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Abstract. Quotient regularization models (QRMs) are a class of powerful reg-

ularization techniques that have gained considerable attention in recent years,

due to their ability to handle complex and highly nonlinear data sets. How-
ever, the nonconvex nature of QRM poses a significant challenge in finding its

optimal solution. We are interested in scenarios where both the numerator and

the denominator of QRM are absolutely one-homogeneous functions, which is
widely applicable in the fields of signal processing and image processing. In this

paper, we utilize a gradient flow to minimize such QRM in combination with

a quadratic data fidelity term. Our scheme involves solving a convex problem
iteratively. The convergence analysis is conducted on a modified scheme in a

continuous formulation, showing the convergence to a stationary point. Nu-

merical experiments demonstrate the effectiveness of the proposed algorithm
in terms of accuracy, outperforming the state-of-the-art QRM solvers.

1. Introduction. In this paper, we consider a generalized quotient regularization
model (QRM) with a least-squares data fidelity term weighted by a positive constant
λ, i.e.,

min
u∈Ω

J(u)

H(u)
+

λ

2
∥Au− f∥22, (1)

where both functionals J(·), H(·) are proper, convex, lower semi-continuous (lsc),
and absolutely one-homogeneous on a proper domain Ω ⊂ Rn. An absolutely one
homogeneous functional F : u ∈ Ω → R satisfies F (αu) = |α|F (u), ∀α ∈ R, u ∈ Ω.
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Figure 1. A 2D illustration of L1/L2 and L1/Q1 that give a better
approximation to the L0 norm with a comparison to the convex L1

norm.

It can be proven that a convex and absolutely one homogeneous function is always

non-negative with J(0) = 0. We further assume by convention J(0)
H(0) := 0, thus it is

well-defined at 0. The least-squares misfit between the linear operator A and the
measurements f is a standard data fidelity term when the noise Au−f is subject to
the Gaussian distribution. For other noise types, the data fidelity term is formulated
differently. We give three specific signal and image processing examples that fit into
our general model (1).
Example 1. (L1/L2 sparse signal recovery). The ratio of the L1 and L2 norms was
prompted as a scale-invariant surrogate to the L0 norm for sparse signal recovery
[15, 17]. Defining J(0)/H(0) = 0 aligns with the L0 norm of the zero vector.
Recently, a constrained minimization problem was formulated, i.e.,

min
u∈Rn

∥u∥1
∥u∥2

s.t. Au = f,

for the ease of analyzing the theoretical properties of the L1/L2 model [25, 32]
as well as deriving a numerical algorithm [29]. Here we adopt the unconstrained
formulation [26] that is aligned with our generalized model (1)

min
u∈Rn

∥u∥1
∥u∥2

+
λ

2
∥Au− f∥22. (2)

A more general ratio of Lp over Lq (quasi-)norms for p ∈ (0, 2) and q ≥ 2 was
explored in [9].
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Example 2. (L1/QK sparse signal recovery). Motivated by the truncated L1 reg-
ularization (a.k.a partial sum) [16, 23] and the L1/L2 model, we consider the ratio
of the L1 norm and K-largest truncated L2 norm as a sparsity-promoting regular-
ization with a given integer K. When K = 1, it becomes the L1 norm over the
infinity norm [10, 30]. For K = n (the ambient dimension of u), L1/QK is equiv-
alent to L1/L2. In Figure 1, we use a 2D example to illustrate that both L1/L2

and L1/QK can promote sparsity by approximating the L0 norm. Both ratios give
a better approximation to the L0 norm compared to the convex L1 norm, which is
largely attributed to the scale-invariant property of the L0 norm and the two ratio
models. Define J(u) = ∥u∥1 and H(u) as the truncated L2 norm of the K-largest
absolute values of entries, denoted as ∥u∥(K). As both J(·) and H(·) are absolutely
one-homogeneous, we consider the following problem

min
u∈Rn

∥u∥1
∥u∥(K)

+
λ

2
∥Au− f∥22, (3)

as a special case of (1).
Example 3. (L1/L2 on the gradient for image recovery). In [27, 28], the L1/L2

functional was applied to the image gradient and combined with the least-squares
term,

min
u

∥∇u∥1
∥∇u∥2

+
λ

2
∥Au− f∥22. (4)

Specifically, Wang et al. [28] demonstrated that this model (4) yields significant
improvements in a limited-angle CT reconstruction problem. With an additional
H1-semi norm to (4) for smoothing, a segmentation model was proposed in [31]. A
modification of replacing the gradient operator ∇ in (4) by a nonnegative diagonal
matrix was explored in [19] for electrical capacitance tomography.

Without the data fitting term, our model (1) reduces to Rayleigh quotient prob-
lems, defined by

min
u∈Ω

R(u) :=
J(u)

H(u)
. (5)

The classic Rayleigh quotient problem in linear eigenvalue analysis [14] is defined
by

min
u∈Rn

⟨u, Lu⟩
∥u∥22

, (6)

with a symmetric matrix L ∈ Rn×n. Any critical point of (6) is an eigenvector
of the matrix L. One can replace the linear mapping Lu in (6) by a nonlinear
function, thus leading to a nonlinear eigenproblem. Nossek and Gilboa [22] proposed
a continuous flow that minimizes (5) when J(·) is absolutely one homogeneous
and H(·) is the square L2 norm. The convergence proof was later provided in
[1]. Under the same setting, a nonlinear power method was proposed in [7] with
connections to proximal operators and neural networks. For the case when J is the
total variation (TV) and H is the L1 norm, the Rayleigh quotient (5) approximates
the Cheeger cut problem [13, 6]. The quotient minimization (5) also appears in
learning parameterized regularizations [4] and filter functions [3].

In this paper, we propose a novel scheme to minimize the general model (1)
based on a gradient descent flow for the Rayleigh quotient minimization [11]. We
then apply the proposed algorithm to the three specific examples (L1/L2, L1/QK ,
and L1/L2 on the gradient). In each case, our algorithm requires minimizing an
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L1-regularized subproblem, which can be solved efficiently using the alternating di-
rection method of the multiplier (ADMM) [5, 12]. Our analysis for the proposed
algorithm is towards a slightly modified scheme. We establish a subsequential con-
vergence of the modified scheme under the uniform boundedness of the sequence.
With some additional assumptions, the uniform bound can be proven using a con-
tinuous flow formulation. In experiments, we demonstrate the efficiency of the
proposed algorithm over the relevant methods in the literature. In summary, the
novelties of this paper are threefold:

1. We consider a general model (1) that combines the Rayleigh quotient as a reg-
ularization with a data fidelity term. Our model has a variety of applications,
especially in signal and image reconstruction.

2. We propose a unified algorithm with numerical insights on convergence and
the solution’s boundedness.

3. Our approach can be adapted to three case studies: (2), (3), and (4). In
each case, the proposed scheme outperforms the relevant algorithms in the
literature in terms of accuracy.

The rest of the paper is organized as follows. Section 2 describes the proposed
algorithms in detail, including numerical formulation and specific closed-form solu-
tions for the three case studies. We provide mathematical analysis on the numerical
scheme in Section 3. Extensive experiments are conducted in Section 4 for applica-
tions in signal and image recovery. Finally, conclusions and future works are given
in Section 5.

2. Proposed algorithms. Recall that we aim at the minimization problem

min
u

G(u) := R(u) +
λ

2
∥Au− f∥22, (7)

with R(u) = J(u)/H(u).

Theorem 2.1. Suppose A is an under-determined matrix, f ∈ Im(A)\{0}, and
R(·) has an upper bound, i.e., R(u) ≤ M . For a sufficiently large parameter λ, the
optimal solution of (7) can not be 0.

Proof. As A is an under-determined matrix and f ∈ Im(A), there exist infinitely
many solutions satisfying Au = f, among which we denote û to be the least norm
solution, that is,

û = argmin
u

∥u∥2 such that Au = f.

It is straightforward that G(û) = R(û) ≤ M and G(0) = J(0)
H(0) +

λ
2 ∥f∥

2
2. If λ > 2M

∥f∥2
2
,

we have G(û) < G(0), which implies that 0 cannot be the global solution to (7).

Remark: Note that all the examples listed in the introduction section satisfy the

boundedness assumption of R(·). Taking L1/L2 for an example, one has ∥u∥1

∥u∥2
≤

√
n

for u ∈ Rn.
One classic method to minimize G(u) is by using a gradient descent flow, i.e.,

ut ∈ −∂G(u), (8)

where ∂ indicates the subgradient [21]. We consider the subgradient ∂ here as
J(·), H(·) are not necessarily differentiable. The subgradient of G can be expressed
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as

∂G(u) =
H(u)p− J(u)q

H2(u)
+ λAT (Ax− f)

=
p−R(u)q

H(u)
+ λAT (Au− f),

(9)

where q ∈ ∂H(u), p ∈ ∂J(u). Plugging the gradient expression (9) into the flow (8)
yields

ut =
R(u)

H(u)
q − p

H(u)
− λAT (Au− f),

which can be discretized by the iteration count k,

uk+1 − uk

dt
=

R(uk)

H(uk)
qk − pk+1

H(uk)
− λAT (Auk+1 − f). (10)

Note that we consider a semi-implicit scheme in (10). A fully explicit discretiza-
tion requires the subgradient of J(·), which is a set and hence cannot be uniquely
determined. If we implicitly discretize the denominator H(u) by H(uk+1), the re-
sulting optimization problem does not have a closed-form solution in each iteration,
thus computationally inefficient. The update of uk+1 is obtained by the following
optimization problem,

uk+1 = argmin
u

{
β

2
∥u− uk∥22 −

R(uk)

H(uk)
⟨qk, u⟩+ J(u)

H(uk)
+

λ

2
∥Au− f∥22

}
, (11)

for β = 1
dt , whose optimality condition coincides with (10). Since J(·) is assumed to

be convex, the objective function of (11) is strictly convex, ensuring the existence
and uniqueness of the optimal solution uk+1.

In what follows, we describe the detailed algorithms for L1/L2 and L1/QK in
Section 2.1 as well as the gradient model (4) in Section 2.2, all based on the general
scheme (11).

2.1. Quotient regularization for sparse signal recovery. For H(u) = ∥u∥2
and q ∈ ∂H(u), we get q = u

∥u∥2
if u ̸= 0; otherwise q is a vector with each element

bounded by [−1, 1]. As J(u) = ∥u∥1, the minimization problem (11) at the kth
iteration becomes

uk+1 = argmin
u

{
β

2
∥u− uk∥22 − ⟨hk, u⟩+ ∥u∥1

∥uk∥2
+

λ

2
∥Au− f∥22

}
, (12)

where hk = R(uk)
H(uk)

qk = ∥uk∥1

∥uk∥3
2
uk. Note that the scheme (10) is not well-defined if

uk = 0, while this turns out not to be restrictive in, as uk = 0 never occurs in our
experiments. On the theoretical side, we know from Theorem 2.1 that 0 cannot be
the minimizer of the objective function in the minimization problem (7).

To solve for the L1-regularized minimization (12), we introduce an auxiliary
variable y and consider an equivalent problem

min
u,y

β

2
∥y − uk∥22 − ⟨hk, y⟩+ ∥u∥1

∥uk∥2
+

λ

2
∥Ay − f∥22 s.t. u = y. (13)

The corresponding augmented Lagrangian function is expressed as,

Lk(u, y; η) =
β

2
∥y − uk∥22 − ⟨hk, y⟩+ ∥u∥1

∥uk∥2
+

λ

2
∥Ay − f∥22 +

ρ

2
∥u− y + η∥22, (14)



6 CHAO WANG, JEAN-FRANCOIS AUJOL, GUY GILBOA AND YIFEI LOU

where η is a dual variable and ρ is a positive parameter. Then ADMM iterates as
follows  uj+1 = argminu Lk(u, yj ; ηj)

yj+1 = argminy Lk(uj+1, y; ηj)
ηj+1 = ηj + uj+1 − yj+1,

(15)

where the subscript j represents the inner loop index, as opposed to the superscript
k for outer iterations (11). The u-subproblem has a closed-form solution:

uj+1 = shrink

(
yj − ηj ,

1

ρ∥uk∥2

)
.

The update of y follows the computation of gradient of Lk with respect to y:

yj+1 = (λATA+ (β + ρ)I)−1(βuk + hk + λAT f + ρ(uj+1 + ηj)), (16)

which involves solving a large linear system. In the case of sparse signal recovery
when the system matrix A ∈ Rm×n is under-determined, i.e., m ≪ n, the closed-
form solution of y can be written in an efficient way by the Sherman–Morrison–Woo-
dbury formula:

yj+1 =
[
κI − λκ2AT

(
I + λκAAT

)−1
A
] [

βuk + hk + λAT f + ρ(uj+1 + ηj)
]
.

where κ = 1/(β + ρ) and the matrix I + λκAAT is in m-by-m size, which is much
smaller than inverting an n×n matrix in (16). Using the Choleskey decomposition
for I + λκAAT can further accelerate the computation.

For the L1/QK model (3), H(u) = ∥u∥(K) and its subgradient is a random vector
bounded by [−1, 1] if u = 0. In addition, when u ̸= 0, one has

qi =

{
ui

∥u∥(K)
i ∈ ΩK(u)

0 Otherwise,

where q ∈ ∂H(u) and ΩK(u) is the index set of the K-largest absolute values of u.
As a result, the algorithm for the L1/QK model (3) is the same as (12) except that

hk = ∥uk∥1

∥uk∥3
(K)

vk with

vki =

{
uk
i i ∈ ΩK(uk)

0 Otherwise.
(17)

Algorithm 1 presents a unified scheme that minimizes the L1/L2 and L1/QK

models with the least-squares fit.

2.2. Quotient regularization for image recovery. When J(u) = ∥∇u∥1 and
H(u) = ∥∇u∥2, we get q = −∆u

∥∇u∥2
if ∇u ̸= 0; otherwise q is a vector with each

element bounded by [−1, 1]. Hence the minimization problem (11) in the k-iteration
becomes

uk+1 = argmin
u

{
β

2
∥u− uk∥22 − ⟨hk, u⟩+ ∥∇u∥1

∥∇uk∥2
+

λ

2
∥Au− f∥22

}
, (18)

where hk = ∥∇uk∥1

∥∇uk∥3
2
∆uk. The subproblem (18) is a TV regularization with addi-

tional linear and least-squares terms, which can be solved by ADMM. In particular,
we introduce one auxiliary variable y = ∇u upon convergence, and formulate the
augmented Lagrangian function corresponding to (12) as,

Lk(u, y; η) =
β

2
∥u−uk∥22−⟨hk, u⟩+ ∥y∥1

∥∇uk∥2
+

λ

2
∥Au−f∥22+

ρ

2
∥∇u−y+η∥22, (19)



MINIMIZING QRM 7

Algorithm 1: Proposed algorithm for the models of L1/L2 and L1/QK .

1: Input: a linear operator A, observed data f
2: Parameters: ρ, λ, β, κ = 1/(β + ρ), kMax, jMax, ϵ ∈ R, and K for the

L1/QK model
3: Initialize: η = 0, k, j = 0 and u0

4: while k < kMax or ∥uk − uk−1∥2/∥uk∥2 > ϵ do
5: while j < jMax or ∥uj − uj−1∥2/∥uj∥2 > ϵ do

6: uj+1 = shrink
(
yj − ηj ,

1
ρ∥uk∥2

)
7: yj+1 =[

κI − λκ2AT
(
I + λκAAT

)−1
A
] [

βuk + hk + λAT f + ρ(uj+1 + ηj)
]

8: ηj+1 = ηj + uj+1 − yj+1

9: Assign j by j + 1
10: end while
11: Set uk+1 as uj

12: Update hk+1 by hk+1 =


∥uk∥1

∥uk∥3
2
uk for L1/L2

∥uk∥1

∥uk∥3
(K)

vk for L1/QK

13: Assign k and j by k + 1 and 0, respectively
14: end while
15: return u∗ = uk

where η is a dual variable and ρ is a positive parameter. Then ADMM iterates as
follows  uj+1 = argminu Lk(u, yj ; ηj)

yj+1 = argminy Lk(uj+1, y; ηj)
ηj+1 = ηj +∇uj+1 − yj+1.

(20)

Taking the derivative of (20) with respect to u, we get

uj+1 = (λATA− ρ∆+ βI)−1(λAT f + βuk + ρ(yj − ηj) + hk). (21)

For image deblurring or the MRI reconstruction, the inverse in the u-update (21)
can be computed efficiently via the fast Fourier transform.

The update for the variable y is given by

yj+1 = shrink

(
∇uj+1 + ηj ,

1

ρ∥∇uk∥2

)
.

We summarize the proposed algorithm for minimizing the L1/L2 on the gradient
in Algorithm 2.

3. Mathematical analysis. This section is split into two parts. In Section 3.1,
we prove the convergence of a modified scheme to the solution of the quotient model
(1). To do so, we need a technical uniform bound assumption, which is justified in
Section 3.2 based on a continuous formulation of the scheme.

3.1. Convergence of the scheme. We first show that a fully implicit version
of the numerical scheme (11) converges (up to a subsequence) to a solution of
our original problem (1) under a reasonable uniform bound assumption. In our
analysis, we make use of Lemmas 3.1-3.2 that are related to the subdifferential of
one homogeneous convex function (see for instance [8, 7, 11]).
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Algorithm 2: Proposed algorithm for the L1/L2 model on the gradient.

1: Input: a linear operator A, observed data f ,
2: Parameters: ρ, λ, β, kMax, jMax, and ϵ ∈ R

3: Initialize: η = 0, k, j = 0 and u0

4: while k < kMax or ∥uk − uk−1∥2/∥uk∥2 > ϵ do
5: while j < jMax or ∥uj − uj−1∥2/∥uj∥2 > ϵ do
6: uj+1 = (λATA− ρ∆+ βI)−1(λAT f + βuk + ρ(yj − ηj) + hk)

7: yj+1 = shrink
(
∇uj+1 + ηj ,

1
ρ∥∇uk∥2

)
8: ηj+1 = ηj + uj+1 − yj+1

9: Assign j by j + 1
10: end while
11: Set uk+1 as uj

12: Update hk+1 by hk = ∥∇uk∥1

∥∇uk∥3
2
∆uk

13: Assign k and j by k + 1 and 0, respectively
14: end while
15: return u∗ = uk

Lemma 3.1. For a convex one homogeneous function J , we refer to p as a subdif-
ferential of J(u), i.e., p ∈ ∂J(u), if and only if the following two assertions hold

(i) J(u) = ⟨p, u⟩.
(ii) J(v) ≥ ⟨p, v⟩, ∀v.

Lemma 3.2. If J is a convex one homogeneous function and Ω ⊂ Rn, then there
exists LJ > 0 such that ∥p∥2 ≤ LJ for all p ∈ ∂J(0).

It follows from Lemma 3.1 that ∂J(u) ⊂ ∂J(0), ∀u. Hence a direct consequence
of Lemma 3.2 is the following (see e.g. [1]):

Lemma 3.3. If J is a convex one homogeneous function and Ω ⊂ Rn, then there
exists LJ > 0 such that if u ∈ Ω and p ∈ ∂J(u), then ∥p∥2 ≤ LJ .

Fully implicit scheme: We recall that the sequence {uk} is defined by Equation (11).
In fact, we are going to analyze a slightly different scheme, which is referred to as
a fully implicit scheme,

uk+1 = argmin
u

{
β

2
∥u− uk∥22 −

R(uk)

H(u)
⟨qk, u⟩+R(u) +

λ

2
∥Au− f∥22

}
, (22)

where the term 1
H(uk)

in (11) has been replaced by 1
H(u) . We remark that the

numerical scheme (11) is much easier to handle with the term 1
H(uk)

, but the math-

ematical analysis of (22) happens to be much easier with 1
H(u) . We establish in

Theorem 3.4 that ∥uk+1 − uk∥2 → 0 when k → +∞.

Theorem 3.4. For absolutely one-homogeneous functionals J(·), H(·), if the se-
quence {uk} is defined by (22), then ∥uk+1 − uk∥2 → 0 as k → +∞.

Proof. Define the objective function in (22) by

F (u) :=
β

2
∥u− uk∥22 −

R(uk)

H(u)
⟨qk, u⟩+R(u) +

λ

2
∥Au− f∥22. (23)



MINIMIZING QRM 9

It is straightforward that

F (uk) = −R(uk)

H(uk)
⟨qk, uk⟩+R(uk) +

λ

2
∥Auk − f∥22. (24)

SinceH is absolutely one-homogeneous, we use Lemma 3.1 (i) to obtain ⟨qk, uk⟩ =
H(uk), thus leading to

F (uk) = −R(uk) +R(uk) +
λ

2
∥Auk − f∥22 =

λ

2
∥Auk − f∥22. (25)

It follows from Lemma 3.1 (ii) that H(uk+1) ≥ ⟨qk, uk+1⟩, which implies that

F (uk+1) =
β

2
∥uk+1 − uk∥22 −

R(uk)

H(uk+1)
⟨qk, uk+1⟩+R(uk+1) +

λ

2
∥Auk+1 − f∥22

≥ β

2
∥uk+1 − uk∥22 −

R(uk)

H(uk+1)
H(uk+1) +R(uk+1) +

λ

2
∥Auk+1 − f∥22

=
β

2
∥uk+1 − uk∥22 −R(uk) +R(uk+1) +

λ

2
∥Auk+1 − f∥22.

We use the fact that F (uk+1) ≤ F (uk) to deduce:

β

2
∥uk+1 − uk∥22 −R(uk) +R(uk+1) +

λ

2
∥Auk+1 − f∥22 ≤ λ

2
∥Auk − f∥22. (26)

Summing from 1 to N , we get:

β

2

N∑
k=1

∥uk+1 − uk∥22 ≤ R(u1)−R(uN+1) +
λ

2

(
∥Au1 − f∥22 − ∥AuN+1 − f∥22

)
≤ R(u1) +

λ

2
∥Au1 − f∥22,

due to R(u) ≥ 0 and ∥Au − f∥22 ≥ 0 for any u. Let N → ∞, we obtain that∑∞
k=1 ∥uk+1 − uk∥22 is bounded, which implies that ∥uk+1 − uk∥22 → 0.

Now that we have proven that ∥uk+1 − uk∥2 → 0 as k → +∞, we are going to
be able to pass the limit up to a subsequence in the optimality condition of (1).

Theorem 3.5. For absolutely one-homogeneous functionals J(·), H(·), if the se-
quence {uk} defined by (22) is bounded, and if qk − qk+1 → 0, then there exists a
subsequence of {(uk, pk, qk)} that converges to (u∗, p∗, q∗). Moreover, we have

p∗ ∈ ∂J(u∗), q∗ ∈ ∂H(u∗), and 0 = λAT (Au∗ − f) +
p∗ −R(u∗)q∗

H(u∗)
. (27)

Proof. We assume that uk is bounded, and we know from Lemma 3.3 that the
subgradients pk and qk are also bounded. Thus, there exists (u∗, p∗, q∗) such that
up to a subsequence, (uk, pk, qk) → (u∗, p∗, q∗). The optimality condition for (22)
can be written as:

0 = β(uk+1 − uk) + λAT (Auk+1 − f)

−R(uk)qk

H(uk+1)
+

R(uk)⟨qk, uk+1⟩qk+1

(H(uk+1))2
+

pk+1 −R(uk+1)qk+1

H(uk+1)
.

Thanks to Theorem 3.4, we can pass to the limit in this last equation to get:

0 = λAT (Au∗ − f) +
p∗ −R(u∗)q∗

H(u∗)
, (28)
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where we use Lemma 3.1 for ⟨q∗, u∗⟩ = H(u∗). Note that (28) is the original optimal-
ity condition 0 ∈ ∂G(u∗), i.e., Equation (9) for the optimization problem (1).

Remark: The assumption qk − qk+1 → 0 in Theorem 3.5 could be removed under
some specific choice of the subgradients qk. Indeed, since from Theorem 3.4, we
have uk − uk+1 → 0, and if we assume dom(H)=Rn, which is the case for all the
examples studied in the paper, then distance (∂H(uk), ∂H(uk+1)) → 0 (since the
graph of ∂H is closed, see e.g. Proposition 16.26 in [2]). Hence with a proper choice
of the subgradients, we could have qk − qk+1 → 0.

3.2. Uniform boundedness of the sequence {uk}. The goal of this subsection
is to explain why the technical assumption on the uniform boundedness of the
sequence {uk} is reasonable for Theorem 3.5. Instead of dealing with the discrete
sequence {uk}, we conduct our analysis in a continuous setting, which enables us to
have tractable computations. In particular, we consider a differentiable function u
of the continuous flow, that is, ut ∈ −∂G(u) in (8). Notice that uk defined by (22)
can be seen as a discretized version of u.

We show in Theorem 3.6 that a mapping of t 7→ ∥u∥22 is a non-increasing function
as long as ∥Au∥2 ≥ ∥f∥2.

Theorem 3.6. Suppose u(t) is a differentiable function with respect to the time
t that satisfies the flow (8), i.e., there exists p ∈ ∂J and q ∈ ∂H such that the
following equality

ut = −λAT (Au− f)− p−R(u)q

H(u)
, (29)

holds. If ∥Au∥2 ≥ ∥f∥2, then
d

dt

(
∥u∥22

)
≤ 0. (30)

Proof. Simple calculations lead to

d

dt

(
1

2
∥u∥22

)
= ⟨u, ut⟩

= −λ⟨Au− f,Au⟩ − ⟨p, u⟩ −R(u)⟨q, u⟩
H(u)

= −λ⟨Au− f,Au⟩ − J(u)−R(u)H(u)

H(u)

= −λ
(
∥Au∥22 − ⟨f,Au⟩

)
,

where we use Lemma 3.1 with p ∈ ∂J(u) and q ∈ ∂H(u). It further follows from
the Cauchy-Schwartz inequality that

d

dt

(
∥u∥22

)
≤ λ∥Au∥2 (∥f∥2 − ∥Au∥2) . (31)

Consequently, if ∥Au∥2 ≥ ∥f∥2, then ∥u∥22 is a non-increasing function.

We give a numerical verification of Theorem 3.6 in Figure 3. A direct consequence
of Theorem 3.6 leads to the following two corollaries.

Corollary 3.7. If A is coercive, i.e., there exists c > 0 such that ∥Au∥2 ≥
c∥u∥2, ∀u, then any function u satisfying the flow (29) is uniformly bounded.
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Proof. Following (31) with the coercivity assumption on A, we get

d

dt

(
∥u∥22

)
≤ λ∥Au∥2 (∥f∥2 − c∥u∥2) . (32)

Now we have two cases to consider

• If ∥u∥2 ≤ ∥f∥2

c , then ∥u∥2 is bounded.

• If ∥u∥2 ≥ ∥f∥2

c , then d
dt

(
∥u∥22

)
≤ 0, and thus ∥u∥2 is also bounded.

The coercivity assumption on A can further be weakened. For instance, if we
write u = v+w with v ∈ Ker(A) and w ∈ (Ker(A))⊥ (notice that this decomposition
exists and is unique), then we only need a uniform boundedness assumption on v,
as A is coercive on the orthogonal of its kernel. We summarize these results in
Corollary 3.8.

Corollary 3.8. If u(t) satisfies the flow (29), we can uniquely express u = v + w
with v ∈ Ker(A) and w ∈ (Ker(A))⊥. If v is uniformly bounded, then u is uniformly
bounded.

Proof. Let us define V := Ker(A),W := (Ker(A))⊥, and c := min{∥w∥2=1,w∈W} ∥Aw∥2.
since A is a continuous linear operator defined on RN , we have c > 0, which implies
that ∥Aw∥2 ≥ c∥w∥2 for all w ∈ W , and thus A is coercive on W . Now, if u ∈ RN ,
then there exists a unique decomposition u = v + w with v ∈ V and w ∈ W . We
have Au = Av +Aw = Aw. From (31), we get:

d

dt

(
∥u∥22

)
≤λ∥Au∥2 (∥f∥2 − ∥Au∥2)

=λ∥Aw∥2 (∥f∥2 − ∥Aw∥2)
≤λ∥Aw∥2 (∥f∥2 − c∥w∥2) .

Since we know that v is uniformly bounded from the assumption of the corollary,
it remains only to show that w is uniformly bounded. Similarly to the proof of
Corollary 3.7, we then discuss two cases:

• If ∥w∥2 ≤ ∥f∥2

c , then ∥w∥2 is bounded. Using the assumption that v is uni-
formly bounded, we get u = v + w is uniformly bounded.

• If ∥w∥2 ≥ ∥f∥2

c , then d
dt

(
∥u∥22

)
≤ 0, which implies the boundedness of ∥u∥2.

4. Numerical results. In this section, we showcase the effectiveness of the pro-
posed algorithms through a set of numerical experiments. All of these experiments
were carried out on a typical laptop featuring a CPU (AMD Ryzen 5 4600U at
2.10GHz) and MATLAB (R2021b).

We start with some numerical insights of the proposed scheme in Section 4.1,
followed by case studies of sparse signal recovery in Section 4.2 and MRI recon-
struction in Section 4.3. Specifically for signal recovery, we conduct experiments
in a noisy setting, aiming to recover an underlying sparse vector u ∈ Rn with s
non-zero elements from a set of noisy measurements, f = Au+ ν, where A ∈ Rm×n

is a Gaussian random matrix with each column normalized by zero mean and unit
Euclidean norm, and ν is Gaussian noise with zero mean and standard deviation σ.
We fix the ambient dimension n = 512, sparsity s = 130, and noise level σ = 0.1,
while varying the number of measurements m to examine the performance of sparse
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Figure 2. The objective function (7) respect to the iteration
counts: L1/L2 and L1/QK for signal recovery (left) and L1/L2

on the gradient for image recovery (right). The decay in each ob-
jective function provides empirical evidence of the convergence of
the proposed scheme (11).

signal recovery. Notice that fewer measurements result in a more challenging recov-
ery process. We use the mean-square error (MSE) metric to evaluate the recovery
performance. we can obtain the ordinary least square (OLS) solution if we know
the ground truth of the support set of Λ = supp(u), which refers to the index set of
nonzero entries in u. In this case, we can consider the mean squared error (MSE) of
OLS as the benchmark for the oracle performance, using σtr(A⊤

ΛAΛ)
−1, where AΛ

refers to a submatrix of A by taking the columns corresponding to the index set Λ.

4.1. Algorithm behaviors. The convergence analysis we conduct in Section 3.1 is
based on a modified model (22), as opposed to our numerical scheme (11). Here we
empirically demonstrate the convergence of the latter on the three quotient models:
L1/L2, L1/QK , and L1/L2 on the gradient. The first two models are related to
signal recovery, and we choose K = 100 for the L1/QK model in this experiment,
while the last one is stemmed from the image processing literature. The objective
function for all these models is expressed in (7). We plot the objective value R(uk)+
λ
2 ∥Au

k − f∥22 with respect to k, in which uk is defined by (11). As illustrated in
Figure 2, all the objective curves decrease rapidly, which provides strong evidence
that the proposed scheme (11) is convergent. The theoretical analysis of (11) is left
for future work.

Theorem 3.6 discusses a monotonically decreasing property of the sequence gen-
erated by the fully implicit scheme (22). Here, we verify this property numerically
for the sequence generated by the semi-implicit scheme (11), using the L1/L2 model
as an example. Specifically, we choose an initial guess of u0 such that ∥Au0∥2−∥f∥2
is strictly larger than 0 as Case 1, and ∥Au0∥2−∥f∥2 < 0 as Case 2. We plot ∥uk∥2
and ∥Auk∥2 − ∥f∥2 with respect to k in Figure 3, which validates the decrease in
∥u∥2 is attributed to ∥Auk∥2 ≥ ∥f∥2.

Lastly, we investigate the impact of the parameter K for the L1/QK model. We
consider m = 250 to 360 with an increment of 10. For each m, we generate a random
matrix A, a ground-truth sparse vector u of s = 130 nonzero elements, and a noise
term ν to obtain the measurement vector f . We conduct 100 random realizations
and record in Table 1 the average value of MSEs between the the ground-truth
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Figure 3. Numerical verification for the decreasing property re-
vealed by Theorem 3.6: if ∥Au0∥2 ≥ ∥f∥2, then ∥uk∥2 decreases
with respect to the iteration (left); otherwise, ∥uk∥2 increases
(right). We plot ∥uk∥2 on the top row, while ∥Au0∥2 − ∥f∥2 with
a baseline of 0 (red dash line) on the bottom row.

u and reconstructed solutions by L1/QK with K = 10, 100, 150, n(= 512). We
use the L1 solution as the initial condition for L1/QK , which is referred to as the
baseline model in Table 1. Notice that for K = n, the L1/QK model becomes
L1/L2. Table 1 shows that the L1/QK model exhibits a close approximation to
the oracle performance when K = 100 or 150, as the ground-truth sparsity is 130.
When the parameter K is close to the ground-truth level, L1/QK achieves top-
notch performance at any m. For a smaller value of m, the problem becomes more
ill-posed, and hence, all models lead to similar performance. If we choose K = 10
(far away from the true sparsity), the performance of L1/QK is worse than the
L1/L2 model, which implies that K plays an important role in the success of the
L1/QK model for sparse recovery.

4.2. Signal recovery. This section investigates the signal recovery problem, in
which we compare the proposed Algorithm 1 on both L1/L2 and L1/QK (choosing
K = 100) regularizations with a difference of convex algorithm (DCA) scheme [24]
implemented by ourselves. Here DCA aims to minimize D1(u)−D2(u) with convex
functionals D1, D2 by iteratively constructing two sequences

{
uk

}
and

{
vk

}
in the

following way, {
vk ∈ ∂D2

(
uk

)
uk+1 = argminu D1(u)−

〈
u, vk

〉
.

(33)
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Table 1. Impact of the parameter K on the sparse recovery via
the L1/QK model. The sensing matrix A is of size m × n, where
m ranges from 250 to 360 and n = 512. The ground-truth sparse
vector contains s = 130 nonzero elements. Each recorded value is
averaged over 100 random realizations. The baseline model refers
to the L1 minimization, whose solution serves as the initial condi-
tion for L1/QK . When K is chosen to be close to the true sparsity
level (e.g., K = 100, 150 versus s = 130), L1/QK yields top-notch
performance; otherwise (e.g., K = 10), L1/L2(K = n) is the best.

K
m

250 260 270 280 290 300

baseline 5.27 4.97 4.59 4.44 4.20 3.91
10 5.20 4.87 4.44 4.19 3.93 3.69
100 4.95 4.57 4.12 3.80 3.56 3.29
150 4.92 4.55 4.10 3.80 3.53 3.29
n 5.01 4.65 4.19 3.90 3.65 3.43

K
m

310 320 330 340 350 360

baseline 3.73 3.55 3.49 3.26 3.13 3.02
10 3.42 3.25 3.11 2.97 2.86 2.75
100 3.01 2.86 2.70 2.57 2.46 2.34
150 3.02 2.86 2.71 2.58 2.49 2.39
n 3.16 3.04 2.91 2.81 2.73 2.65

We consider splitting the objective function (7) into :

D1(u) = µ∥u∥1 +
λ

2
∥Au− f∥2,

D2(u) = µ∥u∥1 −R(u).
(34)

The u-subproblem in DCA (33) amounts to an L1 regularized problem, which
can be solved by ADMM.

In addition, it follows from [20] that the L1/QK model can be formulated by

min
u∈Rn

∥u∥1 + λ
2 ∥Au− f∥22

∥u∥(K)
, (35)

so that a fractional programming (FP) strategy [34] can be applied. Specifically, a
proximal-gradient-subgradient algorithm with backtracked extrapolation (PGSA BE)

was proposed in [20], which investigated a different model of L1/QK with the L1

norm of the K-largest magnitudes instead of the L2 norm in the denominator. As
L1/QK becomes L1/L2 for K = n, we implement the ADMM algorithm for the
L1/L2 model under either QRM (3) or FP (35) setting.

We randomly generate the matrix A of size m × 512 for m varying from 240
to 360 with an increment of 20. Since the quotient models are non-convex, the
choice of initial guess u0 significantly impacts the performance. We adopt the
restored solution via the L1 minimization as the initial guess and terminate the
iterations when the relative error ∥uk+1 − uk∥2/∥uk+1∥2 is less than 10−8. This
stopping criterion is used for all the algorithms. Table 2 reports the averaged MSE
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Table 2. MSEs of recovering a sparse vector of length n = 512
with s = 130 nonzero elements from m noisy measurements (m =
240 : 20 : 360 following the MatLab’s notation). We compare
L1/L2 and L1/QK for K = 100 under the settings of FP (35) and
QRM (3). We observe that QRM is a better framework than FB
for sparse recovery. The best results are consistently given by the
proposed algorithm for solving the L1/QK model when the value
of K = 100 is close to the true sparsity level (130). The L1/L2

(when K = n) model achieves the second best in performance.

model-algorithm 240 260 280 300 320 340 360

FP
L1/L2-ADMM 5.51 4.76 4.00 3.48 3.15 2.86 2.67
L1/L2-PGSA BE 11.12 8.60 6.28 4.40 3.37 2.83 2.52
L1/QK-PGSA BE 5.62 4.75 3.92 3.41 3.08 2.83 2.68

QRM

L1/L2-DCA 5.56 4.87 4.14 3.61 3.27 2.95 2.69
L1/L2-ADMM 5.53 4.75 3.96 3.45 3.12 2.86 2.68
L1/L2-proposed 5.50 4.70 3.92 3.40 3.07 2.81 2.64
L1/QK-DCA 5.52 4.77 4.01 3.48 3.15 2.86 2.67
L1/QK-proposed 5.44 4.65 3.83 3.26 2.91 2.57 2.33

values over 100 random realizations. We observe that the QRM framework always
performs better than FP for the same regularization. The L1/QK model solved by
our algorithm performs the best in all the cases when K = 100 is chosen near the
true sparsity level (130), and L1/L2 without knowing the sparsity ranks the second
best.

Furthermore, we examine the performance of various methods in terms of support
identification, which can be viewed as a binary classification problem determining
whether an index belongs to the ground-truth support set. Following the statistical
analysis, we use the F1 score [18] to evaluate the identification/classification per-
formance. The F1 score is the harmonic mean of the precision (positive predictive
value) and recall (hit rate). The closer the F1 score to 1, the better the identification
is. Table 3 shows that the best results are consistently obtained by the proposed
algorithm for solving the L1/QK model when the value of K = 100 is close to the
true sparsity level (130).

In summary, the proposed algorithms for solving two QRM models with L1/L2

and L1/QK outperform the other relevant approaches in terms of recovery accuracy
and support identification.

4.3. Image recovery. We consider an MRI reconstruction as a proof-of-concept
example in image processing. The MRI measurements are acquired through multiple
radial lines in the frequency domain, achieved by performing the Fourier transform.
In addition, we add the Gaussian noise, with a mean of zero and standard deviation
σ on the MRI measurements. Intuitively, fewer radial lines and a larger σ value bring
more ill-posedness and difficulty to the problem. Here we consider two standard
phantoms, namely Shepp–Logan (SL) phantom generated using MATLAB’s built-
in command phantom and the FORBILD (FB) phantom [33]. We evaluate the
performance in terms of the relative error (RE) and the peak signal-to-noise ratio
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Table 3. F1 score on support identification, with s = 130 nonzero
elements from m noisy measurements (m = 240 : 20 : 360 following
the MatLab’s notation). We compare L1/L2 and L1/QK for K =
100 under the settings of FP (4) and QRM (3). The best results are
consistently given by the proposed algorithm for solving the L1/QK

model when the value of K = 100 is close to the true sparsity level
(130).

model-algorithm 240 260 280 300 320 340 360

FP
L1/L2-ADMM 0.41 0.41 0.41 0.41 0.41 0.41 0.41
L1/L2-PGSA BE 0.44 0.51 0.58 0.65 0.69 0.70 0.70
L1/QK-PGSA BE 0.49 0.50 0.50 0.50 0.50 0.49 0.49

QRM

L1/L2-DCA 0.41 0.41 0.41 0.41 0.41 0.41 0.41
L1/L2-ADMM 0.49 0.49 0.50 0.49 0.49 0.48 0.47
L1/L2-proposed 0.49 0.50 0.51 0.50 0.50 0.49 0.48
L1/QK-DCA 0.41 0.41 0.41 0.41 0.41 0.41 0.41
L1/QK-proposed 0.59 0.61 0.65 0.66 0.67 0.67 0.67

(PSNR), defined by

RE(u∗, ũ) :=
∥u∗ − ũ∥2

∥ũ∥2
and PSNR(u∗, ũ) := 10 log10

NP 2

∥u∗ − ũ∥22
,

where u∗ is the restored image, ũ is the ground truth, and P is the maximum peak
value of ũ.

Similar to the signal-recovering experiments, we regard the performance of the
L1 on the gradient, i.e., the total variation (TV), as the baseline. For L1/L2 on
the gradient, we compare the proposed algorithm to a previous method based on
ADMM [25]. For three sampling schemes (7, 10, and 13 lines) and two noise levels
(σ = 0.01 and 0.05), we record RE and PSNR values of three methods in Table 4,
demonstrating significant improvements in the accuracy of the proposed approach
over the previous works.

Figures 4 and 5 present visual reconstruction results of the SL phantom and the
FB phantom, respectively, both under high additive Gaussian noise (σ = 0.05).
In particular, Figure 4 is to recover the SL phantom using 7 radial lines. The
L1 model has severe streaking artifacts due to this extremely small number of
data obtained on the radial lines. The L1/L2 minimization on the gradient yields
significant improvements over the baseline model (TV). The proposed algorithm
outperforms the previous ADMM approach at the outer ring and boundaries of the
three middle oval shapes, which are more obvious in the difference map to the ground
truth. On the other hand, the FB phantom has finer structures and lower image
contrast compared to the SL phantom. As a result, it requires 13 radial lines for a
reasonable reconstruction. As we observe in Figure 5, the overall geometric shapes
are preserved. At the same time, many speckle artifacts appear in the reconstructed
images by L1/L2 no matter which algorithm is used.

5. Conclusions. In this paper, we proposed a gradient descent flow to minimize
a quotient regularization model with a quadratic data fidelity term for signal and
image processing applications. We assumed the numerator and the denominator
in the quotient model are absolutely one homogeneous. Numerically, we adopted a
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Table 4. MRI reconstruction from different numbers of radial
lines and different noise levels.

Image σ Line
L1 L1/L2-ADMM L1/L2-proposed

RE PSNR RE PSNR RE PSNR

SL

0.01
7 46.06% 19.50 25.36% 24.09 3.74% 40.72
10 16.29% 28.66 3.41% 41.53 2.91% 42.90
13 6.85% 36.52 1.91% 46.55 1.71% 47.49

0.05
7 52.31% 18.33 43.63% 19.38 31.90% 22.10
10 33.09% 22.42 14.34% 29.04 14.08% 29.24
13 22.67% 26.10 10.50% 31.75 10.41% 31.82

FB

0.01
7 21.63% 21.49 13.80% 24.89 1.11% 26.94
10 18.14% 23.08 14.98% 24.17 12.90% 25.47
13 9.51% 28.29 1.41% 44.71 1.17% 46.31

0.05
7 26.03% 19.9 22.14% 20.78 16.50% 23.36
10 18.14% 23.08 14.98% 24.17 12.90% 25.47
13 14.48% 24.79 12.67% 25.64 12.30% 25.89

L1 L1/L2-ADMM L1/L2-proposed

Figure 4. MRI reconstruction on the SL phantom with a noise
level of σ = 0.05 with 7 radial lines. Top row – reconstruction
results, bottom row – difference from ground truth. The proposed
algorithm outperforms the previous ADMM approach at the outer
ring and boundaries of the three middle oval shapes, better seen in
the difference map.

semi-implicit scheme that involves solving a convex problem iteratively. We theo-
retically analyzed the convergence of a slightly modified algorithm in a continuous
formulation, as opposed to the discretized version. Experimentally, we presented
the comparison results of three case studies of L1/L2 and L1/QK for signal recov-
ery and L1/L2 on the gradient for MRI reconstruction. We demonstrated that the
proposed algorithm significantly outperforms the previous methods in each case in
terms of accuracy. Future work includes the speed-up of the proposed algorithm,
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L1 L1/L2-ADMM L1/L2-proposed

Figure 5. MRI reconstruction on the FB phantom with a noise
level of σ = 0.05 with 13 radial lines. Top row – reconstruction
results, bottom row – difference from ground truth. The proposed
algorithm is able to better preserve the overall geometric shapes,
compared to competing methods.

e.g., trying to make a single loop rather than the double loop, and the convergence
analysis of the actual scheme.
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