Fig. 18. Wear phenomena in grinding wheels (adapted from [108]).
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discrete elements and DEM’s capability of retaining a third body
after the detachment of elements. The grit was discretized using
spherical discrete elements, while the material behavior was sim-
ulated via a 3D cohesive beam model connecting discrete ele-
ments. The failure criterion was established as the Von Mises
stress exceeding the micro-fracture failure stress assigned to the
beams. The wear occurred when the discrete elements detached
from the primary body. In [222], simulation of volumetric wear of
vitrified grinding wheels was performed, also with a multiscale
model, by integrating the mechanical behavior of bonds and the
stochastic nature of grit positions in a wheel. Here, a DEM micro-
scale model and its randomization could be used to simulate the
stress field in the contact zone and predict the volumetric wear
by accounting for the detachment of grit-element clusters from
the bond.

Simulation of wear can be also approached via kinematic-geomet-
ric modeling. A simulation model was developed in [225] that com-
bined tool, material removal, and wear models. The dominant wear
mechanism was micro-fracture of grits. The 3D grit geometry was
simplified, with micro-fracture modeled as alteration to the profile
orthogonal to the cutting speed. [217] modeled diamond-wire saw-
ing, employing a similar approach of projecting 3D grit meshes along
the cutting direction (Fig. 19).

Abrasive wear was calculated via the Usui model [259], and grit
vertices were shifted at every time step to propagate wear. The model
showed its ability to create dull grits or new grit edges. Grit pullouts
were modeled with a moment balance for the grit under the effect of
grinding and retention forces. The bond wear progressed through a
reduction in bonding height, increasing the stress in the bond. To
simulate such wear progression, [276] used a stochastic method, gen-
erating an experimentally obtained database of grits at different wear
states. This wear-dependent stochastic grit model was used to simu-
late grinding wheels with arbitrary grit shapes and could predict sur-
face topography and grinding forces at various states of wear.

Another study [23] used large-scale MD modeling due to its
capacity for mesh-free simulations, which are especially useful in
cases of large deformations and significant material loss. However,
their approach was restricted to the sub-micrometer range, implying
a need for upscaling. [299] examined the wear of a crystalline sub-
strate caused by an abrasive particle on a nanoscale level. The results
indicate that the amount of wear is proportional to the sliding dis-
tance, which is in line with Archard’s law [11]:

W ¼ A3snLslH!1 ð15Þ

where Lsl is the sliding distance and H the hardness. In [95], MD was
used to simulate the abrasion process of a metallic surface by abra-
sives. By observing the wear depth over time, it was demonstrated
that Barwell’s macroscopic wear model [30] is applicable at the
atomic scale. The wear depth W was described by a model that com-
bines Barwell’s wear, represented by an exponential decay term char-
acterized by the time constant tw, with a steady-state wear
contributionWct:

W tð Þ ¼ W0tw 1! exp ! t
tw

" #& '
þWct ð16Þ

whereW0 is the initial wear (depth) at time t ¼ 0.
Concerning wheel loading/clogging, different models were pro-

posed. For example, the volume of the loaded work material was ana-
lytically modeled considering temperature-dependent workpiece
hardness, adhesion coefficient, and process geometry and kinematics
[1]. A similar model analyzed asperity yielding and adhesive wear,
accounting for metal transfer due to work-material adhesion on grits,
stress-induced crack initiation and propagation, and grit-workpiece
contact deflection [3].

3.7. Modeling of fluid flow and temperatures in grinding

Grinding operations usually use a grinding fluid for cooling and
lubrication. The 2020 CIRP keynote by Heinzel et al. [130] addressed
fluid flow and dynamics, heat transfer, and chemical interactions
between grinding tools and fluids. It also gave valuable empirical
results. The modeling mostly focused on nozzle design, which will be
omitted in this discussion.

Modeling of fluid dynamics in grinding can involve analyzing the
fluid flow within the grinding zone to determine the hydrodynamic
forces. A typical modeling approach includes computational fluid
dynamics (CFD), which enables the development of multivariable
and multiphase models. Flow rates, hydrodynamic pressure, heat
transfer and temperatures in the contact zone are predicted with 2D-
CFD and 3D-CFD simulations. CFD analysis can provide valuable
insights into the interaction between the fluid and the grinding
wheel and workpiece, as well as its effects on the temperature field.
When fluid flow mainly occurs in one plane, 2D CFD models are often
used [209]. The FEM and Finite Volume Method (FVM) are numerical
tools that are utilized in CFD to approximate solutions to the partial
differential equations that describe fluid flow. These methods differ
in their approach to spatial discretization and derivation of the
underlying algebraic equations. FVM is a more widely used method,
preferred for its conservational properties and greater ease of pro-
gramming compared to FEM. These models are simpler and faster to
run than their 3D counterparts. However, they may not fully capture
the complexities of the flow.

For example, the utility of 2D-CFD simulation is limited because of
the centrifugal forces acting on a rotating grinding wheel. As a result,
several researchers have used 3D-CFD models to investigate the
interactions between the wheel and fluid, such as fluid velocity, pres-
sures and nozzle designs [130]. 3D-CFD models are mainly used for
the purpose of visualizing and optimizing internal nozzle flow.
Recent CFD applications have used the Shear Stress Transport (SST)
k-v model, a useful turbulence model capable of handling various
turbulence scales as demonstrated in [31,248]. 3D fluid flow in cylin-
drical grinding was simulated by incorporating not only the fluid, but
also the large surrounding environment and the grinding gap [31].
This shows several challenges: the simulation must consider both gas
and fluid phases and handle significantly different levels of discreti-
zation. Fig. 20 depicts the velocity vectors in three-dimensional fluid

Fig. 19. Alteration of 2D grit geometries with progressing wear [217].

Fig. 20. Visualization of air flow around the grinding wheel [31].
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flow caused by the grinding wheel's “pumping” effect, influenced by
centrifugal forces that affect drag flow [31].

During grinding, most of the generated power is converted
into heat. A fraction of that heat enters the workpiece, which can
lead to thermal damage, or “grinding burn”, which is character-
ized by tempering, residual tensile stresses, or phase changes in
the microstructure [201]. Heat-transfer models require assump-
tions about the energy partition, i.e., the fraction of heat entering
the workpiece. They then calculate the resulting temperature dis-
tribution within the workpiece. Most analytical models that cal-
culate the workpiece surface temperature are derived from the
classical Jaeger's moving heat-source theory [141], which approx-
imates the grinding zone as a band heat source moving along the
workpiece surface at the workpiece velocity. [233] provided a
fundamental unified approach to model temperatures in high effi-
ciency deep grinding (HEDG). This work demonstrated strong
experimental evidence for very high fluid convection cooling in
low temperature grinding. Thermal analysis of grinding was
reviewed in the 2007 CIRP keynote by Malkin and Guo [201]. The
analytical models presented in this landmark work continue to
represent the state-of-the-art.

Because of grinding’s dynamic nature, the accurate determina-
tion and validation of a heat-transfer coefficient poses a signifi-
cant challenge [130]. Additionally, the heat-dissipation ratios into
the workpiece, chips, wheel/grits, and grinding fluid remains
speculative. To overcome this, it is necessary to employ indirect
methods. These typically involve correlating the outcomes of
thermal and thermofluidic models with temperature measure-
ments in the workpiece and/or grinding wheels. This critical step
ensures the validation and accuracy of thermal modeling.
Recently published simulations were validated using thermocou-
ples embedded in a workpiece [168] and an infrared camera
[135] to compare the predicted and measured temperatures. Dra-
zumeric et al. [87] provided an alternative method by modeling
the workpiece temperature as a function of position along the
contact length and depth beneath the surface. Comparisons were
made between the work material’s rehardening temperature and
the depth of the rehardened layer measured in the workpiece,
enabling the reverse calculation of the grinding temperature at
the surface. However, this required a certain experimental effort,
as several workpieces had to be ground to deliberately induce
workpiece rehardening.

To improve the accuracy of the thermal simulations, it is
important to include the influence of grinding fluid on heat parti-
tion and temperature. The heat-transfer coefficient, influenced by
properties like specific heat capacity, thermal conductivity, den-
sity, and viscosity, characterizes how heat is exchanged between
the workpiece, grinding wheel, and grinding fluid. A recent study
on the fluid convection models [293] also reviewed advances in
convection modeling. By inputting values for these properties,
CFD simulations enable a more accurate numerical analysis of
heat transfer in grinding.

3.8. Process signatures

The concept of process signatures [46,152] is an approach for pre-
dicting work-material alterations. It characterizes fixed-abrasive pro-
cesses based on the energy they convert and dissipate within the
work material, based on the process parameters and generation
dynamics. This concept enables the evaluation of variations in prop-
erties such as hardness, residual stress, microstructure, and chemical
composition. It achieves this by correlating internal material loads,
such as stress, strain, and temperature, with the resulting alterations.
For example, the prediction of residual stress at the workpiece’s sur-
face subjected to thermal load was reported in [172]. Using 2D-FEM
simulation, it was possible to establish a correlation between the sur-
face tangential residual stress and the maximum surface tempera-
ture. This was achieved by assigning a heat partition to the
workpiece and then calculating the maximum surface temperature
and temperature gradient by integrating the time-dependent heat

flux into the workpiece. In a similar manner, FEM simulations were
used to determine the stresses and strains in the workpiece [100]. In
a recent study, FEM and experimental temperature-time histories
were used to evaluate grinding-induced thermal loads at the work-
piece surface and subsurface [160]. The study found a correlation
between variations in hardness and the temperature-change rate at
given peak temperatures. It also unveiled the connection between
hardness change and the Hollomon-Jaffe parameter, which considers
both the absolute temperature and its time evolution. Additionally,
the study demonstrated that when there was no significant temper-
ing of the workpiece, there was a correlation between surface resid-
ual stresses and the maximum local temperature gradients at the
surface.

3.9. Process-machine interactions

Grinding is often the final step in the production chain
[128,165], so even small influences from a machine can play a
significant role on the quality of ground components. Several
papers gave an overview of process-machine interactions
[14,42,73]. Models that consider the grinding machine typically
include both a process model (as already described) and a
machine model, with the grinding wheel typically considered as
one component of the machine or as a third component. The
models can be combined into a single set of time-differential
equations or solved in a staggered manner ! i.e., solving the
machine model first and then the process model. Another method
involves an iterative process where solutions from both the
machine and process models are used to update each other at
each time step [15]. The coupling of equations is done via the
process forces acting on the machine, with machine displace-
ments being fed back into the process model. Both models are
typically simplified. The machine can be simplified to a one-mass
model or a rigid body model. Its relative motion can be repre-
sented by the first few eigenmodes, or the frequency response
functions for the tool center point [43]. The main objectives of
analyzing process-machine interaction are the avoidance and
analysis of instability, the prediction of surface quality, and the
assurance of workpiece accuracy, especially in gear grinding. A
simplified rigid-body model for pendulum and speed-stroke
grinding was presented in [272]. Biermann et al. [37] investigated
process-machine interaction in free-form grinding using a dexel
model to depict the wheel-workpiece contact behavior as a dis-
cretized representation of functions defined on surfaces. A
removal predictor calculates process forces, and the iteration
stops when the cutting forces and the contact forces coincide.
The wheel rotation was taken into consideration via an arbitrary
Euler-Lagrange model. A similar 3D dexel model was applied to
tool grinding [70] to consider the effect of fluctuating stiffness
during the process for an accurate representation of the work-
piece dynamics. [99] utilized a more sophisticated grinding wheel
and process model which included single hexahedron-shaped
grits distributed stochastically on the wheel surface, whereas the
wheel body and the spindle shaft were modeled by FEM. In [69],
the grinding wheel surface was modeled by superposing eccen-
tricity, waviness, and roughness elements.

For continuous-generating gear grinding, a non-linear model was
developed in [77]. The cutting and normal forces were found to be
proportional to the interaction surface at all wheel-workpiece contact
points. The machine’s behavior was modeled with the eigenmodes of
a rigid body model. Fig. 21 shows a simulation result depicting the
flank and profile form deviation of the gear teeth; the results aligned
well with the measured deviations.

In centerless grinding, the achievable roundness depends on the
interaction between the machine and the workpiece. This was shown
already in 1965, when studies were conducted on the work-regener-
ative waviness depending on the dynamic characteristics of the
machine [232,234]. A similar approach combined previously separate
modeling of workpiece dynamics and the geometric mechanism of
the rounding process [164]. The analytical process models were also
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extended from 2D (plunge) to 3D (throughfeed) applications in [90].
Stability charts for both plunge [26] and throughfeed centerless
grinding [125] can be used to avoid critical parameters that cause
roundness errors. In addition, understanding process-machine inter-
action is required, for example when using active dampers, shown in
Fig. 22.

4. Modeling ! data driven

In the era of digitalization, the importance of data-driven models
for abrasive processes is becoming increasingly recognized for two
reasons. First is the progressive advancement of grinding machines
now equipped with external sensors. This provides high-frequency
readings from both machine controls and sensors [278]. Second,
data-driven models demonstrate advantages in areas where physical
and simple empirical models tend to exhibit weaknesses. In contrast
to physical models, less fundamental process understanding is
required to make decisions based on measured process results, for
example surface roughness. Some advantages over FE and MD mod-
els are the lower startup and computational efforts [44]. Given the
increasing availability of grinding data and the potential for real-time
application in manufacturing, data-driven models provide new
opportunities for process control. These models can be particularly
effective for industrial applications, offering insights into both the
workpiece and the tool [71]. Note that data-driven modeling is
closely related to AI/ML ! where ML is a subset of AI focused on
learning from data and making predictions based on data input.
Interestingly, the “Application of Artificial Intelligence in Grinding” was
addressed in a CIRP keynote already 30 years ago, back in 1994 [236].

In the context of this paper, data-driven modeling refers to the
utilization of time-series data from external sensors or internal
machine controls as inputs for ML models to estimate grinding
results and make process adjustments. Therefore, data-driven model-
ing is concerned with ML approaches that allow to extract knowledge
from data and learn from it autonomously. Since 2006, ML models
have seen rapid advancement and have gained considerable scientific
relevance. This trend is evidenced by a significant increase in litera-
ture found with Scopus when searching for "Machine Learning in
Grinding" (see Fig. 23).

A data-driven model is developed in five steps (see Fig. 24):

1. Acquisition of raw signals from sensors and machine control
2. Pre-processing of the raw signals
3. Feature extraction
4. Feature selection
5. Model construction

The raw signals are acquired by the data acquisition (DAQ) and
storage architecture of the machine tools. This architecture includes
both hardware (for reading the raw signals of the external sensors
and the machine controller) and software (for processing these sig-
nals). The raw data is stored near the machine, on dedicated data-
bases, or in the cloud [154]. The raw signals mainly originate from
temperature, optical, force, acceleration and/or acoustic-emission
(AE) sensors. The power or current from the spindle and axes drives
are also recorded [221]. Sensor selection depends on the output
required by the model and the available processing and memory

Fig. 22. Centerless grinder equipped with active dampers (a). Critical mode responsi-
ble for chatter vibrations (b) [28].

Fig. 23. Scopus entries related to “Machine Learning in Grinding”.

Fig. 24. Procedure of data-driven modeling.

Fig. 21. Flank form deviation simulated with a coupled process-machine model for
continuous generating gear grinding (adapted from [78]).
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resources. AE is very useful for collision detection and for mapping
the process. However, AE requires a high sampling rate ! in the MHz
range !which requires both a suitable DAQ and high memory capac-
ities. Acceleration sensors have the second highest sampling-rate
demands, followed by force sensors and machine-internal drives
[84].

During the pre-processing stage, the raw signals acquired from the
sensors, or the machine controls are segmented and filtered in order
to eliminate or minimize interference noise, divide the signals into
individual events, or exclude idling.

Except for optical sensors, raw data (e.g., force or AE) are
recorded as time-continuous signals (i.e., magnitude vs. time).
Feature extraction transforms the continuous time series data into
discrete data for use as model input. This process involves deter-
mining so-called “features” from the time-series data using math-
ematical calculations such as Fourier transforms. Feature
extraction can be performed either by (i) specific selection fol-
lowed by manual application of the calculations, or (ii) the auto-
mated use of programs such as TSFEL [24,63]. Feature extraction
in the time domain uses calculations such as the root mean
square (RMS), variance, skewness, or kurtosis of the raw signal. A
major advantage is the fast calculation speed of features directly
from the time domain. A potential disadvantage is the influence
of interfering signals if careful signal pre-processing is neglected.
Nevertheless, feature extraction in the frequency domain is
mostly performed after executing a fast Fourier transform (FFT)
on the raw signal. Unlike feature extraction in the time domain,
features in the frequency domain can be selectively considered or
excluded. However, due to the absence of temporal resolution,
feature extraction in the frequency domain is only suitable for
stationary processes. Techniques such as short-time Fourier trans-
form (STFT) or discrete wavelet decomposition (DWD) provide a
time and frequency-dependent feature extraction by transforming
the raw signal into the time-frequency domain.

A subset of the extracted features is selected for model construc-
tion. This is called feature selection and demands a high computa-
tional effort [194]. This feature-selection process should (i) avoid
collinearity in the model input data or overfitting during model con-
struction, and should (ii) reduce computation time. Different feature-
selection procedures are available, including filter-, wrapper or meta-
heuristic methods [83].

The last step is model construction. After the feature selection pro-
cess, the remaining features serve as input data for ML models. Previ-
ous research in abrasive processes has predominantly focused on
constructing supervised ML models. Here, an ML algorithm is pro-
vided with both input data and corresponding results/outputs. Dur-
ing the training phase, correlations and dependencies between the
input and output data are determined and a statistical (empirical)
“black box” model is formed. Then, during the validation phase, the
trained ML algorithm is applied to unknown data. Models are typi-
cally differentiated into regression models, which estimate continu-
ous results/outputs, and classification models, which predict discrete
results/outputs [8]. For abrasive processes, most classification models
are used to determine grinding-wheel wear or to identify thermal
damage in the workpiece.

In this section, an overview is given of the state-of-the-art,
data-driven models for wheel-wear prediction, surface-rough-
ness prediction, grinding-burn detection and process diagnostics.
The focus is on the type of sensor data required for the respec-
tive outputs and how the subsequent time series analysis !
including feature extraction, feature selection and model con-
struction ! should be designed. Features can also stem from
auto- and cross correlations, entering into sensor fusion, as seen
when folding one sensor signal with the time series of another
signal. Model evaluation often relies on statistical parameters
such as the correct classification rate (for classification models)
or the coefficient of determination (for regression models).
These parameters are influenced by factors such as data quan-
tity/quality or model task (e.g., the number of classification
states).

4.1. Data-driven wheel-wear prediction

The performance of grinding wheels is significantly impacted
by wear as discussed in Section 3.6. As macro-wear of the grind-
ing wheel progresses, the dimensional accuracy of the workpiece
decreases. Meanwhile, as micro-wear of the grinding wheel pro-
gresses ! i.e., dulling of the grits ! grinding heat increases
(increasing the risk of thermal damage) and normal force
increases (leading to a decrease in workpiece dimensional accu-
racy and an increase in the risk of vibration-induced surface dis-
tortion) [59]. Monitoring both macro and micro wear, coupled
with data-driven models, offers the potential to increase work-
piece quality, reduce costs, and reduce workpiece scrap. In addi-
tion, dressing intervals can be adjusted and optimized based on
measurements and modeling of grinding-wheel wear, reducing
wheel consumption.

Data-driven models for wear prediction primarily consist of
supervised ML models for classification. The grinding-wheel wear
is commonly defined as a result variable by two or three wear
states, which are derived either by evaluating the grinding wheel
volume loss as a function of the ground workpiece volume or by
the change in workpiece roughness. In the classification of the
wear states, published works mainly differ in whether the fea-
tures for model input are extracted from the time, frequency, or
time-frequency domain. AE sensors serve as the main signal
source.

In surface grinding, discrete hidden Markov models for predic-
tion of the wheel wear states were developed. The RMS signal
from an AE sensor was the input for the model [237]. Another
study used a decision-tree algorithm for classification [211]. Both
studies considered only a few features from the time domain as
model inputs, and a manual approach was employed for feature
selection. The feature-extraction approach was further extended
by transforming the acquired AE signal into the time-frequency
domain via discrete wavelet decomposition and forming an autor-
egressive model [269]. Here the energy of the wavelet compo-
nents and the model coefficients of the autoregression model
served as features. As a feature selection method, an ant-colony
optimization was developed. The discrete wavelet decomposition
approach was further developed by initially filtering the raw sig-
nal with a 90-kHz cut-off high-pass filter [283]. Compared to
direct decomposition of the raw signal, filtering resulted in better
model quality. The RMS value and variance of the decomposition
coefficients were calculated as features. Classification was exe-
cuted by a Support Vector Machine (SVM) without prior feature
selection. This wavelet-analysis approach was continued, but
instead of the SVM, the C4.5 decision-tree algorithm was used
[75]. In contrast to the previous approaches, a model for the
detection of a worn grinding wheel was developed based on eval-
uations of sound signals using a microphone [176]. As opposed to
using an AE sensor, which requires high sampling rates, a micro-
phone can be sampled at lower sampling rates of 44.1 kHz. The
raw signal of the recorded grinding passes was then transformed
into the frequency domain via an FFT. The individual frequency
spectra between 300 and 500 Hz were used as features. Then a
Convolutional Neural Network (CNN) was applied to classify the
grinding wheel wear.

The procedure for predicting wheel wear in cylindrical grind-
ing was similar, using acceleration and AE signals. A comparative
study analyzed decision tree, ANN and SVM models for the classi-
fication of two wear states based on four extracted time-domain
features [12]. An AE sensor attached to the tailstock served as the
signal source. The SVM classification model delivered the best
results. In contrast, another study used an accelerometer instead
of an AE sensor and computed features for the SVM-classification
model using a time-frequency extraction based on a Hilbert-
Huang transform [194]. This vibration-monitoring approach, using
a 10 kHz sampling rate, presented a relatively cost-effective alter-
native to AE sensors for wear detection, particularly considering
the amount of data required. The use of Hilbert-Huang transform
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for feature extraction using accelerometer and AE signals, coupled
with Principal Component Analysis (PCA), was analyzed in [174]
to classify two wear states and differentiate between grinding
burn and no burn with sharp and worn wheel. The analysis of
the AE signal (Fig. 25b) enabled the differentiation between
workpieces without grinding burn at higher workpiece speeds
and workpieces with grinding burn at lower workpiece speeds.
Notably, analysis of the acceleration signal also allowed for clus-
tering of wear conditions (Fig. 25a).

Contrary to previous wheel-wear classification models, a regres-
sion model was introduced to predict the wear of a grinding wheel
[296]. Here, the wear rate was calculated based on the maximum
roughness of the grinding wheel at the start and the minimum
roughness at the end of the grinding wheel’s life. Spindle power,
acceleration and AE signals were recorded. During feature extraction,
features from the time, frequency, and time-frequency domains were
calculated. Feature selection was then performed by excluding fea-
tures that yielded low coefficients of determination R2 when consid-
ered individually.

4.2. Data-driven detection of grinding burn

Data-driven identification of grinding burn offers the potential for
indirect inspection of workpieces for grinding burn. In particular, the
AE signal emitted during grinding can be used to detect damage at an
early stage and avoid scrap [57]. When integrated into a monitoring
system, it could enable real-time monitoring of industrial grinding
processes.

Approaches for detecting grinding burn without the use of ML
models were already developed as early as the 1980s and 1990s
[94,270]. It was established that the AE signal is effective for grinding
burn identification. The most informative frequency range was
100!300 kHz [94]. An ANN for in-process detection of grinding burn
in surface grinding was developed [267] considering different feature
sets for model input but lacking specific feature selection or evalua-
tion by statistical parameters. Later, data acquisition was extended to
include the recording of spindle power, providing two features !
spindle power and AE signal ! to an ANN for grinding-burn identifi-
cation [173]. On the AE side, the maximum peak height from a FFT
and the RMS signal were determined. Grinding burn was further clas-
sified based on AE signals and a Genetic Programming (GP) classifier,
utilizing independent component analysis as the feature-selection
method [111]. Additional studies investigated both AE and accelera-
tion signals, using a FFT to determine the difference in frequency
bands between workpieces with and without grinding burn [97]. For
the AE signal, nine frequency bands ranging from 40 to 170 kHz,
were identified. For acceleration, six frequency bands, ranging from 1
to 25 kHz, were identified. The raw data was filtered through a band-
pass filter using these determined frequency bands as cutoff frequen-
cies, in order to calculate the RMS signal for the input to the ML
models. These results showed that the combination of AE and accel-
eration signals gave the best model results.

The impact of varying the depth of cut and feedrate on grinding
burn was also studied [284]. Here, both accelerometer and AE signals
were considered. Feature extraction entailed determining the spec-
tral centroid of each raw signal via FFT and RMS value of the coeffi-
cients from the wavelet transform. The results showed a distinct
advantage of the AE signal over the acceleration signal. However, the
accuracy of the SVM model decreased when different feedrates were
used. A follow-up study demonstrated the suitability of the Hilbert-
Huang transform for signal analysis [285] and proposed a model to
classify four grinding-burn stages while considering different fee-
drates and wheel speeds [239].

The AE signals from a spindle-integrated sensor and tailstock-
mounted sensor were examined. The spindle current was also
recorded as an RMS signal (Irms). For the SVM model, statistical
features from the time domain as well as from various time-fre-
quency transforms (PSD, STFT, WPT, EEMD, and VMD) (see
Fig. 26) were utilized. These features were compiled into a fea-
ture vector Fi, serving as the model input. The accuracy of the
model was then assessed based on these different signal features.
Distinctions were made between the training results (CV score)
and test results (test score). In both cases, the tailstock-mounted
AE sensor underperformed compared to the spindle-integrated
sensor due to the distance and intervening components between
the emission source and the tailstock-mounted sensor. However,
integrating all signals provided the highest model accuracy in
both the training and validation phases.

4.3. Data-driven roughness prediction

In addition to workpiece dimensional and form tolerances, the
surface roughness is also a critical factor in quality control. It is
quantified by parameters such as the maximum-height roughness
Rz or the arithmetic mean-height roughness Ra. Measurements
are typically made away from the grinding machine using tactile
measuring methods or confocal laser microscopy. However, it is
also possible to measure roughness values in-machine using scat-
tered light sensors. Also, data-driven modeling and monitoring
offer the potential for indirect roughness predictions via sensor
data and machine-control data. This offers the opportunity to
identify rejects early and reduce measurement time, circumvent-
ing the need for costly sensor technology that is susceptible to
environmental disruptions.

A non-linear stochastic differential equation model was used to
extract sensor data and predict Ra surface roughness in grinding

Fig. 26. Data acquisition and modeling of grinding burn [239].

Fig. 25. Clustering different grinding conditions with PCA [174].
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[218]. The extraction of process features from vibration signals and
the use of various ML methods for predicting Ra were explored in
[41]. Furthermore, one of the first applications of active learning that
leverages minimal experimental data (vibration signals) to predict
surface roughness was presented in [40]. Another study investigated
the suitability of using AE and power signals as inputs for ANNs in
predicting workpiece Ra roughness during surface grinding [5]. Here,
grinding tests were conducted with various infeeds, while the AE sig-
nal near the workpiece and the spindle power were recorded. A sam-
pling rate of 1 MHz was chosen, and 50 kHz high-pass filter was
used. For model input, two custom statistical parameters were
tested: (i) the DPO parameter, i.e., the standard deviation of the RMS-
AE signal multiplied by the maximum spindle power; and (ii) the
DPKS parameter, which is the sum of the difference (to the fourth
power) between spindle power and standard deviation of the spindle
power multiplied by the standard deviation of the RMS-AE signal.
During validation, the suitability of the combined signal source com-
bination was also established. However, with increasing infeed (and
thus increasing roughness), the model errors also increased.

A different approach for monitoring the workpiece roughness
during surface grinding was developed by [212]. Here, measured val-
ues of normal and tangential grinding forces were used to predict Ra.
The approach used a hybrid model that combined an Adaptive
Neuro-Fuzzy Inference System (ANFIS) and a Gaussian Process
Regression (GPR) to determine the grinding-wheel wear and work-
piece surface roughness. The data for the models was sourced from
grinding tests performed with various grit sizes, wheel speeds and
infeeds.

In [210], researchers employed ANN as a regression model to
determine surface roughness, utilizing a combination of grinding
parameters and signal characteristics. To determine the features of
the AE signals, the raw signal was obtained during surface grinding
and then filtered using a bandpass filter, with additional noise sup-
pressed by a discrete wavelet transform. In other words, wavelets
localized features in the signal to different scales, allowing the pres-
ervation of important signal features while removing noise. From this
pre-processed signal, two features were identified for use in the neu-
ral network: the maxima from the signal itself and the maxima from
the RMS signal. [121] represents one of the first applications of
Explainable AI (XAI) in establishing the DAQ scheme for surface-
roughness prediction using vibration signals.

4.4. Data-driven process diagnostics

Data-driven models also have other applications. For example,
process instabilities (such as vibration) and process input variables
(such as wheel or work-material properties) can be detected. One
such method was developed to classify the grinding-process varia-
bles with respect to the preceding turning operation (see Fig. 27)
[32]. It demonstrated that the turning operation significantly affects
the subsequent grinding process and its outputs. For example, when
turning was done with a worn tool or without the finishing sequence,
the deviations in shaft diameters after grinding were larger. The PCA
of the grinding roughing and finishing sequence shown in Fig. 27 rep-
resents the dimensional reduction of selected time-series features of
the RMS AE signal. The PCA shows clear clusters for the different
groups, especially for the grinding roughing operation.

The findings highlight the interdependencies of successive
manufacturing processes within a production chain. In general, the
evaluation of machine-control and sensor data offers the potential to
identify anomalies in the roughing stage, based on deviations from
reference values, and then make adjustments in the finishing pass in
order to maintain workpiece tolerances. Moreover, it is also possible
to respond to changes that are influenced by the changes in materials
or tools. For example, implementing data-driven grinding process
control offers the potential to compensate for fluctuations within
batches of incoming material blanks or when using different grinding
wheels.

It is worth noting that the accuracy and applicability of data-
driven models in the described use cases are highly dependent on

specific grinding-system variables, such as work material, wheel
type, grit size, and the process parameters used during model train-
ing. Consequently, altering any of these variables, such as switching
the grinding wheel, may require fine-tuning or retraining of the
model to maintain its accuracy.

5. Applications of modeling

Grinding models have advanced from theoretical academic
research into practical simulation tools that are capable of analyzing
defects, predicting grinding performance and optimizing processes
for higher quality and productivity in real-world production. To dem-
onstrate the practical applications and impacts of these models, sev-
eral case studies are presented here, where the models are
demonstrated to yield tangible impacts and are still actively used in
industry. Specifically, the following successfully implemented use
cases are examined: (i) General Motors, Timken, and RTX / Pratt &
Whitney, using the GRINDsim! software developed by the late Ste-
phen Malkin; (ii) industry partners of the WZL RWTH Aachen Gear
Center using the GearGRIND3D! software, and end-users of Reisha-
uer’s gear-grinding machines; (iii) SKF, for bearing ring and ball
grinding; (iv) Scania, for camshaft and crankshaft grinding; (v) Rush
Machinery, for diamond-wheel truing; and (vi) Danobat Estarta and
Advanced Finishing Technology (AFT), for centerless grinding.

5.1. GRINDsim! at GM, Timken Company, and Pratt & Whitney

The GRINDsim! simulation software utilizes the kinematics of
grit-workpiece interaction and considers the curvature effects found
in cylindrical grinding, shoulder grinding, cam-lobe grinding, crank-
pin grinding, gear grinding, and turbine blade root grinding [202].
The normal and tangential grinding forces are estimated by incorpo-
rating the sliding, plowing and chip-formation components. The
model constants are determined through calibration, linking mea-
sured force/power to macro-scale wheel curvatures, micro-scale grit
shapes and process parameters.

Fig. 28 illustrates the three major modules of GRINDsim!: (i) cali-
bration, (ii) simulation, and (iii) optimization, using cam-lobe grind-
ing as an example. The calibration module employs experimental
measurements, such as power and quality inspections from grinding
calibration tests, to find model constants depending on the wheel,
work material, and process parameters. The accuracy of the simula-
tion module's predictions heavily relies on this calibration.

The simulation module acts as a virtual grinder, taking inputs of
the grinding wheel (geometry, abrasive, grade, and sharpness/dress-
ing); the workpiece (material and shape); the process parameters
(wheel speed, feedrate, etc.); and a database (based on results from
the calibration module, which also contains mechanical and thermal

Fig. 27. Classification of process input variables [32].
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properties of the workpiece and grinding fluid). It estimates the
wheel-workpiece contact kinematics, the forces/power, and the
workpiece surface integrity (thermal damage, residual stress, surface
roughness, and deflection-related deviation of shape/tolerance)
within the virtual grinding cycle.

The optimization module is built upon the simulation module and
considers aspects such as machine-axes limits (for velocity, accelera-
tion, jerk) and requirements for the final product. It iteratively evalu-
ates the grinding cycle to select the best grinding process parameters
at each stage, with an aim to optimize productivity by minimizing
cycle time. In an optimal cycle for cam-lobe grinding, the virtual
grinder will maximize the stock-removal rate during the roughing
stage ! while meeting constraints such as thermal damage, residual
stress and surface quality requirements. During the finishing stage
and spark-out, the desired surface roughness or final workpiece
shape will be achieved. This software has been used to design, vali-
date and optimize grinding processes in production by companies
such as: General Motors (GM), for camshaft, crankshaft, and combus-
tion-deck (cylinder-head) surface grinding [144]; Timken, for bearing
ring grinding; and RTX/Pratt & Whitney, for grinding of turbine blade
root [116] and turbine disk grooves [117,118].

An example of the GRINDsim! application can be seen in the use
of a metal-bond, single-layer, electroplated cBN wheel in GM for
grinding nodular cast iron camshafts. Using the simulation, this
wheel has demonstrated consistent wheel life for about 200,000 to
400,000 parts with minimal wear. Another example is the planning
of a camshaft grinding line in GM’s Bay City, Michigan plant. The
machine-tool supplier (Landis) estimated the need for 14 cam-lobe
grinders. However, the software prediction indicated that only 10
machines would suffice. Consequently, the plant management
decided to purchase 12 machines, resulting in a saving of about
$1,000,000 per camshaft grinding machine.

The fatigue performance of bearings depends on the surface integ-
rity generated by the grinding process. The selection of grinding and
dressing parameters is crucial for managing the workpiece surface
temperature to prevent grinding burn. Timken used GRINDsim! to
optimize parameters in a bearing-ring grinding process so that the
grinding power during roughing was just below the burning power
limit.

Fig. 29 provides an example of an OD shoe-centerless grinding
cycle applied to 60 mm diameter AISI 52100 steel rollers. In the finish
and spark-out stages, GRINDsim! was used to choose parameters
that kept power well below the burn limit. This reduced cycle time
by 25 %.

At RTX / Pratt & Whitney, model-based simulation of continuous-
dress creep-feed grinding was used to avoid thermal damage and
cracking of the thermal barrier coating (caused by thermal strain) for
turbine blade root serration grinding. This was achieved by adjusting
the workpiece speed and the dressing infeed [116]. The implementa-
tion demonstrated a 40 % reduction in cycle time while keeping heat

flux and grinding forces (calculated based on in-process power meas-
urements) below critical values. The input parameters were then
adaptively controlled to minimize cycle time [117]. Additionally, the
grinding simulation was extended to single-layer electroplated cBN
grinding wheels for disk slots made of nickel-based superalloy. When
grinding with electroplated wheels, grinding power (and therefore
heat) increases as the wheel wears. Therefore, worn wheels were
used during validation. GRINDsim! was used to establish and vali-
date a power model to prevent the formation of a white layer caused
by high workpiece temperature [118]. In addition, this model was
applied to simulate the 5-axis grinding of fir tree-shaped grooves in
turbine disks using small, single-layer electroplated cBN wheels. The
aim was to prevent thermal damage to the workpiece and premature
wheel failure. Finally, the model was used to predict forces, power,
heat flux and temperature, which were then utilized in a multi-con-
straint optimization to reduce cycle time [119].

5.2. Applications in gear grinding (GearGRIND3D! and ARGUS)

GearGRIND3D is a simulation program specifically developed for
gear grinding. An overview is shown in Fig. 30. Modeling of gear
grinding is challenging due to the complex contact conditions (geom-
etry) at the wheel-workpiece interface. At WZL RWTH Aachen, simu-
lations have been developed for different gear-grinding processes
based on numerical penetration calculations.

The principle behind the penetration calculation involves bringing
ideal geometries of the tool, abrasive grit and workpiece into contact
and superimposing them incrementally based on process kinematics.
The contact path of the abrasive grit through the workpiece corre-
sponds to the undeformed penetrated volume. Using these penetra-
tion calculations with the process kinematics and workpiece and tool

Fig. 29. Simulation of burning and grinding power plotted vs. time for infeed center-
less grinding of bearing rollers at Timken.

Fig. 28. Configuration of the GRINDsim! grinding simulation software.

Fig. 30. Configuration of the GearGRIND3D simulation.
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geometry, optimal process parameters are determined. An example is
shown in Fig. 31 for continuous-generating gear grinding.

Grinding forces are key factors in evaluating grinding processes.
Numerous models for predicting grinding forces rely on process
parameters, geometry and kinematics in the contact zone [255,273].
A model was integrated into GearGRIND3D simulation to calculate
the grinding force for generating gear grinding considering the chip
geometry and empirical constants determined by grinding tests
[136]. Here, macro simulations were combined with microscopic grit
penetration, which necessitates the determination of the chip’s
cross-sectional area and the number of kinematic cutting edges. The
predicted and measured forces showed a strong correlation [240].

The specific grinding energy is necessary for determining the
mechanical and thermal load. It is calculated based on three phases
of grit-workpiece contact: sliding (friction), plowing, and chip-forma-
tion (shearing), as shown in Fig. 32 [184]. The wheel topography was
integrated into the simulation [67], and the interactions between
individual grits and the work material, as well as the resulting chip,
were modeled to calculate individual energy contributions for each
grit. The cutting energy required for material removal was deter-
mined by multiplying the cutting force Fc , the cutting speed vc , and
the contact time tk. [252].

While GearGRIND3D serves as an example of software that inte-
grates a variety of process models for process planning, there is a
growing need to extend the models for real-time process and condi-
tion monitoring. In this context, the ARGUS Monitoring System by
Reishauer is a good example, highlighting the integration of physical
and data-driven models into a cloud platform that paves the way for
simultaneous condition monitoring of multiple machines in various
manufacturing plants. [77,78] demonstrated that continuous-gener-
ating gear grinding processes can be optimized via the application of
nonlinear models for the normal Fn and cutting Fc forces, as:

Fn ¼ Fn0 þ k
aevf
vc

" #e

lk
’ap ð17Þ

Fc ¼ mFn ð18Þ

where the chip geometry is determined by the depth ae, width ap,
and length lk of cut and the process kinematics is determined by the
feedrate vf and the cutting speed vc . The minimal-normal-force Fn0,
the coefficient k, and exponents e and ’ must be experimentally
determined via an iterative fitting that uses measurements of forces
or spindle power. Upon establishing these values, the ARGUS Moni-
toring System can carry out real-time compensation. This compensa-
tion is critical in addressing small-force variations. The force model is
recalculated every time the worm diameter changes due to dressing.
Most importantly, the system is able to predict the kinematic rough-
ness, taking into account the vibration (dynamic) properties of the
machine.

5.3. SKF’s BEAring Simulation Tool (BEAST)

BEAST is a 3D multibody simulation tool developed by SKF to sim-
ulate bearing dynamics and dynamics of grinding systems that con-
sist of rigid and/or flexible bodies connected by compliant joints. It
solves differential equations of motion and mechano-tribological
phenomena at the contact interfaces. The model-body geometries
can be built from scratch or imported as a CAD file. The joints (or con-
nections between the bodies) have specific/assigned stiffness and
damping. The models were developed using an object-oriented
extension of Mathematica [9].

In cases were rings have a low ratio of wall thickness to diameter,
the dynamic stiffness is low. Therefore, part distortion from grinding
forces is likely. For shoe-centerless grinding of bearing rings with low
dynamic stiffness, BEAST was successfully used to simulate and opti-
mize this complex process. In addition, BEAST was used to optimize
shoe design and develop a strategy to cancel out low-order waviness
from incoming rings. This necessitated modeling the machine-struc-
ture eigenfrequencies, wheel out-of-balance, clamping forces, friction
in support shoes, etc.

BEAST was also used to simulate the kinematics in finishing of sili-
con nitride balls [171]. In this operation, the geometry of the dia-
mond-plate groove and the orbital motion both have a distinct
influence on the material removal and, therefore, need to be mod-
eled. Fig. 33 shows the simulation of ball grinding where the ball
cage in the rotating table forces the balls to move with the same
speed and fixed spacing while the balls are constrained in the abra-
sive groove. The contact-dynamics model aided in simulating the
density of contacts between the ball surface and the abrasive tool
(Fig. 33d), material-removal distribution (Fig. 33c) with the X-axis
representing circumferential positions on the ball, the Y-axis indicat-
ing positions from pole-to-pole, and the Z-axis showing material
removal depth, as well as the time needed to achieve an even distri-
bution of contacts. This aided the optimization of tool design and pro-
cess parameters, especially when the incoming blanks differed in size
and had a non-spherical shape.

The theory of aggressiveness [89] was implemented to model
free-rotation double-disc grinding of bearing components with the
goal of avoiding: (i) workpiece stoppage, which occurs at low free-
rotation workpiece speeds; and (ii) thermal damage, which occurs at

Fig. 31. Grinding force model for continuous generating gear grinding (based on [136,273]).

Fig. 32. Grinding energy model for continuous generating gear grinding (adapted from
[184,252]).

Fig. 33. BEAST simulation of ceramic ball-grinding [171].

606 P. Krajnik et al. / CIRP Annals - Manufacturing Technology 73 (2024) 589!614



high workpiece speeds [85]. This analytical approach proved valuable
in modeling the material removal in steady-state grinding. The
BEAST, in contrast, is able to predict transient forces acting on the
roller (workpiece) until a steady state was reached and also the sharp
transition from high-speed roller spinning to roller stalling at high
workpiece-coverage ratio.

5.4. Camshaft and crankshaft grinding simulation at Scania

The constant-temperature process for camshaft and crankshaft
grinding has been implemented in Scania’s production lines in Swe-
den and Brazil. Before implementation, the constant-temperature
grinding process underwent a rigorous Production Part-Approval
Process (PPAP) followed by patenting [161,167]. All model-based
simulations were integrated with Excel and are used exclusively by
Scania.

Camshaft grinding is a complex process due to the non-round
shape of the workpiece [87]. Previous research on cylindrical grind-
ing of non-round geometries has shown that cycle times can be sig-
nificantly reduced by using thermal models to maintain workpiece
temperatures just below the burn threshold [162]. This constant-
temperature approach was successfully applied to the grinding of
cam lobes [163], leading to a 20 % cycle-time reduction and a lower
risk of thermal damage.

Grinding of crankshafts also poses a specific challenge due to the
difficulty of grinding the sidewall. In this case, the contact length at
the interface of the grinding wheel and sidewall increases, which sig-
nificantly reduces the grinding aggressiveness. This reduction can
lead to excessive temperatures. To prevent this issue, the concept of
constant-temperature grinding was adapted [91]. The models devel-
oped for process geometry, kinematics, and thermal aspects allowed
for the selection of "feed increments” that minimized wheel wear
and kept the process below the burn threshold. The model identified
the depth of cut during each workpiece revolution, enabling the algo-
rithm to determine the increments in such a way that a predeter-
mined burn threshold is matched at two critical contact points: on
the radius and on the sidewall [167]. Fig. 34 illustrates the flowchart
of the algorithm for the reverse calculation of grinding parameters

from the wheel’s final position to ensure constant workpiece temper-
ature and maximum material-removal rate. This application resulted
in a 25 % reduction in cycle time.

5.5. Diamond wheel truing at rush machinery

The geometry and kinematics of truing diamond grinding wheels
were analytically modeled by [86]. A fundamental relationship was
established that relates the truing compliance number GT to the tru-
ing efficiency hT , which encompasses truing parameters and truing
dg;T and diamond dg;D grit sizes:

GT ¼
dg;T
dg;D

" #2

Aggr ¼
dg;T
dg;D

" #2 1
j1! qT j

!!!!!!!!!!
aT;eff
deq

s
ð19Þ

hT ¼ Drd
aT ;eff

ð20Þ

where the truing aggressiveness number accounts for the truing
speed ratio qT , the effective truing depth aT ;eff and the equivalent
diameter deq. Drd is the reduction of the diamond wheel radius in the
truing contact. These models were embedded in a Rush Machinery’s
software tool using HTML5 markup language for optimizing needs,
such as shorter cycle times, less truing-wheel consumption, lower
truing forces, or all the above. The online truing-parameters calcula-
tor [193] outputs the optimal parameters for the selected truing
wheel and also suggests an optimal wheel, which can be ordered via
an online link.

5.6. Applications in centerless grinding (SUA and Opt-Setup Master)

In 1964, the first application of computer simulation in center-
less grinding was published [231]. Advances in modeling and
simulation of plunge and throughfeed centerless grinding were
reviewed in two CIRP keynote papers, first in 1989 [235] and
later in 2012 [126]. However, many models ! despite their
advancement ! have not been widely adopted in industrial appli-
cations, limiting their impact.

Some exceptions exist, such as a time-domain dynamic model
of the instantaneous workpiece radius [27]. This model assists the
cycle configuration of centerless grinding through continuous var-
iable speed. Transitioning to model application, the Set-Up Assis-
tant (SUA) is the latest software tool developed by Danobat
Estarta. Designed for both plunge and throughfeed operations,
SUA uses a combination of analytical and empirical models to
simulate a variety of process parameters. Additionally, it includes
heuristic algorithms within its optimization engine [29]. SUA is
available as either an executable program in MATLAB or as a web
platform (Fig. 35). The software contains input, calibration,

Fig. 34. Scania’s temperature-controlled method for determining grinding parameters
in crankshaft grinding [167]. Fig. 35. Graphical user interface of Danobat Estarta’s Set Up Assistant.
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simulation and optimization modules, which are similar to those
found in GRINDsim!. The simulation module includes simulations
for process forces, power, part diameter, roundness, straightness,
thermal damage, roughness, and stability charts. The optimization
module assists machine users in selecting a stable operational
range for part height, blade angle, workpiece speed, and infeed
speed based on stability criteria [25].

Hashimoto [123] developed a model-based simulation that
integrates the three stability criteria: (i) work-rotation stability;
(ii) geometrical-rounding stability; and (iii) dynamic-system sta-
bility [127]. The model is integrated into the Opt-Setup Master
(Fig. 36), an Excel-based simulation that can aid an end-user to
select optimum setup conditions to ensure safe operations, better
roundness and chatter-free grinding. Additionally, a static grind-
ing model was introduced in [124] for selecting operating condi-
tions, e.g., feedrate, wheel speed, system stiffness (incl. wheel-
contact stiffness based on a workpiece size). Opt-Setup Master by
Advanced Finishing Technology (AFT) gives end users a practical
tool for designing grinding cycles to control the size error, round-
ness error and cycle time. This software has been implemented in
real centerless production located in United States, Japan, China,
India and Romania.

6. Challenges and future directions

Early advances in scientific understanding of grinding processes
were primarily made through experiments. Foundational models
such as specific energy and maximum undeformed chip thickness,
established 70 years ago, remain integral to grinding research today.
The equivalent-chip-thickness model, promoted by the CIRP keynote
in 1974 [246], is still in use as well despite its limitations to fully
account for process geometry and kinematics, particularly when con-
trasted with more fundamental dimensionless parameters such as
the aggressiveness number.

Basic empirical models (e.g. regression for curve fitting) have
been experiencing a steady decline since 1992. Although these
models can be useful for optimizing a specific set of grinding con-
ditions, they insufficiently advance the fundamental understand-
ing of the process mechanics. Their reliance on measured values
constrains their utility to the original conditions under which
they were developed, making them difficult to apply under differ-
ent boundary conditions. Moreover, the experimental effort
required to determine model constants increases exponentially
with the addition of variables [255]. Therefore, experiments are
often complemented with modeling. For example, while research
which produces new experimental data ! such as the impact of
dresser direction on the efficiency of grinding-wheel dressing

[151] ! is useful knowledge and valuable to practitioners, it does
not enhance the understanding of process mechanics. In contrast,
when novel insights are uncovered ! for example, into dressing
mechanics [21] ! and coupled with experimental data, this
research gives universal applicability which can be extrapolated
to other wheel-conditioning applications. In other words, models
that not only showcase experimental findings but also interpret
these results through the lens of first principles produce more
value.

While macro-scale models capture process geometry and kine-
matics and are proven capable of optimizing a wide variety of
fixed-abrasive processes, micro-scale models are necessary to
comprehensively address interface interactions (Fig. 7) and the
intricate thermomechanical aspects crucial for understanding
material removal, wear and surface-finish formation. The key
input to micro-scale models is the wheel topography. Early stud-
ies of wheel topography and related empirical parameters mostly
originated in Germany [153,223,273]. These models require mea-
suring and quantifying the wheel topography, such as the cut-
ting-point density C, which is a key parameter in the calculation of
the maximum undeformed chip thickness (Eq. (3)) [16]. Although
numerous methods have been developed for quantifying the wheel
topography, this remains a challenge ! especially for practitioners
with limited access to optical imaging instruments.

The convergence of micro- and macro-scale models presents
both challenges and opportunities for future research. Key chal-
lenges include accurately capturing the complex, dynamic inter-
actions at the micro-scale ! such as grit-workpiece contact !and
integrating these into macro-scale models. Future research could
focus on enhancing the fidelity of micro-scale models, improving
the integration methods for scaling up to macro-scale, and
improving computational techniques to manage the increased
complexity. The integration of models into simulation has become
easier thanks to advancements in hardware (computational speed
and memory), along with software enhancements, which together
enable the creation of dedicated simulation tools. Such software
has effectively demonstrated its ability to incorporate a large
variety of models, which can include kinematics, wheel and
workpiece topography, material-removal mechanisms, friction,
wear, fluid flow, and heat transfer. It is also capable of addressing
the micro-scale effects of abrasive interactions between the wheel
and the workpiece. Micro-geometric effects, however, continue to
pose a significant challenge, largely due to the stochastic nature
of the wheel topography, which needs to be included into process
models. Although modern optical tools can characterize the wheel
topography and provide comprehensive 3D data, the primary dif-
ficulty lies in translating this 3D data into tool descriptors for
simulation and vice versa.

Developing a comprehensive physical model necessitates the
use of field equations, which involve partial differential equations.
The discretization methods utilized include FEM, SPH, MD, CFD,
FV, and dexels. SPH offers benefits for representing material sepa-
ration, but it necessitates a consistent second derivative for the
heat-transfer equation as well as some corrections and stabiliza-
tions. The key requirement and obstacle for all these models are
the constitutive equations for the work material and friction
model, specifically the acquisition of model parameters. Due to
the extreme conditions present during the process, standard
material testing may not yield sufficient results. Promising techni-
ques include the use of instrumented scratch tests or orthogonal-
cutting experiments.

Wear modeling remains insufficiently developed as no existing
model takes into account the full effect chain of wear and loading,
and there is no combined model capable of predicting workpiece
properties through the dressing and grinding processes.

Further research is needed to understand the interaction
between grinding fluid and the grinding wheel as well as the heat-
transfer mechanisms within the wheel-workpiece contact zone.
These interactions affect the heat partition to the workpiece, grind-
ing wheel, chips and fluid. Knowing these heat partitions is

Fig. 36. Flow chart of the AFT’s Opt-Setup Master [123].
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required for accurate thermal models. Thermal models have
evolved, incorporating CFD simulations to account for a variety of
boundary conditions. Further refinement and experimentation
could improve their accuracy. A solution to this complexity may
require the integration of thermal analysis with models that con-
sider material physics and the resulting surface integrity outputs.
Modeling fluid flow is a complex task which includes addressing
the surface properties of the grinding wheel, multi-phase flow,
heat distribution among different constituents, and the dynamic
heat transfer coefficient. Two-dimensional fluid flow simulations
do not provide sufficiently accurate results; three-dimensional sim-
ulations of fluid flow are expected to become more feasible with
the continuous advancement in computing power.

Aided by advances in computers and process monitoring, data-
driven models are rapidly gaining prominence. This represents a
significant shift from the traditional approach to modeling. Most
data-driven models use supervised machine learning (ML), which
is highly process-dependent and sensitive to variations in process
parameters, limiting their transferability. Acceleration and acous-
tic emission (AE) sensors are primarily used, with AE sensors gen-
erally showing better utility. For AE sensors, the challenge
remains in determining their optimal positioning. Correct posi-
tioning of the sensor relative to the emitting source and process-
ing the raw signals by filtering specific frequency bands can
improve the model accuracy. Combining multiple signal sources
for feature extraction (through sensor fusion) demonstrated
potential for improving data-driven models. It is important to
note that the sensor-fusion solutions remain underexplored, pre-
senting an important avenue for further research. Support Vector
Machine (SVM) approaches often outperform Artificial Neural
Networks (ANN) on relatively small data sets, although they
require significant computational effort. Modern approaches inte-
grate multiple signal sources, a trend that is expected to continue.
Improving the transferability of data-driven models is key to
ensure a broader applicability. There is a current need for more
models that provide time-continuous predictions of tool wear
and surface roughness, as well as models that can identify and
compensate for disturbances within the grinding process. This is
especially crucial for honing and superfinishing operations, where
the tool-wear behavior is less understood, akin to a "black box”.
In this context, physics-informed ML appears to be a promising
future direction. This approach may overcome the limitations of
data-driven models by enhancing their ability to extrapolate
across different conditions without being strictly dependent on
datasets that match the process parameters. The accuracy of
data-driven models depends on the quality and volume of data.
Integrating data-driven and physical models [238] could improve
their alignment with the underlying process physics and reduce
the need for extensive empirical calibration by filtering out data
inconsistencies that diverge from expected physical behaviors.
Such a hybrid approach not only facilitates the development of
more accurate models, but also paves the way for research direc-
tions in sensor integration and process monitoring.

Simulation of fixed-abrasive operations for process and product
design has been adopted slowly and steadily in the industry as an
important part of the digital twin for smart factories and manufactur-
ing operations. Accurate modeling of a complex grinding process,
with a short lead time for the modeling phase, remains technically
challenging due to the ongoing advancements in abrasives and wheel
bonding, coupled with more stringent engineering specifications
(such as durability and reliability). The calibration of simulation mod-
els needs to be carefully considered. Fortunately, the increasing avail-
ability of data obtained by process monitoring facilitates this
calibration process, making it more feasible to achieve high levels of
accuracy in simulations. Modeling and simulation significantly con-
tribute to reductions in costs, cycle time and scrap ! consequently
reducing the ecological footprint of grinding. Efforts to simulate abra-
sive machining processes, grinding in particular, have persisted over
the past decades and, based on the trend observed, are continuing
and will continue to transform the modeling of fixed-abrasive

processes. In addition, the synergy between modeling and simula-
tion, process monitoring, and intelligent control needs to be further
developed to optimize process parameters in real-time, responding
to variations in process conditions to maintain optimal performance.

Furthermore, it is crucial to address the current gap in simulations
related to dressing, as there is a lack of comprehensive models that
consider the impact of the dressing process. This gap in modeling
limits our understanding of how dressing affects the grinding pro-
cess, which ultimately impacts the properties of the workpiece.

7. Concluding remarks

The seminal models developed by Shaw, Pahlitzsch, Peklenik,
Werner, Malkin, and others continue to hold relevance and are the
cornerstone of fundamental knowledge in the field. These physical
models offer a comprehensive understanding of process mechanics
and are fast to deploy. As a result, they serve as the basis for industrial
simulations, facilitating robust process prediction and optimization.

The evolution in modeling from 1992 to 2006 to 2024 has been
marked by advancements in model capabilities and applications.
Over time, the scope of modeling has broadened to include a diverse
sub-array of modeling approaches, such as FEM, MD, ANN, and SPH.
This diversification was driven by the need to address the increasing
complexity of abrasive processes, especially in terms of accounting
for micro-scale effects.

Thermomechanical modeling with integrated process geometry
and kinematics remains a key pillar for predicting material removal,
forces, wear, temperatures and surface integrity. The accuracy of
these models has been improved by leveraging advancements in
computational techniques and the inclusion of improved material
constitutive models.

Empirical models can be highly predictive within the domain of
the data they are based on. Advances in data-driven approaches, with
ML playing a major role, are also evident. The increasing availability
of process data across various time scales further highlights this
trend. The increasing prospects of leveraging edge and cloud comput-
ing with data-driven approaches will enhance the availability of sim-
ulation tools. Furthermore, integrating physical models with data-
driven (e.g. ML) models and physics-informed AI models show great
promise. Each modeling approach offers certain advantages, depend-
ing on the goals and the specific process aspects being investigated.

Drawing on the CIRP's fifty-year legacy in modeling of abrasive
operations, this paper aligns with the tradition of providing critical
reviews every 15!20 years, setting the stage for the continuation of
the research endeavors in this subject area.
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