
Journal of Scientific Computing          (2024) 101:17 
https://doi.org/10.1007/s10915-024-02657-4

Poissonian Image Restoration Via the L1/L2-Based
Minimization

Mujibur Rahman Chowdhury1 · Chao Wang2,3 · Yifei Lou4

Received: 7 January 2024 / Revised: 11 August 2024 / Accepted: 12 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
This study investigates the Poissonian image restoration problems. In particular, we propose
a novel model that incorporates L1/L2 minimization on the gradient as a regularization term
combined with a box constraint and a nonlinear data fidelity term, specifically crafted to
address the challenges caused by Poisson noise. We employ a splitting strategy, followed
by the alternating direction method of multipliers (ADMM) to find a model solution. Fur-
thermore, we show that under mild conditions, the sequence generated by ADMM has a
sub-sequence that converges to a stationary point of the proposed model. Through numeri-
cal experiments on image deconvolution, super-resolution, and magnetic resonance imaging
(MRI) reconstruction, we demonstrate superior performance made by the proposed approach
over some existing gradient-based methods.

Keywords Image restoration · L1/L2 minimization · Alternating direction method of
multiplier · Poisson denoising

Mathematics Subject Classification 49N45 · 65K10 · 90C05 · 90C26

1 Introduction

Achieving a superior digital image quality holds significant importance across diverse
domains, e.g., medical diagnosis, remote sensing, and astronomical imaging. However, the
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recorded images are often corrupted by disparate artifacts such as undersampling, blurring,
and noise [1]. For instance, super-resolution (SR) [2–5] involves reconstructing a high-quality
image from its under-sampled low-resolution data. This process is challenging due to its inher-
ently ill-posed nature, arising from an insufficient number ofmeasurements. In a parallel vein,
magnetic resonance imaging (MRI) undergoes reconstruction from under-sampled data in
the Fourier space. Both SR and MRI applications highlight a common focus on addressing
challenges associated with data degradation and scarcity [6, 7].

Many image recovery approaches assume the linearity of the degradation process, whether
it involves convolutions with a specific point spread function (PSF), a collection of tomo-
graphic projections, or the straightforward identity operator for denoising. To measure the
data misfit, minimizing the least-squares (LS) term is commonly used and defined by

∫
Ω

(Au(x) − f)2 dx, (1)

where A is a linear degradation operator, u is an image defined on a bounded domain of
Ω ⊂ R

2, and f denotes the degraded measurements. Note that the gradient of the least-
squares (1) is a linear function for u, thus computationally favorable to minimize. However,
the LS formulation, as a data fidelity term, is only effective for Gaussian noise.

It is challenging to apply algorithms designed for linear operators and Gaussian noise to
tackle other nonlinear inverse problems due to optimization difficulties caused by nonlinearity
[8, 9]. This paper focuses on the Poissonian image restoration, which entails a nonlinear data
fidelity term. Specifically, the data obtained by photon-count devices is often corrupted by
Poisson noise with applications to applied optics [10], astronomical [11] and biomedical
fields [12, 13]. Unlike Gaussian noise, Poisson noise is signal-dependent, thus making it
challenging to remove. It follows from statistical properties of the Poisson distribution [14,
15] that the data fidelity term for Poissonian image restoration can be formulated by

∫
Ω

(Au(x) − f ln(Au(x))) dx, (2)

with the same setup as in (1).
Aside frommachine learning and deep learningmethodologies that require a large number

of training data, a standalone approach for image recovery tasks often considers certain regu-
larizers to impose prior knowledge and constraints for guiding the reconstruction process from
degraded images. For example, total variation (TV) [16] is a celebrated regularization model
in image processing. While its primary advantage lies in edge preservation, it can induce
stair-casing artifacts. To mitigate these artifacts, fractional-order total variation (FOTV) [17,
18] is formulated to generate piece-wise smooth outputs. A family of the sum or the differ-
ence of two norms on the image gradient has been popular for image applications, including
L2 + L p with p < 1 [19], L1 − αL2 [20, 21], and L1 − βLq with q > 1 [22]. In addition,
nonlocal operators [23] based on patch similarity have emerged to preserve fine structures.
Other regularizations in the image-processing literature include sparsity-promoting regular-
izations [24–26], minimax concave penalty (MCP) regularization [27], hyperbolic tangent
function [28], and a weighted Schatten norm [29] that exploits low-rank structures among
similar patches. Additionally, there are some hybrid models, such as TV and wavelet frame
[30], TV and tensor sparse representation [31], joint low-rank and nonlocal prior [32], and
low-rank and sparse decomposition method [33]. Specifically for Poissonian image restora-
tion, the FOTV regularization is combined with the data fidelity term (2) for denoising [34]
and nonblind deconvolution [35, 36]. The frame-based analysis approach was considered
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in [37]. Moreover, Kumar et al. [38] proposed low-rank Poisson denoising, while a nonlo-
cal means approach was presented in [39]. Recently, advanced Poisson denoising methods
have taken advantage of deep learning [40] and self-supervised learning [41]. Zha et al. [42]
considered both low-rank regularization and deep priors to get rid of Poisson noise.

The recent success of the L1/L2 regularization in sparse signal processing [43, 44] has
drawn significant attention to this scale-invariant model. An image, specifically with a piece-
wise constant structure, is sparse after taking the operator, suggesting that L1/L2 on the
gradient could serve as an effective prior for imaging applications. This L1/L2 regulariza-
tion is applied to the CT reconstruction problem in [45–47], where the noise is assumed to be
additive Gaussian distribution. In this paper, we introduce an L1/L2-based image restoration
model tailored for Poisson statistics and adapt the alternating direction method of multipliers
(ADMM) [48] to solve the optimization problem. The convergence analysis is particularly
intricate due to the nonlinearity, nonconvexity, and nonseparability in L1/L2 regularization.
The nonquadratic and non-separable characteristics of the Poisson log-likelihood further
complicate challenges in this model. Notably, the absence of a Lipschitz-continuous gra-
dient in the data fidelity term (2) for Poisson statistics becomes a major impediment when
analyzing the convergence of gradient-based algorithms. In light of these challenges, we con-
duct theoretical analysis to establish a subsequential convergence under certain assumptions.
Furthermore, our numerical experiments yield promising results, showcasing the proposed
approach’s exceptional performance in diverse applications, including image deconvolution,
super-resolution, and MRI reconstruction. These experiments emphasize the model’s superi-
ority in recovering imageswith intricate piece-wise structures, providing empirical validation
to complement the theoretical advancements.

The remaining sections of the paper are outlined below. In Sect. 2, we present the notations
and examine the L1/L2 model along with the derivation for the Poisson data fidelity term.
Our proposed image restoration method and algorithm are described in Sect. 3. In Sect. 4, we
establish the convergence analysis of the algorithm under some mild conditions. Section5 is
devoted to experimental results. Finally, Sect. 6 concludes the paper.

2 Preliminaries

We adopt a discrete formulation for our problem setting. A two-dimensional image with
dimensions m × n can be expressed as a vector, where the ((i − 1)m + j)-th component
represents the intensity value at pixel (i, j) using a conventional linear index. We define the
discrete gradient operator as

Du :=
[
Dx

Dy

]
u, (3)

where the operators Dx and Dy represent finite forward differences with a periodic boundary
condition in x, y-directions, respectively. Define N := mn, X := R

N . and Y := R
2N .

Throughout the paper, we employ bold letters to represent vectors, capital letters to denote
matrices or linear operators, and calligraphic letters to indicate vector spaces. We have the
flexibility to employ standard norms on vectors u ∈ X and Du ∈ Y . For example, the L1

applied on u promotes the sparsity of u, while the L1 norm applied to Du, i.e., ‖Du‖1,
is so-called (anisotropic) TV regularization [49] that encourages the image gradient to be
sparse.
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Wang et al. [45] proposed the L1/L2 penalty on the gradient,

min
u∈X

‖Du‖1
‖Du‖2 + β

2
‖Au − f‖22, (4)

where f is the observed data in a vector form, A denotes a linear degradation operator, and
β > 0 is a weighting parameter. The work [45] focused on the problem of limited-angle
CT reconstruction, where the linear operator A is a truncated (due to limited angle) Radon
transform. The least-squares fit in (4) indicates implicitly that the noise in the data f adheres
to a Gaussian distribution.

In this paper, we are interested in the Poisson noise distribution. If the noise, as a random
variable, follows a Poisson distribution, its expected value is given by (Au)i for the i-th entry.
Thus, the probability distribution of the measured data can be written by:

p(f | u) =
∏
i

(Au)
fi
i

fi ! e−(Au)i .

The maximum a posteriori (MAP) estimation, achieved through the negative log-likelihood
function, asymptotically leads to the following data fidelity term

min
u∈X DKL(Au, f), (5)

where DKL (x,w) refers to the generalized Kullback-Leibler divergence [50]:

DKL(x,w) =
〈
w, ln

w
x

〉
+ 〈1, x − w〉, (6)

with the all-one vector 1. The division of two vectors and the logarithmic function in (6) are
applied elementwise. Note that the objective in (5) can be rewritten as 〈1, Au〉−〈f, ln(Au)〉.

3 ProposedMethod

We propose an L1/L2-regularized Poissonian image restoration model along with a box
constraint, i.e.,

min
u∈X

‖Du‖1
‖Du‖2 + β〈1, Au〉 − β〈f, ln(Au)〉 s.t. u ∈ [t1, t2]N . (7)

Here u ∈ [t1, t2]N signifies that each element of u falls within the bounds of [t1, t2]. This
is commonly observed in image processing, where pixel values are often constrained to
intervals like [0, 1] or [0, 255]. Note that the optimal solution of (7), denoted by û, satisfies
Aû > 0 so that ln(Aû) is well-defined, where the notation > means each component of Aû
is larger than 0.

We apply the alternating direction method of multipliers (ADMM) [48] to solve the
optimization problem (7) by reformulating it into an equivalent form

min
u∈X ,g∈Y E(u, g) := ‖Du‖1

‖g‖2 + β〈1, Au〉 − β〈f, ln(Au)〉 + δ[t1,t2]N (u)

subject to g = Du, (8)

where δQ(x) is the indicator function that forces x to belong to a feasible set Q, i.e.,
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δQ(x) =
{
0 if x ∈ Q,

+∞ otherwise.
(9)

With a dual variable t, the augmented Lagrangian function related to (8) is written as

L(u, g; t) =‖Du‖1‖g‖2 + β〈1, Au〉 − β〈f, ln(Au)〉 + δ[t1,t2]N (u)

+ 〈ρt, Du − g〉 + ρ

2
‖Du − g‖22,

(10)

where ρ > 0 is a fixed parameter to be tuned. Then the ADMM scheme is given as

⎧⎪⎨
⎪⎩
u(k+1) = argmin

u
L(u, g(k); t(k))

g(k+1) = argmin
g

L(u(k+1), g; t(k))
t(k+1) = t(k) + Du(k+1) − g(k+1).

(11)

The g-subproblem in (11) has a closed-form solution given by [43, page A3655]

g(k+1) =
{
e(k) Du(k+1) + t(k) = 0

τ (k)
(
Du(k+1) + t(k)

)
Du(k+1) + t(k) �= 0,

(12)

where e(k) is a random vector with its L2 norm equal to 3
√

‖Du(k+1)‖1
ρ

and τ (k) is determined

by the expression 1
3 + 1

3 (ζ
(k) + 1

ζ (k) ) with

ζ (k) = 3

√
27κ(k)+2+

√
(27κ(k)+2)2−4
2 and κ(k) = ‖Du(k+1)‖1

ρ‖Du(k+1)+t(k)‖32
.

Regarding the u-subproblem in (11), we elaborate on it as solving the minimization
problem:

min
u∈X

‖Du‖1
‖g(k)‖2 + β〈1, Au〉 − β〈f, ln(Au)〉 + ρ

2 ‖Du − g(k) + t(k)‖22 + δ[t1,t2]N (u), (13)

which requires an iterative process to find the optimal solution. For this purpose, we introduce
three variables v := u,d := Du,q := Au. Then the objective function in (13) can be
expressed as

‖d‖1
‖h(k)‖2 + β〈1,q − f lnq〉 + ρ

2
‖Du − g(k) + t(k)‖22 + δ[t1,t2]N (v). (14)

The corresponding augmented Lagrangian is expressed as,

L(k)(u,q,d, v; y,w, z) = ‖d‖1
‖g(k)‖2 + β〈1,q − f lnq〉 + ρ

2 ‖Du − g(k) + t(k)‖22
+δ[t1,t2]N (v) + 〈μy,u − v〉 + μ

2 ‖v − u‖22+〈γw, Du − d〉 + γ
2 ‖d − Du‖22

+〈λz, Au − q〉 + λ
2‖q − Au‖22,

(15)

where y,w, z serve as dual variables, and λ, γ, μ are positive parameters. The superscript k
in L denotes the Lagrangian for the u-subproblem in (11) at the k-th iteration. The ADMM
framework to minimize (14) is similar to (11) and is summarized in Algorithm 1.
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When differentiating L(k) with respect to u, we obtain the update,

u j+1 =
(
λAT A + (ρ + γ )DT D + μI

)−1
c j+1, (16)

with c j+1 = ρDT (g(k)−t(k))+λAT (q j −z j )+γ DT (d j −w j )+μ(v j −y j ) and the identity
matrix I .Here the subscript j is the inner loop index, in contrast to the superscript k in (11) for
counting outer iterations. Note that when the matrix AT A can be diagonalized by the Fourier
transform, the inversion in (16) can be calculated efficiently by the fast Fourier transform
(FFT). Its rationale lies in the fact that DT D with the gradient operator D defined in (3) can
be diagonalized by the Fourier transform. In our experiments, we consider image deblurring,
super-resolution, and MRI construction, all of which involve frequency measurements, and
hence, the update for u j+1 can be obtained via FFT. We formulate the q-subproblem as
follows,

min
q

{
β〈1,q − f lnq〉 + λ

2
‖Au + z j − q‖22

}
, (17)

which can be solved entry-wise as a standard one-dimensional KL divergence problem [51,
Lemma 2.2]. Specifically, the update for q can be given by the quadratic formula,

q j+1 =
(λAu j+1 + λz j − β) +

√
(λAu j+1 + λz j − β)2 + 4βλf

2λ
. (18)

Note that we choose the positive solution from the quadratic formula, i.e., q j+1 > 0.
Lastly, it is straightforward to get the closed-form solution for d, that is,

d j+1 = shrink
(
Du j+1 + w j ,

1
γ ‖g(k)‖2

)
, (19)

where shrink(x, ν)i := sign(xi )max {|xi | − ν, 0} for the i-th entry.
We summarize the pseudo-code for minimizing the proposed model (7) in Algorithm 1

that consists of (outer) iterations of (11) with (inner) loops for solving the u-subproblem.

4 Convergence Analysis

In this section, we analyze the convergence of the ADMM iterations (11) under the following
assumptions:

(A1) The linear operator A satisfies A1 = 1 and has nonnegative entries.
(A2) N (D)

⋂N (A) = {0}, where the gradient operator D is defined in (3) and N denotes
the null space.

(A3) The norm of the sequence {g(k)} produced by (11) possesses a (uniform) lower bound.
Specifically, there exists a positive constant ε such that ‖g(k)‖2 ≥ ε holds for all
iterations k.

Note that the operator A for denoising is the identity matrix, while the convolution ker-
nel for deblurring sums to 1. Therefore, the assumption (A1) is trivial for denoising and
deblurring. The assumption (A2) is standard in convergence analysis for TV-based regular-
izations [21, 45, 46, 52]. The last assumption (A3) requires a uniform lower bound of the
iterates {g(k)}, which is seemingly strong. However, it is inevitably essential in the conver-
gence analysis for an objective function that is not coercive. Fortunately, the assumption (A3)
is easy to verify numerically.
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Algorithm 1: The L1/L2 minimization in the Poisson noise model.
1 Input: the observed image f and the linear operator A
2 Set parameters: β, λ, γ, μ, ε,OuterMax, InnerMax

3 Initialization: k = 0,u(0) = 0, v0 = 0, d(0) = 0, g(0) = 0, t(0) = 0, y(0) = 0,w(0) = 0, z(0) =
0, n(0) = 0, q(0) = f

4 while ‖u(k+1)−u(k)‖2
‖u(k)‖2 > ε and k ≤ OuterMax do

5 j = 0.
6 while j ≤ InnerMax do

7

c j+1 = n(k) + λAT (q j − z j ) + γ DT (d j − w j ) + μ(v j − y j )

u j+1 =
(
λAT A + (ρ + γ )DT D + μI

)−1
c j+1

q j+1 =
(λAu j+1 + λz j − β) +

√
(λAu j+1 + λz j − β)2 + 4βλf

2λ
d j+1 = shrink(Du j+1 + w j ,

1
γ ‖g(k)‖2 )

y j+1 = y j + u j+1 − v j+1
w j+1 = w j + Du j+1 − d j+1
z j+1 = z j + Au j+1 − q j+1
j = j + 1

8 end
9 return u(k+1) = u j

10 g(k+1) =
{
e(k) Du(k+1) + t(k) = 0

τ (k)
(
Du(k+1) + t(k)

)
Du(k+1) + t(k) �= 0

11 t(k+1) = t(k) + Du(k+1) − g(k+1)

12 n(k+1) = ρDT (g(k) − t(k))
13 k = k + 1
14 end
15 Output: u(k)

As the sequence {u(k)} is bounded (by [t1, t2]), then {∇u(k)} is also bounded andwe denote
M = supk{‖∇u(k)‖1}. To estimate the bounds of u-subproblem, we rely on a property of
strongly convex functions characterized in Lemma 1.

Lemma 1 [53] A function f : RN → R is strongly convex with μ > 0 if and only if the
following inequality

f (w) ≥ f (x) + 〈∇ f (x),w − x〉 + μ

2
‖w − x‖22,

holds for any vectors x,w ∈ R
N .

Lemma 2 (sufficient decreasing) Let {(u(k), g(k), t(k))} be the sequence of iterates defined
by (11). Under the assumptions (A1)–(A3) and a sufficiently large ρ > 0, there exist two
positive parameters c1, c2 such that

L(u(k+1), g(k+1); t(k+1)) − L(u(k), g(k); t(k))
≤ −c1‖u(k+1) − u(k)‖22 − c2‖g(k+1) − g(k)‖22.

(20)

Proof We start by showing that there exists a positive parameter c such that

L(u(k+1), g(k); t(k)) − L(u(k), g(k); t(k)) ≤ −c‖u(k) − u(k+1)‖22. (21)
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As ‖Du‖1
‖g(k)‖2 and the indicator function δ[t1,t2]N (u) are convex, it is sufficient to show that

F(u) := β〈1, Au〉 − β〈f, ln(Au)〉 + 〈ρt(k), Du − g(k)〉 + ρ

2
‖Du − g(k)‖22, (22)

is a strongly convex function with a positive constant c, as the desired inequality (21) follows
from Lemma 1. For this purpose, let φ(Au) := 〈1, Au〉−〈f, ln(Au)〉 and q = Au. It follows
from the Chain rule that

∂2φ

∂u2
= AT ∂2φ

∂q2
A = AT diag

(
f

(Au)2

)
A, (23)

where the division and the square operations are conducted elementwise and diag(·) takes a
vector into a diagonal matrix. Due to the presence of the logarithm in (22), the functional F
is defined on the domain of Ω := {u | Au > 0} and thus differentiable on Ω . Specifically,
the Hessian matrix of F can be expressed by

H = βAT diag

(
f

(Au)2

)
A + ρDT D. (24)

Using the assumption (A1) and the upper bound of u, we have Au ≤ t21, thus leading to
a lower bound of the vector f

(Au)2
as η := min f

t22
> 0. Denote by μ the smallest eigenvalue of

the matrix βηAT A + ρDT D. We show that μ is strictly positive. Otherwise, μ = 0, which
implies that there exists a nonzero vector v such that vT (βηAT A + ρDT D)v = 0. It is
straightforward that vT AT Av ≥ 0 and vT DT Dv ≥ 0. Therefore, one shall have vT AT Av =
0 and vT DT Dv = 0, which contradicts with the assumption (A2) thatN (D)

⋂N (A) = 0.
Applying Lemma 1 on F yields

F(u(k)) ≥ F(u(k+1)) + 〈∇F(u(k+1)),u(k) − u(k+1)〉 + μ

2
‖u(k) − u(k+1)‖22. (25)

Let p ∈ ∂‖D · ‖1(u(k+1)) and r ∈ ∂δ[t1,t2]N (u(k+1)) such that p
‖g(k)‖2 + ∇F(u(k+1)) + r = 0

due to the optimality condition for u(k+1). By the definition of subgradient, one has

‖Du(k)‖1 ≥ ‖Du(k+1)‖1 + 〈p,u(k) − u(k+1)〉, (26)

δ[t1,t2]N (u(k)) ≥ δ[t1,t2]N (u(k+1)) + 〈r,u(k) − u(k+1)〉. (27)

Combining (25)-(27) along with the definition of L(u, g(k); t(k)) in (10), we get

L(u(k), g(k); t(k)) ≥ L(u(k+1), g(k); t(k)) + μ

2
‖u(k) − u(k+1)‖22. (28)

By taking c = 2μ > 0, (28) is equivalent to (21).
As our model (7) only differs to the one in [45] by the data fidelity, we can borrow the

error bounds of t, g, summarized as follows:

L(u(k+1), g(k+1); t(k)) − L(u(k+1), g(k); t(k)) ≤ − ρε3−6M
2ε3

‖g(k+1) − g(k)‖22,
L(u(k+1), g(k+1); t(k+1)) − L(u(k+1), g(k+1); t(k)) ≤

(
16N
ρε4

) ∥∥∥u(k+1) − u(k)
∥∥∥2
2

+
(
4M2

ρε6

) ∥∥∥g(k+1) − g(k)
∥∥∥2
2
.

(29)

Please refer to [45, Lemmas 4.2−4.3] for the proofs, specifically (A.10) and Lemma 4.2 in
[45]. Combining the inequalities (28)-(29), we get the inequality (20) holdswith c1 = c− 16N

ρε4
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and c2 = ρ
2 − 3M

ε
− 4M2

ρε6
. If ρ is sufficiently large, we can have both c1 and c2 are strictly

positive. ��
Lemma 3 (subgradient bound) Let {(u(k), g(k), t(k))} be the sequence of iterates defined by
(11), then there exist a vector η(k+1) ∈ ∂L(u(k+1), g(k+1); t(k+1)) and two positive constants
c3, c4 such that

‖η(k+1)‖2 ≤ c3‖t(k+1) − t(k)‖2 + c4‖g(k+1) − g(k)‖2. (30)

Proof We express the optimality conditions of (11) by,⎧⎪⎪⎨
⎪⎪⎩

p(k+1)

‖g(k)‖2 + βAT (1 − f
Au(k+1) ) + r(k+1) + ρDT (t(k) + Du(k+1) − g(k)) = 0

−‖Du(k+1)‖1
‖g(k+1)‖32

g(k+1) + ρ(g(k+1) − Du(k+1) − t(k)) = 0

t(k+1) = t(k) + Du(k+1) − g(k+1),

(31)

where p(k+1) ∈ ∂‖D · ‖1(u(k+1)) and r(k+1) ∈ ∂δ[t1,t2]N (u(k+1)). In addition, we define

η
(k+1)
1 , η(k+1)

2 , and η
(k+1)
3 as follows,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η
(k+1)
1 := p(k+1)

‖g(k+1)‖2 + βAT (1 − f
Au(k+1) ) + r(k+1)

+ρDT (t(k+1) + Du(k+1) − g(k+1))

η
(k+1)
2 := −‖Du(k+1)‖1

‖g(k+1)‖32
g(k+1) + ρ(g(k+1) − Du(k+1) − t(k+1))

η
(k+1)
3 := Du(k+1) − g(k+1).

(32)

Clearly, we have

η
(k+1)
1 ∈ ∂uL(u(k+1), g(k+1); t(k+1))

η
(k+1)
2 ∈ ∂gL(u(k+1), g(k+1); t(k+1))

η
(k+1)
3 ∈ ∂tL(u(k+1), g(k+1); t(k+1)),

Combining both (31) and (32), we get
⎧⎪⎨
⎪⎩

η
(k+1)
1 = p(k+1)

‖g(k+1)‖2 − p(k+1)

‖g(k)‖2 + ρDT (t(k+1) − t(k)) + ρDT (g(k) − g(k+1))

η
(k+1)
2 = ρ(t(k) − t(k+1))

η
(k+1)
3 = ρ(t(k+1) − t(k)),

(33)

By triangle inequality and the lower bound of ‖g(k)‖2, we have∣∣∣∣ 1

‖g(k+1)‖2 − 1

‖g(k)‖2

∣∣∣∣ = ‖g(k+1) − g(k)‖2
‖g(k)‖2‖g(k+1)‖2 ≤ ‖g(k+1) − g(k)‖2

ε2
.

As ‖p(k+1)‖2 ≤ 2
√
2N and ‖DT ‖2 ≤ 2

√
2, we obtain the desired inequality (30) with

η(k+1) = (η
(k+1)
1 , η

(k+1)
2 , η

(k+1)
3 ), c3 = 2ρ + 2

√
2ρ, and c4 = 2

√
2N

ε2
+ 2

√
2ρ. ��

Theorem 1 Under the assumptions (A1)–(A3) and a sufficiently large ρ > 0, the sequence
{(u(k), g(k); t(k))} defined by (11) has a sub-sequence that converges to a stationary point
(u∗, g∗; t∗) of (8), i.e., satisfying 0 ∈ ∂E(u∗, g∗) and g∗ = Du∗.

Proof As u(k) is bounded by [t1, t2], then ‖Du(k)‖1 is bounded, denoted by M . Combining
the optimality conditions for the g-subproblem and the t-subproblem in (31), we obtain

‖t(k+1)‖2 =
∥∥∥∥∥
‖Du(k+1)‖1

ρ

g(k+1)

‖g(k+1)‖32

∥∥∥∥∥
2

≤ M

ρε2
, (34)
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where we use the assumption (A3) that ‖g(k)‖2 ≥ ε. Therefore, {t(k)} is bounded.
As the g-update (12) depends on Du and t, then ‖g(k)‖2 is also bounded. Thus, the
sequence {(u(k), g(k), t(k))} is bounded, and it has an accumulation point by the Bolzano-
Weierstrass theorem. Let (u∗, g∗, t∗) be any accumulation point of {(u(k), g(k), t(k))} and let
{(u(k j ), g(k j ); t(k j ))} be a subsequence with

lim
k j→∞(u(k j ), g(k j ); t(k j ))} = (u∗, g∗, t∗).

Taking the telescopic summation of (20) leads to

L(u(K ), g(K ); t(K )) ≤ L(u(0), g(0); t(0))−c1

K−1∑
k=0

‖u(k+1)−u(k)‖22−c2

K−1∑
k=0

‖g(k+1)−g(k)‖22.
(35)

Note that
〈1, Au(k)〉 − 〈f, ln(Au(k))〉 = 〈1, Au(k) − f ln(Au(k))〉

=
〈
1, Au(k) + f ln

(
f

Au(k)

)
− f ln f

〉

≥ 〈1, f − f ln f〉.
(36)

The last inequality comes from the fact x ln x ≥ x − 1,∀x > 0 and Au(k) > 0. Combining
(34) and (36), we can estimate a lower bound of L(u(k+1), g(k); t(k))

L(u(k), g(k); t(k)) =‖Du(k)‖1
‖g(k)‖2 + β〈1, Au(k)〉 − β〈f, ln(Au(k))〉

+ ρ

2
‖Du(k) − g(k) + t(k)‖22 − ρ

2
‖t(k)‖22

≥β〈1, f − f ln f〉 − M2

ρε4
.

Therefore, it follows from (35) that ‖u(k) −u(k+1)‖2 → 0, ‖g(k) −g(k+1)‖2 → 0, and, using
[45, Lemma4.2], ‖t(k)−t(k+1)‖2 → 0 as k → ∞. The limit points are denoted as (u∗, g∗, t∗),
and further convergence results are derived, including (u(k j+1), g(k j+1), t(k j+1)) →
(u∗, g∗, t∗) and ∇u∗ = g∗. By invoking Lemma 3, it is concluded that 0 ∈ ∂L(u∗, g∗, t∗),
establishing that (u∗, g∗) is a stationary point of (8). ��

Remark: If one applies ADMM to decompose all the variables, it requires the introduction
of two Lagrangian multipliers, leading to a so-called three-block ADMM [54] that lacks
a convergence guarantee. Current research in the field of general optimization (8) often
requires an accompanying function, such as an objective function, merit function, or aug-
mented Lagrangian function, that possesses properties such as coerciveness, separability, or
Lipschitz differentiability within a specified domain. As none of these properties holds for
the L1/L2 formulation, we adopt the splitting scheme (8) that has a convergence guarantee.
On the other hand, there is a gap in the convergence analysis, as the u subproblem cannot
be solved precisely in practice. Instead, we utilize another iterative scheme to solve the sub-
problem inexactly. We empirically show that such an inexact solver leads to convergence
(see Sect. 5.1), but rigorous proof will be left to future work.
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5 Experimental Results

In this section, we present extensive experiments to demonstrate the performance of the
proposed model (7) for restoring images corrupted by Poisson noise. We show three appli-
cations of our method: image deconvolution, super-resolution, and MRI reconstruction in
Sects. 5.2–5.4, respectively. All numerical results are conducted under Windows 10 and
MATLAB version 9.9 (R2020b) running on a Desktop with Intel(R) Core(TM) i7-4790 CPU
@ 3.60GHz and 24GB RAM. Our MATLAB source code will be available at GitHub1 after
publication.

To vary the Poisson noise level, we scale the pixel value to [0, P] for the original image
before applying the linear operator A, where the value P controls the noise level. The smaller
P is, the more noisy the image looks, and hence, it becomes more challenging for image
restoration. We then set the box constraint to [0, P], i.e., t1 = 0 and t2 = P. As indicated

in Algorithm 1, u is initialized by the zero vector. We set ‖u(k+1)−u(k)‖2
‖u(k)‖2 < 10−5. We re-scale

the final solution to get back in the same range.
We use two quantifiers, i.e., peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) index, to evaluate the performance for comparison. The PSNR is defined as

PSNR(x,w) = 10ln10
mnP2

‖x − w‖22
, (37)

where P denotes themaximum intensity value (peak) of the original imagex, andw represents
the restored image. The definition of SSIM relies on the local similarity index on two small
patches x and w, that is,

ssim(x, w) = (2μxμw + c1)(2σxw + c2)

(μ2
x + μ2

w + c1)(σ 2
x + σ 2

w + c2)
, (38)

where μx and μw are their respective means, σ 2
x and σ 2

w represent their respective variances,
σxw is the co-variance of x and w, and c1, c2 > 0 are constants which prevent having zero
in the denominator. Then the overall SSIM is the mean of local similarity indexes, i .e.,

SSIM(x,w) = 1

K

(k)∑
i=1

ssim(xi , wi ), (39)

where xi and wi are the corresponding patches indexed by i in the two images x and w,
respectively, and K is the number of patches. The PSNR serves as a reliable metric for
gauging human subjective sensation, with a higher PSNR indicating superior quality in the
restored image. Conversely, the SSIM aligns more closely with the quality perception of
the human visual system. An SSIM value approaching 1 signifies that the restored image’s
characteristics, including edges and textures, closely resemble those of the original image.

5.1 Algorithmic Behavior

In this subsection, we present some computational aspects of our algorithm’s settings. We
start by the impact of the maximum number of iterations for the inner loop, denoted as
InnerMax, on the super-resolution (SR) problem discussed in [55]. This problem involves
reconstructing a high-resolution (HR) image from a low-resolution (LR) version. We test

1 Once the paper is published, the codes will be available at https://github.com/mujib2020.
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Fig. 1 The effects of the maximum number of the inner loops in terms of the PSNR (left) and objective value
(right) with respect to CPU time
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Fig. 2 Empirical verification on the boundedness of ‖g(k)‖2 and ‖Du(k)‖2 using the SR problem

InnerMax values of 5, 10, and 15, and present the corresponding PSNR and objective values
against CPU time in Fig. 1. We observe that with a small InnerMax, the performance curves
are erratic. However, setting InnerMax to 10 or more stabilizes these curves. Based on these
findings, we choose InnerMax = 10 and OuterMax = 500 for the maximum iterations in
the inner and outer loops, respectively, for subsequent experiments.

Next, we turn our focus to the assumptions underpinning the convergence analysis. Specif-
ically, assumption (A3) posits a lower bound for the value of ‖g(k)‖2. In Fig. 2, we empirically
verify this assumption by plotting the values of ‖g(k)‖2 in terms of CPU time. In addition,
we also numerically show the boundedness of ‖Du(k)‖2. These findings empirically affirm
that our algorithm meets all the specified assumptions.

5.2 Image Deblurring/Deconvolution

We use two standard testing images, labeled by Shape and Satellite as shown in Fig. 3. We
define the blurring kernel as a 9× 9 Gaussian Kernel with a standard deviation of

√
3, repre-

sented as fspecial(’gaussian’,9, sqrt(3)) in MATLAB. Before convolution,
we set the peak value to P, P/2, P/5, P/10 with P = 255, as four specific levels of Poisson
noise.
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etilletaSepahS

Fig. 3 Testing images: shape (left) and satellite (right)

Table 1 Comparison of image deconvolution results with each entry presenting PSNR and SSIM values

Test image Peak (P = 255) Input NPTool BM3D FOTV L1/L2

Shape P 25.52/0.88 33.34/0.98 30.14/0.97 34.32/0.99 34.84/0.99

P/2 24.61/0.85 29.97/0.94 29.53/0.94 33.50/0.99 34.08/0.99

P/5 22.80/0.83 30.90/0.96 28.63/0.95 31.77/0.98 33.42/0.99

P/10 20.88/0.81 29.38/0.96 28.02/0.94 30.07/0.96 32.69/0.99

Satellite P 20.44/0.79 22.44/0.86 22.25/0.86 22.85/0.87 22.98/0.88

P/2 20.20/0.78 22.00/0.85 22.00/0.85 22.51/0.86 22.62/0.87

P/5 19.61/0.77 21.85/0.85 21.60/0.84 21.79/0.83 22.04/0.85

P/10 18.78/0.74 21.52/0.83 21.22/0.83 21.59/0.82 21.59/ 0.83

The most favorable outcomes are emphasized in bold

We compare Algorithm 1 with some existing Poisson deblurring methods, includ-
ing NPTool [56], BM3D [57], and FOTV [35]. We select the parameters that yield
the highest PSNR value within their respective sets: β ∈ {10−1, 10−2}, ρ ∈
{10−1, 10−2, 10−3, 10−5}, λ ∈ {10−1, 10−2, 10−3, 10−4}, γ ∈ {10−1, 10−2, 10−3, 10−5},
andμ ∈ {10−1, 10−2, 10−3, 10−4}. The only tuning parameter for NPTool is selected among
{4× 10−6, 2× 10−5, 7× 10−5, 1× 10−4, 2× 10−4, 3× 10−4, 5× 10−4, 9× 10−4}. There
is no tuning parameter for BM3D. both NPTool and BM3D are initialized by the input data
f .
In Table 1, the quantitative comparison in terms of PSNR and SSIM are listed for different

peak levels. The proposedmethod achieves the best performance in all the cases of Shape and
Satellite images. Visual comparison results are depicted in Figs. 4, 5 for Shape and Satellite,
respectively. It is obvious in Fig. 4 that only the proposedmethod returns a piece-wise constant
output. Additionally in Fig. 5, the proposed method preserves the most of the features in the
wing of the satellite, while getting rid of Poisson noise.

5.3 Image Super Resolution

The setup of super-resolution (SR) considered in [55] is to reconstruct a high-resolution (HR)
image from its low-resolution (LR) counterpart. In other words, SR recovers an image from
low-frequency measurements, i .e., the data is restricted within a square in the center of the
frequency domain, corresponding to the low-frequency regime.
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GT Input (20.88/0.81) NPTool (29.38/0.96)

BM3D (28.02/0.94) FOTV (30.07/0.96) Proposed (32.69/0.99)

Fig. 4 Deconvolution results of shape with peak at P/10 = 25.5

GT Input (20.44/0.79) NPTool (22.44/0.86)

BM3D (22.25/0.86) FOTV (22.85/0.87) Proposed (22.98/0.88)

Fig. 5 Deconvolution results of satellite with peak at P = 255

To evaluate the performance of our method for SR, we use an original image from [58];
see Fig. 6. The size of the image is 688 × 688. We restrict the data within a square in the
center of the frequency domain. So, the sampling ratios depend on the size of the square.
We consider two cases: 1% (box size 70 × 70) and 2% (box size 100 × 100) low-frequency
measurements compared to the entire dimension.We set the peak values to 255 and 103, each
corresponding to a level of Poisson noise. We compare the performance of L1/L2 with L1

norm on the gradient and minimax concave penalty (MCP) regularization [27], including a
direct method called zero-filling (ZF) [4, 46], where the unknown frequency is filled by zero

123



Journal of Scientific Computing           (2024) 101:17 Page 15 of 20    17 

GT Mask ZF

L1 MCP L1/L2

Fig. 6 Super resolution (2%) with peak P = 103

Table 2 Super resolution Frequency Peak ZF L1 MCP L1/L2

2% 255 17.52 18.96 18.24 19.24

103 17.53 18.78 18.16 19.31

1% 255 16.19 17.48 17.56 17.91

103 16.20 17.53 17.47 17.96

Bold values indicate the best results
Each entry contains PSNR

and followed by inverse Fourier Transform. The quantitative comparison in terms of PSNR
and SSIM is presented in Table 2, showing significant improvements made by the proposed
L1/L2 over the competing methods. The visual results of SR from 2% frequency data are
pictured in Figs. 6 and 7 for the peak value to be 1000 and 255, respectively. Both MCP
and ZF have severe ringing artifacts. The L1 norm on the gradient is equivalent to the TV
regularization, which has a known drawback of losing contrast.

5.4 MRI Reconstruction

In this subsection, we investigate the MRI reconstruction. The phantom of Shepp-Logan
(SL) generated by MATLAB command phantom(256) is used as a testing image; see
Fig. 8. We use two different masks to get the approximately 4% frequency measurements,
called radial and Cartesian masks shown in Figs. 8 and 9, respectively. The “Cartesian mask”
in MRI is named for its alignment with the Cartesian coordinate system, following a grid-
like pattern in the frequency space (also known as k-space) for systematic data sampling.
This alignment allows for easy and efficient sampling of data. The horizontal lines represent
the frequency encoding lines in k-space. These lines in the Cartesian mask indicate that
data is sampled along these lines. The density and distribution of these lines can affect the
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GT Mask ZF

L1 MCP L1/L2

Fig. 7 Super resolution (2%) with peak P = 255

GT Mask ZF

L1 MCP L1/L2

Fig. 8 MRI Reconstruction from approximately 4% frequency measurements along 8 radial lines

resolution and quality of the reconstructed MRI image. To speed up the imaging process,
we sample fewer lines which is known as under-sampling. The central square in a Cartesian
mask signifies a higher sampling density in the middle of k-space, capturing crucial signal
information to maintain image contrast and quality, thereby mitigating aliasing artifacts from
under-sampling elsewhere.

Similar to the super-resolution we include the results obtained by zero-filling. The numer-
ical comparison in terms of PSNR and SSIM is given in Table 3, while the visual results
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GT Mask ZF

L1 MCP L1/L2

Fig. 9 MRI reconstruction from approximately 4% frequency measurement with Cartesian mask

Table 3 MRI reconstruction Mask ZF L1 MCP L1/L2

Radial 16.20/0.53 25.28/0.93 20.43/0.75 41.47/0.99

Cartesian 17.98/0.66 26.09/0.92 20.34/0.73 32.07/0.97

Bold values indicate the best results
Each entry contains PSNR/SSIM

are presented in Figs. 8, 9. ZF fails to reconstruct the Shepp-Logan image due to the lim-
ited number of low-frequency measurements and Poisson noise. The L1/L2 regularization
method gives a significant improvement over other regularization methods (L1 and MCP),
quantitatively and visually for producing sharper results.

6 Conclusion

In this paper, we proposed a new method to restore images that are subject to Poisson noise.
Specifically, We formulated an unconstrained model that incorporates the L1/L2 regular-
ization, the data fidelity that deals with the Poisson noise, and a box constraint. We applied
a variable splitting algorithm called ADMM to find the model solution and established its
subsequential convergence. We conducted extensive experiments on image deconvolution,
super-resolution, and MRI reconstruction to demonstrate the superior performance of the
proposed method over some existing methods. To maintain the efficiency of our algorithm,
we implement an approximate method in the inner loop, although our current analysis of
convergence is based on the assumption that this loop is solved precisely. In our future work,
we aim to address this discrepancy by building on analysis from [59, 60].
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port from the Natural Science Foundation of China (No. 12201286), the Shenzhen Science and Technology
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