Validating 70 Million Years of Convection Driven

True Polar Wander and Dynamic Flattening with
Paleomagnetic Data

Alessandro Forte

University of Florida, Institut de Physique du Globe de Paris https://orcid.org/0000-0002-3530-0455
Petar GliSovié
Institut de Physique du Globe de Paris

Marianne Greff-Lefftz
Institut de Physique du Globe de Paris
Shayan Kamali Lima
Université Paris Cité, Institut de Physique du Globe de Paris

David Rowley
Univeristy of Chicago https://orcid.org/0000-0001-9767-9029

Physical Sciences - Article

Keywords:

Posted Date; January 13th, 2025

DOI: https://doi.org/10.21203/rs.3.rs-5397333/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: There is NO Competing Interest.


https://orcid.org/0000-0002-3530-0455
https://orcid.org/0000-0001-9767-9029
https://doi.org/10.21203/rs.3.rs-5397333/v1
https://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Title:
Validating 70 Million Years of Convection Driven True Polar Wander and Dynamic Flattening with Paleomagnetic

Data

Authors:

Alessandro Forte*!>3, Petar GliSovi¢ >*4, David Rowley™ °, Marianne Greff?, Shayan Kamali Lima?

* Corresponding author, email: forte@ufl.edu, forte@ipgp.fr
! Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA 2

Université Paris Cité, Institut de Physique du Globe de Paris, 75238 Paris Cedex 05, France

3 GEOTOP, Université du Québec a Montréal, Montréal, QC, H3C 3P8, Canada.

4 Dept. of Geological Sciences & Geological Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada
> Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, 60637, USA

T David Rowley, deceased May 30, 2024

Abstract:

Mantle convection drives changes in Earth's ellipsoidal figure and corresponding moment of inertia, causing shifts
in the planet's rotation axis known as true polar wander (TPW). Using seismic tomography and the Back-andForth
Nudging (BFN) method, we developed a time-dependent convection model that reconstructs the evolution of
mantle density distribution and Earth’s moment of inertia over the past 70 million years. This modelling approach
provides a close match with independent paleomagnetic constraints on the Cenozoic shifts of Earth’s rotation pole,
specifically resolving the previously unexplained U-turn in TPW trajectory at approximately 50 million years ago.
Our findings reveal TPW shifts exceeding 5 degrees, despite the temporal stability imposed by high lower-mantle
viscosity and the stabilizing effect of Earth's remnant rotational bulge. Verification of our predicted changes in
Earth’s ellipsoidal figure through independent paleomagnetic data provides a robust calibration for new predictions

of convection-induced dynamic flattening variations. Over the past 70 million years, we find convection-induced
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changes of flattening that shift from -0.2% to +0.1 % during the Paleogene. Our predictions of precession
frequency in the Paleogene align with recent independent cyclostratigraphic studies, thus validating our model's

accuracy and supporting the hypothesis of reduced tidal dissipation during this period.

Introduction

Mantle convection governs the movement of heat and mass within Earth’s ~2890 km-thick mantle, influencing
fundamental geophysical processes such as the planet’s gravity field and rotational dynamics. Through its impact
on Earth’s moment of inertia, mantle convection induces shifts in the planet’s rotation axis, known as ‘true polar
wander’ (TPW), and induces changes in its elliptical figure, quantified as a ‘dynamic flattening’, that influences
the slow conical precession of Earth’s rotation axis.

The relationship between Earth's rotation and its internal structure has been a longstanding focus of
geophysical research. In Milankovitch's (1934) exploration of the rotational influence of continental and oceanic
masses alone, he demonstrated how the rotation axis may align with the direction of the maximum moment of
inertia dictated by these masses, resulting in polar motion that traces a predictable path over time. The seminal
work of Munk and MacDonald (1960) first highlighted the potential for deep-seated dynamics, in particular mantle
convection, to influence Earth's rotational stability, including TPW. This link between mantle convection and TPW
was explored in greater detail by Goldreich & Toomre (1969), who further advanced the understanding of how any
slow, internally driven changes to Earth’s ellipsoidal shape will cause significant angular displacements of the
planet's rotation axis as it seeks to remain aligned with the principal axis of inertia with the largest moment. They
demonstrated that convection-induced changes in Earth's moment of inertia drive secular motion of the poles with

the rotational bulge acting as a stabilizing force.

Mantle Dynamics and TPW Stabilization

Subsequent studies have shown that subducting lithospheric masses and very deep structures like Large Low Shear
Velocity Provinces (LLSVPs) create significant mass imbalances that influence Earth's inertia tensor and therefore
TPW. Spada et al. (1992) and Ricard et al. (1993) quantitatively linked subducted slabs to the excitation of TPW,

demonstrating that mass anomalies generated by subduction can produce observable shifts in Earth's rotation axis.
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These studies also highlighted the stabilizing role of the rotational bulge, which modulates the magnitude of TPW.
Richards et al. (1997) demonstrated, however, that the long-term stability of Earth's rotational axis is primarily
governed by the slow reorganization of subducted slabs rather than adjustments of the rotational bulge. In a parallel
study that modelled the advection of mantle density heterogeneities inferred from seismic tomography, it was again
found that the rate of polar motion is controlled by mantle viscosity and density distribution changes
(Steinberger & O'Connell, 1997). Later research by Steinberger and Torsvik (2010) and Greff-Leffiz and Besse
(2014), expanded on this by linking mantle dynamics, particularly the interaction between LLSVPs and
subduction, to long-term polar wander behavior. Rouby et al. (2010) also highlighted the key role that the evolution
of subducted slabs and LLSVPs plays in shaping Earth’s geoid and inertia axes. Their work emphasized the
importance of these mantle structures in controlling the observed TPW behavior, although they noted discrepancies
when compared to paleomagnetic data, pointing to the need for further progress in modelling convection-driven
density contrasts in the mantle.

Matsuyama et al. (2006) demonstrated that the presence of an elastic lithosphere introduces significant resistance
to reorientation of the planetary rotation axis and hence limits TPW. Extending this work, Chan et al. (2011)
demonstrate the stabilizing effects that may arise from a remnant rotational bulge and excess ellipticity, which can
limit the amount of TPW on Earth. Additionally, Creveling et al. (2012) showed that interaction between
convectively driven inertia perturbations and elastic lithosphere stabilization could result in complex oscillatory
paths, potentially explaining some abrupt shifts in Earth's rotational behavior during key geological periods. Rose
and Buffett (2017) highlighted how TPW rates are controlled by mantle viscosity and the rate of mass redistribution

within the mantle.

Paleomagnetic Constraints and Challenges

In addition to the theoretical and numerical models discussed above, paleomagnetic studies provide critical
observational constraints on TPW and hence on the evolution of Earth’s ellipsoidal figure. Comprehensive
analyses, such as those by Besse and Courtillot (2002) and Torsvik et al. (2012), offer independent observational
records of Earth's past rotational axis shifts. These data serve as fundamental benchmarks for validating the

predictions of mantle convection models. The ability of a model to reproduce the observed TPW, including key
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features like a U-turn in the pole trajectory around 50 Ma, is a crucial test of its accuracy and robustness.
Reconciling these paleomagnetic observations with mantle convection models remains an outstanding challenge
due to uncertainties in the paleomagnetic data and the theoretical and numerical difficulties encountered in
developing sufficiently realistic simulations of the time-dependent evolution of mantle convection.

While earlier geodynamic models provided insights into how mantle processes drive polar wander, they often
struggled to capture specific features of Earth's TPW history. Models such as those developed by Cambiotti et al.
(2011) emphasized the importance of considering the delayed response of Earth's rotational bulge and viscoelastic
properties when modeling TPW, leading to more realistic predictions of Earth's rotational behavior. Similarly,
Steinberger et al. (2017) provided valuable insights into the interaction between mantle convection and the
stabilizing role of Earth's triaxial shape, but their model predictions of TPW over the past 70 million years
significantly overestimated the observed paleomagnetic data, highlighting the need for more accurate
reconstructions of mantle dynamics — a gap our study seeks to address. Significant discrepancies between predicted
and observed TPW therefore persist, in particular the enigmatic U-turn in TPW around 50 million years ago

remains unexplained.

A New Approach

In this study, we build upon the foundational works reviewed above by employing a time-dependent thermal
convection model that utilizes the Back-and-Forth Nudging (BFN) method (Glisovic & Forte 2016). This
approach, which incorporates seismic tomography models as an initial condition, allows us to reconstruct the 4-D
evolution of Earth's mantle structure and moment of inertia over the past 70 million years with an accuracy that
has been verified against present-day geodynamic observables and major geologic events during the Cenozoic.
Our mantle convection reconstructions underwent successful ground truthing of both their temporal and spatial
realism, notably in previous studies that investigated the origins and evolution of the Deccan Traps (Glisovic &
Forte 2017), the North Atlantic Igneous Province (Glisovic & Forte 2019), the Nile River drainage basin
(Faccenna et al. 2019) and, most recently, the origin and growth of the Antarctica geoid-low during the Cenozoic

Era (Glisovic & Forte 2024).
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The BFN modelling allows us, in the work presented below, to reconstruct the 70-million-year evolution of
Earth’s ellipsoidal figure and moment of inertia, and hence predict new TPW trajectories over this time interval
that achieve a good match between model predictions and independent paleomagnetic data. Most importantly, as
we document in the following, our model successfully captures the U-turn in TPW around 50 Ma, a phenomenon

that has eluded previous models.

Convection-Induced Dynamic Flattening

Our reconstructions of the evolution of Earth’s ellipsoidal figure using the BFN models directly yield predictions
for the evolution of Earth’s dynamic flattening that controls the astronomical precession of Earth’s rotation axis
(see the Supplementary Information, henceforth ‘SI”). These dynamic flattening changes will be directly calibrated
through matching of the predicted TPW trajectories against the independent paleomagnetic constraints on Earth’s
pole positions. Dynamic flattening affects Earth's precession of the equinoxes by determining how lunisolar
gravitational torques act on the planet’s equatorial bulge, driving a slow wobble of Earth’s rotation axis. This
precession, along with changes in obliquity (Earth’s axial tilt), modulates the latitudinal distribution of solar
radiation, and thus plays a crucial role in the Milankovitch paleoclimate cycles (Pdlike & Shackleton 2000, Hinnov
2013, Farhat et al. 2022a). Early models, such as those by Forte & Mitrovica (1997), proposed that mantle
convection could significantly influence Earth's moment of inertia and hence dynamical flattening, potentially
inducing orbital resonances with Jupiter and Saturn, previously theorized by Laskar et al. (1993), that contribute
to long-term climate variability.

Morrow et al. (2012) later investigated the combined influences of glacial isostatic adjustment (GIA) and
mantle convection over the past 25 million years. Their findings indicated more moderate, time-averaged variations
in dynamic flattening, which proved difficult to reconcile with independent cyclostratigraphic data. This
discrepancy introduced a challenging "enigma" regarding the relationship between observational evidence of
dynamic flattening's evolution and the underlying geodynamic processes responsible for these changes.

More recently, Ghelichkhan et al. (2021) utilized a 4-D variational reconstruction of the past evolution of
mantle convection to model Earth’s precession constant over the last 50 million years, again suggesting modest

convection-induced changes (~0.2%) to the dynamic flattening. This study did not extend to the beginning of the
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Cenozoic, in particular the period preceding and including the Paleocene-Eocene Thermal Maximum at 56 Ma,
and it was not calibrated against independent paleomagnetic constraints on moment of inertia changes, leaving

open questions about Earth's long-term rotational evolution during this key time interval (Boulila & Hinnov 2022).

BFN Modelling Results

To model the dynamic origin and temporal evolution of Earth’s ellipsoidal gravitational figure and related moments
of inertia, we reconstructed the 4-D evolution of mantle convection throughout the Cenozoic era using an iterative
BFN method for time-reversed, tomography-based convection (Glisovic & Forte 2016). This time-reversed mantle
convection methodology is summarised in the Methods section. We nonetheless underline here an important
technical point that is worth keeping in mind. The BFN methodology yields a global reconstruction of the mantle’s
3-D structure at some desired time in the past: here 70 million years ago. This reconstructed past state is then used
as the starting point for a mantle convection calculation that advances forward in time, from the past to the present.
It is from this complete forward simulation, that fully satisfies the equation of thermal energy conservation in the
mantle, that we reconstruct the changing ellipsoidal figure and related moments of inertia, that are analyzed in the
following discussion.

Paleomagnetic reconstructions of Earth's rotation axis over the past 200 million years, based on the geocentric
axial dipole model, have provided valuable constraints on True Polar Wander (TPW). However, these
reconstructions are subject to significant uncertainties, particularly when determining the precise trajectory of the
rotation axis (see Methods and Table 1). Despite these uncertainties, we aim to assess whether paleomagnetic
constraints on Earth's rotation align with the changes predicted by mantle convection models during the Cenozoic
Era.

In Figure 1a, we present TPW trajectories predicted by reconstructions of mantle convection over the past 70
million years that use two mantle viscosity profiles (V1 and V2, shown in Fig. S1) and two global tomography
models (GyPSuM and S40RTS — see Methods). A key outcome is the distinct U-turn in Earth's rotation axis
trajectory that is observed at approximately 50 million years ago, which is captured in both the paleomagnetic data
(Torsvik et al. 2012) and our mantle convection models. The accuracy with which this U-turn is reproduced by the

convection reconstruction employing the V1 model, and initialized with the GyPSuM tomography model,



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

represents a significant advancement over previous convection models that were based on the history of subducted
slabs and were unable to capture this key feature (Rouby et al. 2010, Steinberger et al. 2017). Additionally, we find
that the sharp U-turn at 50 Ma is also predicted in the absence of a remnant rotational bulge and therefore is not
dependent on the stabilization arising from long-term elasticity of the lithosphere (see Figure S2 in the ST).

In a further analysis of the TPW paths (see Figure 1b), we specifically focussed on the angular displacement
of Earth's rotation pole relative to the present-day North Pole as a function of time. The V1 model closely tracks
the paleomagnetic data, particularly around 50 Ma, where the maximum pole deviation occurs. This excellent
alignment between model predictions and paleomagnetic data is further confirmed by the analysis in Table 2, where
we observe a goodness of fit (see eq. 4 in Methods), analogous to the reduced chi-square fit, whose value is close
to one for the past 70 million years. Figure 2 presents the relative deviation between the predicted and observed
pole positions, normalized by the paleomagnetic uncertainty bounds (a95). The hybrid approach (eq. 1 in Methods)
used in the n-V1* and m-V2* models, where present-day moment of inertia is combined with model predictions,
appears to be key to achieving a closer match to the paleomagnetic data. Notably, the relative deviations for these
models remain consistently below ~1.5 for much of the Cenozoic, suggesting they effectively capture the main
features of Earth's rotational dynamics, including the U-turn around 50 Ma. Compared to previously published
studies (e.g., Rouby et al. 2010), our model provides a substantially improved match to paleomagnetic data, both
in the direction and magnitude of TPW excursions. This quantification of the fit provides robust validation of the
model's predictions, indicating that our 70-million-year mantle convection reconstruction reproduces Earth's
moment of inertia changes over geological timescales with good accuracy.

Figure 3 highlights the evolution of true polar wander (TPW) velocities over the past 70 million years,
comparing observed interval-averaged velocities from paleomagnetic data with the best-fitting predictions (Table
2) from the BFN models, specifically n-V1* and n-V1, obtained using the differential and direct calculation of
perturbed moment of inertia changes, respectively (see equations 1 and 2 in Methods). The TPW velocities derived
from the paleomagnetic data (Table 1), shown by the green curve in Fig. 3, showing a peak between 60 and 50 Ma.
This peak corresponds to the abrupt change in the rotation pole's direction, as indicated by the U-turn in the TPW
path shown in Figure 1. The maroon and orange curves, representing predictions from the n-V1 and n-V1* models,

similarly show this peak in TPW velocity near 50 Ma. The instantaneous velocities, represented by the dashed
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curves, are computed using eq. (23) in the S7 and they incorporate the transient response to the relaxing rotational
bulge. Since the TPW calculations are initiated using an equilibrium pole position at 70 Ma, where the initial
instantaneous TPW velocity is zero, the predicted instantaneous TPW velocities near 50 Ma will be muted relative
to the interval-averaged velocities. The predicted interval-averaged velocities are therefore more closely aligned
with the corresponding interval-averaged TPW velocity from paleomagnetic data, both in terms of magnitude and
timing. These results, in Fig. 1 to Fig. 3, demonstrate the ability of the BFN modelling to replicate key features of
Earth's rotational dynamics, including the U-turn in TPW near 50 Ma, and underscore the sensitivity of TPW to
convection-induced changes in Earth’s moment of inertia, which are modulated by the viscosity of the mantle.

One other noteworthy result presented in Figure 3, concerns the present-day rates of TWP predicted by the
BFN reconstructions of mantle evolution over the past 70 million years and the present-day rates estimated from
paleomagnetic constraints on TPW. These present-day rates, lying between 0.2 and 0.4°/Ma, represent between 20
to 40% of the 20™ century TPW rate of about 1°/Ma determined by geodetic observations (McCarthy & Luzum
1996). These new findings contrast with previous studies that concluded that mantle convection explains at least
66% of the present-day TPW velocity (Adhikari et al. 2018).

The temporal evolution of Earth’s moment of inertia, will also be manifested in changes in Earth’s dynamical
flattening, quantified as AH(t)/Ho (see eq. 5 in Methods and eq. 30 in the S7). Our BFN reconstructions of mantle
convection-induced changes to the moment of inertia predict significant variability in Earth’s dynamic flattening
over the past 70 million years (Figure 4(a)). The n-V1 (and n-V1*) and S40RTS-m-V2* model predictions show
0.2 to 0.3% increase in dynamic flattening between 70 Ma and 30 Ma. This variability is comparable to that
reported by Ghelichkhan et al. (2021), who limited their mantle convection reconstructions to the past 50 million
years. Similarly to Ghelichkhan et al. (2021), our predictions show a modest 0.2% decrease in dynamical flattening
from its peak value at 30 Ma to the present day (PD).

From cyclostratigraphic analyses of Eocene deep-sea sediment cores, Boulila & Hinnov (2022) inferred
reductions in dynamical flattening that are compatible with reduced flattening predicted by mantle convection
reconstructions (Ghelichkhan et al. 2021). Such inferences are, however, highly dependent on a robust
quantification of much larger amplitude changes to flattening due to tidal-induced deceleration of Earth’s rotation

(see equation 48 and Figure S4(c) in S7) and are also dependent on potentially important complications (e.g. hiatus
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events) affecting cyclostratigraphic interpretations (De Vieeschouwer et al. 2023). It is thus important to combine
both mantle convection and tidal contributions to flattening, while recognizing that the latter may have strongly
varied over the past 70 Ma due to major changes in ocean tidal dissipation (TD), as suggested by numerical models
that incorporate geological estimates of Earth’s paleogeographic evolution (Green et al. 2017).

The combined convection and tidally driven changes to dynamic flattening, quantified as AH(t)/Ho (see eq.
30 in the SI), are presented in Figure 4(b), where it is clear that TD is the dominant contribution to dynamic
flattening changes over the past 70 Ma. Mantle convection generates a relatively modest modulation of the larger
amplitude dynamic flattening variation due to TD. This conclusion is verified in three different scenarios that we
explored: (1) present-day (PD) TD is assumed constant over the past 70 Ma (solid lines in Fig. 4(b)), (2) TD is
reduced to 50% of PD for times earlier than 5 Ma (dashed lines in Fig. 4(b)), and (3) TD is reduced to 30% of PD
for times earlier than 35 Ma (dash-dotted lines in Fig. 4(b)). Scenarios 2 & 3 (see discussion in section 9 of S1,)
are motivated by the paleo-tidal numerical simulations by Green et al. (2017), who modelled the impacts of
changing bathymetry and continental configurations during the Cenozoic (and earlier), including the opening of
the Drake Passage and Tasman Gateway, and found TD was strongly reduced relative to PD. Scenario (1) is
assumed in the Laskar et al. (2004) (henceforth ‘La2004”) many-body orbital solution. As shown in equation (6)
in Methods, the axial precession frequency will vary directly with the ratio H 1/ = vy, therefore it is the
timedependent change of this ratio relative to the PD value, Ay(t) /vo, that is of greater relevance when the rotation
rate changes significantly with time. In Figure 4(c) we therefore show the predicted variation of Ay(t)/yo for all
three TD scenarios and we note the mantle-convection modulation of the tidally driven variations is enhanced
relative to its contribution in Figure 4(b). We draw particular attention to scenario 3 (TD reduced to 30% of PD),

where the flattening ratio Ay(t)/vo changes little from 70 to 40 Ma, because of the mantle convection modulation.

Finally, the implications of convection and TD for the predicted changes in Earth’s axial precession frequency,
Wprec (see equation 6 in Methods), are shown in Figure 4(d), along with observational estimates of wprec in the
Paleogene Period, inferred from cyclostratigraphic and astrochronological interpretations of Atlantic deep-sea
sediment cores, including an outcrop from Spain (‘Sopelana’) with Cretaceous-Paleogene marine sediments (see

figure caption for source references). While none of the three TD scenarios yield an optimal fit to the observational
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estimates of wprec, Wwe suggest that scenario 3 (TD reduced to 30% of PD, prior to 35 Ma) comes closest to
reconciling the data from the deep-sea cores and the ‘Sopelana’ outcrop. This inference is, of course, preliminary
and is based on a simplified parametrization of past changes in TD, here modelled with a piecewise-linear variation

and assuming only one transition time (i.e., 5 Ma or 35 Ma) in the past.

Discussion & Conclusions

Our study demonstrates a strong alignment between mantle convection models and paleomagnetic constraints on
true polar wander (TPW) over the Cenozoic Era, despite uncertainties in the paleomagnetic data and in the
geodynamic models. This agreement underscores the robustness of our time-dependent mantle convection
reconstructions and provides new insights into Earth’s rotational dynamics. In particular, the marked U-turn in the
trajectory of Earth's rotation axis around 50 million years ago that points to a significant geodynamic
reorganization within Earth’s interior during that period.

A critical strength of our study is that the same mantle convection reconstructions that predict the
timeevolution of Earth's moment of inertia tensor, used for true polar wander (TPW) predictions, are also used to
predict changes in dynamic flattening and associated precession frequency. Since both TPW and dynamic
flattening arise from the same moment of inertia tensor, which is perturbed by mantle convection, our ability to
accurately capture TPW dynamics verifies the reliability of our predictions of dynamic flattening changes.

Beyond validating our convection models, this work reveals modest but sustained changes in Earth’s dynamic
flattening over the past 70 Ma. We predict a nearly 0.3% increase in convection-driven dynamic flattening between
70 Ma and 30 Ma, followed by a more gradual adjustment over the last 30 million years. The key question we then
addressed (in Figure 4(d)) is how these convection-induced changes in dynamic ellipticity, combined with past
variations in tidal dissipation, may influence the long-term evolution of Earth’s precession frequency.

Cyclostratigraphic studies (De Vieeschouwer et al. 2023, Wu et al. 2024) provide critical data that help to
address this key question and provide support for the geodynamic model predictions. The reanalysis of Eocene
deep-sea sediment records (De Vieeschouwer et al. 2023) indicate that precession cycles — not obliquity cycles as
previously thought — dominate the lithological variations. This reinterpretation suggests lower tidal dissipation

rates during the Eocene, in agreement with our model predictions (and previous interpretations by Boulila &
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Hinnov 2022) that also reveal enhanced mantle convection modulation when past TD is significantly lower (Figure
4(c) and (d)). These findings emphasize the importance of integrating both tidal and mantle dynamics to accurately
model Earth's precessional changes. Discrepancies between cyclostratigraphic interpretations (Boulila & Hinnov
2022, De Vieeschouwer et al. 2023) underscore the complexity in deciphering sedimentary records.

We suggest that future progress would therefore benefit from the development of new astronomical solutions
that integrate the predictions of precession-frequency changes derived from geodynamic models. Sedimentary
records can then be re-analyzed using the modified astronomical models as tuning targets. Such refinements to the
analysis of sedimentary frequencies would provide powerful tests of precession frequency variations predicted
from the combined contributions of mantle convection and tidal dissipation. This integrated approach holds the
potential to significantly advance both geodynamical modeling and the interpretation of sedimentary records,

leading to a more comprehensive view of Earth's dynamical evolution.
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Methods

To solve the direct (forward-in-time) problem of thermal convection in Earth's mantle, we use the governing
equations that satisfy conservation of mass, momentum, and energy for a Newtonian viscous fluid in a
compressible and self-gravitating mantle, employing a pseudo-spectral numerical method (Glisovic et al. 2012).
Detailed explanations of the pseudo-spectral solution of the regularized time-reversed energy equation are
presented in Glisovi¢ & Forte (2016).

All flow computations are carried out using spherical harmonic expansions up to a maximum harmonic degree
of 170. This yields a horizontal spatial resolution varying from ~64 km at the core-mantle boundary (CMB) to
~117 km at the top of the mantle. The vertical resolution is defined using a Chebyshev polynomial expansion up
to order 129, which provides a radial resolution from ~0.4 km near the isothermal boundaries to ~35 km in the
mid-mantle.

The reference structure (density, gravity, thermal conductivity, heat capacity, and thermal expansion) follows
Glisovic et al. (2012). Energy sources, including radioactive and secular cooling contributions, are uniformly
distributed across all depths, providing a total energy budget of 24 TW.

As discussed in Glisovi¢ & Forte (2014, 2016), the resolution of lateral variations in the upper mantle from
seismic tomography, particularly their amplitudes, is often insufficient due to damping effects inherent in
tomographic inversions. Thus, seismically inferred lateral temperature variations may not be in thermodynamic
equilibrium with the steep radial temperature gradients in the thermal boundary layers (TBLs) within the
lithospheric mantle and near the CMB. To mitigate the instability introduced by this lack of balance, we employed
a purely adiabatic geotherm without (upper and bottom) TBLs, minimizing potential inaccuracies during backward
modeling. The adiabatic geotherm was constructed based on temperature constraints at the upper mantle transition
zone from Katsura et al. (2004), where temperatures at the phase transitions at 410 km and 660 km depths are
1760 K and 1880 K, respectively. Surface and CMB conditions are isothermal, with a surface potential temperature
of 1600 K and an adiabatic temperature of 2456 K at the CMB.

The depth-dependent viscosity models used in our calculations, shown in Fig. S1 in the S, have been tested
against a wide range of geodynamic constraints (Mitrovica & Forte 2004, Forte et al. 2010) and independent

mineral-physical models (G/isovi¢ et al. 2015). In the calculations presented in this study, we specifically employ
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the ‘V1’ viscosity profile, inferred by Mitrovica & Forte (2004) and the V2’ viscosity profile (Forte et al. 2010).
A discussion of both profiles and their geodynamic implications is presented in Forte et al. (2015).

The mechanical surface boundary condition assumes plate-like behavior, with viscous coupling between plate
motions and the underlying mantle flow, ensuring that mantle flow drives the plates (Forte & Peltier 1994, Forte
et al. 2015). The input for this coupling comes from the history of plate geometries throughout the Cenozoic, as
derived from ocean floor ages and magnetic anomalies (Rowley et al. 2016). Plate reconstructions are based on the
Indo-Atlantic hotspot reference frame, sampled at 5 Myr intervals, and all models are calculated in the no-
netrotation (NNR) frame of reference. This boundary condition produces nearly equal amounts of poloidal
(convergent/divergent) and toroidal (strike-slip) flows in the upper mantle (Forte & Peltier 1994).

Geologically reconstructed plate velocities provide the only direct constraints on the past evolution of 3D
mantle buoyancy. Therefore, we developed an inverse procedure to determine the minimal perturbations required
to match geologically inferred plate motions at selected instants (Glisovi¢ & Forte 2016). This method allows us
to map regions in the mantle where small nudges to the buoyancy field can reproduce the geological plate motion
data. This approach allows us to maintain mechanical and dynamical self-consistency by ensuring that all plate
motions are, at any time, entirely driven by internal buoyancy forces.

The key input for mantle convection simulations is the 3D distribution of lateral density (and corresponding
temperature) anomalies derived from the GyPSuM global tomography model, which integrates seismic,
geodynamic, and mineral-physical data (Simmons et al. 2010). To quantify the uncertainties in our predictions,
arising from imperfect resolution of mantle heterogeneity by seismic tomography, we also employ another
tomography model, S40RTS (Ritsema et al. 2011). This model was derived exclusively from global seismic data
that constrain the relative perturbations of seismic shear velocity in the mantle. Therefore, to evaluate the
geodynamic implications of this model it is necessary to determine, a-posteriori, a scaling ratio that converts
shearvelocity anomalies into equivalent density anomalies. In past studies, this scaling ratio is often assumed to
have one value throughout the mantle, approximately estimated from mineral physics data. We instead ensure
maximum geodynamic consistency of S40RTS by carrying out an Occam-style inversion of present-day
geodynamic observables (gravity, topography, plate motions) to derive an optimal depth-dependent scaling ratio

in the mantle.
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The inversion procedure is described in Forte et al. (2015).
To reconstruct the temporal evolution of 3-D mantle heterogeneity, we use the quasi-reversibility (QRV)

method, which integrates the governing conservation of energy equation backward in time. The QRV method,
successfully applied in previous studies (Glisovi¢ & Forte 2014, 2016, 2017), reconstructs past temperature
structures with errors below 10% for major observables like dynamic topography and gravity anomalies. To further
refine our results, we couple the QRV method with the ‘Back-and-Forth Nudging’ (BFN) technique (Glisovi¢ &
Forte 2016). This iterative method alternates between forward and backward integrations of the mantle convection
model, spanning 2.5 Myr time windows, and iteratively updates the temperature field at each time step to minimize
cumulative errors associated with thermal diffusion. The BFN method improves the resolution of mantle
heterogeneity, allowing for more precise reconstructions of mantle dynamics over the past 70 million years.

The geodynamic consistency of our models is verified by comparing predictions of present-day surface
signals (plate motions, gravity anomalies, and dynamic topography) against observations (Glisovi¢ & Forte 2016).
Additionally, the 3D mantle structure is integrated forward from 70 Ma to the present day to confirm high global
correlations with initial seismic-geodynamic models (Glisovi¢ & Forte 2016).

Ground truthing is a critical aspect of validating these model reconstructions. This includes verifying
predictions against present-day geophysical observables such as the gravity/geoid anomalies and dynamic
topography (Glisovi¢ & Forte 2014, 2016). We also establish temporal links between deep mantle upwellings and
surface features, such as the Deccan Traps, the Nile River drainage basin, and the North Atlantic Igneous Province
(Faccenna et al. 2019, Glisovi¢ & Forte 2017, 2019).

The ellipsoidal gravitational figure and related moments of inertia of the Earth are manifested in the longest
wavelength geoid undulations corresponding to spherical harmonic degree 2 (see equation 5 in the SI). These geoid
undulations are computed, at each instant in time, from our reconstructed distribution of internal mantle density
anomalies employing mathematical kernel functions that represent the viscous-flow response of a compressible
mantle that also account for all self-gravitational loads (Forte et al. 2015).

We calculated the convection-driven perturbations to Earth's time-dependent moment of inertia tensor, 61;(t),
using two approaches: the ‘differential’ approach and the ‘direct’ approach. In the differential approach, the

difference between the predicted moment of inertia at any given time in the past relative to the predicted moment
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of inertia at the present day is added to the observed, present-day perturbation of moment of inertia: 61i(t) =

61ijobs(0) + Alijcon(t) where Alijcon(t) = Slijcon(t) — 8lijcon(0), (D

where 61;°65(0) is the present-day perturbation to the moment of inertia tensor determined from the degree-2
nonhydrostatic geoid derived from the GRACE geopotential solution (Tapley et al. 2007) and 61;con(t) is the
inertia tensor perturbation predicted by the mantle convection model. The non-hydrostatic geoid is determined
relative to Earth’s hydrostatic ellipsoidal figure arising from the diurnal rotation (Chambat et al., 2010). The
justification for the differential approach in equation (1) is that mantle convection alone does not entirely explain
Earth’s presentday moment of inertia because other geophysical sources, notably from crustal heterogeneity and
glacial isostatic adjustment, also contribute. Moreover, there are inaccuracies in the reconstructed evolution of
mantle structure that lead to an imperfect prediction for the present-day moment of inertia. The direct approach,
on the other hand, calculates the perturbed moment of inertia entirely from the mantle convection reconstructions
without any corrections, or allowance from other contributions (e.g., the crust):

81(t) = 8lyn(t), )
which may potentially lead to discrepancies in the predicted present-day pole position.

The numerical integration of the differential equation governing TPW driven by convection-induced
perturbations to Earth’s moment of inertia (see equation 23 in S/), requires the specification of input parameters
related to the long-term viscous and elastic structure of the Earth. We calculate the time constant T1 describing the
long-term time dependence of the degree-2 tidal Love number (see equation 9 in S7), using the V1’ and ‘V2’ radial
viscosity profiles described above. For V1 we have T1= 9.3 kyr and for V2 we have T1= 12.9 kyr. These values
are comparable to T1 = 11 kyr calculated for a two-layer viscosity model, with upper-mantle viscosity equal to
1021 Pa-s and lower mantle that is 20 times more viscous (Greff-Leffiz 2011). The harmonic degree-2 tidal Love
numbers in the fluid limit (t = o0), k;T(LT), depend on the long-term elastic lithosphere thickness LT. We require
two values in particular: k/7(LT = 0) = k*T, the inviscid-fluid tidal Love number applicable to a purely hydrostatic

planet, and ksT(LT = 30 km), where 30 km is a thickness compatible with the elastic-plate flexure modelling of



486  free-air gravity anomalies by Watts & Moore (2017). This choice for the value of the elastic thickness, which
487  exceeds the value LT = 10 km adopted in Creveling et al. (2012), is discussed in the ST and the implications are

488 illustrated in Figure S2. Numerical calculations of the degree-two tidal Love number in the fluid limit



488

489

490

492

493

494

495

497

498

499

(Mitrovica et al. 2005), employing the radial density profile in the PREM reference Earth model (Dziewonski &

Anderson 1981), yield: k*fT=0.9342 and k(LT = 30 km) = 0.9319. The 0.25% difference between these two

values is what sustains a residual nonhydrostatic rotational flattening, termed the ‘remnant bulge’ by Matsuyama
491 et al. (2006), represented by equation (11) in the SI.
Our observational constraints on TPW are based on paleomagnetic data compiled and analyzed by Torsvik et

al. (2012). We estimate the TPW trajectory (in Table 1) over the past 80 Ma from the global apparent polar
wander

paths (GAPWP) determined from data in Torsvik et al (2012) and from the global rotations of Rowley et al.
(2016),

and the O’Neill et al. (2005) rotations of plates relative to a fixed Indo-Atlantic hotspot frame. This TPW
trajectory 496 is calculated at 5-million-year time steps, with a 20-million-year moving window average of
the paleomagnetic
study mean data. We employ the statistical aos values as an estimate of 95% confidence uncertainty, represented
by the standard error of the mean of means. We recognize that these avs likely underestimate the true uncertainties
for several reasons. First, each study mean comprises some number of individual estimates of the mean with 500
associated uncertainties. The study mean mean is the average of the individual estimates ignoring all of the 501

uncertainties in the individual measurements. Second, the GAPWP mean at each time is the mean of the study

502 means falling within the age interval window, again ignoring the uncertainties associated with each study mean. 503

Third, there are uncertainties associated with each of the rotations of the plates needed to rotate data from each of 504 the

various major continents into a common frame of reference, including the rotation to the fixed hotspot reference 505 frame.

The correct summing of those uncertainties would yield a more realistic estimate of the true uncertainty.

506

507

This uncertainty modelling should be the basis of a future study.
The extent to which the reconstructed temporal evolution of the convection-induced perturbations to Earth’s 508
moment of inertia are accurate and realistic, may be quantified by two measures of data fit. The first measure is

509 the ‘variance reduction’ to the observed, present-day degee-2 nonhydrostatic geoid from the GRACE

geopotential, 510 defined as follows:



511

512

513

Zm=2

Var.Red. (%) =100 x [1 — m=— I
(6NYm=20)m2 — || (SN(6No)mzp) 2m||2 (t = 0) ||2] (3)

m=-2

in which (§N°)m; and (§Nr)m, (t = 0)are, respectively, the degree-2 harmonic coefficients of
the observed and

predicted nonhydrostatic geoid at present day. A 100% variance reduction represents a perfect
match between 514 predicted and observed geoids. As discussed in the S/, notably equation (5),
there is a direct linear relationship 515 between the degree-2 geoid coefficients and Earth’s
moment of inertia tensor. The variance reduction defined in 516 (3) thus quantifies whether the
reconstructed 70-million-year evolution of mantle heterogeneity can successfully 517 match the

observed present-day nonhydrostatic geoid and hence the present-day moment of inertia.

518 Our second measure of fit, quantifies the 70-million-year match between the paleomagnetic determination of 519 the

TPW path and that predicted by the mantle convection reconstructions. This measure of ‘goodness of fit’ is 520 analogous

to the reduced chi-squared statistic and is defined as follows:

522

523

524

525

N
TPW = EZ 1A9(t
=1 521 X2 ( i) )2
(4)

a95(t)

in which t; (i = 1 ... N) are the individual mean ages (see 2™ column in Table
1) for which a paleomagnetic pole

position has been determined, A8(t;) is the angular separation (in degrees)
between the paleomagnetic pole

position and the mantle convection prediction of the pole position at time ¢,
and a95(t;) is the alpha-95 measure

of uncertainty in the paleomagnetic pole position at time t;. When Xrpw?
< 1, the mantle convection model is



526 fitting the paleomagnetic TPW trajectory within the data uncertainty. Xrpw? >
1 indicates the fit by the predicted 527 TPW path has not fully captured the
data or, alternatively, that the @95 underestimate the true uncertainties.

528 In the SI, we present the theoretical framework that we employed for modelling how mantle convection and 529 tidal
dissipation influence Earth's rotational dynamics as manifested in Earth’s time-dependent dynamic flattening 530 and
precession frequency. Here, we briefly summarize the most important concepts and equations that underpin

531 our modeling results presented in Figure 4. The dynamic flattening, H(t), represents the deviation of Earth's shape
532 from a perfect sphere due to centrifugal forces and internal dynamics. It is defined (see eq. 25 in S7) in terms of 533

Earth's principal moments of inertia C(t) = B(t) = A(t) as follows:

1
c (1) —5[A(®) + BD)]
534 H(t) =
5)
¢(®)
535 This flattening parameter evolves over time due to changes in Earth’s

moment of inertia tensor produced by mantle 536 convection, which
changes the mass distribution within the mantle, and from changes in
centrifugal forces that

537  affect the entire planet, arising from the deceleration of Earth’s rotation rate due to luni-solar tidal dissipation. 538
In all calculations presented in panels (b) — (d) in Figure 4, we employ the differential changes in Earth’s

539 moment of inertia tensor expressed in equation (1) above. As underlined in the discussion following (1), the 540
present-day non-hydrostatic geoid contribution determined directly from the GRACE geopotential solution is held 541
fixed. This is also the case in our exploration of the impact of tidal deceleration on the moment of inertia tensor.

542 For the “purely tidal” modelling, the tidal changes to the inertia tensor (see equation 59 in S7) were calculated in 543

addition to the present-day non-hydrostatic contribution, &1;;con(t = 0), that was held fixed over the entire 70 Ma

544 time interval we analyzed. This approach ensures that the present-day precession frequency (see equation 6, below)
545 agrees — in all simulations we performed — with the present-day reference value provided by the La2004 orbital 546

solution (see equation 72 in S7).



547 Earth's axial precession is the slow, conical movement of its rotational axis (similar to a wobbling spinning 548 top)
caused by gravitational forces exerted by the Sun and Moon on Earth's equatorial bulge, where the latter is 549 quantified
by the dynamical flattening in (5). The rate of this conical motion is quantified in terms of a precession 550 frequency,

Wprec, as follows (see also equation 71 and discussion in S/):

- —_ + 1 — —sin?
20 3 3( 2
1 — ec2 1—g,2
551 Wprec (asvT-e?)  (a/T-e?) 3H  GMs Gm
3 ir)] cos ¢ (6)
552 in which all parameters are defined in Table S1 in SI. This equation highlights how changes
in dynamic flattening
553 H, Earth’s rotation rate (1, and the distance to the Moon a; collectively affect the precession
of Earth's rotation
554 axis. Earth’s orbit is very stable on hundred-million-year time scales (Zeebe 2015) and

therefore secular (i.e., non555 periodic) changes in the distance to Sun, as, are treated here
as negligibly small.
556 The time evolution of the Earth-Moon distance, a;(t), is critical in understanding how tidal dissipation 557 impacts
Earth's rotation rate and in modelling the precession frequency wprec, as shown in equation (6). We
558 modelled the evolution of a.(t) via the principle of conservation of vertical angular momentum in the Earth-Moon
559 system (see equation 67 and the related discussion in section 9 of the S7) as follows:

[Ltotal
560 a z0 — CE(t) (Q0+ aLfl ot) cos ]2

(1) = (mycos i)z GMg (1 — er2)

()
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in which Ltetal,  is the total vertical angular momentum of the Earth-Moon system, at present day, and is assumed
to be constant, Cg(t) is Earth’s polar moment of inertia, () is the present-day rotation rate, (1 ¢ is the present-day
deceleration rate, and a; < 1 is a (non-dimensional parameter) that represents the relative importance of lunar tidal
dissipation relative to the combined total of lunar and solar tidal dissipation (see equation 63 in S/), and all other
parameters are defined in Table S1. By combining mantle convection simulations with these equations that
describe the effects of tidal forces, our theoretical approach (described in the S7) allows for a comprehensive
analysis of Earth’s rotational dynamics over the past 70 million years. This understanding is validated through
comparison with independent observational data from paleomagnetism (Figures 1 — 3) and cyclostratigraphic

studies (Figure 4(d)).
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Table 1: True Polar Wander Path for the Past 80 Myr Calculated With a 20-Myr Sliding Window Every 5 Mer

Window Ma) | Age(Ma) | N K a5 Kss | 0CN) | 9CE
10 6.9 49 126.62 1.82 12.44 87.05 164.32
15 13.1 33 102.53 2.48 13.83 85.79 158.09
20 18.3 28 89.93 2.89 14.76 85.64 152.99
25 25.5 22 113.75 2.92 13.13 85.99 154.18
30 29.6 23 134.38 2.62 12.08 85.43 151.24
35 34.9 23 103.66 2.99 13.75 84.63 151.9
40 39.6 22 101.77 3.09 13.88 84.52 158
45 45.6 24 87.71 3.18 14.95 83.54 133.65
50 51.8 32 77.13 2.91 15.94 82.38 140.5
55 56.7 41 87.89 2.39 14.93 84.31 158.31
60 59.8 46 76.65 2.42 15.99 84.97 191.55
65 63 44 101.94 2.14 13.87 84.39 195.76
70 65.8 33 105.13 2.45 13.65 85.59 208.95
75 71.6 22 118.31 2.86 12.87 86.14 234.8
80 81.8 25 83.02 3.2 15.37 86.72 239.06

1 Calculated from GAPWP, based on data in Torsvik et al. (2012), using global rotations from Rowley et al. (2016) and O 'Neill
et al. (2005) rotations of plates relative to a fixed Indo-Atlantic hotspot reference frame.

Window: age (in Ma) of the centre of the window; Age: mean age computed from the data; N: number of studies;

K: Fisher’s precision parameter; avs: uncertainty (in ©) at the 95% confidence level; Kos: 95% confidence interval (in ©) within
which 95% of study means contributing to the GAPWP are expected to fall; 8, ¢ latitude and longitude of the pole positions

Table 2: Fits to 70-Million-Year Paleomagnetic TPW PalthJr and Present-Day Degree-2 Nonhydrostatic Geoidi

Model GyPSuM GyPSuM GyPSuM GyPSuM S40RTS Data n-V1
n-vV iV1* m-V2* m-Y2*
Var Red. (I1=2) 90% 90% 90% 80% 17%
Xrpw? 1.4 0.95 1.3 3.8 (0.94 over 50Ma) 1.5

+ TPW data consist of paleomagnetic determination of pole position, for each mean age, identified in Table 1.
1 The [ = 2 nonhydrostatic geoid coefficients are derived from the GRACE geopotential solution (7apley et al. 2007), relative
to the hydrostatic ellipsoid (Chambat et al., 2010).
* Denotes predicted TPW paths, shown in Fig. 1, that are based on calculations of the differential inertia tensor perturbations,
as defined in equation (1) in Methods. Otherwise, the direct approach is used, defined by equation (2) in Methods. In this
study, we employed two global tomography models as initial conditions for the mantle convection reconstructions: GyPSuM
(Simmons et al. 2010) and S40RTS (Ritsema et al. 2011). Likewise, we also employed two geodynamic inferences of the
depth-dependent mantle viscosity, V1 and V2, shown in Fig. S1 in the SI. The models denoted "m-", represent convection
reconstructions in which mantle flow is constrained to match geological reconstructions of past plate motions (Rowley et al.
2016). The models denoted by “n” do not impose any matching to geologic inferences of past plate motions. In all cases,
however, the models incorporate tectonic plates as a mechanical surface boundary condition, in which all plate motions are
viscously coupled to mantle flow and driven by internal buoyancy.
Var. Red. is a measure of data fit, to the observed present-day degree-2 geoid, defined in equation (3) in Methods. Likewise,
Xrpw? is a measure of fit to the paleomagnetic determination of the TPW path (Table 1), defined in equation (4) in Methods.
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Figure 1: Observed and predicted positions of Earth's rotation axis over geological time. (a) The black curve
represents a paleomagnetic estimate of TPW path determined by Besse & Courtillot (2002) in the Indo-Atlantic hotspot
reference frame. The green curve represents the TPW path (see Table 1) that we estimate from the paleomagnetic data
in Torsvik et al. (2012), the global rotations of Rowley et al. (2016) and the O Neill et al. (2005) rotations of plates
relative to a fixed Indo-Atlantic hotspot frame. The colored curves represent the predicted TPW paths from 70-
millionyear reconstructions of the mantle for convection models that employ either of two viscosity models (V1 and V2
—see Fig. S1) and two different tomography models (GyPSuM and S40RTS) as initial conditions (see Table 2): GyPSuM
+ V1 (‘n-V1’, maroon curve), GyPSuM + V1 (‘n-V1*’, orange curve), GyPSuM + V2 (‘m-V2*’, red curve), S40RTS +
V2 (‘s40-m-V2*’, blue curve). The asterisk, *, identifies the predicted TPW paths obtained using a differential
representation of the temporal changes in the moment of inertia (see equation 1 in Methods). No asterisk indicates the
‘direct’ representation (see equation 2 in Methods). Predictions marked with "m-" represent convection reconstructions
where mantle flow is constrained to match geological reconstructions of past plate motions. Predictions marked with
"n" do not impose this constraint. (b) Angular displacement of Earth's rotation poles relative to the present-day North
Pole as a function of time (in millions of years, Ma). The figure compares predictions from different mantle viscosity
profiles (V1 and V2) and initial tomography models (GyPSuM and S40RTS) described in panel (a), and in Table 2, with
paleomagnetic data from 7orsvik et al. (2012) and from Besse & Courtillot (2002).The U-turn at 50 Ma, determined
from both the Torsvik et al. (2012) data and from the V1 model predictions, represents the maximum deviation of the
rotation pole from its present-day position.
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Figure 2: Relative deviation between the predicted and observed positions of Earth's rotation
pole (in Fig. 1) as a function of time (in millions of years, Ma). The relative deviation is calculated as
the angular distance between the predicted and observed pole positions, divided by the alpha-95 (a95)
confidence interval (in Table 1). A relative deviation of less than or equal to 1 indicates that the
predicted pole position falls within the a95 region, signifying an acceptable (good) fit. The different
curves represent predictions (see Fig. 1 and its caption) based on two mantle viscosity profiles (V1 and
V2) and two tomography models (GyPSuM and S40RTS).
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Figure 3: Predicted and observed angular velocities of true polar wander (TPW) over the past 70
million years. The green solid curve represents the interval-averaged rate of change of the rotation pole
position based on the observed TPW path (Table 1), calculated from the paleomagnetic data of 7orsvik et
al. (2012). Average angular velocities are computed by dividing the angular distance between successive
pole positions by the elapsed time. The maroon solid curve shows the interval-averaged TPW velocity
predicted by the n-V1 model using the direct approach for the moment of inertia perturbation (eq. 2 in
Methods), averaged over 5-million-year intervals. The maroon dashed curve represents the instantaneous
angular velocity of TPW for the n-V1 model, computed using equation (23) in the Supplementary
Information. The orange solid and dashed curves show the interval-averaged and instantaneous TPW
velocities, respectively, predicted by the n-V1* model using the differential approach for the moment of
inertia perturbation (eq. 1 in Methods). The peak between 60 and 50 Ma in both the observed and
predicted TPW velocities corresponds to the U-turn in the TPW path seen in Figure 1, reflecting a rapid
change in the rotation pole's direction during this time. Note: 1°/Ma = 11 cm/year.
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Figure 4: Mantle-convection and tidally induced changes of Earth's dynamic flattening (ellipticity) and
precession frequency over the past 70 million years. (a) Change in dynamic flattening AH(t)/Ho as a function
of time (in millions of years, Ma) relative to its present day (PD) value Ho, where AH(t) = H(t) — Ho. The curves
represent predictions (see Fig. 1 and its caption) based on different mantle viscosity profiles (V1 and V2) and
tomography models (GyPSuM and S40RTS). Positive values indicate an increase in the flattening compared to PD,
while negative values indicate a decrease. This evolution represents the contribution of mantle convection to Earth's
precessional dynamics (see eq. 6 in Methods). (b) Combined effect of convection and tidally driven deceleration
of rotation on dynamic flattening changes (see Methods, discussion following eq. 5). The solid black line (‘tidal
100%’) represents the prediction assuming PD tidal dissipation, given by the La2004 solution (see discussion in
main text), is constant over past 70 Ma, and no changes due to mantle convection are included. The solid orange
line represents the combined effect of TD and convection, where the latter is predicted for the n-V1* model — see
orange curve in (a). Dashed lines show effect of reducing TD to 50% of PD for times earlier than 5 Ma, in absence
of convection changes (black curve) and with convection (orange curve). Dashed-dotted lines represent the effect
of reducing TD to 30% of PD for times earlier than 35 Ma, without (black curve) and with (orange) convection
induced changes. (¢) Change in flattening ratio, Ay(t)/yo where y = H 2/ and Ay(t) = y(t) — yo . The curves
represent the same models identified in (b). In all cases the black curves represent the effect of TD alone, while the
orange curves represent combined TD and convection effects, where the latter is derived from the n-V1* convection
model. (d) Changes in precession frequency, wprec (See equation 6 in Methods), over the past 70 Ma. The curves
again represent the same models identified in (b) and (c). Observational estimates of wpr.c are also shown and they
are labelled as: (i) ‘Newfoundland Ridge’ datum (blue diamond), from cyclostratigraphic analysis by De



Vieeschouwer et al. (2023), (i1) ‘Walvis Ridge’ (violet circle) and ‘Sopelana L’ (red triangle) data, compiled by Wu
et al. (2024, see their Table 1), (iii) ‘B&H (2022)’ data (green triangles), from cyclostratigraphic analysis by Boulila
& Hinnov (2022, see their Tables 3 & 4 ). The corresponding vertical bars represent the standard deviation.
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Materials and Methods

1. Mantle Viscosity

Our back-and-forth iterative method for time-reversed convection modelling incorporates depth-dependent mantle
viscosity. This input is critical for ensuring that the temporal evolution of mantle buoyancy occurs on time scales
that are as Earth like as possible. Our convection modelling thus incorporates two depth-dependent, horizontally
660 averaged, viscosity profiles (‘V1’ and ‘V2’, see Fig. S1) derived from joint inversions of convection-related
global 661 observables, such as plate velocities, gravity anomalies, crust-corrected dynamic topography, and core-
mantle 662 boundary ellipticity. Additionally, these viscosity profiles integrate ice-age geodynamic data associated
with 663 glacial isostatic adjustment (GIA), notably, the Fennoscandian relaxation spectrum and decay times

determined 664 from the postglacial sea level history in Hudson Bay and Sweden (Mitrovica & Forte 2004; Forte

etal 2010).



0 5 e Figure S1: Mantle viscosity
| inferrences from joint inversions of
GIA and convection data sets. The
solid black line (model V1) is the
viscosity profile that provides an
" optimal fit to the entire suite of
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667 2. Degree-2 Geopotential and Earth’s Moments of Inertia
668 The spherical harmonic expansion of Earth’s time-variable external gravitational potential field, U(r", t), in a 669

coordinate system whose origin coincides with Earth’s centre of mass, is:
o l
GM r !

©(£) v ©.0)
1+ > v

r

670 U(r,6,p,t) »»Uum r
(1)
[=2m=-1
671 where M is the total mass of the Earth, G is the universal constant of gravitation, 7 is

the mean radius of the Earth, 672 (r, 6, @) respectively represent the radius,

colatitude and longitude of any external point at position r, t represents



673 time, Um(t) are the dimensionless time-dependent harmonic coefficients of the external geopotential, and 674 Y;m(6,

@) are complex spherical harmonics whose mean-square amplitude on the unit-radius sphere is unity:

1
— J. f Y™ (0, 9) :
675 4 m Yim (6, @) sinf dO de = 511 Smm’

676 where * denotes complex conjugation and J;; represents the Kronecker delta equal to
1 when i = j and equal to

677 0 otherwise.

678 The time-variable, 2"-order moment of inertia tensor is defined by:

679 Lij(t) = [[[ [xixibij — xix;] p(r™, t) sinb d@ de r2dr 2)

680 where x; (i = 1,2,3) represent the (x, y, z) Cartesian coordinates of any point r~ inside

the Earth, p(r",t) is the 681 time-dependent mass density distribution inside the

Earth, and the integration in (2) is carried out over the entire 682 volume of the Earth.

683 In our work, the time-dependence of the internal mass density arises from mantle
convection:

684 p(r t) = po(r, t) + Sp(r', t), 3)

685 where po(r, t) is the purely radial density distribution. In our calculations we

assume that po(r, t = 0) is given,

686 by the PREM reference Earth model (Dziewonski & Anderson 1981), and 6p(r”,
t) are time-dependent density 687 perturbations generated by mantle convection
whose horizontal average, at all depths, is equal to zero. We note

688  here that secular cooling due to mantle convection will also contribute to the time dependence of the radial density
689  distribution, po(r, t). Substituting (3) into (2), we obtain the following expression for the reference moment of

690 inertia due to the radially symmetric (I = 0) density distribution:
TE
8w
= | Po(nD)r 4
691 I;j0(t) =1o(t) 6ij, where I(t)= 0 dr (4a)
692 and the following expression for the perturbations to the moment of inertia tensor

generated by mantle convection:
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700
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702

704

705

708

709

710

711

712

81ijeon(t) = [f[ [xrxibij — xix;] Sp(r,t) sinb dO de rzdr (4b)

We underline here that expressions (4a-b) describe the moment of inertia for a spherical,
non-rotating Earth. There 695 will be additional contributions on a rotating Earth due
to the centrifugal deformation, described in the next section

below.

The effect of secular cooling on the scalar moment of inertia Io(t) in (4a) was assessed by Greff-Leffiz (2011),

who determined that the largest contribution to the changes in Io(t) will be from the secular contraction of Earth’s
699 mean radius and then estimated that:

ldl —9~_2x10"3Ga!

lodt
assuming a secular cooling rate of 100 K/Ga. For the time interval considered here (i.e., the past 70 Ma) the
cooling-induced change in Io(t) will therefore be Alo~ — 0.14%o. This is a negligibly small perturbation, and we
703 therefore treat Io(t) = Io(0) = constant in our work.
Using the integral solution to the gravitational Poisson equation, one can establish a direct relationship between

the convection-induced contributions to the degree | = 2 harmonic coefficients of Earth’s external gravity 706

potential in (1) and the individual components of the convection-induced perturbations of the moment of inertia

707 tensor in (4):

1 () - \F SR2 t]

Sloen(® = VB ramor D Nz o] (5a)
1 O+ \F SR? t]

81,,000(t) = V5 r2 M [36R AR , (5b)
[ 2

1,0 = VSTEM =5 spoce)) (50)

O =V5r2M \E 5122@)]
S1ycon | , (5d)

(&)= V512 M - \E 5R5(t)]

61x‘zcon . (56)
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2 613t ]
5Iy’2con(f) = ‘\[gT'EZM [_J; 2( ) , (Sf)

where SR,m(t) = Re[ §Um(t)], 8Iam(t) = Im[ SUam(t)],
(5g)

and SU,m(t) represent the convection-induced contributions to the degree-2
geopotential coefficients in (1).

From Brun’s formula, the relationship between the convection-induced
perturbations of the geopotential, described

by harmonic coefficients §U;m(t), and the corresponding undulations of the non-
hydrostatic geoid surface,

described by harmonic coefficients, SN/m(t), relative to the reference hydrostatic

ellipsoid with mean radius equal 719 to g, is given by:

SNm(t) =reg SUM(t) (6)

Based on equation (6), we can now express all convection-induced perturbations
of the moment of inertia tensor, 722 in (5a-f), in terms of the convection-
induced perturbations to Earth’s geoid. This connection between moment of 723
inertia and the geoid is of special utility because it allows the immediate
application of the theoretical formulation 724 of the viscous flow response of

the mantle to internal density loads in terms of geodynamic kernel functions

(Richards & Hager 1984, Ricard et al. 1984, Forte & Peltier 1987), as follows:

3 rs
SNm()=___ g l+1) [remsGi(n|r) Spin(r, ©) dr (7)

where p is the mean density of the Earth, 7, is the mean radius of the solid surface of
the Earth, r¢cup is the mean

radius of the core-mantle boundary (CMB), and Gi(n|r) is the harmonic degree-I geoid
kernel calculated for a

viscous, deformable mantle in which the explicit functional dependence on viscosity 1

is indicated, and §p/m(r, t) 730 are harmonic coefficients of the time-dependent internal



density anomalies generated by mantle convection. For 731 the work presented in the
main text, we employed geoid kernels for a compressible, self-gravitating mantle that
732 are calculated for both the V1 and V2 radial viscosity profiles, for two different
surface boundary conditions — no733 slip and free-slip — required to model the
mechanical feedback of the tectonic plates on the underlying mantle flow

734 (for more details, see Forte et al. 2015).
735

736 3. Angular Momentum of a Rotating Deformable Earth
737 The moment of inertia on a rotating, deformable planet must also include the influence of the centrifugal potential

738 on the internal mass distribution and on the external gravitational figure. As described in Ricard et al. (1993), the 739

total inertia tensor will then be given by the following expression:

r5
740 Lij(t) = Io 68ij + —3¢G kT(t) * [wi(H)wi(t) — 31 w?(t)di;] + 8l;jcon(t)
(8)
741 Where Iy is the scalar moment of inertia in (4a), kT(t) is the time-dependent

tidal Love number, w;(t) is the i’th

742 Cartesian component of Earth’s instantaneous rotation vector w(t), * denotes
time convolution, and 81;con(t) is

743 the perturbation generated by the time-dependent mass redistribution generated
by mantle convection.

744 For sufficiently long times, as was shown by Ricard et al. (1993), the Maxwell
viscoelastic behaviour of Earth’s

745 deformation can be approximated, in the Laplace transform domain, by the
following expression for the tidal Love

746 number:
747 kT(s, LT) = k/T(LT) [1=T1s] 9
748 where s is the Laplace transform variable, LT is the long-term (t — oo) elastic

lithosphere thickness, ksT(LT) is



749

the fluid tidal Love number that depends on the elastic thickness of the
lithosphere, and T1 (> 0) is a time constant 750 that depends on the depth-
dependence of viscosity and density. Transforming (9) to the time domain then

yields:

751 kT(t, LT) = kfT(LT)[ 8(t) — T16(t)] (10) 752 where §(t) is the Dirac delta function

and the overdot denotes the time derivative.

753 The hypothesized long-term ‘remnant bulge’ that stabilizes a planet’s rotational behaviour, presented in 754

Matsuyama et al. (2006), was further employed by Creveling et al. (2012) and Chan et al. (2014) who modelled 755 an

additional contribution to Earth’s moment of inertia arising from this remnant rotational bulge, given by the 756 following

expression:

757

758

759

— e «T T
815 jbulge () = — [Kk'f —kf (LT) ]3er Qi (63 — _  13)  6ij
(11)

in which k*¢T is the fluid tidal Love number for a purely hydrostatic Earth (i.e., k*T =
k(LT =0) ) and ; is

the initial angular velocity associated with the formation of the remnant bulge (Matsuyama
et al. 2006). It is 760 important to note that the Einstein tensor summation convention
is suspended in (11) (and in all subsequent

761 expressions involving 81;;bulse) and there should be no summation over the index i. The Earth’s total moment of 762

inertia is then obtained by adding the remnant bulge contribution in (11) to that in (8), yielding:

763

764

765

5

Lij(t) =10 8ij+ 3—eG k1(t, LT) * [wi(t)wj(t) — =13 w2(t)6ij] + Slijbuige(t) +
61i,jcon(t)

and after substituting (10) into the above expression and working out the temporal
convolution, we finally obtain:

Lij(t) =10 6ij + —3eG kfT(LT){ [wi(t) w;(t) — —13 w?(t)dy]
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775

776
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779

780

2
— T1 [6i()wi(8) + wi()6(t) — 3 Gu(t)we(t) 6]}

rs

*T
[k'r —kf(LT)] 767 + __ Qai (813 — 13_) 8ij+ Slijcon(t)
(12) 3G

We now determine Earth’s time-dependent angular momentum vector:

L) = 1) - w(t) = I;;(t) w;(t) & (13)
where €; is the unit basis vector on the i 'th axis in a Cartesian coordinate system.
Substituting (12) into (13) finally 771 yields the expression for the angular
momentum of a rotating, deformable Earth perturbed by mantle convection:

r5

L(t) = [ o+ 3G k' (LT) {32_w?(t) = T—31 & (@i} ] o (t) —

rs5
[3__<G k;T(LT) w2(t) T1] @ (£) + 815,(t) w;(t) é: (14) 774

in which we defined a so-called “stabilized” moment of inertia perturbation:

8155 = 8Ieon(t) + (3 QG 2 k) [1 —k S KTGLT )] (8i3— -13) 83,
(15) rs

Following Munk and MacDonald (1960), the first factor appearing in the remnant bulge
stabilization in (15) may 777 be directly related to the dynamical flattening as

follows:

r5

e Q2i k*fT = (C - A)hydro
3G

where (C — A)hvdre is the difference between maximum (polar) and
minimum (equatorial) moments of inertia of

a purely hydrostatic planet with angular velocity ().
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795

4. Rotational Dynamics on a Deformable Earth

We begin with the Euler equation of conservation of angular
momentum, without external torques, in a body-fixed

rotating reference frame (Goldstein 1980):

dL
— +wXL=0 (16)
dt

where w is the angular velocity of the Earth. As argued by
Ricard et al. (1993) and Greff-Lefftz (2011),

dL
__ KwXL
dt

because the long-time scale, convection-induced changes in
L(t) are orders of magnitude slower than the diurnal 789

time scale associated with w(t). This ‘quasistatic’

approximation, where

requires that ||w(t)|| = Q = constant, namely that the
length of day is constant (Greff-Leffiz 2011). Returning to
792 (16), the quasistatic approximation applicable
to mantle-convection induced changes in Earth’s angular
793 momentum is:

w(t) X L(t) =0 and |w(t)]|2= Q2 (17)

The substitution of expression (14), for Earth’s total angular momentum, into the

quasistatic approximation (17) 796 for conservation of angular momentum

yields:
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803

804
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811

812

813

w(t) X {— [ 3765 kfT(LT) Q2 T1 ] @ (£) + 815,;(t) w;(t) é:} =0 (18)

Expression (18) can be identically satisfied if the terms appearing in curly braces are

colinear with the rotation 799  vector w(t):

— [ 37265 k/T(LT) Q2 T1] & (£) + 8I5:(t) w;(t) éi= A w(t)
(19)

Equation (19) shows that when @ (t) = 0, then

SI5(t) - w(t) = A w(t) (20)

Equation (20) is a classic eigenvalue problem that yields a solution for w(t)
corresponding to Earth’s ‘equilibrium’

rotation axis, attained when the viscous adjustment of Earth’s rotational bulge is
very rapid (i.e., when T1— 0). 805 We thus recognize that A in (19) is a
‘time-dependent eigenvalue’ that satisfies (20) only for equilibrium rotation.

Equation (19) can be further extended by noting that the constant length-of-day
constraint in (17) yields:

—d?=0>w(t) w()=0 (21)
dt

Given the orthogonality condition in (21), taking the dot product of both sides of
expression (19) by w(t) - yields 809 the following expression for the time-
dependent ‘eigenvalue’: 810 A1) = @) I - @(t)

, where @d(t) =o__® (22)

We next substitute (22) into equation (19) to finally obtain:

BT w(®) = [ — {&(®) - 85(1) - d(D} I] - w(D), (23a)

where B =3re65 kfT(LT) Q2= (C — A)hwdro ___ KTy (LT pr)
(23b)



814 Equation (23a-b) is of fundamental importance, because it governs the time-dependent
evolution of Earth’s 815 rotation vector, and hence the trajectory of the pole, in response
to the time-dependent moment of inertia 816 perturbations generated by mantle
convection, which are themselves modulated by the delayed response due to 817 the
viscous adjustment of the rotational bulge and the stabilization arising from a remnant
rotational bulge. We

818 note that no assumption is made concerning how small or how large is the departure of the rotation pole from 819

current North Pole, nor do we need to explicitly diagonalize the moment of inertia tensor to calculate the maximum

820  moment of inertia and its corresponding eigenvector, which defines the equilibrium rotation pole. We further note

821  that equation (23) was also derived in Rose & Buffett (2017), who employed it in their investigation of scaling 822

relationships for the rates of TPW expected on a convecting Earth.

823 In practice, in our modelling of TPW induced by mantle convection, we numerically integrate (23) using an 824

accurate Bulirsch-Stoer algorithm for solving systems of first-order differential equations (Press et al. 2007).

825

826 5. Remnant Bulge Stabilization of TPW

827 Here we explicitly explore the magnitude of the stabilization of mantle-convection-induced TPW arising from the 828

remnant rotational bulge described in equations (11) and (15). For this purpose, we consider the TPW predictions

829 presented in the main text for the n-V1* convection model (see Figure 1 and Table 2), obtained using the GyPSuM
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849

tomography model as an initial condition and using the V1 viscosity profile and the fluid tidal Love number kT (LT
= 30 km). The value LT = 30 km, chosen for all the TPW predictions presented in the main text, is motivated by
the study of Watts & Moore (2017) who analyzed the impact of elastic lithosphere flexure on crustal isostatic
contributions to the spectral amplitude of free-air gravity anomalies and concluded that the best match is obtained
with a global mean thickness of LT = 34 km.

We now consider TPW predictions, using the same convection-induced changes to the mantle density distribution
obtained with the n-V1 models (Figure 1), for two different values of the elastic thickness of the lithosphere: LT
=10 km and LT = 0 km. The TPW predictions obtained using LT = 0 km involve no remnant rotation bulge, as
expected from equation (11). The value LT = 10 km was the preferred value employed in Creveling et al. (2012).
As shown in Figure S2, the predicted TPW, in particular its maximum angular displacement relative to the position
of the present-day rotation pole (in Figure S2b), will be increasingly amplified — as expected — when the elastic
thickness is progressively reduced to a value of zero. The peak difference, at 50 Ma, between the LT = 30 km and
LT = 0 km TPW predictions is ~2 degrees for the n-V1* model.

We also find that for LT = 0 and 10 km, the goodness of fit measure Xrpw? (see equation 4 in Methods) is 1.60
and 1.34, respectively, compared to Xrpw? = 0.95 for LT = 30 km, where in each case we refer to the n-V1*
predictions in Figure S2a. These results suggest that LT = 30 km provides a better fit to the paleomagnetic
constraints on TPW, when interpreted in terms of the n-V1* convection model. As the elastic thickness is reduced
to zero, the speed of TPW is increased, as might be anticipated (Figure S2¢) although the impact on the predicted
present-day rate of TPW is relatively small. Finally, as shown in Figure S2d, the impact of the remnant bulge on

the predicted changes in dynamic flattening is quite small.
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(b) Angular Displacement of Rotation Pole from Current North Pole
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Figure S2: Impact of the remnant rotational bulge on mantle-convection induced TPW. (a) The curves
represent predicted TPW paths assuming different values of the elastic thickness of the lithosphere that govern the
remnant or fossil rotational bulge. The solid, dashed and dotted curves, here and in all subsequence panels (b to
d), represent the TPW predicted assuming that the elastic thickness is LT = 30,10, 0 km, respectively. The paths
of the rotation pole are predicted using 70-million-year reconstructions of the mantle for a convection model that
employs viscosity model V1 (see Fig. S1) and the GyPSuM tomography model as an initial condition (see Table
2): GyPSuM + V1 = ‘n-V1*’. The asterisk * identifies the predicted TPW paths obtained using a differential
representation of the temporal changes in the moment of inertia (see equation 1 in Methods). The prefix "n-"
denotes reconstructions where mantle flow is not constrained to match past plate motions. (b) Angular
displacement of Earth's rotation poles relative to the present-day North Pole as a function of time (in millions of
years, Ma) for the mantle convection predictions in (a). (¢) Here are shown only the “average” angular velocities
(not the transient, instantaneous velocities as in Fig. 3), which are computed by dividing the angular distance
between successive pole positions by the elapsed time. In all cases, peak velocities are observed at 55 — 50 Ma, 30
— 25 Ma and 10 — 5 Ma. (d) This figure shows the corresponding changes in dynamic ellipticity AH as a function
of time (in millions of years, Ma) relative to its present-day value Hy, where AH=H— H,. These changes
determine the impact of mantle convection on Earth's precessional dynamics, as described in eq. 24.
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6. Dynamic Ellipticity

As shown in Goldstein (1980) and Stacey & Davis (2008), the average angular rate of astronomical precession,
wprec, Of Earth’s rotation axis relative to the pole of Earth’s ecliptic plane, due to the torque generated by the 855
gravitational attraction of the Sun and Moon on Earth’s rotational bulge, is given (to zeroth order accuracy — 856

compare with equation (8) in Laskar et al. 2004) by the following expression:

3H GM

Wprec= 2 Q [ azs+ Gmqy3i]cos € (24)

S

in which () is Earth’s diurnal rotation rate, Ms & m, are the masses of the Sun
and Moon, respectively, as & a; 859 are the corresponding average orbital

distance (expressed in terms of the semi-major axis) between the Earth and

860 the Sun and Moon, respectively, € is the obliquity angle between Earth’s axis of rotation and the axis perpendicular

861 to the ecliptic plane, and H is Earth’s dynamic ellipticity/flattening:

863

864

865

866

867

868

c (®) - 2[A(®) + B(®)]

862 H(t) =
(25)
)

in which
C(t) = B(t) = A(t) (26)

are the three principal moments (eigenvalues) of Earth’s time-dependent
moment of inertia tensor.

In past studies of geodynamic-induced perturbations to dynamic
flattening (e.g., Laskar et al., 1993, Forte &

Mitrovica 1997, Ghelichkhan et al. 2021), first-order perturbations of
H(t) described in (25) are determined,

yielding the following expression:



6H 36C

869 - __=
(27)
H 2HC

870 which is obtained assuming that H(t) < 1. If the U,! (complex-valued)
harmonic coefficient of Earth’s

871 gravitational potential in equation (1) is zero or negligibly small, then the
greatest moment of inertia C is given by 872 the following expression
(Chambat & Valette 2001):

NI
873 c¢c=1" 3 E 72 (28) 874 in which U0 is the (real-valued) degree-2

zonal coefficient in Earth’s geopotential (see equation 1). If we now 875 assume that some geodynamic process (e.g. mantle

convection) perturbs Earth’s gravity field, then from (28) we 876 obtain:

2
=3 V5 M2 sU9

877 6C
878 and substitution into (27) yields:
SHMr 2 = —\/g
879 - — ESUL (29)
HHC
880 As noted above, equation (29) is obtained assuming that the Ul

geopotential coefficient is zero or negligibly small,

881 implying that the principal direction associated with largest moment,
C, remains fixed to the z-axis of the 882 coordinate system. The latter
assumption does not admit displacements of the rotation axis, and
hence no TPW. In 883 all analyses of convection-induced changes to
dynamic flattening presented in this work, we instead calculate the
884 following:

AH(t) H(t)—H
885 = 0 (30)
Ho Ho




886 in which Ho= H(0) and H(t) is always calculated, according to
(25), from the eigenvalues of the complete time-

887 dependent moment of inertia tensor in (12), which incorporates the
time-variable position of Earth’s rotation axis

1.0 ' ‘ ' ' "] Figure S3: Accuracy of the
C 1 1%order calculation of changes
05 J  in dynamic flattening. The
- 1] dashed curve represents the
C 1 predicted perturbation of dynamic
5 DS e R R N - ellipticity, §H/Ho, relative to the
= C 1 present-day value Ho, calculated
. 7 using eq. (29). In this calculation
:% C 1 we also employ the present-day
& C 1 value for the principal moment C.
T -1.0F- 1 The solid curve represents the
= i 1 predicted AH/H, calculated using
150 :“S\t";:a'é;r;pg?otm 7 eq.(30) and employing the
B 1 complete timedependent moment
C 1 of inertia tensor in eq. (12).
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w(t) that is found in the TPW predictions presented in Figure 1 (main text) and Figure S2. The difference between

the 1%-order approximation (29) and the exact calculation (30) is illustrated here in Figure S3.

Equation (24) is an approximate expression that ignores the small (~5°) angle between the plane of the lunar orbit
relative to the ecliptic plane, the small eccentricity of the Earth and Moon orbit, and ignores the gravitational
impact of other planets on the evolution of Earth’s orbit (for details see the many-body theory presented in Laskar
et al. 1993,2004). Equation (24) serves, however, to identify a critical linear relationship between the frequency
of precession wyrec and the dynamic flattening H(t), which remains true in the complete many-body theory (Laskar
et al. 2004). A frequency analysis of Earth’s orbital evolution over the past 18 Ma, by Laskar et al., 1993, revealed
the dominant contribution from Earth’s main precession frequency wprec = 50.4712 arcsec/yr (corresponding to a
period of 25,678 yr) in addition to frequencies associated with quasi-periodic gravitational perturbations of other
planets on Earth’s orbital evolution. The most significant of these quasi-periodic perturbations occurs at the
frequency f = s¢— g¢ + gs = 50.3017 arcsec/yr, where gs and g are the secular frequencies related to the
perihelion of Jupiter and Saturn, respectively and se is related to the node of Saturn (Laskar et al. 1993).

As discussed in Laskar et al. (1993), and following from equation (24), any geodynamic process that reduces the
dynamic flattening H(t) by at least —0.2% will then drive the main precession frequency wprec towards the
frequency f associated with the quasi-periodic perturbations by Jupiter and Saturn, leading to a resonance that
significantly perturbs the temporal evolution of Earth’s orbital parameters (i.e., the obliquity angle and precession
frequency) and hence will modify the Milankovitch insolation cycles. As discussed in Laskar et al. (2004) this
resonance is predicted to occur in the next few million years, owing to the continuing reduction of H(t) and
increase in Earth-Moon distance a;, due to tidal-induced deceleration of Earth’s rotation rate. The possibility that
this resonance crossing may have occurred in the past was explored by Forte & Mitrovica (1997) who suggested
that mantle-convection induced changes to H(t), over the past 20 Ma, were large enough to generate such a passage
through resonance. However, Morrow et al. (2012) subsequently examined the combined effects of glacial isostatic

adjustment (GIA) and mantle convection over the past 25 Ma and found more modest time-averaged



914 changes to H(t) and that these changes were not easily reconciled with independent cyclo-stratigraphic 915

constraints. This lack of reconciliation raised an “enigma” concerning the link between observational constraints

916  on H(t) changes and the current understanding of the fundamental geodynamic processes that drive these changes.

917  These issues, including the above enigma, are ultimately dependent on a rigorous and accurate determination of

918  the present-day value of dynamic ellipticity, Ho = H(t = 0), since this determines the starting, baseline-value for

919 relative changes in dynamic ellipticity, defined in (30), and — critically — the baseline-value for the present-

day 920 rate of precession wprec(t = 0) in (24). These points are treated in detail below (in section 7).

921

922 7. Hydrostatic Flattening: Impact of Tidal Deceleration

923 Our preceding consideration, related to equation (28), of the importance of the principal (polar) moment of inertia,

924 C, for understanding changes in Earth’s dynamic flattening (embodied in equation 27) motivates the following 925

review of some fundamental notions concerning the hydrostatic equilibrium of a rotating planet. This will set the 926 stage

for a quantitative assessment of the impact of secular changes of Earth’s diurnal rate of rotation (i.e., the 927 length of

day) due to long-term tidal friction that is needed for the results presented in Figure 4b (main text) and 928 related

discussion.

929 In the absence of TPW, and with no internal dynamics, Earth’s angular rotation vector is @ = QZ and 81;;con(t) = 930

0. From equation (12) we thus obtain the following expressions for the moment of inertia tensor:

1r

931 Ixx= (LT) —- e [k*T - kT(LT) Iyy=10o—3_

QOGz2kr 311rs3Q0G:2 f

175
502 _ N2
932 0 3=t LI (= 0%
(31a)
3G 3 3G
275
2z 03 3G 3 3G f

ke — kr(LT) ]

fe Q2 kT(LT) + —
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2 1es Q2i [
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944
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2 17 (QF — Q2 e Q2 Jor
=1 __E([—)k}"(LT) + QZka

(31b)

3G 3 3G

Ixy:Ixz:IyZZO (31(:)

The expression describing the external gravitational potential of a
rotating hydrostatic Earth with no internal mass

anomalies is, to 2™-order accuracy (Chambat et al. 2010), given
by:

Uwd(r,0) = __GMr  [1—J2wvd (a_yE)2 Py(cos 6) — J4vd (a

—1rE)*P4(cos 0)] (32a)

where Tnhyg(n = 2,4, ...) are nondimensional gravitational form
coefficients for a hydrostatic planet, Pn(cos@) are

the corresponding Legendre polynomials of degree n, and ag is the
equatorial radius of the reference ellipsoid.

The geopotential expansion in (1) has been defined with respect to
the mean radius of the Earth, r¢ and, in the 942 interest of

consistency, we then rewrite (32a) as follows:

Uhyd(r,0) = _—__GMr [1- J v (rrE)z P3(cosO) — J jhva (rrE)* Py(cos 6)]
(32b)
WheI’e ]nhyd == Tnhyg (arEE)

(33) 945

Following Chambat et al. (201 0),_]2th is given by the following

first-order accurate expressions:

TJenya = — [ f2(rEy+m3 | (aahyds )2
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Q

= (using 33) —Jehya=— [ f2(rr) + m3 ] (arhyds)2
(34)

where ahyd=1g[1— 15

fz(T'E)] (35)

is the first-order accurate expression for the equatorial radius of
the hydrostatic rotating Earth, and

Qor3
m =
(36)

GM
is the ratio of the centrifugal to mean gravitational acceleration
at the mean radius rg. The degree-2 nondimensional 952 shape

coefficient is, to first-order accuracy, given by (Chambat et al.

2010):
f2(re) = —(k«fr * 1) 3 m
(37)

where k*/T is the degree-2 fluid (tidal) Love number. Substituting
(35 —37) into (34) finally yields:

J2hyd = k«frm_—_3 [1 + ( —k«f12+ 1) m3 | = k«frm_3
= k«fT O3 GM27rE3 (38)

where the last expression in (38) is correct to first-order since m «
1.

Returning to the moment of inertia tensor in (31), the principal
polar moment C is identical to the I, component 958 of the

hydrostatic inertia tensor and therefore:



959 C =10+ 3y Mrez [k+fr Q3 GM2rest =23 kT(+LTT) [(QQi)2 — 1] Mre2 [k«fT Q3
GM2rE3]
kf
960 & (using38) € =1Io+ 23 (QQi)2 Mre2 J2hyd T [( Q )32 krk(+LTf) Qi2 — 1]
Mre2 J2hyd (39) 961 Similarly, the two principal equatorial moments A = B = [ = I,
are then given by:
1 Q 2
962 A =B =10—3(QiyMrez J2hyd + 3TKTRGLTfT ) T(QQ:)2 — 1] Mre2 J2hyd
(40)
963 From (38) and (39) we then immediately obtain the following expression for the

dynamical flattening of a rotating 964 hydrostatic Earth:

R A R

= [0 +]2nyd3 J2MreMr2 {e(QQ)2 —2kTk (LT fT()LT)QQ: Q2i)2 — 11}
(41)
965 H

2hyd  2{(QQ) —kk«r [(Q

966 In the TPW calculations carried out in this study, we arbitrarily assumed, for simplicity, that Q; = Q and in this 967

case (41) simply reduces to:

Jryd M2
968 Hhyd = 2 e
(42)

To+ 23 hyd 2
]2 Mre
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From constraints on Earth’s mean density structure (Chambat &

Valette 2001) we have Io= 0.3307 Mr.2and 970 therefore equation

(42) yields:
Jhyd
thd = 2
(43)
2 hyd
0.3307 + 32

To first-order in m, consistent with the accuracy inherent in expression
(38), we obtain from (43):

=( 973 Hwd= J2pya 1 Ve T TE3
0.3307 0.3307 (44)

3GM

which reveals the explicit quasi-linear dependence (to first-order
accuracy) of the hydrostatic flattening, H», on

the square of the rotation rate. Using the following values from
Chambat et al. (2010):

m=3.45016 x 103, k*T=10.93233

we obtain from the last expression in (38), the following value:
Jovd=1.0722 x 10-3 (45)

979 and hence, from (43), we obtain:

Hhwd(t =0)=3.235x10-3 [980 (46a)

which
comp
ares
with
the
follo
wing
value
obtain
ed
from
(44):



982 Hhyd

3.242
X
10-3
(46b)

983 For
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ate
soluti
on of
the
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equati
ons
18,
984
follo
wing
Cham
bat et
al.

(2010

):

985 J,vd=1.0712 X 10-3 = (using 43) Hhyd(t =0) =3.232 X 10-3 (47) 986 We note that the

relative difference between the hydrostatic flattening value in (46a) and (47) is 0.09%, whereas 987 the relative difference

between (46b) and (47) is 0.3%, which is of the same order as the convection-induced 988 changes to the dynamic

flattening H shown in Figure 4a in the main text. This suggests that expression (43) should 989 be used rather than the

less accurate formulation provided in (44). The additional implication is that expression

990 (25) should be used for numerical accuracy when evaluating the additional changes to the time-dependent dynamic

991 flattening H driven by mantle convection.

992

993

995

996

The largest changes to dynamic flattening H(t) will arise from the deceleration of Earth’s rotation rate due to tidal
dissipation in the Earth-Moon system. From the many-body orbital solution obtained by Laskar et al. (2004) that
994 incorporates luni-solar tidal dissipation, the length of a sidereal day (LOD) 70 million years ago is predicted
to be

23.4176 hours, compared to the present-day LOD of 23.9345 hours. The Earth’s angular rotation rate at 70 Ma is

therefore Q70 = 7.453048 x 10-5 rad/s (compared to present-day Qo= 7.292116 X 10-5 rad/s) and, using 997

equations (38) and (43), we obtain



998

999

1000

1001

Jhyd(—70 Ma) = (Q—_70)2 Jhyd(0 Ma) = Hhyd(—70 Ma) = 3.379 X 10-3
2 .Qo 2
= [ Hw4(—70 Ma) — Hw4(0 Ma) |/ H»4(0 Ma) = 45 %o (48)

Although the magnitude of this tidal-induced (purely hydrostatic) decrease in Earth’s
dynamical flattening over

the past 70 Ma far exceeds the amplitude of the corresponding convection-induced changes
shown in Figure 4a, 1002 the perturbation to the precession frequency wprec (equation 24)
arising from mantle convection is nonetheless 1003 resolvable in cyclostratigraphic analyses

of Eocene-age sediment cores (Boulila & Hinnov 2022).

1004 We now consider the signature of the remnant (fossil) rotational bulge in the present-day gravity field and estimate

1005 its potential magnitude. For a purely hydrostatic planet, the expression for the polar moment of inertia in equation

1006

1007

1008

1009

1010

1011

1012

1013

1014

(39) reduces to:
2
Chyd=[o+ _3 Mre? Johvd (49)

A comparison of expressions (39) and (49) reveals the perturbation, denoted by
AJpbulge to the purely hydrostatic

gravitational form factor ], that arises from the fossil bulge:

2
C = Io+ _3 [ J2vd + AJybuige |Mr,2 (50)
in which
AJabulige = Jahyd AB(Qu, LT), where AB(Q;, LT) = [ (@ — Q)2
_1] [1_ _
 kTk(LTA)] (1D

If we arbitrarily assume that the hypothetical fossil bulge was acquired at 250
Ma when, according to the solution

of Laskar et al. (2004) Qi=7.9117 X 10-5 rad/s, and again assume that LT =
30 km, we then obtain AB =



1015

1016

1018

1019

1020

1024
(53)

1025
1026

1027

1028

4.4 x 10-4. To assess the importance of this value, we consider the value of the
nonhydrostatic (or ‘dynamic’)

value of J; defined relative to the satellite-observed value (Chambat et al. 2010),
J2obs = 1.0850 X 10-3 (scaled 1017 relative to rg — see equation 32b) , as

follows:

_ robs _ hyd _
AJpdrn =13 =) =2 mdAD, where AD = | Jaya?obs — 1]
(52)

]2

We thus determine that AD = 1.3 X 10-2, which is two orders of magnitude larger than
AB, the signal generated

by a fossil bulge, if it formed at 250 Ma. It is therefore not possible to accurately
constrain the very small 1021 gravitational signature of a hypothetical fossil bulge
using the present-day nonhydrostatic degree-2 geoid. 1022 Finally, we may use the
value of ],9bs, and the extension of expression (42) to a dynamic (nonhydrostatic) Earth,
1023 to determine the ‘observed’ present-day dynamical flattening (see also Table 6 in

Chambat & Valette 2001):

Hebs = J2obs = obs(t =0)=3.2738 x 103 |H

0.3307 + 23 obs
),

8. Impact of Tidal Deceleration on TPW

As discussed in detail in the preceding section, secular changes in Earth’s rotation rate due to tidal dissipation will
alter the hydrostatic contributions to the moment of inertia tensor, via the J."vdcoefficient, that vary with the square
1029 of the rotation rate (see equations 38 to 40). These long-term, rotation-induced variations in the moments

of inertia



1030

1031

1032

1033

1035

1036

1037

1038

1039

1041

1042

1043

1044

should therefore have some impact on TPW (Greff-Leffiz 2011). We may assess
the magnitude of this impact by

first noting that the time derivative of Earth’s angular rotation vector, w(t),
may be decomposed as follows:

da Q Q

b= =60+ 0=0[d+d ] (54)
dt Q

where @(t ) - &(t ) = 1 and Q(t) = ||w(t)|| is the rotation speed. This
expression allows us to directly distinguish 1034 the relative magnitude of

TPW rates, the first term in brackets in (54), compared to the secular rate of

decrease of
rotation rate, the second term in brackets. The decomposition (54) also makes clear that the changes in the rotation

vector w(t) due to TPW are always orthogonal to the changes in the rotation vector due to tidal deceleration,

because & - & = 0. Figure 3 in the main text shows that the average magnitude of convection-induced TPW rates

over the past 70 Ma is about: || || = 0.2°/Ma = 3.5 x10° Ma'’. The Laskar et al. (2004) orbital solution yields the

present-day value Q /Q = — 9.8 x108s'= _ 3.1x10* Ma!. We thus find that the relative impact of tidal 1040

deceleration on the secular evolution of Earth’s ‘wandering’ rotation vector is: ||&d Q || ||/ & Q]| = 9%.

We can further assess the effect of tidal deceleration on convection-induced TPW by substituting expression (54)

into equation (18), which then yields the following revision to equation (19):

— [3—reGs ksr
(LT) Q2(6) Ty | Q) @(t) + Qt) SI5(t) - @(t) = A Q()B(t)

& — (0€t))2 [37eGs kfT(LT) Q20 T1 | &b
O+ 85(0)-d() =Aa@()  (55)



1045 where Qo= Q(0) is the present-day rotation speed. From equation (55) we again
obtain equation (20) because 1046 & * @ = 0, finally yielding the following

revision of equation (23):

QO 2
O = (52) [B5® - (@80 85®) - 60} 1] @)
1047 BT1d Q) [ { M (56) 1048 in
which £ is again defined as in expression (23b):
Ts

1049 B =__3¢G kfT(LT) Q2%

(57)
1050 From (56) we thus see that the secular decrease in Earth’s rotation speed will

essentially modulate the amplitude 1051 of TPW velocity and minimally alter
the geometric shape of the TPW trajectory. This expression also shows there
1052 is a damping of TPW that grows with the inverse-squared of the rotation
speed due to the larger rotational bulge. 1053 Based on the solution in Laskar
et al. (2004), the secular decrease in rotation speed due to tidal braking over
the 1054 past 100 Ma is about 3% and hence the rotational damping of the
TPW speed, on the right-hand side of (57), will 1055 decrease by about 6%.
We note that these small effects on TPW from tidal deceleration (at least over
the time span 1056 studied here) are supported by the earlier investigation by
Greff-Lefftz (2011).
1057 From the preceding considerations, we then write the following approximate expression that may be employed to
1058 incorporate the influence of tidal deceleration on the rate of change of Earth’s rotation vector:
da Q

1059 w=___ = Q+&0= 261 (58)
dt



1060 We may now revise expression (12), representing the time-dependent
moment of inertia tensor, to also include 1061 secular changes in the

rotation rate, via equation (54), as follows:

75 1 2
1062 Ii,j(t) =1 6i,j+ - € QBGZ(t) ka(LT){[ajiaSj— § 51‘,]'] —T1 [((ﬁi-l- Wi Q_.Q) ([)}-l— Wi ((Jj+ a)‘,-_QQ g_) - QQ
6] }
Ts . 1
ks —kI(LT)] *

1063 +3 [y —kan] = g G Qi (8i3—_) 8ij+ Slijeon(t)
1064 Using approximation (58), the preceding expression finally simplifies to:

Jhyd

. (0

- 2
T3 2 rQ ® “k'Qr  q

1065 Lij(t) = Io 6ij + MEre 2 ! . 3

er—{ (=) —
Q kF (LT)? 1 f 3eGMg

Q ko [didj— = 6ij] — T1d idj + Didj])

+ (—*) [ 1-
1066 T 1 (63— ) 6} + 61 jcon(t)

(59)
.0.0 k*f 3
1067 This representation for Earth’s moment of inertia tensor will be employed in our modelling of

the time-dependence 1068 of dynamic flattening, H(t) in equation (25), that includes the
effects of tidal deceleration and of mantle1069 convection-induced changes to the inertia
tensor via the direct contribution &1;;cn(t) and also via the contribution 1070 to the horizontal
displacements (i.e. TPW) of Earth’s rotation vector &(t). In all cases, we determine the
principal 1071 moments needed to predict the value for H(t) via a numerical calculation of the

eigenvalues of the inertia tensor.



1072
1073 9. Modelling Earth-Moon Separation via Angular Momentum Conservation

1074 Tidal dissipation in the Earth—-Moon system not only generates a secular decrease of Earth’s rotation speed, 1075

discussed above, it will also induce a so-called “recession” of the Moon, as the Earth-Moon distance increases.

1076  Both effects, namely secular changes in rotation speed (1(t) and Earth-Moon separation a;(t), will strongly impact

1077  the time evolution of Earth’s astronomical precession frequency wprec(t) , described in equation (24), which arises

1078  from the luni-solar torques acting on Earth’s rotational bulge represented by the dynamical flattening H(t). The
1079 impact of the secular decrease in rotation speed over the past 70 Ma, as noted above in expression (48), will
be

1080 large. To also quantify the impact of secular changes in Earth-Moon separation a.(t) on precession, we use angular

1081  momentum conservation, as in Lambeck (1977), Schwiderski (1985) and most recently in Farhat et al. (2022b),

1082  which has long been the basis (Darwin 1908) for modelling the connection between tidally driven changes of 1083
Earth’s rotation speed and variable Earth-Moon distance.

1084 More recently, 7Tian & Wisdom (2020) presented numerical and theoretical demonstrations that the vertical 1085

component of the total angular momentum vector of the Earth-Moon system, L, — defined relative to the ecliptic

1086  plane, is effectively conserved (to one part in a thousand) as the Earth-Moon separation evolves from 57 to 507,

1087  where 7 is the mean radius of the Earth. As noted by the authors, this quasi-conservation obtains in the absence

1088  of any resonances. Therefore, following Lambeck (1977) and Tian & Wisdom (2020), we employed the following

1089 simplified representation of the vertical component of the total Earth-Moon angular momentum:

JGME a, (1—ef)

1090 Ltotal, =(CgQcose+m cos iy,
(60)
1091 where the first term on the right-hand side is the spin angular momentum of the

Earth, in which Cg is the polar 1092 moment of inertia of the Earth, () is the diurnal
rotation rate and € is the obliquity angle, whereas the second term

1093 is the Moon’s orbital angular momentum in which m; and M are the mass of the Moon and Earth, respectively,
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1114

ay, is the semi-major axis of the lunar orbit, e, is the eccentricity of the lunar orbit and iy, is the inclination of the

orbit relative to the ecliptic (see Table S1). The second term has been derived appealing to Kepler’s Third Law

for 1096 the mean motion of the Moon. In (60) we ignored the spin momentum of the Moon and the orbital
momentum of 1097 the Earth relative to the barycentre of the Earth-Moon system since both are negligibly small
relative to the spin 1098 momentum of the Earth and orbital momentum of the Moon, respectively.

If the application of angular momentum conservation in (60) were extended to encompass the Sun-Earth-Moon
system, the vertical component of the orbital angular momentum of the Earth around the Sun, LSv,, would 1101
completely dominate, being many orders of magnitude larger than any contribution within the Earth-Moon system.
However, as underlined by Lambeck (1977), angular momentum transfer between Earth and Sun is infinitesimally
small and Earth’s orbit has therefore undergone negligible solar-tidal evolution. LS¥n,  may thus be treated as a
constant. But dissipation from solar tides on the Earth is not negligible and will contribute to a secular reduction
1105 of Earth’s spin momentum and rotational kinetic energy (Lambeck 1977), without altering the Earth’s
continuous 1106 transfer of angular momentum to the Moon’s orbit via the torque exerted by Earth’s tidal bulge
on the Moon. This 1107 contribution from the Sun will be explicitly quantified in the considerations presented
below.

From the many-body orbital solution provided by Laskar et al. (2004), henceforth denoted as “La2004”, we

employed their predictions for the time-dependent rotation rate Q(t) and semi-major axis a;(t), while holding the

obliquity &, eccentricity ey, and inclination i;, fixed at their present-day values, to determine the evolution of Ltotal,

over the past 70 million years. In this calculation, we model the variation of Earth’s polar moment of inertia Cg

1112 with changing Q, according to equations (38) and (39), as follows:

2
Ce(t) = Ce(0) +  TerfTrH51Q2(8) — Q%] (61)
3 36

The predicted Ltotal, shown in Figure S4(a) varies from a present-day value of
3.3942 x 103t kgm?s—1toa



1115 value at 70 Ma of 3.3958 x 103* kg m2s—1, representing a small change of
0.5%o that is well within the tolerance 1116 described by Tian & Wisdom
(2020).
1117  We now examine this result more critically and explore whether the very slight, linear decrease of Ltotal, evident
1118  in Figure S4(a) may rectified, such that Ltotal,  remains constant (or nearly so) over the past 70 Ma. We begin by
1119 noting that Earth-Moon angular momentum conservation, as described in expression (60), has traditionally
been
1120 employed (e.g. Lambeck 1977) to model the rate of recession of the Moon: d; = da./dt . The time-derivative of 1121
(60) yields:

2C

1122 dl=— (ECOSEVIhy cos L. ) @ (62)

mL\/GME(l —er

1123 in which we treated Cg, €, i;, and e, as effectively constant and (1 = d(1/dt. This
approximation is maintained

1124 throughout the work that follows. Using the La2004 values for (1 and d; over the
past 70 Ma, we find that they

1125 cannot be reconciled by equation (62). The La2004 prediction for the secular rate
of change of Earth’s rotation

1126 rate, {1 , when substituted into (62), yields a predicted recession rate d;that is
systematically larger than the 1127 recession rate output by La2004. The La2004
lunar recession rate can only be fit, in the context of equation (62),
1128 by reducing the La2004 secular deceleration (1 by a (nearly constant) factor of 0.85 + 0.01 throughout the past 70
1129 Ma.
1130  This apparently ad-hoc reconciliation can be justified by recognizing that the total tidal dissipation of energy in
1131 the Earth-Moon system also includes the dissipation of solar tides raised on the Earth and therefore the
secular 1132 deceleration of Earth’s rotation rate, (1, contains two distinct contributions (Lambeck 1977) : (1) a

deceleration



1133 denoted by (1 ; arising from lunar tidal dissipation and (2) a deceleration denoted by (1 s arising from solar tidal 1134

dissipation, which does not contribute to the Earth-Moon momentum balance in expression (60). We thus write:

1135

1136

Q
Q=0+ Qs where Qi =a;,=085+001= _QQ S=as=0.15+0.01 (63)
When the value of (1, given by (63) is employed instead of (1 in expression (62), we obtain a

very good match to 1137 the lunar recession rate d; predicted by La2004 over the past 70

Ma.

1138 We briefly consider the implications of the luni-solar partitioning of Earth’s secular deceleration, in (63), for the 1139

rate of energy dissipation in the Earth-Moon system. The power of lunar and solar dissipation of energy, denoted

1140

1141

1142

1143

1144

1145

1148

1149

respectively by P and Ps, is determined by the corresponding dissipative tidal torques, denoted
by 7', and T's, such

that:

PL:TL.Q and Ps:Ts.Q ,WhCI‘CTL: CEQLand Ts: CE.Q§:>PL: CE.QL.Q and Ps: CE.Q
sQ

dE

= Prwua=Pi+Ps=Cc(Q1+Qs)QA=CcQO0= ____rot, where E;oe=_1C Q2  (64)
dt 2

where dE;.:/dt is the rate of change of Earth’s rotational energy. Employing present-day values
for rotation rate

Q and secular deceleration (1 from La2004, and the present-day value for Earth’s polar moment
of inertia Cg, the 1146 rate of dissipation of rotational energy, as defined in (64), is dEro:/dt =
4.2 TW of which 85% (i.e. 3.6 TW) is 1147 due to lunar tidal dissipation. These dissipation values
are of course an expression of the tidal dissipation model
assumed in La2004 and are comparable to independent estimates of tidal dissipation obtained by Egbert and Ray
(2003) who find present-day total dissipation is ~3.5 TW, of which ~0.5 TW is due to solar tides and hence the
1150 latter contribute about 14% of the total dissipation. Expression (64) for tidal energy dissipation manifested

in the
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decrease of Earth’s rotational kinetic energy does not include the small (~3%) rate of increase of energy transferred

to the lunar orbit as result of the recession of the Moon (Lambeck 1977). (The inclusion of the latter contribution
leads to the mathematical representation for total energy dissipation by lunar tides developed in Murray & Dermott
1999).
Based on expression (63), we obtain the following linearized approximation to the time-dependent rotation rate,
1156 in which we isolate the contribution due only to the deceleration arising from lunar tidal dissipation:

Q) =Qo+ Qot=Qo+ arflot + (1 — ar)ot

o o® = Qo + A0, (1) + A0 (D)

a)ot  (65)
=0,

, where A.QL(t) = a1 ot and Aﬂs(t) = (1 —

where Q. (t) represents the (dominant) lunar-tidal contribution to the time-
varying rotation rate of the Earth. We 1160 return to expression (60), in which

Q(t) is now replaced by (L (t) and we thus obtain:

oMz auo - ep) .

Ltotal, = CE(t)QL(t) cosEe+m, SiL (66)

where we again use the rotation-rate dependence of the polar moment of inertia given in (61).
Using the values

for a;(t) and {1 ¢ from La2004, using a; = 0.85 (see 65) and other parameters from Table S1,
we recalculate Ltotal,

and now find (see red curve in Figure S4(a)) that Ltotal, varies at most by 0.03%o over

the past 70 Ma, confirming 1165  the near-constancy of the total angular momentum.
With this last result in hand, we can now derive a simple, closed-form expression for the time-dependence of the

semi-major axis of the lunar orbit, a.(t), using the revised expression for angular momentum conservation in (66),

1168 thus yielding:

[Ltotal — Ce(t) (QO +a,f 2
a.(t) = z,0t)cos €]
(67) (mycos i)2 GMp (1 —€%) |
in which Ltotal, o is the total, Earth-Moon angular momentum calculated with
present-day values for the variables




1171 appearing in (60) and Cg(t) is calculated, according to equation (61), assuming that
Q) = Qo+ Q ot. We again 1172 assume that €, i, and e, remain constant. In
Figure S4(b) (see red curve) we verify expression (67) against the

1173  time-evolution of a.(t) provided by the La2004and find an excellent match over the past 70 Ma. The largest

1174  deviation relative to the La2004 values for a.(t), obtained at 70 Ma, is only 0.06%o.. (This close match is perhaps
1175 better than one should expect, given our assumption of constant &, i;, and e over the past 70 Ma!)

1176  The closed-form expression (67) provides a useful tool for exploring the impact of changing luni-solar tidal

1177  dissipation rates over the past 70 Ma, by simply adjusting the value of (1 . This adjustment will directly translate
1178 into corresponding adjustments in the tidal-dissipation power, as shown in (64). We explored two scenarios:
(1) 1179 The first scenario is motivated by the modelling of Green et al. (2017), who estimated changes in tidal
dissipation

1180 over the past 252 Ma using paleogeographic reconstructions and found that tidal dissipation was much weaker 1181

than at present over a long interval of time preceding the Pliocene. These authors infer past rates of tidal dissipation 1182

that were 50% lower than present-day rates, and perhaps as low as 30% of present-day during the Paleocene1183 Eocene.

They therefore proposed that the modern, high rates of tidal dissipation are distinctly anomalous relative

1184 to the reconstructed pre-Pliocene rates. (2) The second scenario is a hypothetical case study in which we assume 1185

that tidal dissipation was reduced to 30% of the present-day value for times earlier than 35 Ma. This time 1186 corresponds

to the beginning of permanent glaciation over Antarctica and the corresponding drop in global mean

1187 sea level by about 58 metres (corresponding to the current ice mass in Antarctica). It is thus hypothesized that the

1188 resulting shallowing of global bathymetry, and the development of the Antarctic Circumpolar Current after the 1189

opening of the Drake Passage and Tasman Gateway, led to greater rates of tidal dissipation over the past 35 Ma, 1190

compared to pre-Oligocene rates. This admittedly speculative scenario is explored to investigate the degree to 1191 which

the precession frequency will be perturbed by large changes in tidal dissipation, at earlier times in the past

1192  (relative to scenario 1). Both scenarios are motivated by the paleo-tidal modelling simulations by Green et al.

1193  (2017) and their implications for the history of Earth-Moon separation (calculated with equation 67) are presented



1194

(a) (b)

in Figure S4(b), where we used (67) with changes to (1 ¢ at 5 Ma, or 35Ma, and we found that both scenarios lead

1195 to between 1000 and 1300 km less lunar recession than predicted by the La2004 model.
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Figure S4: Modelling changes of Earth’s precession rate due to secular deceleration of Earth rotation and
Earth-Moon separation. (a) Modeled total angular momentum of the Earth over the past 70 million years, based
on equation (60). The black curve represents predictions based on the variations of rotation-rate and Earth-Moon
distance given by the La2004 model. The red curve shows the total angular momentum calculated only including
rotation-rate changes due to lunar tidal deceleration: see equation (66). (b) Changes in the Earth-Moon distance
over time. The black curve shows the prediction from the La2004 model, while the red curve represents the
EarthMoon distance calculated using equation (67), derived from angular momentum conservation. The blue curve
illustrates a scenario with tidal deceleration reduced to 50% of the present-day value for times greater than 5
million years ago, and the orange curve depicts a scenario where tidal deceleration is reduced to 30% of present
day for times greater than 35 million years ago. The inset graph shows the corresponding lunar tidal dissipation
rates (in TW), demonstrating the energetic implications of different tidal deceleration scenarios. (¢) Changes in
Earth's dynamic flattening, AH(t) /Ho, defined in equation (30) and modelled using equation (69). The black curve
is the prediction obtained using the time dependence of rotation rate in equation (65) and using the present-day
deceleration, {2 o, from La2004. The blue curve represents the prediction assuming reduced tidal deceleration
(50%) for times greater than 5 million years ago, and the orange curve shows changes with tidal deceleration
reduced to 30% for times greater than 35 million years ago. These results underscore the significant variability in
dynamic flattening due to tidal dissipation. (d) Modeled precession rate of the Earth over the past 70 million years.
The black curve corresponds to La2004 model predictions. The red solid curve represents a prediction based on
equation (71), using a,, calculated from angular momentum conservation (equation 67) and the present-day rate of



deceleration, 2 o, from La2004, used in equation (65). The red dashed curve is the corresponding prediction
holding the Earth-Moon distance a;, fixed to present-day value. The blue curve reflects the predicted precession
rate with 50% reduced tidal deceleration for times greater than 5 million years ago, and the orange curve depicts
the precession rate with tidal deceleration reduced to 30% for times greater than 35 million years ago.

1196

1197  10. Secular Influence of Variable Tidal Dissipation on Dynamic Flattening and Precession

1198 As discussed above (in section 9), we explored two scenarios where tidal dissipation is reduced at t = —5 Ma or —
1199 35 Ma, to explore the impact on the evolution of Earth-Moon distance a;(t), compared to the La2004 solution

1200 (Figure S4(b)). We now consider the implications for Earth’s dynamical flattening H(t), defined in (25), and for 1201
precession frequency wprec(t), defined in (24).

1202 The present-day (‘observed’) value of dynamic flattening, given by the IERS (International Earth Rotation and 1203

Reference Systems) Conventions of 2010 (Petit & Luzum 2010) is:

1204 Hebs(0) = 3.273795 x 10-3 (68) 1205 This value compares with the present-
day hydrostatic value (see equations 46, 47): Hwi(t =0) =
1206 3.235(+5) x 10-3, where the uncertainty in the last significant figure stems from the (1% or 2" order) accuracy 1207

employed in the determination of J,4(0).

1208 If we assume that Earth’s angular rotation vector is w(t) = Q(t) Z, which implies that we ignore TPW, and we 1209
follow the derivations that led to equation (43), but also include a contribution from internal dynamics — defined 1210 in
equation (52), we then obtain the following expression for Earth’s time-dependent dynamic flattening:

hyd  Q2(t) dyn
] (0) Q2 +A]2 (b

1211 H(t) = 2 hyd 0422(t) ayn
(69)03307+3[J2 (0) Qo2 +A2 (D]

1212 in which we used the rotation-rate dependence of ] given in equation (38), ].»4(0)
is the present-day value



1213

given and AJ,9(t) represents the time-dependent contribution to Earth’s flattening
from dynamical 1214 (nonhydrostatic) processes, notably mantle convection and

glacial isostatic adjustment. For the secular variation

1215 of the rotation rate, we again assume the following linearized expression from (65): Q(t) = Qo+ € ot, where we 1216

can adjust (1 o at different times in the past, as in the two scenarios that explored (see section 9) the impact of

1217

1218

1219

1220

reduced tidal dissipation in the past. We also constrain AJ,4(t = 0) such that expression (69) exactly yields the

same value for H(0) as Hobs(0) in (68), and for this purpose we also used J»4(0) from equation (47). We then

kept AJ2dv» fixed to its present-day value to show the temporal variations of H(t) that would result only from tidal

deceleration. In our first simulation, we modelled the secular decrease of rotation rate using (1 o from La2004 and
1221 the resulting variation of H(t) over the past 70 Ma is shown in Figure S4(c). The 46%o change over this
time

1222 interval far exceeds any changes to H(t) that may be predicted by mantle convection (see Figure 4 in the main 1223

text). We also considered the two scenarios described in section 9, in which tidal dissipation (TD) is strongly 1224 reduced

relative to present-day: (1) prior to 5 Ma, TD is reduced to 0.5 of present-day, and (2) prior to 35 Ma, TD

1225

1226

1228

1229

1231

1232

1233

1234

is reduced to 0.3 of present-day. The resulting impact of such reductions in TD on the evolution of H(t) is large,
as shown in Figure S4(c), and they greatly exceed any changes that would likely be driven by mantle convection
1227 (Figure 4).

In previous modelling of secular changes in H(t) and their influence on Earth’s precession frequency wprec(t),
via equation (24), Farhat et al. (2022b) employed a value H(0) = 3.243 X 10-3, which is essentially that 1230
predicted (to 1%-order accurate theory) for a purely hydrostatic planet (see equations 44 and 46b), and they model
its variation with rotation as follows: H(t) = H(0) X Q2(t)/Q2y (compare with equation 69). Similarly, Boulila
& Hinnov (2022) also model precession with equation (24), assuming a hydrostatic flattening, H(0) =

3.24 x 10-3, assuming an 2 dependence as in Farhat et al. (2022b). We examine the implications of these

flattening values for the predicted present-day precession frequency wprec(0), using equation (24). The additional



1235

1237

1238

1240

1241

1244

1245

1247

1248

1249

1250

1251

inputs required for equation (24) are listed in Table S1. With these tabulated parameters and the different values
1236 for present-day dynamical flattening discussed above, equation (24) yields the following predictions:

50.7223"/yr for Hobs=3.273795 X 10-3 (eq. 68)
Wprec(0) = {50.0747 " /yr for Hhvd=3.232 x 10-3 (eq.47) (70)
50.1212 " /yr for Hhvd=3.235 x 10-3 (eq. 46a)

compared to (from La2004): Wprecka2004(0) = 50.4758 "/yr
1239 All three predictions in (70) differ from the present-day precession frequency in
the La2004 solution wprecLa2004(0).

While calculating the results in (70), it became apparent that the predicted precession values are quite sensitive to
small changes of the input parameters in Table S1, notably a; and €. The magnitude of the differences in (70) 1242
relative to La2004 can be regarded as large in the context of cylcostratigraphy and they would be detectable in

1243 these analyses (Pdlike & Shackleton 2000).
In a further effort to examine whether the present-day flattening in (68) may be reconciled with the value of

Wprecka2004(0), we next considered a somewhat more refined theoretical expression for the precession frequency

that 1246 is taken from equations (6) and (8) in La2004:

. 2—5 3+ 3(1— —5in2
(a51/1 - 852) (amfl - eLZ) 3l GMs

3 ir)] cose (71)

wprec GmL

The additional input parameters appearing in (71) are defined in Table S1. We again
repeated the calculations for

Wprec, USIng expression (71), and obtained the following results:

50.4655 " /yr for Hobs=3.273795 X 10-3 (eq. 68)
Wprec(0) ={49.8212 " /yr for Hwd=3.232 x 10-3 (eq.47) (72)
49.8675 "/yr for Hwd=3.235 x 10-3  (eq.46a)

compared to (from La2004): Wprecka2004(0) = 50.4758 "/yr



1252

1254

1255

1256

1257

1258

We now can very nearly reconcile the value of Hobs with the present-day precession
frequency predicted by the 1253 orbital solution of La2004. The difference between the
two precession values is only 0.2%o. We therefore employed
expression (71) for all predictions of the precession frequencies that are presented in the main text (Figure 4) and
in the following discussion.
The key time-dependent variable that appears in (71), apart from the dynamic flattening H(t) (see Figure S4(c)),

is the Earth-Moon semi-major axis: a;(t). We performed a first simulation in which we modelled Earth-Moon
separation according to (67), and H(t) according to (69) — again keeping AJ,4v" fixed to its present-day value, and
1259 using the present-day deceleration rate from La2004. We obtained very good agreement with the time-

dependent

1260 wprecLa2004(t) values from La2004 over the past 70 Ma, as shown by the black and red curves in Figure S4(d). The

1261 average difference between the two curves over the entire 70 Ma interval was 0.4%o. In a sensitivity experiment, 1262

we ran another simulation keeping the Earth-Moon separation fixed to present-day value while allowing the H(t) 1263 to

evolve as before, and the result (see dashed red curve in Figure S4(d)) shows that the variation in H(t) alone 1264

contributes 55% of the total change in wprecL42004(t) over the past 70 Ma, with the other 45% due to the change in 1265

Earth-Moon separation. Finally, we calculated the evolution of wprec(t) for the two scenarios in which TD was 1266

0.5 of present-day prior to 5 Ma, and TD was 0.3 of present-day prior to 35 Ma. The results, shown by the blue 1267

and orange curves in Figure. S4(d), reveal that these hypothetical changes in TD have a large impact that should 1268

be detectable in cyclostratigraphic analysis of pre-Pliocene age sedimentary sequences, especially in the Paleogene 1269

period.

1270

Table S1: Values of input parameters for the numerical calculation of angular momentum and precession rate
Solar gravitational constant: GMs (AU 2009)

1.3271244 x 10%° m’s

Earth’s gravitational constant: GMg (IAU 2009) 3.9860044 x 1014 m3s?




1271

1272

1273

1275

1276

1277

Lunar gravitational constant: Gm,,
(From IAU 2009 value for my/Mg = 123000371 x 10-2)

4.902800 x 10" m’s™

Constant of gravitation: G (IAU 2009)

6.67428 x 10-11 m’kg!s™

Earth orbit semi-major axis: as (I4U 2009)

1 au=1.495978707 x 10''m

Lunar orbit semi-major axis: a;
(From JPL DE440/DE441 Ephemerides)

384399 x 10°m

Present-day sidereal rotation rate: Qo (/AU 2009)

7.292115 x 105 5!

Present-day obliquity of the ecliptic: €

Williams & Boggs 2016)

(From ¢ = 0 orbital solution of Laskar et al. 2004) 23.270773°
Present-day lunar inclination to the ecliptic: i;, (from £ 1450
Williams & Boggs 2016) '
Present-day eccentricity of Earth orbit: es (from

0167
Simon et al. 1994) 0.0167086
Present-day eccentricity of lunar orbit: e, (from 0.0549
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