
Near-Duplicate Text Alignment with One Permutation
Hashing
ZHENCAN PENG, Rutgers University, USA
YUHENG ZHANG, Rutgers University, USA
DONG DENG∗, Rutgers University, USA

This paper studies the near-duplicate text alignment problem under the constraint of Jaccard similarity.
Speci�cally, given a collection of long texts and a short query text, this problem �nds all the subsequences in
each text whose Jaccard similarities to the query are no smaller than a given threshold. Near-duplicate text
alignment is computationally intensive. This is because there are $ (=2) subsequences in a text with = tokens.
To remedy this issue, a few recent studies propose to �rst generate the min-hash sketch of every subsequence
in each text and then �nd all the subsequences whose min-hash sketches are similar to that of the query. They
introduce the concept of “compact windows” and show that the $ (=2:) min-hashes in a text with = tokens
can be losslessly compressed in compact windows using $ (=:) space, where : is the sketch size. However,
the space cost $ (=:) is still too high for long texts, especially when the sketch size : is large. To address this
issue, we propose to use One Permutation Hashing (OPH) to generate the min-hash sketch and introduce the
concept of “OPH compact windows”. Although the size of each sketch remains the same, which is $ (:), we
prove that all the $ (=2:) min-hashes generated by OPH in a text with = tokens can be losslessly compressed
in OPH compact windows using only $ (= + :) space. Note the generation of OPH compact windows does
not necessitate the enumeration of the $ (=2:) min-hashes. Moreover, we develop an algorithm to �nd all
the sketches in a text similar to that of the query directly from OPH compact windows, along with three
optimizations.We conduct extensive experiments on three real-world datasets. Empirical results show our
proposed algorithms signi�cantly outperformed existing methods in terms of index cost and query latency
and scaled well.

CCS Concepts: • Information systems! Near-duplicate and plagiarism detection; Structured text
search.

Additional Key Words and Phrases: Text Alignment, Jaccard Similarity, One Permutation Hashing

ACM Reference Format:
Zhencan Peng, Yuheng Zhang, and Dong Deng. 2024. Near-Duplicate Text Alignment with One Permutation
Hashing. Proc. ACM Manag. Data 2, N4 (SIGMOD), Article 200 (September 2024), 26 pages. https://doi.org/10.
1145/3677136

1 Introduction
Texts are ubiquitous in the real world. A common and computational intensive operation over
texts is near-duplicate text alignment. Speci�cally, given a collection of long texts and a short
query text, the near-duplicate text alignment problem �nds all the subsequences in the texts that
are similar to the query. Near-duplicate text alignment �nds applications in bioinformatics [37],
∗Corresponding author

Authors’ Contact Information: Zhencan Peng, Rutgers University, USA, zp128@scarletmail.rutgers.edu; Yuheng Zhang,
Rutgers University, USA, yz1391@scarletmail.rutgers.edu; Dong Deng, Rutgers University, USA, dong.deng@rutgers.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/9-ART200
https://doi.org/10.1145/3677136

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

https://doi.org/10.1145/3677136
https://doi.org/10.1145/3677136
https://doi.org/10.1145/3677136

200:2 Zhencan Peng, Yuheng Zhang, and Dong Deng

large language model evaluation [11], log analysis [29], plagiarism detection [42], just to name a
few. In this paper, we use the widely adopted Jaccard similarity to measure the similarity of two
texts, where each text is an ordered list of tokens. Based on the application, a token can be a word,
a =-gram, a byte-pair-encoding token [20], a :-mer [19], etc.
Due to the high computational cost, existing methods mostly adopt the “seeding-extension-

�ltering” heuristic [42], which involves many hard-to-tune parameters and lacks accuracy guaran-
tees [58]. To address these issues, a few recent studies [17, 39] resort to the min-hash techniques,
which are designed for e�cient and accurate Jaccard similarity estimation [9]. These studies �rst
generate and index the min-hash sketch of every subsequence in each text and then �nd all the
subsequences whose min-hash sketches are similar to that of the query. These approaches only
have a couple of parameters and guarantee to �nd all the near-duplicate subsequences whose
estimated Jaccard similarities to the query are no smaller than a given threshold. However, the
number of subsequences (and min-hash sketches) in a text is quadratic to the text length. To reduce
the index size, they introduce the concept of “compact windows” to losslessly compress all the
min-hash sketches in a text. Nevertheless, their index sizes are still overly large, especially for
massive datasets, such as the training corpora of large language models, as we will discuss later.
To further reduce the index size, in this paper, we propose to use One Permutation Hashing

(OPH) to generate the min-hash sketch [33] and introduce the concept of “OPH compact windows”.
Speci�cally, to generate the min-hash sketch of a subsequence, the classical way [9] is to use
: independent random hash functions to generate : min-hashes (each min-hash is the smallest
token hash value in the subsequence). OPH uses only one random hash function. It partitions all
possible token hash values into : disjoint bins (e.g., using the modular arithmetic) and generates one
min-hash from each bin (which is the smallest token hash value from that bin in the subsequence).
The key observation of existing methods [17, 39] is that nearby subsequences in a text would

share the samemin-hash. Speci�cally, let T be a text, T[2] be its 2-th token, T[8, 9] be its subsequence
from the 8-th token to 9-th token, and ⌘ be a random hash function that maps a token T[2] to a hash
value ⌘(T[2]). As illustrated in Figure 1, suppose the hash values of the tokens between T[;] and
T[A] (excluding T[2]) are all greater than ⌘(T[2]). Based on the de�nition, the min-hash of every
subsequence T[8, 9] where ;  8  2  9  A must be ⌘(T[2]). Thus existing methods represent the
min-hashes of all these subsequences in a single “compact window”.
We observe that the number of nearby subsequences sharing the same OPH min-hash is much

more than that of nearby subsequences sharing the same (classical) min-hash. As shown in Figure 1,
suppose the hash values of the tokens between T[; 0] and T[A 0] (excluding T[2]) either are greater
than ⌘(T[2]) or not from the same bin as ⌘(T[2]). We have ; 0  ; and A  A 0 as ⌘(T[8]) is greater
than ⌘(T[2]) for every ;  8 < 2  A . Based on the de�nition of OPH, the OPH min-hash of every
subsequence T[8, 9] where ; 0  8  2  9  A 0 must be ⌘(T[2]). We propose to represent the OPH
min-hashes of all these subsequences in a single “OPH compact window” of constant size. Clearly,
an OPH compact window represents more subsequences (and their min-hashes) than a classic
compact window, as ; 0  ; and A  A 0.
For ease of presentation, hereinafter, we refer to a subsequence in a text and its min-hash

interchangeably. Given a text with = tokens, existing methods prove that the$ (=2:) min-hashes in
the text can be losslessly compressed in$ (=:) compact windows using$ (=:) space and$ (=: log=)
time, where : is the sketch size. In this paper, we show the$ (=2:) OPH min-hashes in the text can
be losslessly compressed in$ (=+:) OPH compact windows using$ (=+:) space and$ (= log=+:)
time. The improvement is signi�cant, especially when the sketch size : is large. Furthermore, an
algorithm is developed in a recent work [39] to �nd all the min-hash sketches in a text similar
to that of the query directly from the compact windows of the text. It takes $ (=2:2 log=:) to
process a text with = tokens. In this paper, we adapt the algorithm for OPH compact windows and

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:3

a compact window

token hash values > ℎ(T[𝑐])
T[𝑐]T[𝑙] T[𝑟] T[𝑟’]T[𝑙’]

token hash values > ℎ(T[𝑐]) or not from the same bin as ℎ(T[𝑐])

an OPH compact window
Fig. 1. Compact windows versus OPH compact windows.

propose three optimizations. The optimizations are also applicable to the algorithm for compact
windows. We end up with a similar sketch search algorithm for OPH compact windows that takes
$ ((= + :) log(= + :)) time. To avoid redundant results, we discuss how to report only the longest
near-duplicate subsequences (i.e., a near-duplicate subsequence T[8, 9] is omitted if there exists
another near-duplicate subsequence T[80, 9 0] where [8, 9] ⇢ [80, 9 0]).

To summarize, this paper makes the following contributions.
• We introduce the concept of “OPH compact windows” and prove that all the$ (=2:) min-hash
generated by OPH in a text with = tokens can be losslessly compressed in $ (= + :) OPH
compact windows using $ (= + :) space and $ (= log= + :) time, where : is the sketch size.

• We develop an algorithm to e�ciently �nd all the OPH min-hash sketches in a text similar
to that of the query directly from the OPH compact windows of the text, along with three
optimizations.

• We conduct extensive experiments on three real-world datasets. Experimental results show
that our methods signi�cantly outperformed existing methods and scaled well.

The rest of the paper is organized as follows. We de�ne the problem and introduce preliminary
knowledge in Section 2. Section 3 discusses how to losslessly compress all the min-hash generated
by OPH in a text into OPH compact windows. Section 4 �nds all the sketches similar to that of
the query directly from the OPH compact windows. Section 5 presents the experimental results.
Section 6 surveys related work, while Section 7 concludes the paper.

2 Preliminaries
2.1 Problem Definition
We �rst de�ne a few notations. A text T is a list of tokens, where T[8] is the 8-th token in the
text. Based on the application, a token can be a whitespace-split word [59], a byte-pair-encoding
token [20], a k-mer (a.k.a. n-gram) [19], etc. The text length |T| is the total number of tokens in the
text T. We de�ne T[8, 9] as the subsequence of T that starts from T[8] and ends with T[9] (inclusive),
where 1  8  9  |T|. Each text or subsequence can be viewed as a set of tokens, where duplicate
tokens are removed (i.e., we do not consider multiplicity for simplicity in this paper). Thus we use
text and set interchangably when the context is clear. To evaluate the similarity of two texts, we
use the popular Jaccard similarity. Speci�cally, given two texts T and S, their Jaccard similarity is
de�ned as

JT,S =
|T \ S|
|T [S|

where |T \ S| and |T [S| are respectively the number of common tokens and the total number of
distinct tokens in them.

Next, we formally de�ne the near-duplicate text alignment (a.k.a. near-duplicate sequence search
in [39]) problem as below.

D��������� 1 (N����D�������� T��� A��������). Given a collection of texts D, a query Q, and
a Jaccard similarity threshold \ 2 [0, 1], the near-duplicate text alignment problem returns all the
subsequences T[8, 9], where T 2 D and 1  8  9  |T|, such that JQ,T[8, 9] � \ .

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:4 Zhencan Peng, Yuheng Zhang, and Dong Deng

E������ 1. Consider a set D = {T1,T2,T3} of three texts, where T1 = (7, 1, 2, 8, 5, 9, 7),T2 =
(2, 9, 7, 8, 4, 6, 3),T3 = (6, 1, 1, 9, 5, 8, 2), and a query Q = (8, 2, 9). Each token is an integer. Let the
Jaccard similarity threshold be \ = 0.75. The near-duplicate text alignment problem returns three
subsequences T1 [3, 6] = (2, 8, 5, 9), T2 [1, 4] = (2, 9, 7, 8), and T3 [4, 7] = (9, 5, 8, 2). This is because
only the Jaccard similarities of these subsequences to the query are no smaller than the threshold
\ = 0.75.

2.2 Min-Hash

:-mins Sketch. Let h be a random universal hash function. The min-hash of a text is its smallest
token hash value. A commonly used universal hash function family is h(G) = (0G + 1) mod ?
where ? is a large prime and 0 > 0 and 1 � 0 are two random integers smaller than ? [53]. We
assign each token a unique ID and use the token and its ID interchangeably. The hash function
h(G) takes a token ID G as input and outputs the token’s hash value. We denote the min-hash
of a text T as h(T) = min(h(T[8]) | 1  8  |T|). It has been shown that the min-hash collision
probability of two texts T and S is equal to their Jaccard similarity [9], i.e.,

Pr(h(T) = h(S)) = JT,S .

With : independent random universal hash functions h1, h2, · · · , h: , the Jaccard similarity of two
texts T and S can be estimated by

1
:

:’
8=1

1{h8 (T) = h8 (S)} (1)

where 1 is an indicator function. This is an unbiased estimator of the Jaccard similarity with low vari-
ance [9]. The :-mins sketch of the text T consists of the : min-hash values h1 (T), h2 (T), · · · , h: (T).
One PermutationHashing (OPH).A drawback of the:-mins sketch is that it needs: independent
random universal hash functions. Thus it takes $ (=:) time to generate the :-mins sketch of a text
with = tokens. To remedy this issue, the one permutation hashing (OPH) [33] is proposed. It uses
only one hash function. Formally, given a random hash function h, OPH �rst evenly partitions all
possible hash values of h into : disjoint bins ⌦1,⌦2, · · · ,⌦: . Then, given a text T, OPH generates
one min-hash from each bin for the text, where the C-th min-hash of T is de�ned as

h(T, C) =
(
min(h(T[G]) 2 ⌦C) if 9 G, h(T[G]) 2 ⌦C

⇢ otherwise.
(2)

where ⇢ means no token hash value from the text T belongs to the bin ⌦C and the C-th bin of the
text is “empty” (thus the C-th min-hash of the text is denoted as ⇢ in this case). Given two texts T
and S, it has been shown that, when their C-th bins are not empty at the same time, their min-hash
collision probability is equal to their Jaccard similarity, i.e.,

Pr(⌘(T, C) = ⌘(S, C) | ⌘(T, C) < ⇢ _ ⌘(S, C) < ⇢) = JT,S .

Thus their Jaccard similarity can be accurately estimated by

ĴT,S =
#<0C

: � #4<?
(3)

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
82 59 22 57 90 39 94 42 32 64 91 48 99 73 53

i
ℎ(T[𝑖])

1 2 3 4 5 6 7 8 9 10
91 22 53 64 E E 57 48 39 90
11 22 53 64 E 56 E 28 39 30

t
ℎ(T, 𝑡)
ℎ(S, 𝑡)

Partition 𝛀 into 10 bins:
𝛀𝟏𝟎 = 𝒙𝒎𝒐𝒅 𝟏𝟎 = 𝟎 ,
𝛀𝒕 = {𝒙𝒎𝒐𝒅 𝟏𝟎 = 𝒕 }, 𝟏 ≤ 𝒕 ≤ 𝟗

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
90 64 39 30 66 42 22 63 28 56 91 11 96 99 53 61 88 73 31

i
ℎ(S[𝑖])

Hash Table: token hash value with its token position

OPH Table: OPH min-hash with its bin id

Fig. 2. An example of one permutation hashing min-hash.

where

#4<? =
:’
C=1

1{h(T, C) = ⇢ ^ h(S, C) = ⇢},

#<0C =
:’
C=1

1{h(T, C) = h(S, C) ^ (h(T, C) < ⇢ _ h(S, C) < ⇢)}.
(4)

That is to say #4<? and #<0C are respectively the number of “jointly empty bins” and the number
of min-hash collisions of the two texts. Note that two empty bins (whose min-hashes are denoted
as ⇢) do not count for a min-hash collision. This estimator is also an unbiased estimator with low
variance [33]. Clearly, it uses only one random universal hash function and generates the :-mins
sketch of a text with = tokens in $ (= + :) time. The sketch size remains the same, which is $ (:).

E������ 2. The �rst two tables in Figure 2 (namely “hash tables”) show the token hash values of two
texts T and S under a random universal hash function h. The min-hash of T is h(T) = h(T[3]) = 22,
while the min-hash of S is h(S) = h(S[12]) = 11. To generate : = 10min-hashes for the two texts using
OPH, we partition all the token hash values into 10 bins ⌦1, · · · ,⌦10 using the modulus operation as
illustrated in the �gure. For example, the token hash value 22 belongs to ⌦2 as 22 mod 10 = 2. As
shown in the third table in Figure 2 (namely “OPH table”), we can generate 10 min-hashes for each
of the two texts T and S. For example, h(T, 3) = 53 as only the two token hash values h(T[14]) = 73
and h(T[15]) = 53 in T belongs to ⌦3 and 53 is the smaller one. Note that h(T, 5) = h(S, 5) = ⇢ as
no token hash value in both T and S belong to ⌦5. In this example, we have #4<? = 1 and #<0C = 4
respectively as the 5-th bin of T and S are jointly “empty” and when C is 2, 3, 4, 9 their min-hash collides.
Thus the estimated Jaccard similarity ĴT,S = 4

10�1 = 0.444.

Remark.With the Jaccard similarity estimator, we aim to �nd all the subsequences whose estimated
Jaccard similarities with the query are no smaller than the given threshold (i.e., replacing the JQ,T[8, 9]
in De�nition 1 with ĴQ,T[8, 9]). To this end, we propose to �rst generate the OPH min-hash sketch of
every subsequence in a given text (Section 3) and then �nd all min-hash sketches similar to that of
the query as determined by the estimator (Section 4).

3 OPH Compact Windows
In this section, we discuss how to generate the OPH min-hash sketch of every subsequence in a
given text T. That is to say, we need to calculate h(T[8, 9], C) for every 1  8  9  |T| = = and
1  C  : . In total, there are $ (:=2) OPH min-hash in a text with = tokens, which is excessively
large. However, we observe that, in the same bin, many nearby subsequences would share the same
OPH min-hash. For example, consider the two subsequences T[10, 13] and T[11, 13] as shown in
Figure 2.We have h(T[10, 13], 8) = h(T[11, 13], 8) = h(T[12]) = 48 in ⌦8. Based on this observation,
we introduce the concept of OPH compact windows and prove that the $ (:=2) OPH min-hash in a

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:6 Zhencan Peng, Yuheng Zhang, and Dong Deng

text with = tokens can be losslessly compressed in$ (= + :) OPH compact windows using$ (= + :)
space.

3.1 Empty OPH Compact Windows
We �rst focus on the empty bins where the OPH min-hash is ⇢. Let T[; � 1] and T[A + 1] be two
tokens whose hash values are from the same bin ⌦C while the hash values of the tokens in between
are not. That is to say, h(T[; �1]) 2 ⌦C and h(T[A +1]) 2 ⌦C while h(T[8]) 8 ⌦C for every ;  8  A .
We observe that the OPH min-hash of every subsequence between the two tokens must be ⇢ in
the bin ⌦C , i.e., h(T[8, 9], C) = ⇢ for every ;  8  9  A . This is because there is no token hash
value in T[8, 9] belongs to ⌦C . Thus, based on Equation 2, its OPH min-hash in ⌦C must be ⇢. For
example, consider the text T in Figure 2. T[6] and T[13] are two tokens whose hash values are
from ⌦9 while the hash values of those in between are not. All the subsequences between them,
including T[7, 10] and T[8, 12], share the same OPH min-hash ⇢ in ⌦9. Based on this observation,
we formally de�ne the empty OPH compact window as below.

D��������� 2 (E���� OPH C������ W�����). Given a random hash function h and a partition
of : bins ⌦1, · · · ,⌦: , an empty OPH compact window in a text T is a tuple hT, h, C, ;, A i where
(1) 1  ;  A  |T|;
(2) 1  C  : ;
(3) 8 ;  8  A , h(T[8]) 8 ⌦C ;
(4) if ; < 1, h(T[; � 1]) 2 ⌦C ;
(5) if A < |T|, h(T[A + 1]) 2 ⌦C .

Note that, in the de�nition, the last two conditions are intentionally designed to make the empty
OPH compact window “maximal” such that it represents as many OPH min-hashes as possible. The
empty OPH compact window hT, h, C, ;, A i represents all the OPH min-hashes h(T[8, 9], C) where
;  8  9  A . For example, in Figure 2, hT, h, 9, 7, 12i is an empty OPH compact window. The OPH
min-hashes h(T[8, 10], 9) and h(T[7, 11], 9) are represented by it.

We observe that all the OPH min-hashes represented by an empty OPH compact windows are ⇢,
as formalized below.
L���� 1. Given an empty OPH compact window hT, h, C, ;, A i, h(T[8, 9], C) = ⇢ for every ;  8 

9  A .

P����. Based on the third condition in De�nition 2, 8G 2 [8, 9] ✓ [;, A], h(T[G]) 8 ⌦C . Thus,
based on Equation 2, h(T[8, 9], C) = ⇢. É

Moreover, we observe that every OPH min-hash that is equal to ⇢ is represented by one and only
one empty OPH compact window.

L���� 2. Given a text T, every OPH min-hash h(T[8, 9], C) = ⇢ is represented by one and only one
empty OPH compact window.

P����. Let ; be the smallest position where T[G] 8 ⌦C for every G 2 [;, 8] and A be the largest
position where T[G] 8 ⌦C for every G 2 [9, A]. We prove hT, h, C, ;, A i is an empty OPH compact
window. Since ; is the smallest position where T[G] 8 ⌦C for every G 2 [;, 8], we have either ; = 1 or
h(T[; � 1]) 2 ⌦C . Thus the fourth condition in De�nition 2 is satis�ed. Similarly, the �fth condition
is also satis�ed. Furthermore, by Equation 2, as h(T[8, 9], C) = ⇢, we have h(T[G]) 8 ⌦C for every
G 2 [8, 9]. Moreover, T[G] 8 ⌦C for every G 2 [;, 8] and G 2 [9, A]. Together, we have h(T[G]) 8 ⌦C

for every G 2 [;, A]. Thus the third condition in De�nition 2 is satis�ed. The �rst two conditions hold
trivially. Thus hT, h, C, ;, A i is an empty OPH compact window and it represents the OPH min-hash
h(T[8, 9], C).

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:7

Next, suppose h(T[8, 9], C) is represented by two di�erent emptyOPH compactwindows hT, h, C, ;, A i
and hT,⌘, C, ; 0, A 0i. That is to say ;  8  9  A and ; 0  8  9  A 0, while either ; < ; 0 or A < A 0.
Without loss of generality, let us assume ; < ; 0 and ; < ; 0. Thus we have 1  ; < ; 0. By De�nition 2
(fourth condition), h(T[; 0 � 1]) 2 ⌦C . However, we also have ;  ; 0 � 1  A as ; 0 � 1  8  A . By
the third condition, we have h(T[; 0 � 1]) 8 ⌦C , which leads to a contradiction. Thus h(T[8, 9], C)
cannot be represented by two di�erent empty OPH compact windows. É

Furthermore, we �nd that there are at most = + : � 2 empty OPH compact windows in a text
with = tokens, as formalized below.

L���� 3. There are at most = + : � 2 empty OPH compact windows in a text with = tokens.

P����. Consider a text T with = tokens and a random hash function h. We �rst prove by contra-
diction that for each ; 2 [2,=], there is at most one empty OPH compact window hT, h, C, ;, A i in the
text. Suppose there are two di�erent empty OPH compact windows hT, h, C1, ;, A1i and hT, h, C2, ;, A2i
for some ; 2 [2,=] in the text T. Based on the fourth condition in De�nition 2, since ; < 1, we
have h(T[; � 1]) 2 ⌦C1 and h(T[; � 1]) 2 ⌦C2 . Thus C1 = C2, which yields A1 < A2. Without loss
of generality, we assume A1 < A2. On the one hand, based on the �fth condition in De�nition 2,
since A1 < |T|, h(T[A1 + 1]) 2 ⌦C1 . On the other hand, based on the third condition in De�nition 2,
since ;  A1 + 1  A2, h(T[A1 + 1]) 8 ⌦C2 . Since C1 = C2, h(T[A1 + 1]) 2 ⌦C1 contradicts with
h(T[A1 + 1]) 8 ⌦C2 .
Next, we prove by contradiction for each C 2 [1,:], there is at most one empty OPH compact

window hT, h, C, ; = 1, A i. Suppose there are two di�erent empty OPH compact windows hT, h, C, 1, A1i
and hT, h, C, 1, A2i for some C 2 [1,:] in the text T. Then A1 < A2. Without loss of generality, we
assume A1 < A2. Based on the �fth condition in De�nition 2, since A1 < |T|, h(T[A1 + 1]) 2 ⌦C .
However, based on the third condition in De�nition 2, since ;  A1 + 1  A2, h(T[A1 + 1]) 8 ⌦C ,
which contradicts with h(T[A1 + 1]) 2 ⌦C .

In addition, suppose h(T[1]) 2 ⌦C . The tuple hT, h, C, ; = 1, A i cannot be an empty OPH compact
window for any A 2 [1,=]; otherwise, the third condition in De�nition 2 indicates h(T[1]) 8 ⌦C ,
which contradicts with h(T[1]) 2 ⌦C .
Thus, in total, there are at most = + : � 2 empty OPH compact windows hT, h, C, ;, A i in a text

with = tokens. At most = � 1 of them having ; < 1 and at most : � 1 of them having ; = 1. É

3.2 Non-Empty OPH Compact Window
Next, we focus on the non-empty bins where the OPH min-hash is not ⇢. We observe that all
the subsequences around a “local minimal” token hash value in a bin would share the same OPH
min-hash in that bin. For example, consider the text T in Figure 2. There are three token hash values
in it from ⌦9, which are h(T[2]) = 59, h(T[6]) = 39, and h(T[13]) = 99. All the subsequences
containing the “local minimal” T[13] while not containing T[6] would share the same OPH min-
hash in ⌦9. For example, as one can verify, for the two subsequences T[10, 14] and T[11, 15], in ⌦9,
their OPH min-hash h(T[10, 14], 9) = h(T[12, 15], 9) = h(T[13]) = 99. Based on this observation,
we formally de�ne the non-empty OPH compact window as below.

D��������� 3 (N���E���� OPH C������ W�����). Given a random hash function h and :
bins ⌦1, · · · ,⌦: , a non-empty OPH compact window in a text T is a tuple hT, h, C, ;, 2, A i where
(1) 1  ;  2  A  |T|;
(2) 1  C  : and h(T[2]) 2 ⌦C ;
(3) 8 ;  8 < 2  A , either h(T[8]) 8 ⌦C or h(T[8]) > h(T[2]);
(4) if ; < 1, h(T[; � 1]) 2 ⌦C and h(T[; � 1]) < h(T[2]);
(5) if A < |T|, h(T[A + 1]) 2 ⌦C and h(T[A + 1]) < h(T[2]).

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:8 Zhencan Peng, Yuheng Zhang, and Dong Deng

The non-emptyOPH compactwindow hT, h, C, ;, 2, A i represents all theOPHmin-hashes h(T[8, 9], C)
where ;  8  2  9  A . The last two conditions are intentionally designed to make the non-empty
OPH compact window “maximal” such that it represents as many OPH min-hashes as possible. For
example, in Figure 2, hT, h, 9, 1, 6, 15i is a non-empty OPH compact window. The OPH min-hashes
h(T[4, 7], 9) and h(T[5, 8], 9) are represented by it, which are both equal to h(T[6]) = 39.

We observe that all the OPH min-hashes represented by a non-empty OPH compact window are
the same, as formalized below.

L���� 4. Given a non-empty OPH compact window hT, h, C, ;, 2, A i, h(T[8, 9], C) = h(T[2]) for every
;  8  2  9  A .

P����. Based on the second condition in De�nition 3, we have h(T[2]) 2 ⌦C . Thus, based on
Equation 2, h(T[8, 9], C) < ⇢ as 2 2 [8, 9]. In addition, based on the third condition in De�nition 3,
for every G 2 [8, 9], either h(T[G]) 8 ⌦C or h(T[G]) > h(T[2]). That is to say, among all the token
hash values in T[8, 9] that belong to ⌦C , h(T[2]) is the smallest. Thus h(T[8, 9], C) = h(T[2]) by
de�nition. É

Moreover, every OPH min-hash that is not equal to ⇢ is represented by one and only one
non-empty OPH compact window.

L���� 5. Given a text T, every OPH min-hash h(T[8, 9], C) < ⇢ is represented by one and only one
non-empty OPH compact window.

P����. Let 2 be the position where h(T[2]) = h(T[8, 9], C). Let ; be the smallest position where
h(T[G]) 8 ⌦C or h(T[G]) > h(T[2]) for every G 2 [;, 8] and A be the largest position where
h(T[G]) 8 ⌦C or h(T[G]) > h(T[2]) for every G 2 [9, A]. We prove hT, h, C, ;, 2, A i is a non-empty
OPH compact window. Since ; is the smallest position where h(T[G]) 8 ⌦C or h(T[G]) > h(T[2]),
we have either ; = 1 or h(T[; � 1]) 2 ⌦C and h(T[; � 1]) < h(T[2]). Thus, the fourth condition in
De�nition 3 is satis�ed. Similarly, the �fth condition is also satis�ed. Furthermore, by Equation 2, as
h(T[2]) = min({h(T[G]) 2 ⌦C }), we have h(T[G]) 8 ⌦C or h(T[G]) > h(T[2]) for every G where
;  G < 2  A . Moreover, h(T[G]) 8 ⌦C or h(T[G]) > h(T[2]) for every G 2 [;, 8] and G 2 [9, A].
Together, we have h(T[G]) 8 ⌦C or h(T[G]) > h(T[2]) for every G 2 [;, A]. Thus, the third condition
in De�nition 3 is satis�ed. The �rst two conditions hold trivially. Thus, hT, h, C, ;, 2, A i is a non-empty
OPH compact window and it represents the OPH min-hash h(T[8, 9], C).
Next, suppose h(T[8, 9], C) is represented by two di�erent non-empty OPH compact windows
hT, h, C, ;, 2, A i and hT, h, C, ; 0, 20, A 0i. That is to say ;  8 < 2  9  A and ; 0  8 < 20  9  A 0, while
any below is met, ; < ; 0, A < A 0 or 2 < 20. Based on Lemma 4, among all G such that h(T[G]) 2 ⌦C

where 8  G  9 , both h(T[2]) and h(T[20]) aremin({h(T[G])}). Since only one token’s hash value
is chosen as min({h(T[G])}), 2 = 20. Therefore, either ; < ; 0 or A < A 0. Without loss of generality,
let us assume ; < ; 0 and ; < ; 0. Thus, we have 1  ; < ; 0. By De�nition 3 (fourth condition),
h(T[; 0 � 1]) 2 ⌦C and h(T[; 0 � 1]) < h(T[2]). However, we also have ;  ; 0 � 1  A as ; 0 � 1  8  A .
By the third condition, we have h(T[; 0 � 1]) 8 ⌦C or h(T[; 0 � 1]) > h(T[2]), which leads to a
contradiction. Thus, h(T[8, 9], C) cannot be represented by two di�erent non-empty OPH compact
windows. É

L���� 6. There are at most = non-empty OPH compact windows in a text with = tokens.

P����. Consider a text T with = tokens and a random hash function h. We prove that for each
2 2 [1,=], there is at most one non-empty OPH compact window hT, h, C, ;, 2, A i in T. We prove it by
contradiction. Assume there are two di�erent non-empty OPH compact windows hT, h, C1, ;1, 2, A1i
and hT, h, C2, ;2, 2, A2i. Based on the second condition of De�nition 3, we have h(T[2]) 2 ⌦C1 and

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
82 59 22 57 90 39 94 42 32 64 91 48 99 73 53

7 8 9 10 11 12 13 14 15
94 42 32 64 91 48 99 73 53

<T, h, 9, 1, 6, 15>

<T, h, 9, 7, 13, 15>

<T, h, 9, 7, 12>

1 2 3 4 5
82 59 22 57 90

<T, h, 9, 1, 2, 5>

an empty OPH compact window:

3 non-empty OPH compact windows generated by divide-and-conquer

ℎ(T[𝑖])
𝑖

divide

conquer

Fig. 3. An example of OPH compact window generation.

h(T[2]) 2 ⌦C2 . Thus C1 = C2, which yields either ;1 < ;2 or A1 < A2. Without loss of generality,
let us assume ;1 < ;2 and ;1 < ;2. Thus, we have 1  ;1 < ;2. By De�nition 3 (fourth condition),
h(T[;2 � 1]) 2 ⌦C2 and h(T[;2 � 1]) < h(T[2]). However, we also have ;1  ;2 � 1 < 2  A1. By
the third condition, we have h(T[;2 � 1]) 8 ⌦C1 or h(T[;2 � 1]) > h(T[2]), which contradicts with
h(T[;2 � 1]) 2 ⌦C2 and h(T[;2 � 1]) < h(T[2]) as C1 = C2. Thus, there are at most = non-empty OPH
compact windows hT, h, C, ;, 2, A i in a text with = tokens, one for each 2 2 [1,=]. É

Remark. Both empty and non-empty OPH compact windows are called OPH compact window.
The $ (= + :) OPH compact windows in a text with = tokens losslessly represent the $ (:=2) OPH
min-hash in it, as formalized below.

T������ 1. Given a text with = tokens, there are$ (= + :) OPH compact windows in it. Every OPH
min-hash in the text is represented by one and only one of its OPH compact windows.

P����. Based on Lemmas 3 and 6, there are at most = + : � 2 empty OPH compact windows and
= non-empty OPH compact windows. Thus in total, there are $ (= + :) OPH compact windows.
Based on Lemmas 2 and 5, each OPH min-hash in the text is represented by one and only one of its
OPH compact windows. É

In comparison, previous works use$ (=:) compact windows to represent all the$ (=2:) classical
min-hash (without OPH) in a text with = tokens [17]. Our work signi�cantly reduces the space
consumption by a factor of : . Next, we discuss how to e�ciently generate all the OPH compact
windows in a text.

3.3 OPH Compact Window Generation
In this section, we discuss how to e�ciently generate all the OPH compact windows in a text.We �rst
de�ne a notation. Given a text T, we induce : texts from it, where the C-th induced text TC contains
all the token hash values from the C-th bin ⌦C in T. That is to say, TC = (h8, h(T[8])i | h(T[8]) 2 ⌦C).
For ease of presentation, we also include two dummy tokens h0,1i and h|T| + 1,1i in each
of the : induced texts. For example, consider the text T as shown in Figure 3, we have T9 =
(h0,1i, h2, 59i, h6, 39i, h13, 99i, h16,1i). The 8 and h(T[8]) in a tuple h8, h(T[8])i 2 TC refer to the
token position and token hash value. When the tuples in the induced text TC are ordered by their
token positions, every two consecutive tuples TC [G] = h8, h(T[8])i and TC [G + 1] = h 9, h(T[9])i
determines an empty OPH compact window hT, h, C, 8 + 1, 9 � 1i. This is because the hash value
of every token between T[8 + 1] and T[9 � 1] cannot be from ⌦C (third condition of De�nition 2),
either 8 + 1 < 1 or h(T[8]) 2 ⌦C (fourth condition), and either 9 � 1 < |T| or h(T[9]) 2 ⌦C (�fth
condition).

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:10 Zhencan Peng, Yuheng Zhang, and Dong Deng

Algorithm 1: OPHC������W�����G���������
Input: T: a text; h: a random hash function; : : an integer.
Output:, : all the non-empty OPH compact windows in T;,⇢ : all the empty OPH compact

windows in T.
foreach C 2 [1,:] do add h0,1i to TC ;1

foreach 8 2 [1, |T|] do2

add h8, h(T[8])i to TC where C is given by h(T[8]) 2 ⌦C ;3

foreach C 2 [1,:] do add h|T| + 1,1i to TC ;4

foreach C 2 [1,:] do5

// generate empty OPH compact windows
foreach G 2 [1, |TC | � 1] do6

add hT, h, C, 8 + 1, 9 � 1i to,⇢ where 8 and 9 are the token positions in TC [G] and7

TC [G + 1];
// generate non-empty OPH compact windows
D�����C�����(TC , 1, |T|,,);8

return, and,⇢ ;9

Algorithm 2: D�����C�����(TC , ;, A ,,)
Input: TC : the C-th induced text; ; and A : two integers;, : all the non-empty OPH compact

windows in T[;, A].
if exists a tuple in TC whose token position is within [;, A] then1

h2, h(T[2])i R����M����������(TC , [;, A]);2

add hT, h, C, ;, 2, A i to, ;3

D�����C�����(TC , ;, 2 � 1,,);4

D�����C�����(TC , 2 + 1, A ,,);5

To generate all the non-empty OPH compact windows in a given text T, we use a divide-and-
conquer algorithm. For each induced text TC , the algorithm �nds the tuple h2, h(T[2])i with the
smallest token hash value in TC . Then hT, h, C, 1, 2, |T|i must be a non-empty OPH compact window.
Then the algorithm recursively �nds all the non-empty OPH compact windows from ⌦C in the two
ranges [1, 2 � 1] and [2 + 1, |T|].

The pseudo-code of OPH compact window generation is shown in Algorithm 1. The algorithm
takes a text T, a random hash function h, and an integer : as input and outputs, and,⇢ , the sets
of all the empty and non-empty OPH compact windows in T. It �rst generates : induced texts from
T, each with two dummy tuples (Lines 1 to 4). Then, it iterates each TC to generate the compact
windows(Lines 5 to 9). Based on the observation that adjacent tuples in TC determine a non-empty
OPH compact window, it iterates each pair of TC [G] and TC [G + 1], where 8 and 9 are their token
positions, and adds hT, h, C, 8 + 1, 9 � 1i to,⇢ (Line 7). It then invokes the D�����C����� to
recursively divide each TC and generate non-empty OPH compact windows.
The pseudo code of D�����C����� is shown in Algorithm 2. It takes an induced text TC , a

range [;, A], and a result set, as input. If there exists a tuple in TC whose token position is within
the range [;, A], it identi�es the tuple h2, h(T[2])i with the smallest hash value in TC where 2 2 [;, A]
(Line 2), adds a non-empty OPH compact window hT, h, C, ;, 2, A i into, (Line 3), and recursively
generates the non-empty OPH compact windows in the two ranges [;, 2 � 1] and [2 + 1, A] (Lines 4
to 5).

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:11

E������ 3. Consider the induced text T9 and its tuples as shown in Figure 3. The algorithm has
already inserted two dummy tuples into T9, resulting in T9 = (h0,1i, h2, 59i, h6, 39i, h13, 99i, h16,1i).
It then iterates over adjacent tuple pairs to generate all the empty OPH compact windows. For example,
hT,⌘, 9, 7, 12i is a generated empty OPH compact window between tuple pairs h6, 39i and h13, 99i.
Subsequently, the algorithm �nds the minimum hash value within range [1,15] in T9 as T[6]. Therefore,
a non-empty compact window hT, h, 9, 1, 6, 15i is generated. The text T is then divided into T[1, 5] and
T[7, 15]. Then the algorithm recursively processes T[1, 5] and T[7, 15], generating hT, h, 9, 1, 2, 5i and
hT, h, 9, 7, 13, 15i respectively.

T������ 2. The OPH compact window generation algorithm is sound (all tuples generated are
OPH compact windows) and complete (all OPH compact windows are generated).

Complexity Analysis. Given a text with = tokens, it takes$ (= +:) to produce the : induced texts.
The generation of empty OPH compact windows involves iterating all the induced texts, which
takes $ (= + :) time. When generating the non-empty OPH compact windows, we can use the
segment tree to facilitate the range minimum query operations. The divide-and-conquer procedure
is invoked at most $ (=) times. Each invocation takes $ (log=) time using the segment tree. Thus
the overall time complexity is $ (= log= + :). The OPH compact windows generated take $ (= + :)
space. In comparison, existing methods take $ (=: log=) time to losslessly compress the classical
min-hash in $ (=:) space [17, 39].

4 Near-Duplicate Text Alignment
4.1 OPH Interval Scan
In this section, we discuss how to e�ciently �nd all the subsequences in a text whose OPH min-
hash sketches are similar to that of the query directly from the OPH compact windows. Consider
a subsequence T[8, 9], a query Q, and a threshold \ . Based on Equation 3, the OPH min-hash
estimation ĴT[8, 9],Q � \ i�. #<0C + \#4<? � :\ . Let W and W⇢ be the sets of non-empty and empty
OPH compact windows in T. Based on Lemma 2, h(T[8, 9], C) = ⇢ i�. there exists an empty OPH
compact window hT, h, C, ;, A i 2 W⇢ where 8 2 [;, A] and 9 2 [;, A]. Based on Equation 4, we have

#4<? =
:’
C=1

1{h(T[8, 9], C) = ⇢ ^ h(Q, C) = ⇢}

=
’

hT,h,C ,;,A i2W⇢

1{8 2 [;, A] ^ 9 2 [;, A] ^ h(Q, C) = ⇢}.

Similarly, based on Lemmas 4 and 5, every non-empty OPH min-hash h(T[8, 9], C) is represented
by one and only one non-empty OPH compact window hT, h, C, ;, 2, A i 2 W where 8 2 [;, 2] and
9 2 [2, A] and h(T[8, 9], C) = h(T[2]). Based on Equation 4, we have

#<0C =
:’
C=1

1{h(T[8, 9], C) = h(Q, C) ^ (h(T[8, 9], C) < ⇢ _ h(Q, C) < ⇢)}

=
’

hT,h,C ,;,2,A i2W
1{8 2 [;, 2] ^ 9 2 [2, A] ^ h(Q, C) = h(T[2])}.

We say an empty OPH compact window hT, h, C, ;, A i collides with the query Q i�. h(Q, C) = ⇢.
Similarly, a non-empty OPH compact window hT, h, C, ;, 2, A i collides with the query Q i�. h(Q, C) =
h(T[2]). Let C ✓ W and C⇢ ✓ W⇢ be the set of collided non-empty and empty OPH compact

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:12 Zhencan Peng, Yuheng Zhang, and Dong Deng

windows, respectively. We have

#4<? =
’

hT,h,C,;,A i2C⇢
1{8 2 [;, A] ^ 9 2 [;, A]} and

#<0C =
’

hT,h,C ,;,2,A i2C
1{8 2 [;, 2] ^ 9 2 [2, A]}.

We de�ne that the “left interval” and “right interval” of a non-empty OPH compact window
hT, h, C, ;, 2, A i are respectively [;, 2] and [2, A], while the left interval and right interval of an empty
OPH compact window hT, h, C, ;, A i are both [;, A]. Then, ĴT[8, 9],Q � \ i�. 8 and 9 are respectively in
the left and right intervals of" collided non-empty OPH compact windows and" 0 collided empty
OPH compact windows where" +" 0\ � :\ . Next we discuss how to �nd all subsequences of this
kind.
OPH Interval Scan. We collect the two endpoints of the left interval of every collided OPH
compact windows in C and C⇢ , i.e., ; and 2 + 1 for every collided non-empty OPH compact window
hT, h, C, ;, 2, A i 2 C and ; and A + 1 for every collided empty OPH compact window hT, h, C, ;, A i 2 C⇢ .
We observe that for any two adjacent endpoints G < G 0 (i.e., there is no endpoint between G and
G 0), the interval [G, G 0 � 1] either is entirely covered (i.e., ✓) by the left interval of a collided OPH
compact window in C or C⇢ or is disjoint with all the left intervals in C and C⇢ . This is because
otherwise there must exist an endpoint between G and G 0, which contradicts with that G and G 0 are
adjacent. Let C0 ✓ C and C0⇢ ✓ C⇢ be all the collided non-empty and empty OPH compact windows
whose left intervals covers [G, G 0 � 1]. If |C0 | + \ |C0⇢ | � :\ , we repeat the above steps for the right
intervals.
Speci�cally, we collect the two endpoints of the right interval of every collided OPH compact

windows in C0 and C0⇢ . For any consecutive endpoints ~ < ~0, let C00 ✓ C0 and C00⇢ ✓ C0⇢ be all the
collided non-empty and empty OPH compact windows whose right intervals covers [~,~0 � 1].
Then [G, G 0 � 1] and [~,~0 � 1] are respectively in the left and right intervals of all the collided OPH
compact windows in C00 and C00⇢ . If |C00 | + \ |C00⇢ | � :\ , as discussed earlier, we have ĴT[8, 9],Q � \
for every 8 2 [G, G 0 � 1] and 9 2 [~,~0 � 1]. To reduce the output cost, the “compact alignment”
([G, G 0 � 1], [~,~0 � 1]) is returned, which is a concise representation of all the subsequences T[8, 9]
where 8 2 [G, G 0 � 1] and 9 2 [~,~0 � 1].

Algorithm 3 shows the pseudo-code. It takes a text T, a threshold :\ , the set of collided non-
empty and empty OPH compact windows C and C⇢ in T as input and outputs a set R of compact
alignments. The algorithm �rst checks if |C| + \ |C⇢ | < :\ . If so, no result can be produced and the
algorithm returns an empty set (Line 1). Next, it collects all the endpoints of the left intervals of
the collided OPH compact windows (Lines 2 to 5). Each endpoint consists of a token position D, a
weightF , and the collided OPH compact window 3 the endpoint comes from. It sorts the endpoints
by their token positions (Line 6). Then, for each distinct token position DG in the endpoints (Line 7),
it visits all the endpoints whose token positions are DG (Line 8). The algorithm maintains a counter
cnt (Line 1) to keep track of the value |C0 | + \ |C0⇢ |. The token position in an endpoint indicates the
start or end of a left interval. The counter cnt increases/decreases by F = 1 when the start/end
of a left interval of a collided non-empty OPH compact window 3 2 C is encounter, at which
moment 3 is added to/removed from C0 (Line 10). Similarly, the counter cnt increases/decreases
byF = \ when the start/end of a left interval of a collided empty OPH compact window 3 2 C⇢
is encounter, at which moment 3 is added to/removed from C0⇢ (Line 11). After visiting all the
endpoints with token positions DG , if cnt exceeds :\ , the algorithm repeats the above process for
the right intervals of collided OPH compact windows in C0 and C0⇢ (Lines 13 to 21) to �nd compact
alignments (Lines 22 to 23).

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:13

Algorithm 3: OPHI�������S���(T,:\ , C, C⇢)
Input: T: a text; :\ : a threshold; C: the set of collided non-empty OPH compact windows in T;

C⇢ : the set of collided empty OPH compact windows in T.
Output: R: a set of compact alignments.
if |C| + \ |C⇢ | < :\ then return ;; cnt = 0;1

foreach 3 = hT, h, C, ;, 2, A i 2 C do2

add endpoints (;, 1,3) and (2 + 1,�1,3) into 4? ;3

foreach 3 = hT, h, C, ;, A i 2 C⇢ do4

add endpoints (;, \ ,3) and (A + 1,�\ ,3) into 4? ;5

sort endpoints (D,F ,3) in 4? in the ascending order of D;6

foreach distinct token position DG in 4? do7

foreach endpoint (DG ,F ,3) in 4? do8

cnt cnt +F ;9

if F = 1/�1 then add/remove 3 to/from C0;10

if F = \/�\ then add/remove 3 to/from C0⇢ ;11

if cnt � :\ then12

// repeat for the right intervals
cnt0 = 0;13

foreach hT, h, C, ;, 2, A i 2 C0 do14

add endpoints (2, 1) and (A + 1,�1) into 4?0;15

foreach hT, h, C, ;, A i 2 C0⇢ do16

add endpoints (;, \) and (A + 1,�\) into 4?0;17

sort endpoints (E,F) in 4?0 in the ascending order of E ;18

foreach distinct token position E~ in 4?0 do19

foreach endpoint (E~,F) in 4?0 do20

cnt0 cnt0 +F ;21

if cnt0 � :\ then22

add ([DG ,DG+1 � 1], [E~, E~+1 � 1]) to R;23

return R;24

E������ 4. Consider the setC of two collided non-empty OPH compact windows31 = hT, h, 1, 1, 3, 9i,
32 = hT, h, 1, 4, 8, 13i, and the set C⇢ of one collided empty OPH compact window 33 = hT, h, 2, 6, 10i as
shown in Figure 4. Let :\ = 1.6. The distinct token positions of their left intervals areD1 = 1,D2 = 4,D3 =
6,D4 = 9, and D5 = 11. After visiting D3, the set C0 = {32} and the set C0⇢ = {33}. As one can verify, the
overlap of the left intervals of 32 and 33 is exactly [4, 8] \ [6, 10] = [D3,D4). Since |C0 | + \ |C0⇢ | = 1.8,
we repeat the process over C0 and C0⇢ and produce a compact alignment ([6, 8], [8, 10]).
T������ 3. The set R of compact alignments generated by OPH interval scan satis�es that:

(1) for every subsequence T[8, 9] where ĴQ,T[8, 9] � \ , there exists one and only one compact align-
ment ([;; , ;A], [A; , AA]) 2 R where 8 2 [;; , ;A] and 9 2 [A; , AA] and (2) for every compact alignment
([;; , ;A], [A; , AA]) 2 R and every 8 2 [;; , ;A] and 9 2 [A; , AA], we have ĴQ,T[8, 9] � \ .

Complexity Analysis. Let< = |C| + |C⇢ | be the total number of collided OPH compact windows.
The algorithm takes$ (< log<) to sort and visit the endpoints of the left intervals. There are$ (<)

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:14 Zhencan Peng, Yuheng Zhang, and Dong Deng

1 4 6 9 11

𝑘𝜃 = 1.6 𝐶 = 𝑑1, 𝑑2 , 𝐶𝐸 = 𝑑3 𝑑1 = <T, h, 1, 1, 3, 9>
𝑑2 = <T, h, 1, 4, 8, 13>
𝑑3 = <T, h, 2, 6, 10>

𝑑1 starts 𝑑1ends
𝑑2starts

𝑑3starts 𝑑3 ends
𝑑2ends

endpoints of

𝐶′: 𝑑1 𝑑1, 𝑑2 𝑑2
𝐶𝐸′ : 𝑑3 𝑑3

Ø
Ø

left intervals:

Fig. 4. An example of OPH interval scan.

unique left interval endpoints. For each of them, when necessary, the endpoints of the right intervals
in C0 and C0⇢ are sorted and visited, which takes $ (< log<) time as there are $ (<) collided OPH
compact windows in C0 and C0⇢ . Thus the total time complexity is$ (<2 log<). Based on Theorem 1,
< = $ (= + :). Thus the time complexity of OPH interval scan is $ ((= + :)2 log(= + :)).
4.2 Optimizations

Order by Token Positions. In the divide-and-conquer algorithm (Algorithm 2) for OPH compact
window generation, when there are multiple duplicate tokens with the same smallest hash value
in the input, we can either break the tie arbitrarily or order them by their positions in the input.
Although the two choices end up with the same number of OPH compact windows, ordering by
token positions guarantees that the left intervals of collided OPH compact windows with the same
OPH min-hash do not overlap with each other, which bene�ts the OPH interval scan algorithm as
it reduces the chance to check the right intervals. Note that the complexity analysis in Section 4.1
assumes ties are broken arbitrarily.
Speci�cally, suppose the duplicate token hash values are ordered by their positions in OPH

compact windows generation. In Algorithm 3, for each unique left interval endpoint, there are at
most : collided OPH compact windows in C0 and C0⇢ . Thus the time complexity of OPH interval
scan becomes $ (< log< +<: log:) = $ ((= + :) (log(= + :) + : log:)).
Longest Near-Duplicate Subsequence. In practice, to avoid redundant results, we only need
to report the longest near-duplicate subsequences in many applications. That is to say, a near-
duplicate subsequence T[8, 9] (i.e., ĴT[8, 9],Q � \) is omitted if there exists another near-duplicate
subsequence T[80, 9 0] (i.e., ĴT[80, 9 0],Q � \) where [8, 9] ⇢ [80, 9 0]. In this case, in OPH interval scan
(Algorithm 3, Line 18), we can traverse the endpoints of the right intervals in descending order.
Once a compact alignment ([DG ,DG+1], [E~, E~+1]) is found, we can terminate the traversal. This is
because the near-duplicate subsequence T[DG , E~+1] dominates all the near-duplicate subsequence
generated later during the traversal, if there is any.
Moreover, when visiting the left interval endpoints (Algorithm 3, Lines 7 to 11), we maintain

a variable I (I = 0 at the beginning). When a compact alignment ([DG ,DG+1 � 1], [E~, E~+1 � 1]) is
found when traversing the right interval endpoints, only if I < E~+1 � 1, we update I = E~+1 � 1 and
report a longest near-duplicate subsequence T[DG , E~+1 � 1]. This is because DG is monotonically
increasing. When I � E~+1 � 1, the near-duplicate subsequence T[DG , E~+1 � 1] must be dominated
by another one generated earlier and thus can be omitted.

With the above two modi�cations, it can be proved that the near-duplicate subsequences gener-
ated are all longest near-duplicate subsequences. Furthermore, all near-duplicate subsequences are
dominated by the near-duplicate subsequences generated.
Maintaining Right Intervals in a Segment Tree. To avoid repeatedly sorting and visiting the
endpoints of the right intervals of collided OPH compact windows, we propose to manage the right

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:15

intervals in a dynamic segment tree when visiting the endpoints of the left intervals. Speci�cally,
whenever an endpoint ; of the left interval of a collided OPH compact window hT, h, C, ;, 2, A i 2 C
(or hT, h, C, ;, A i 2 C⇢) is encountered, we increase the weight of the segment [2, A] (or [;, A]) by 1 (or
\) in the dynamic segment tree. In contrast, whenever an endpoint 2 + 1 (or A + 1) of a collided OPH
compact window hT, h, C, ;, 2, A i 2 C (or hT, h, C, ;, A i 2 C⇢) is encountered, we decrease the weight
of the segment [2, A] (or [;, A]) by 1 (or \) in the dynamic segment tree. If cnt � :\ , we query
the dynamic segment tree and retrieve the rightmost segment whose weight is at least :\ in the
dynamic segment tree, if there is one. Using the lazy propagation trick, each query or update on the
dynamic segment tree takes$ (log<) time. Thus the time complexity of the OPH interval scan (only
reporting the longest near-duplicate subsequences) is reduced to$ (< log<) = $ ((=+:) log(=+:)).
Remark. Similar to the OPH interval scan algorithm, an algorithm is presented in [39] to �nd
all the sketches in a text similar to that of the query directly from the compact windows of the
text. We denote the algorithm as KMS interval scan. Its time complexity is $ (=2:2 log=:). The
three optimizations also work for KMS interval scan. Speci�cally, for the same token hash values,
if we break the ties by the token positions, the time complexity of KMS interval scan becomes
$ (=: (log=: + : log:)). In addition, with the dynamic segment tree, the time complexity of KMS
interval scan can be reduced to $ (=: log=:) in the same way.

4.3 Put Together
To process a collection D of texts, during o�ine index time, we �rst generate all the OPH compact
windows in every text in D using Algorithm 1 and index them in an inverted index L and a
two-dimensional arrayW, where the non-empty OPH compact window hT, h, C, ;, 2, A i is appended
to the inverted list L[h(T[2])], while the empty OPH compact window hT, h, C, ;, A i is appended to
the array W[C]. Once a query Q arrives, we �rst calculate its : OPH min-hash. If the C-th OPH
min-hash h(Q, C) = ⇢, we retrieve the arrayW[C]; otherwise, it does not equal to ⇢, we retrieve
the inverted list L[h(Q, C)]. All the OPH compact windows in the retrieved arrays and inverted
lists are collided OPH compact windows. We use a heap to merge and group them by the text T.
Each group contains the sets C and C⇢ of collided non-empty and empty OPH compact windows
in a text T. We invoke Algorithm 3 to �nd all the compact alignments between T and the query Q.

4.4 Discussion

Min-Hash Estimation Accuracy.We �rst focus on the :-mins estimation. T and S are considered
similar i�. ĴT,S � \ . Based on Equation 1, the probability that T and S are reported as similar is

Pr(ĴT,S � \) = 1 �
<�1’
9=0

✓
:

9

◆
(JT,S) 9 (1 � JT,S):� 9 (5)

where < = d:\e. Figure 5(a) illustrates three probability distributions, Pr(ĴT,S >= 0.5), under
di�erent : for :-mins estimation.
The probability distribution of OPH estimation is very complex due to its sample-without-

replacement nature [33]. To get a sense of its estimation accuracy, we simulate the probability
distribution of OPH estimation. For this purpose, for each similarity score in [0.001, 0.002, · · · , 1.000],
we randomly generated 1000 pairs of texts whose Jaccard similarities are equal to that score and
estimated their Jaccard similarity using OPH estimation1. Figure 5(b) shows the result for : = 64
and \ = 0.5. As we can see, the simulated probability distribution of OPH estimation is almost the
same as the theoretical probability distribution of :-mins estimation. Thus the two estimations
bear similar accuracy in practice.
1https://github.com/rutgers-db/DuplicateSearch_k-partition/tree/pzcgyy/simulation

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

https://github.com/rutgers-db/DuplicateSearch_k-partition/tree/pzcgyy/simulation

200:16 Zhencan Peng, Yuheng Zhang, and Dong Deng

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.25 0.5 0.75 1.0

False
Positive

False
Negative

P
r(

Ĵ T
,S

 ≥
 0

.5
)

JT,S

k=16
k=64

k=256

(a) :-mins for : = 16, 64, 256

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.25 0.5 0.75 1.0

P
r(

Ĵ T
,S

 ≥
 0

.5
)

JT,S

k-mins
OPH

(b) :-mins and OPH for : = 64

Fig. 5. The probability distribution of :-mins estimation and simulated probability distribution of OPH
estimation.

Integration into SQLite. FTS5 is a virtual table module in SQLite for full-text search. It stores the
inverted index in the database tables. Implementing our near-duplicate text alignment operation
in SQLite is feasible with the FTS5 extension. This is because our techniques also index the OPH
compact windows in inverted indexes.
Multiplicity. For multiplicity Jaccard similarity, each occurrence of a duplicate token has a unique
hash value. Thus the hash value of a token is no longer �xed, which makes (OPH) compact window
generation rather challenging. Feng et al. present an algorithm [17] to handle it for compact
window generation (without complexity analysis though). It is possible to extend that algorithm to
accommodate OPH compact windows. We leave it as a future work.

5 Experimental Evaluation

Environment.We implemented all the methods (including the baselines) by ourselves using C++
and compiled the programs using GCC 11.4.0 with -O3 optimization. All the experiments were
conducted on a machine with an Intel(R) Xeon(R) Gold 6148 CPU@2.40GHz and 1TB memory. The
operating system is Ubuntu 18.04.s.
Datasets. We used three datasets PAN [41], OWT [23], and WIKI [24]. PAN2 is a benchmark for
external plagiarism detection [41]. Each text in PAN is a book. OWT contains 8 million web texts
highly ranked on Reddit, while WIKI consists of cleaned and tokenized English articles from
Wikipedia. We use the GPT2Tokenizer3 to tokenize the texts in each dataset. Table 1 shows the
dataset details. For example, on average, each text in OWT contains 1095 tokens.

5.1 Evaluating OPH Compact Window Generation
In this section, we compare our OPH compact window generation algorithm (denoted as OPH) with
the compact window generation algorithm (denoted as KMS) in the existing work [39].
Exp-1.We �rst vary the text length = and the sketch size : and report the number of OPH compact
windows generated by KMS and the number of classical compact windows generated by OPH, as well
as the generation time. Note that the number of compact windows generated and the generation
time are proportional to the index size and index time in KMS and OPH. Speci�cally, for a �xed text
length =, texts in a dataset with less than = tokens were omitted, while texts with more than =
tokens were truncated to the �rst = tokens. We report the average number of compact windows

2https://pan.webis.de/data.html
3https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

https://pan.webis.de/data.html
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

Near-Duplicate Text Alignment with One Permutation Hashing 200:17

Table 1. Dataset details.

dataset # of tokens # of text avg. length size (in MB)

OWT 8,773,924,283 8,013,769 1,095 33,501
PAN 642,380,109 11,093 57,909 2,451
WIKI 2,172,725,598 2,926,536 742 8,300

OPH KMS

102
103
104
105
106
107

102 103 104 105

n, Text Length

Avg. # of CWs

(a) OWT (:=64, C=1)

10-4

10-2

100

102 103 104 105

n, Text Length

Avg. Gen Time (s)

(b) OWT (:=64, C=1)

104

105

106

107

16 32 64 128 256

k, Sketch Size

Avg. # of CWs

(c) OWT (==104 , C=1)

10-3

10-2

10-1

100

16 32 64 128 256

k, Sketch Size

Avg. Gen Time (s)

(d) OWT (==104 , C=1)

104

105

106

5 10 20 40

t, length threshold

Avg. # of CWs

(e) OWT (:=64, ==104)

10-3

10-2

10-1

5 10 20 40

t, length threshold

Avg. Gen Time (s)

(f) OWT (:=64, ==104)

Fig. 6. Evaluating compact window (CW for short) generation.

and generation time per text. The three datasets had very similar results. Due to space limit, we
only report the results on OWT.
Figures 6(a) to 6(d) show the results. As we can see, although both the number of classical

compact windows and the number of OPH compact windows grew linearly with the text length
=, the number of OPH compact windows is signi�cantly lower than that of the classical compact
windows. Moreover, with the increase of the sketch size : , the number of OPH compact windows
remained almost unchanged, while the number of classical compact windows grew proportionally
with : . The results are consistent with our complexity analysis, where there are $ (=:) classical
compact windows and $ (= + :) OPH compact windows in a text with = tokens. The compact
window generation time emerged similar trends as the number of compact windows. For example,
when the sketch size : increased from 16 to 256, it took 3.6 ms and 4.9 ms on average to generate
the OPH compact windows of a text with 10,000 tokens, while it took 34 ms and 548 ms on average
to generate the classical compact windows. This is because it takes $ (= log= + :) time to generate
the OPH compact windows, while it takes $ (=: log=) for classical compact window generation.
Exp-2. In KMS, only near-duplicate subsequences no shorter than a given length threshold C
will be reported. KMS utilizes the length threshold to optimize compact window generation. This
optimization is orthogonal to our proposed techniques. Thus OPH can also leverage this optimization.
In Exp-1, the length threshold C is set to 1 for a fair comparison. In this experiment, we evaluate
the impact of the length threshold. Speci�cally, we vary the length threshold C , while �x : = 64
and = = 10000, and report the average number of compact windows generated and the average
generation time. Figures 6(e) to 6(f) show the results. As we can see, the number of classical compact
windows decreased linearly with the length threshold C . This is because the expected number of
classical compact windows in a text with = tokens is 2: =+1

C+1 + 1 [39]. In comparison, the number
of OPH compact windows decreased sublinearly with C . This is because the advantage of OPH
compact windows diminishes when short subsequences are �ltered out by the length threshold.
However, the number of OPH compact windows remained signi�cantly lower than that of classical
compact windows. For example, when C = 40, the number of OPH compact windows was only 40%
of that of classical compact windows. In the meanwhile, the average classical compact window
generation time decreased sublinearly with C . For example, it dropped from 0.07s to 0.035s when C
increased from 5 to 40. This is because the overhead of calculating token hash values and building
segment tree does not change with the length threshold C . Nevertheless, the average generation
time of OPHwas still much lower than that of KMS. For example, the average OPH compact windows
generation time was only 0.0041s when C = 5. Hereinafter, we set C = 1 by default.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:18 Zhencan Peng, Yuheng Zhang, and Dong Deng

KMS-arb OPH-arb KMS-pos OPH-pos

10-3

10-1

101

103

32 64 128 256
k, Sketch Size

Avg. Alignment Time (s)

(a) PAN (\ = 0.4)

10-3

10-1

101

103

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(b) PAN (: = 64)

10-5

10-3

10-1

101

32 64 128 256
k, Sketch Size

Avg. Alignment Time (s)

(c) OWT (\ = 0.4)

10-5

10-3

10-1

101

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(d) OWT (: = 64)

10-5

10-3

10-1

101

32 64 128 256
k, Sketch Size

Avg. Alignment Time (s)

(e) WIKI (\ = 0.4)

10-5

10-3

10-1

101

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(f) WIKI (: = 64)

Fig. 7. Evaluating the by position optimization.
KMS-pos OPH-pos KMS-lst OPH-lst

102

103

104

105

106

32 64 128 256
k, Sketch Size

Avg. # of Results

(a) PAN (\ = 0.1)

0.0

0.1

0.2

0.3

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(b) PAN (: = 64)

10-1
100
101
102
103
104

32 64 128 256
k, Sketch Size

Avg. # of Results

(c) OWT (\ = 0.1)

0.00

0.01

0.02

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(d) OWT (: = 64)

101

102

103

104

32 64 128 256
k, Sketch Size

Avg. # of Results

(e) WIKI (\ = 0.1)

0.00

0.01

0.02

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(f) WIKI (: = 64)

Fig. 8. Evaluating the longest near-duplicate subsequence optimization.
KMS-lst OPH-lst KMS-seg OPH-seg

10-3

10-2

10-1

100

101

32 64 128 256
k, Sketch Size

Avg. Alignment Time (s)

(a) PAN (\ = 0.4)

10-3

10-2

10-1

100

101

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(b) PAN (: = 64)

10-5

10-3

10-1

101

103

32 64 128 256
k, Sketch Size

Avg. Alignment Time (s)

(c) OWT (\ = 0.4)

10-5

10-4

10-3

10-2

10-1

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(d) OWT (: = 64)

10-5

10-4

10-3

10-2

10-1

32 64 128 256
k, Sketch Size

Avg. Alignment Time (s)

(e) WIKI (\ = 0.4)

10-5

10-4

10-3

10-2

10-1

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Alignment Time (s)

(f) WIKI (: = 64)

Fig. 9. Evaluating the segment tree optimization.

5.2 Evaluating OPH Interval Scan
In this section, we compare the interval scan algorithm in the existing work [39] (which �nds all
the :-mins sketches in a text similar to that of the query directly from classical compact windows)
with our OPH interval scan algorithm and evaluate the three optimizations we proposed. The
interval scan algorithm is coupled with a sanitizer similar to that of our algorithm that skips inputs
with collided compact windows fewer than the threshold.
Query Construction: We pair each query with a text and report the average results of the two
algorithms (alignment time or number of results) over 100 pairs. The PAN dataset comes with
ground truth, where each suspicious passage is coupled with a source document containing the
corresponding plagiarized passage. We use the suspicious passage and source document as our
query-text pair. We randomly select 100 pairs from the ground truth for evaluation. The average
query and text lengths were respectively 1424.6 tokens and 77665.1 tokens. ForWIKI and OWT, we
randomly select a text (with at least 64 unique tokens) and a 128-token subsequence (not necessarily
from the selected text) from the dataset. The selected subsequence and text become a query-text
pair. The average text lengths in the 100 randomly selected pairs were 1911.6 tokens and 1534.6
tokens in WIKI and OWT, respectively.
Exp-3: By Position Optimization. We �rst evaluate the optimization of ordering duplicate
token hash values by token positions in compact window generation (instead of breaking ties
arbitrarily [39]). We implemented four methods. KMS-arb is the interval scan algorithm in [39],
while KMS-pos is the interval scan algorithm with our “by position” optimization. OPH-arb is our
OPH interval scan algorithm, whereas OPH-pos is our algorithm with the by position optimization.
Figure 7 shows the results. As we can see, the optimization signi�cantly improved the alignment
time, by almost 100⇥. For example, when : = 256, on the OWT dataset, the average alignment time
for OPH-pos and OPH-arbwere respectively 0.0023B and 0.21B . This is consistent with our complexity

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:19

OPH KMS

10
2

10
3

10
4

4 8 16 32 64

k, Sketch Size

Index Time (s)

(a) PAN

10
1

10
2

10
3

4 8 16 32 64

k, Sketch Size

Index Size (GB)

(b) PAN

10
2

10
3

10
4

4 8 16 32 64

k, Sketch Size

Index Time (s)

(c) WIKI

10
1

10
2

10
3

4 8 16 32 64

k, Sketch Size

Index Size (GB)

(d) WIKI

10
2

10
3

10
4

4 8 16 32 64

k, Sketch Size

Index Time (s)

(e) OWT

10
1

10
2

10
3

4 8 16 32 64

k, Sketch Size

Index Size (GB)

(f) OWT

Fig. 10. Evaluating index construction.

Table 2. Evaluating query accuracy (: = 64 for min-hash based methods).

Threshold KMS OPH S���E�������� F����� bruteforce
Time (s) P R F1 Time (s) P R F1 Time (s) P R F1 Time (s) Time (s)

0.2 0.789 0.497 0.875 0.633 0.309 0.503 0.877 0.639 13.995 1.000 0.436 0.608 163.846 196.836
0.3 0.676 0.738 0.850 0.790 0.195 0.761 0.820 0.790 12.231 1.000 0.465 0.635 87.939 125.949
0.4 0.668 0.748 0.862 0.801 0.091 0.819 0.858 0.838 10.360 1.000 0.572 0.727 53.596 90.140
0.5 0.663 0.792 0.918 0.850 0.040 0.782 0.925 0.848 8.583 1.000 0.595 0.746 32.169 60.879

analysis, where the OPH interval scan algorithm take$ (<2 log<) time and the optimization boost
it to $ (< log< +<: log:) where< � : is the number of collided OPH compact windows. The by
position optimization is enabled by default in all the experiments hereinafter.
We observe that our OPH interval scan algorithm was slower than the interval scan algorithm.

This is because the empty OPH min-hash leads to a lot of collided OPH compact window (i.e., a
larger<), while there is no “empty min-hash” in the :-mins sketch in the interval scan algorithm.
Nevertheless, our algorithm with the by position optimization (i.e., OPH-pos) still outperformed the
vanilla interval scan algorithm (i.e., KMS-arb). The alignment time of all the algorithms grew with
the increase of the sketch size : and the decrease of the threshold \ . This is because the number of
collided compact windows increases with the sketch size, while fewer pairs can pass the sanitizer
check when the threshold is high.
Exp-4: Longest Near-Duplicate Optimization.We evaluate the optimization that reports only
the longest near-duplicate subsequences. We �rst vary the sketch size : and report the average
number of results (i.e., compact alignments or longest near-duplicates) and then vary the similarity
threshold \ and report the average alignment time. Four methods are evaluated. KMS-pos and
OPH-pos as described earlier. KMS-lst and OPH-lst are respectively the interval scan algorithm and
our algorithm with both the by position optimization and the longest near-duplicate optimization.
Figure 8 shows the results. As we can see, the number of results produced by OPH-lst (or KMS-lst)
was consistently smaller than that of OPH-pos (or KMS-pos). The optimization can e�ectively reduce
redundant results. The number of results produced by OPH-pos (or OPH-lst) was on a par with that
of KMS-pos (or KMS-lst). This is because they both use unbiased Jaccard similarity estimators with
comparable variances. The optimization slightly reduces the alignment time. This is attributed to
the early termination in the optimization.
Exp-5: Segment Tree Optimization. We compare four methods in this section. KMS-lst and
OPH-lst as described earlier. KMS-seg and OPH-seg are respectively the interval scan algorithm
and our algorithm with all the three optimizations. We vary the sketch size : and the similarity
threshold \ and report the average alignment time. Figure 9 shows the results. As we can see, the
segment tree optimization almost always helped reduce the average alignment time. For example,
in the PAN dataset with : = 256 and \ = 0.4, KMS-seg reduced the alignment time of KMS-lst from
0.079s to 0.030s. Furthermore, OPH-seg improved OPH-lst’s time from 1.51s to 0.07s, achieving
up to a 200⇥ speed up. This is because the optimization uses a segment tree to manage the right
intervals of collided OPH compact windows, which avoids repeatedly sorting and visiting the same
right intervals.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:20 Zhencan Peng, Yuheng Zhang, and Dong Deng

KMS-vanilla OPH-seg

100

102

104

106

8 16 32 64
k, Sketch Size

Avg. Query Time (s)

(a) PAN (\ = 0.4)

101

103

105

107

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Query Time (s)

(b) PAN (: = 64)

10-1

101

103

105

8 16 32 64
k, Sketch Size

Avg. Query Time (s)

(c) OWT (\ = 0.4)

100

102

104

106

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Query Time (s)

(d) OWT (: = 64)

10-1

101

103

105

8 16 32 64
k, Sketch Size

Avg. Query Time (s)

(e) WIKI (\ = 0.4)

100

102

104

106

0.1 0.2 0.4 0.8
θ, Sim Threshold

Avg. Query Time (s)

(f) WIKI (: = 64)

Fig. 11. Evaluating query latency.

Table 3. Evaluating accuracy by varying sketch size (\ = 0.4).

Method Metric :
16 32 64 128 256

KMS

Time (s) 0.119 0.341 0.668 43.66 107.5
P 0.418 0.522 0.748 0.838 0.923
R 0.850 0.907 0.862 0.880 0.924
F1 0.561 0.662 0.801 0.859 0.924

OPH

Time (s) 0.004 0.011 0.092 0.386 1.515
P 0.566 0.686 0.819 0.842 0.920
R 0.714 0.818 0.858 0.893 0.876
F1 0.632 0.746 0.838 0.867 0.898

5.3 Comparing with Existing Methods

Baselines. In this section, we compare our near-duplicate text alignment algorithm with four
baselines. (1) The state-of-the-art method KMS [39]. (2) A “seeding-extension-�ltering” baseline
S���E�������� based on an existing method that won a plagiarism detection competition [42].
S���E�������� uses the common tokens between the data text and the query as “seed matches”.
Adjacent seed matches that are less than maxgap tokens away are merged to form “local largest”
clusters. For each cluster, if the corresponding subsequence is similar to query, it reports the
corresponding subsequence. For the remaining clusters, it reduces the threshold maxgap by one
and re-clusters the seed matches (excluding those in the reported subsequences). The process is
repeated until maxgap = 4. We set maxgap = 4\ |Q| initially in our experiment. (3) We adapted
F����� [31] for near-duplicate text alignment. F����� is designed to �nd all the subsequences in a
document that approximately match entities (short texts such as names) in a given dictionary. It
supports many similarity measures, including Jaccard simlarity. We treat the query as an entity and
the text as a document for near-duplicate text alignment. (4) A brute-force method that enumerates
every subsequence in a text and compares them with the query.
Exp-6: Index Construction. We construct inverted indexes using the classical compact windows
generated by KMS and the OPH compact windows using OPH. We vary the sketch size : and report
the index time and index size. Note that the other three baselines (S���E��������, F�����, and
bruteforce) have no index phase. To avoid from getting the out-of-memory error, we randomly
sampled 500,000 and 700,000 texts respectively from OWT and WIKI. The total numbers of tokens
in the sampled texts in OWT and WIKI are approximately 550 millions and 520 millions, resulting
in an average text length of 1099 and 742 tokens. For PAN, we used all the texts. Figure 10 shows the
results. Both the index size and the index time grew linearly with the sketch size : for KMS, while
they were almost �at for OPH. For example, for the PAN dataset, when the sketch size : increased
16 times from 4 to 64, the index time of KMS grew from 452s to 7812s, while the index size grew
from 38GB to 612GB. In comparison, the index time of OPH only increased from 184s to 199s, while
the index size changed from 14.8GB to 16.39GB. This is because the index time and index size
are respectively determined by the total number of compact windows and the compact window
generation time. In conclusion, the novel concept of OPH compact windows introduced in this
paper can signi�cantly reduce the index time and index size for near-duplicate text alignment.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:21

Exp-7: Query Latency.We compare the query latency of our most advanced algorithm OPH-seg
with the interval scan algorithm [39]. For a fair comparison, we enabled the longest near-duplicate
optimization for the interval scan algorithm so that the two methods produce the same thing. We
denote the interval scan algorithm with the longest near-duplicate optimization as KMS-vanilla.
Note that OPH-seg uses the OPH index, while KMS-vanilla uses the KMS index. The query set is
constructed the same way as described in Section 5.2. However, each query is aligned against
all the (sampled) texts in the dataset rather than only one text. The other three baselines are too
ine�cient to run the experiment. We report their query latency in the next experiment using
small scale datasets. Figure 11 shows the results. As we can see, our approach OPH-seg signi�cantly
outperformed KMS-vanilla. For example, on the PAN dataset with : = 64 and \ = 0.4, KMS-vanilla
takes over 71,000s to process a query, in contrast to only 69s for OPH-seg. This is attributed to the
three optimizations we proposed for OPH interval scan. Nevertheless, KMS-vanilla occasionally
outperformed OPH-seg. This is because the empty OPHmin-hash creates a lot of min-hash collisions,
which enforces OPH-seg to check the right intervals more often than KMS-vanilla. However, given
the huge advantage in terms of index cost brought by OPH, the small overhead of query latency is
acceptable.
Exp-8: Query Accuracy. Given a data text T and a query Q. Let S = {T[8, 9] | JT[8, 9],Q � \ } and
�S = {G | T[8, 9] 2 S and G 2 [8, 9]} (i.e., all distinct token positions in S). We use the brute-force
method to �nd S, which is the ground truth. Let R be a set of subsequences in T. We de�ne the
precision and recall of R as | � S \ �R|/| � R| and | � S \ �R|/| � S| respectively. The F1 score
is the harmonic mean of the precision and recall.
We used the PAN dataset. We report the average query latency, precision, recall, and F1 score

per pair of query and text. The query-text pairs are constructed as described in Section 5.2. Note
that F����� and the bruteforce method always achieved perfect accuracy, recall, and F1 score. Thus
we omit these numbers. Table 2 shows the results. In terms of query latency, the min-hash based
methods KMS and OPH outperformed S���E�������� by almost two orders of magnitude, while
F����� and the brute-force method were an order of magnitude slower than S���E��������. This is
because S���E�������� needs to repeatedly cluster seed matches and verify the clusters. Because
of the veri�cation step, S���E�������� always achieved perfect precision (i.e., 100%). However,
the recall of S���E�������� was signi�cantly lower than those of KMS and OPH. This is because
S���E�������� will miss a similar subsequence if the gap of adjacent common tokens between
the subsequence and the query is greater than maxgap. With the increase of the threshold \ , the
recall of S���E�������� raised as true positives became rare. The accuracy of OPH was on a par
with that of KMS. Overall, the min-hash based approaches not only achieved lower query latency
but also gained higher F1 scores. For example, when : = 64 and \ = 0.3, the F1 scores of both KMS
and OPH reached 0.79, while it was only 0.635 for S���E��������. We also evaluated the accuracy
and query latency of OPH and KMS by varying the sketch size : . As shown in Table 3, with the
increase of : , the precision and recall of both methods steadily improved. This is attributed to the
low variance in similarity estimation with a large sketch size. Besides, the query latency of KMS is
much higher than that of OPH.
Con�guration of : . In practice, con�guring the value of : in OPH involves a trade-o� between query
latency and accuracy. We �rst focus on the query latency. As : increases, the index size and index
time remain almost unchanged, while the query latency increases especially when : approaches the
length of the query. For example, as shown in Figure 11(c), it took 35s when : = 16 for OPH-seg to
process a 128-token query. However, when : = 64, the query latency raised to 210s. This is because
the inverted list length of an empty OPH min-hash is much longer than that of non-empty OPH
min-hash. As : approaches the query length, there are likely more empty OPH min-hashes and it

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:22 Zhencan Peng, Yuheng Zhang, and Dong Deng

OPH OPH-seg

10
2

10
3

10
4

1M 2M 4M 8M
of Texts

Index Time (s)

(a) OWT (\=0.4,:=64)

10
1

10
2

10
3

1M 2M 4M 8M
of Texts

Index Size (GB)

(b) OWT (\=0.4,:=64)

101

102

103

1M 2M 4M 8M
of Texts

Avg. Query Time (s)

(c) OWT (\=0.4,:=64)

102

103

0.36M 0.73M 1.46M 2.92M
of Texts

Index Time (s)

(d) WIKI (\=0.4,:=64)

100

101

102

0.36M 0.73M 1.46M 2.92M
of Texts

Index Size (GB)

(e) WIKI (\=0.4,:=64)

100

101

102

0.36M 0.73M 1.46M 2.92M
of Texts

Avg. Query Time (s)

(f) WIKI (\=0.4,:=64)

Fig. 12. Evaluating scalability.

takes longer to access the inverted lists. Conversely, a higher : improves accuracy. As we can see
in Figure 5(a), both false positive rate and false negative rate decrease with : (Figure 5(b) shows
the accuracy of :-mins estimation and OPH estimation are almost the same in simulation). It is
also illustrated in Table 3 that with : increased from 16 to 256, the precision increased signi�cantly
from 0.566 to 0.92, while the recall modestly increased from 0.714 to 0.876. In practice, : ranges
from tens and hundreds o�ers a balanced approach, avoiding high query latency while achieving
satisfactory accuracy. In summary, with the increase of : , the index size, index time, and query
latency would grow, while the false positive/false negative rates would decrease. Typically, the
value of : ranges from tens to hundreds.
Anecdotal Results. Here is a query in the WIKI dataset: “The book was not completed at the time
of Jordan’s death on September 16, 2007. His widow Harriet McDougal and his publisher, Tor Books
president Tom Doherty made the decision to have the book completed posthumously, with McDougal
saying, ‘I am sad to see the series end. But I would be far more distressed to leave it un�nished,
incomplete and dangling forever.’_NEWLINE_On December 11, 2007, four months after Jordan’s death,
it was announced that McDougal had chosen Brandon Sanderson to”. With \ = 0.35, OPH-seg identi�es
the following near-duplicate subsequence in a text: “The original book was incomplete at the time of
Jordan’s death on September 16, 2007, from cardiac amyloidosis; his widow Harriet McDougal and
publisher Tom Doherty chose to publish the book posthumously. Tor Books announced that Brandon
Sanderson had been chosen to �nish writing the book._NEWLINE_The un�nished book was split
into three volumes because it was believed a single volume”. The result shows OPH-seg is able to
�nd subsequences in texts similar to queries. The Jaccard similarity of the query and the identi�ed
subsequence is 0.42.

5.4 Scalability

Exp-9: Scalability.We evaluate the scalability of our techniques by varying the number of texts
in the two datasets OWT and WIKI. The queries are randomly selected as described in Section 5.2.
Figure 12 shows the results. As we can see, the index time, index size and query latency all grew
almost linearly with the number of texts in the dataset. For example, for theOWT dataset, increasing
the number of texts from 1M to 2M doubled the index time and the index size from 34GB to 67GB
and from 385s to 771s, respectively, while increased the query latency from 21s to 41.7s.

6 Related Work

Near-Duplicate Text Detection. Both near-duplicate text alignment [5, 8, 10, 25, 26, 30, 35, 44]
and near-duplicate text detection (a.k.a., similarity search) [6, 32, 57, 60, 61] have been extensively
studied due to their importance in text processing. However, the two problems are rather di�erent.
While near-duplicate text detection focuses on if two entire texts are similar, near-duplicate text
alignment concerns the subsequences in the texts. There are both exact algorithms [32, 57] and
approximate algorithms [3, 28] for near-duplicate text detection. Locality sensitive hashing (LSH) [3,
4, 15, 21, 22, 27, 28, 34, 49–51] is one of the most well-known techniques for near-duplicate text
detection. However, it is non-trivial to apply LSH for near-duplicate text alignment.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

Near-Duplicate Text Alignment with One Permutation Hashing 200:23

Near-Duplicate Text Alignment. Because of the high computation cost of near-duplicate text
alignment, existing methods (including many in bioinformatics [2, 12, 16, 38, 48, 52, 54]) usually
rely on sophisticated rule-based heuristics and follow the seeding-extension-�ltering strategy [5,
8, 10, 25, 26, 30, 35, 44]. They start by identifying seed matches in the texts, which are short
subsequences such as �ngerprints [40], k-mers [19], �xed-length windows [56], q-grams [43], or
sentences [42]. Next, the seed matches are extended on both ends to form candidate alignments.
In addition, candidate alignments are merged if they occur adjacently with a small gap between
them. Finally, candidate alignments that do not meet certain criteria (e.g., extremely short or
overlapping alignments) are �ltered. However, the seeding-extension-�ltering heuristic involves
numerous hard-to-tune hyper-parameters and lacks of any guarantees [1]. For instance, if the seeds
are too coarse (i.e., seed length is too long), it may miss many results, whereas if the seeds are
too �ne-grained, it may generate an overwhelming number of seed matches that can a�ect the
subsequent extension and �ltering steps. Methods based on bloom-�lter and su�x array cannot
backtrack sources or handle noises [36, 55].
Min-Hash. Brewer et al. propose min-hash as a technique for coordinated sampling [7]. Flajolet and
Martin develop probabilistic counting algorithms based on min-hash for database applications [18].
Broder et al. employ min-hash for near-duplicate webpage detection [10], while Cohen uses it to
estimate set relations [13]. It takes $ (=:) to generate a sketch with : min-hash for a text with =
tokens. To reduce the sketch generation time, various improvements have been proposed, such
as the bottom-: sketch [53], one permutation hashing (OPH) [33], and fast similarity sketch [14].
Speci�cally, bottom-: uses the : smallest token hash values in the text as the sketch, which takes
$ (= log:) time [53]. Wang et al. develop a technique to losslessly compress the $ (=2) bottom-:
sketches in a text with = tokens into compact windows using$ (=:2) space [58]. OPH uses a single
random hash function to generate multiple min-hash and takes$ (= +:) [33]. However, the number
of min-hash is no longer �xed in OPH. To address this issue, a few works propose to densify the
OPH min-hash sketch [45–47]. Fast similarity sketch generates a sketch with : min-hash using
$ (: log: + =) time, which achieves the best of both world, i.e., a short sketch generation time and
a �xed number of min-hash per sketch. However, we �nd that it does not bring any bene�t in
compact window generation in terms of index size.

7 Conclusion
In this paper, we study the near-duplicate text alignment problem. Our solution �rst generates
the min-hash sketch of every subsequence in each text and then �nds all the subsequences whose
min-hash sketches are similar to that of the query. A few recent studies propose to group the nearby
subsequences sharing the same min-hash into compact windows and prove that all the $ (=2:)
min-hash can be losslessly compressed into $ (=:) compact windows using $ (=:) space, where =
is the number of tokens in the text and : is the sketch size. We propose to use One Permutation
Hashing (OPH) to generate the min-hash sketches and introduce the concept of “OPH compact
windows”. We show the $ (=2:) min-hash generated by OPH can be losslessly compressed in
$ (= + :) OPH compact windows using $ (= + :) space. Furthermore, we develop an algorithm that
e�ciently �nds all the sketches in a text similar to that of the query directly from the OPH compact
windows, along with three optimizations.

Acknowledgments
We thank the anonymous reviewers for their constructive comments. This material is based upon
work supported by the National Science Foundation under Grants No. 2152908 and No. 2212629.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

200:24 Zhencan Peng, Yuheng Zhang, and Dong Deng

References
[1] Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German Rigau, and

Janyce Wiebe. 2016. SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and Cross-Lingual Evaluation. In
SEMEVAL. The Association for Computer Linguistics, 497–511.

[2] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. 1990. Basic local alignment
search tool. Journal of Molecular Biology 215, 3 (1990), 403–410.

[3] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in
High Dimensions. In FOCS. 459–468.

[4] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt. 2015. Practical and Optimal
LSH for Angular Distance. In NIPS. 1225–1233.

[5] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. 1999. Modern Information Retrieval. ACM Press / Addison-Wesley.
http://www.dcc.ufmg.br/irbook/

[6] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all pairs similarity search. In WWW.
131–140.

[7] K R W Brewer, L J Early, and S F Joyce. 1972. Selecting several samples from a single population. Australian Journal of
Statistics 14, 3 (1972), 231–239.

[8] Sergey Brin, James Davis, and Hector Garcia-Molina. 1995. Copy Detection Mechanisms for Digital Documents. In
SIGMOD. ACM Press, 398–409.

[9] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In SEQUENCES. IEEE, 21–29.
[10] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geo�rey Zweig. 1997. Syntactic Clustering of the Web.

Computer Networks 29, 8-13 (1997), 1157–1166. https://doi.org/10.1016/S0169-7552(97)00031-7
[11] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and Chiyuan Zhang. 2022.

Quantifying Memorization Across Neural Language Models. CoRR abs/2202.07646 (2022). arXiv:2202.07646 https:
//arxiv.org/abs/2202.07646

[12] Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena, Giovanni Bussotti, Ionas Erb, and Cedric Notredame.
2016. Multiple sequence alignment modeling: methods and applications. Brie�ngs in bioinformatics 17, 6 (2016),
1009–1023.

[13] Edith Cohen. 2016. Min-Hash Sketches.
[14] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. 2017. Fast similarity sketching. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 663–671.
[15] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004. Locality-sensitive hashing scheme based on

p-stable distributions. In SoCG. 253–262.
[16] Da-Fei Feng and Russell F Doolittle. 1987. Progressive sequence alignment as a prerequisitetto correct phylogenetic

trees. Journal of molecular evolution 25, 4 (1987), 351–360.
[17] Weiqi Feng and Dong Deng. 2021. Allign: Aligning All-Pair Near-Duplicate Passages in Long Texts. In SIGMOD. ACM,

541–553. https://doi.org/10.1145/3448016.3457548
[18] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting algorithms for data base applications. Journal of

computer and system sciences 31, 2 (1985), 182–209.
[19] Alex Franz and Thorsten Brants. 2006. All our n-gram are belong to you. Google Machine Translation Team 20 (2006).
[20] Philip Gage. 1994. A New Algorithm for Data Compression. C Users J. 12, 2 (feb 1994), 23–38.
[21] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive hashing scheme based on dynamic

collision counting. In SIGMOD. 541–552.
[22] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in High Dimensions via Hashing. In VLDB.

518–529.
[23] Aaron Gokaslan and Vanya Cohen. 2019. OpenWebText Corpus. http://Skylion007.github.io/OpenWebTextCorpus.
[24] Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami Al-Rfou. 2020. Wiki-40b: Multilingual language model dataset.

In Proceedings of the 12th Language Resources and Evaluation Conference. 2440–2452.
[25] Ossama Abdel Hamid, Behshad Behzadi, Stefan Christoph, and Monika Rauch Henzinger. 2009. Detecting the origin

of text segments e�ciently. InWWW. ACM, 61–70.
[26] Timothy C. Hoad and Justin Zobel. 2003. Methods for Identifying Versioned and Plagiarized Documents. J. Assoc. Inf.

Sci. Technol. 54, 3 (2003), 203–215. https://doi.org/10.1002/asi.10170
[27] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015. Query-Aware Locality-Sensitive Hashing

for Approximate Nearest Neighbor Search. PVLDB 9, 1 (2015), 1–12.
[28] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards Removing the Curse of Dimension-

ality. In STOC. 604–613.
[29] Bernard J Jansen. 2006. Search log analysis: What it is, what’s been done, how to do it. Library & information science

research 28, 3 (2006), 407–432.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

http://www.dcc.ufmg.br/irbook/
https://doi.org/10.1016/S0169-7552(97)00031-7
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://doi.org/10.1145/3448016.3457548
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.1002/asi.10170

Near-Duplicate Text Alignment with One Permutation Hashing 200:25

[30] Jong Wook Kim, K. Selçuk Candan, and Jun’ichi Tatemura. 2009. E�cient overlap and content reuse detection in blogs
and online news articles. In WWW. ACM, 81–90.

[31] Guoliang Li, Dong Deng, and Jianhua Feng. 2011. Faerie: e�cient �ltering algorithms for approximate dictionary-based
entity extraction. In SIGMOD Conference. 529–540.

[32] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. PASS-JOIN: A Partition-based Method for Similarity
Joins. PVLDB 5, 3 (2011), 253–264.

[33] Ping Li, Art B. Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing. In NIPS. 3122–3130.
[34] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-Probe LSH: E�cient Indexing for

High-Dimensional Similarity Search. In VLDB. 950–961.
[35] Udi Manber. 1994. Finding Similar Files in a Large File System. In USENIX Winter 1994 Technical Conference. USENIX

Association, 1–10.
[36] Marc Marone and Benjamin Van Durme. 2023. Data Portraits: Recording Foundation Model Training Data. https:

//doi.org/10.48550/ARXIV.2303.03919
[37] Chris Mayor, Michael Brudno, Jody R Schwartz, Alexander Poliakov, Edward M Rubin, Kelly A Frazer, Lior S Pachter,

and Inna Dubchak. 2000. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16,
11 (2000), 1046–1047.

[38] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of molecular biology 48, 3 (1970), 443–453.

[39] Zhencan Peng, Zhizhi Wang, and Dong Deng. 2023. Near-Duplicate Sequence Search at Scale for Large Language
Model Memorization Evaluation. Proc. ACM Manag. Data 1, 2 (2023), 179:1–179:18. https://doi.org/10.1145/3589324

[40] Martin Potthast, Alberto Barrón-Cedeño, Andreas Eiselt, Benno Stein, and Paolo Rosso. 2010. Overview of the
2nd International Competition on Plagiarism Detection. In CLEF 2010 LABs and Workshops, Notebook Papers (CEUR
Workshop Proceedings, Vol. 1176). CEUR-WS.org.

[41] Martin Potthast, Andreas Eiselt, Alberto Barrón-Cedeño, Benno Stein, and Paolo Rosso. 2011. Overview of the 3rd
International Competition on Plagiarism Detection. In CLEF 2011 Labs and Workshop, Notebook Papers (CEUR Workshop
Proceedings, Vol. 1177). CEUR-WS.org.

[42] Miguel A. Sanchez-Perez, Alexander F. Gelbukh, and Grigori Sidorov. 2015. Adaptive Algorithm for Plagiarism
Detection: The Best-Performing Approach at PAN 2014 Text Alignment Competition. In 6th International Conference
of the CLEF Association (Lecture Notes in Computer Science, Vol. 9283). Springer, 402–413.

[43] Saul Schleimer, Daniel Shawcross Wilkerson, and Alexander Aiken. 2003. Winnowing: Local Algorithms for Document
Fingerprinting. In SIGMOD. ACM, 76–85.

[44] Jangwon Seo and W. Bruce Croft. 2008. Local text reuse detection. In SIGIR. ACM, 571–578.
[45] Anshumali Shrivastava. 2017. Optimal densi�cation for fast and accurate minwise hashing. In International Conference

on Machine Learning. PMLR, 3154–3163.
[46] Anshumali Shrivastava and Ping Li. 2014. Densifying one permutation hashing via rotation for fast near neighbor

search. In International Conference on Machine Learning. PMLR, 557–565.
[47] Anshumali Shrivastava and Ping Li. 2014. Improved densi�cation of one permutation hashing. arXiv preprint

arXiv:1406.4784 (2014).
[48] Temple F Smith, Michael S Waterman, et al. 1981. Identi�cation of common molecular subsequences. Journal of

molecular biology 147, 1 (1981), 195–197.
[49] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS: Solving c-Approximate Nearest Neighbor

Queries in High Dimensional Euclidean Space with a Tiny Index. PVLDB 8, 1 (2014), 1–12.
[50] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2009. Quality and e�ciency in high dimensional nearest neighbor

search. In SIGMOD. 563–576.
[51] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2010. E�cient and accurate nearest neighbor and closest pair search

in high-dimensional space. ACM Trans. Database Syst. 35, 3 (2010), 20:1–20:46.
[52] Julie D Thompson, Desmond G Higgins, and Toby J Gibson. 1994. CLUSTALW: improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, position-speci�c gap penalties and weight matrix choice.
Nucleic acids research 22, 22 (1994), 4673–4680.

[53] Mikkel Thorup. 2013. Bottom-k and priority sampling, set similarity and subset sums with minimal independence. In
STOC. ACM, 371–380. https://doi.org/10.1145/2488608.2488655

[54] Richard Van Noorden, Brendan Maher, and Regina Nuzzo. 2014. The top 100 papers. Nature News 514, 7524 (2014), 550.
[55] Thuy-Trang Vu, Xuanli He, Gholamreza Ha�ari, and Ehsan Shareghi. 2023. Koala: An Index for Quantifying Overlaps

with Pre-training Corpora. arXiv preprint arXiv:2303.14770 (2023).
[56] Pei Wang, Chuan Xiao, Jianbin Qin, Wei Wang, Xiaoyang Zhang, and Yoshiharu Ishikawa. 2016. Local Similarity

Search for Unstructured Text. In SIGMOD. ACM, 1991–2005.

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

https://doi.org/10.48550/ARXIV.2303.03919
https://doi.org/10.48550/ARXIV.2303.03919
https://doi.org/10.1145/3589324
https://doi.org/10.1145/2488608.2488655

200:26 Zhencan Peng, Yuheng Zhang, and Dong Deng

[57] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2017. Leveraging Set Relations in Exact Set Similarity
Join. PVLDB 10, 9 (2017), 925–936.

[58] Zhizhi Wang, Chaoji Zuo, and Dong Deng. 2022. TxtAlign: E�cient Near-Duplicate Text Alignment Search via
Bottom-k Sketches for Plagiarism Detection. In SIGMOD. ACM, 1146–1159. https://doi.org/10.1145/3514221.3526178

[59] Jonathan J Webster and Chunyu Kit. 1992. Tokenization as the initial phase in NLP. In COLING 1992 volume 4: The
14th international conference on computational linguistics.

[60] Chuan Xiao, Wei Wang, and Xuemin Lin. 2008. Ed-Join: an e�cient algorithm for similarity joins with edit distance
constraints. PVLDB 1, 1 (2008), 933–944.

[61] Chuan Xiao, Wei Wang, Xuemin Lin, Je�rey Xu Yu, and GuorenWang. 2011. E�cient similarity joins for near-duplicate
detection. ACM Trans. Database Syst. 36, 3 (2011), 15.

Received January 2024; revised April 2024; accepted May 2024

Proc. ACM Manag. Data, Vol. 2, No. N4 (SIGMOD), Article 200. Publication date: September 2024.

https://doi.org/10.1145/3514221.3526178

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Min-Hash

	3 OPH Compact Windows
	3.1 Empty OPH Compact Windows
	3.2 Non-Empty OPH Compact Window
	3.3 OPH Compact Window Generation

	4 Near-Duplicate Text Alignment
	4.1 OPH Interval Scan
	4.2 Optimizations
	4.3 Put Together
	4.4 Discussion

	5 Experimental Evaluation
	5.1 Evaluating OPH Compact Window Generation
	5.2 Evaluating OPH Interval Scan
	5.3 Comparing with Existing Methods
	5.4 Scalability

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

