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Abstract:  15 

Mantle convection drives changes in Earth's ellipsoidal figure and corresponding moment of inertia, causing shifts 16 

in the planet's rotation axis known as true polar wander (TPW). Using seismic tomography and the Back-andForth 17 

Nudging (BFN) method, we developed a time-dependent convection model that reconstructs the evolution of 18 

mantle density distribution and Earth’s moment of inertia over the past 70 million years. This modelling approach 19 

provides a close match with independent paleomagnetic constraints on the Cenozoic shifts of Earth’s rotation pole, 20 

specifically resolving the previously unexplained U-turn in TPW trajectory at approximately 50 million years ago. 21 

Our findings reveal TPW shifts exceeding 5 degrees, despite the temporal stability imposed by high lower-mantle 22 

viscosity and the stabilizing effect of Earth's remnant rotational bulge. Verification of our predicted changes in 23 

Earth’s ellipsoidal figure through independent paleomagnetic data provides a robust calibration for new predictions 24 

of convection-induced dynamic flattening variations. Over the past 70 million years, we find convection-induced 25 



changes of flattening that shift from -0.2% to +0.1 % during the Paleogene. Our predictions of precession 26 

frequency in the Paleogene align with recent independent cyclostratigraphic studies, thus validating our model's 27 

accuracy and supporting the hypothesis of reduced tidal dissipation during this period.  28 

  29 

Introduction  30 

Mantle convection governs the movement of heat and mass within Earth’s ~2890 km-thick mantle, influencing 31 

fundamental geophysical processes such as the planet’s gravity field and rotational dynamics. Through its impact 32 

on Earth’s moment of inertia, mantle convection induces shifts in the planet’s rotation axis, known as ‘true polar 33 

wander’ (TPW), and induces changes in its elliptical figure, quantified as a ‘dynamic flattening’, that influences 34 

the slow conical precession of Earth’s rotation axis.  35 

The relationship between Earth's rotation and its internal structure has been a longstanding focus of 36 

geophysical research. In Milankovitch’s (1934) exploration of the rotational influence of continental and oceanic 37 

masses alone, he demonstrated how the rotation axis may align with the direction of the maximum moment of 38 

inertia dictated by these masses, resulting in polar motion that traces a predictable path over time. The seminal 39 

work of Munk and MacDonald (1960) first highlighted the potential for deep-seated dynamics, in particular mantle 40 

convection, to influence Earth's rotational stability, including TPW. This link between mantle convection and TPW 41 

was explored in greater detail by Goldreich & Toomre (1969), who further advanced the understanding of how any 42 

slow, internally driven changes to Earth’s ellipsoidal shape will cause significant angular displacements of the 43 

planet's rotation axis as it seeks to remain aligned with the principal axis of inertia with the largest moment. They 44 

demonstrated that convection-induced changes in Earth's moment of inertia drive secular motion of the poles with 45 

the rotational bulge acting as a stabilizing force.  46 

  47 

Mantle Dynamics and TPW Stabilization  48 

Subsequent studies have shown that subducting lithospheric masses and very deep structures like Large Low Shear 49 

Velocity Provinces (LLSVPs) create significant mass imbalances that influence Earth's inertia tensor and therefore 50 

TPW. Spada et al. (1992) and Ricard et al. (1993) quantitatively linked subducted slabs to the excitation of TPW, 51 

demonstrating that mass anomalies generated by subduction can produce observable shifts in Earth's rotation axis.  52 



These studies also highlighted the stabilizing role of the rotational bulge, which modulates the magnitude of TPW. 53 

Richards et al. (1997) demonstrated, however, that the long-term stability of Earth's rotational axis is primarily 54 

governed by the slow reorganization of subducted slabs rather than adjustments of the rotational bulge. In a parallel 55 

study that modelled the advection of mantle density heterogeneities inferred from seismic tomography, it was again 56 

found that the rate of polar motion is controlled by mantle viscosity and density distribution changes  57 

(Steinberger & O'Connell, 1997). Later research by Steinberger and Torsvik (2010) and Greff-Lefftz and Besse 58 

(2014), expanded on this by linking mantle dynamics, particularly the interaction between LLSVPs and 59 

subduction, to long-term polar wander behavior. Rouby et al. (2010) also highlighted the key role that the evolution 60 

of subducted slabs and LLSVPs plays in shaping Earth’s geoid and inertia axes. Their work emphasized the 61 

importance of these mantle structures in controlling the observed TPW behavior, although they noted discrepancies 62 

when compared to paleomagnetic data, pointing to the need for further progress in modelling convection-driven 63 

density contrasts in the mantle.  64 

Matsuyama et al. (2006) demonstrated that the presence of an elastic lithosphere introduces significant resistance 65 

to reorientation of the planetary rotation axis and hence limits TPW. Extending this work, Chan et al. (2011) 66 

demonstrate the stabilizing effects that may arise from a remnant rotational bulge and excess ellipticity, which can 67 

limit the amount of TPW on Earth. Additionally, Creveling et al. (2012) showed that interaction between 68 

convectively driven inertia perturbations and elastic lithosphere stabilization could result in complex oscillatory 69 

paths, potentially explaining some abrupt shifts in Earth's rotational behavior during key geological periods. Rose 70 

and Buffett (2017) highlighted how TPW rates are controlled by mantle viscosity and the rate of mass redistribution 71 

within the mantle.  72 

  73 

Paleomagnetic Constraints and Challenges  74 

In addition to the theoretical and numerical models discussed above, paleomagnetic studies provide critical 75 

observational constraints on TPW and hence on the evolution of Earth’s ellipsoidal figure. Comprehensive 76 

analyses, such as those by Besse and Courtillot (2002) and Torsvik et al. (2012), offer independent observational 77 

records of Earth's past rotational axis shifts. These data serve as fundamental benchmarks for validating the 78 

predictions of mantle convection models. The ability of a model to reproduce the observed TPW, including key 79 



features like a U-turn in the pole trajectory around 50 Ma, is a crucial test of its accuracy and robustness. 80 

Reconciling these paleomagnetic observations with mantle convection models remains an outstanding challenge 81 

due to uncertainties in the paleomagnetic data and the theoretical and numerical difficulties encountered in 82 

developing sufficiently realistic simulations of the time-dependent evolution of mantle convection.  83 

While earlier geodynamic models provided insights into how mantle processes drive polar wander, they often 84 

struggled to capture specific features of Earth's TPW history. Models such as those developed by Cambiotti et al. 85 

(2011) emphasized the importance of considering the delayed response of Earth's rotational bulge and viscoelastic 86 

properties when modeling TPW, leading to more realistic predictions of Earth's rotational behavior. Similarly, 87 

Steinberger et al. (2017) provided valuable insights into the interaction between mantle convection and the 88 

stabilizing role of Earth's triaxial shape, but their model predictions of TPW over the past 70 million years 89 

significantly overestimated the observed paleomagnetic data, highlighting the need for more accurate 90 

reconstructions of mantle dynamics – a gap our study seeks to address. Significant discrepancies between predicted 91 

and observed TPW therefore persist, in particular the enigmatic U-turn in TPW around 50 million years ago 92 

remains unexplained.  93 

  94 

A New Approach  95 

In this study, we build upon the foundational works reviewed above by employing a time-dependent thermal 96 

convection model that utilizes the Back-and-Forth Nudging (BFN) method (Glisovic & Forte 2016). This 97 

approach, which incorporates seismic tomography models as an initial condition, allows us to reconstruct the 4-D 98 

evolution of Earth's mantle structure and moment of inertia over the past 70 million years with an accuracy that 99 

has been verified against present-day geodynamic observables and major geologic events during the Cenozoic. 100 

Our mantle convection reconstructions underwent successful ground truthing of both their temporal and spatial 101 

realism, notably in previous studies that investigated the origins and evolution of the Deccan Traps (Glisovic &  102 

Forte 2017), the North Atlantic Igneous Province (Glisovic & Forte 2019), the Nile River drainage basin  103 

(Faccenna et al. 2019) and, most recently, the origin and growth of the Antarctica geoid-low during the Cenozoic 104 

Era (Glisovic & Forte 2024).  105 



The BFN modelling allows us, in the work presented below, to reconstruct the 70-million-year evolution of 106 

Earth’s ellipsoidal figure and moment of inertia, and hence predict new TPW trajectories over this time interval 107 

that achieve a good match between model predictions and independent paleomagnetic data. Most importantly, as 108 

we document in the following, our model successfully captures the U-turn in TPW around 50 Ma, a phenomenon 109 

that has eluded previous models.  110 

  111 

Convection-Induced Dynamic Flattening  112 

Our reconstructions of the evolution of Earth’s ellipsoidal figure using the BFN models directly yield predictions 113 

for the evolution of Earth’s dynamic flattening that controls the astronomical precession of Earth’s rotation axis 114 

(see the Supplementary Information, henceforth ‘SI’). These dynamic flattening changes will be directly calibrated 115 

through matching of the predicted TPW trajectories against the independent paleomagnetic constraints on Earth’s 116 

pole positions. Dynamic flattening affects Earth's precession of the equinoxes by determining how lunisolar 117 

gravitational torques act on the planet’s equatorial bulge, driving a slow wobble of Earth’s rotation axis. This 118 

precession, along with changes in obliquity (Earth’s axial tilt), modulates the latitudinal distribution of solar 119 

radiation, and thus plays a crucial role in the Milankovitch paleoclimate cycles (Pälike & Shackleton 2000, Hinnov 120 

2013, Farhat et al. 2022a). Early models, such as those by Forte & Mitrovica (1997), proposed that mantle 121 

convection could significantly influence Earth's moment of inertia and hence dynamical flattening, potentially 122 

inducing orbital resonances with Jupiter and Saturn, previously theorized by Laskar et al. (1993), that contribute 123 

to long-term climate variability.  124 

Morrow et al. (2012) later investigated the combined influences of glacial isostatic adjustment (GIA) and 125 

mantle convection over the past 25 million years. Their findings indicated more moderate, time-averaged variations 126 

in dynamic flattening, which proved difficult to reconcile with independent cyclostratigraphic data. This 127 

discrepancy introduced a challenging "enigma" regarding the relationship between observational evidence of 128 

dynamic flattening's evolution and the underlying geodynamic processes responsible for these changes.  129 

More recently, Ghelichkhan et al. (2021) utilized a 4-D variational reconstruction of the past evolution of 130 

mantle convection to model Earth’s precession constant over the last 50 million years, again suggesting modest 131 

convection-induced changes (~0.2%) to the dynamic flattening. This study did not extend to the beginning of the 132 



Cenozoic, in particular the period preceding and including the Paleocene-Eocene Thermal Maximum at 56 Ma, 133 

and it was not calibrated against independent paleomagnetic constraints on moment of inertia changes, leaving 134 

open questions about Earth's long-term rotational evolution during this key time interval (Boulila & Hinnov 2022).  135 

  136 

BFN Modelling Results  137 

To model the dynamic origin and temporal evolution of Earth’s ellipsoidal gravitational figure and related moments 138 

of inertia, we reconstructed the 4-D evolution of mantle convection throughout the Cenozoic era using an iterative 139 

BFN method for time-reversed, tomography-based convection (Glisovic & Forte 2016). This time-reversed mantle 140 

convection methodology is summarised in the Methods section. We nonetheless underline here an important 141 

technical point that is worth keeping in mind. The BFN methodology yields a global reconstruction of the mantle’s 142 

3-D structure at some desired time in the past: here 70 million years ago. This reconstructed past state is then used 143 

as the starting point for a mantle convection calculation that advances forward in time, from the past to the present. 144 

It is from this complete forward simulation, that fully satisfies the equation of thermal energy conservation in the 145 

mantle, that we reconstruct the changing ellipsoidal figure and related moments of inertia, that are analyzed in the 146 

following discussion.  147 

Paleomagnetic reconstructions of Earth's rotation axis over the past 200 million years, based on the geocentric 148 

axial dipole model, have provided valuable constraints on True Polar Wander (TPW). However, these 149 

reconstructions are subject to significant uncertainties, particularly when determining the precise trajectory of the 150 

rotation axis (see Methods and Table 1). Despite these uncertainties, we aim to assess whether paleomagnetic 151 

constraints on Earth's rotation align with the changes predicted by mantle convection models during the Cenozoic 152 

Era.  153 

In Figure 1a, we present TPW trajectories predicted by reconstructions of mantle convection over the past 70 154 

million years that use two mantle viscosity profiles (V1 and V2, shown in Fig. S1) and two global tomography 155 

models (GyPSuM and S40RTS – see Methods). A key outcome is the distinct U-turn in Earth's rotation axis 156 

trajectory that is observed at approximately 50 million years ago, which is captured in both the paleomagnetic data 157 

(Torsvik et al. 2012) and our mantle convection models. The accuracy with which this U-turn is reproduced by the 158 

convection reconstruction employing the V1 model, and initialized with the GyPSuM tomography model, 159 



represents a significant advancement over previous convection models that were based on the history of subducted 160 

slabs and were unable to capture this key feature (Rouby et al. 2010, Steinberger et al. 2017). Additionally, we find 161 

that the sharp U-turn at 50 Ma is also predicted in the absence of a remnant rotational bulge and therefore is not 162 

dependent on the stabilization arising from long-term elasticity of the lithosphere (see Figure S2 in the SI).  163 

In a further analysis of the TPW paths (see Figure 1b), we specifically focussed on the angular displacement 164 

of Earth's rotation pole relative to the present-day North Pole as a function of time. The V1 model closely tracks 165 

the paleomagnetic data, particularly around 50 Ma, where the maximum pole deviation occurs. This excellent 166 

alignment between model predictions and paleomagnetic data is further confirmed by the analysis in Table 2, where 167 

we observe a goodness of fit (see eq. 4 in Methods), analogous to the reduced chi-square fit, whose value is close 168 

to one for the past 70 million years. Figure 2 presents the relative deviation between the predicted and observed 169 

pole positions, normalized by the paleomagnetic uncertainty bounds (α95). The hybrid approach (eq. 1 in Methods) 170 

used in the n-V1* and m-V2* models, where present-day moment of inertia is combined with model predictions, 171 

appears to be key to achieving a closer match to the paleomagnetic data. Notably, the relative deviations for these 172 

models remain consistently below ∼1.5 for much of the Cenozoic, suggesting they effectively capture the main 173 

features of Earth's rotational dynamics, including the U-turn around 50 Ma. Compared to previously published 174 

studies (e.g., Rouby et al. 2010), our model provides a substantially improved match to paleomagnetic data, both 175 

in the direction and magnitude of TPW excursions. This quantification of the fit provides robust validation of the 176 

model's predictions, indicating that our 70-million-year mantle convection reconstruction reproduces Earth's 177 

moment of inertia changes over geological timescales with good accuracy.  178 

Figure 3 highlights the evolution of true polar wander (TPW) velocities over the past 70 million years, 179 

comparing observed interval-averaged velocities from paleomagnetic data with the best-fitting predictions (Table 180 

2) from the BFN models, specifically n-V1* and n-V1, obtained using the differential and direct calculation of 181 

perturbed moment of inertia changes, respectively (see equations 1 and 2 in Methods). The TPW velocities derived 182 

from the paleomagnetic data (Table 1), shown by the green curve in Fig. 3, showing a peak between 60 and 50 Ma. 183 

This peak corresponds to the abrupt change in the rotation pole's direction, as indicated by the U-turn in the TPW 184 

path shown in Figure 1. The maroon and orange curves, representing predictions from the n-V1 and n-V1* models, 185 

similarly show this peak in TPW velocity near 50 Ma. The instantaneous velocities, represented by the dashed 186 



curves, are computed using eq. (23) in the SI and they incorporate the transient response to the relaxing rotational 187 

bulge. Since the TPW calculations are initiated using an equilibrium pole position at 70 Ma, where the initial 188 

instantaneous TPW velocity is zero, the predicted instantaneous TPW velocities near 50 Ma will be muted relative 189 

to the interval-averaged velocities. The predicted interval-averaged velocities are therefore more closely aligned 190 

with the corresponding interval-averaged TPW velocity from paleomagnetic data, both in terms of magnitude and 191 

timing. These results, in Fig. 1 to Fig. 3, demonstrate the ability of the BFN modelling to replicate key features of 192 

Earth's rotational dynamics, including the U-turn in TPW near 50 Ma, and underscore the sensitivity of TPW to 193 

convection-induced changes in Earth’s moment of inertia, which are modulated by the viscosity of the mantle.  194 

One other noteworthy result presented in Figure 3, concerns the present-day rates of TWP predicted by the 195 

BFN reconstructions of mantle evolution over the past 70 million years and the present-day rates estimated from 196 

paleomagnetic constraints on TPW. These present-day rates, lying between 0.2 and 0.4°/Ma, represent between 20 197 

to 40% of the 20th century TPW rate of about 1°/Ma determined by geodetic observations (McCarthy & Luzum  198 

1996). These new findings contrast with previous studies that concluded that mantle convection explains at least 199 

66% of the present-day TPW velocity (Adhikari et al. 2018).  200 

The temporal evolution of Earth’s moment of inertia, will also be manifested in changes in Earth’s dynamical 201 

flattening, quantified as ∆𝐻(𝑡)⁄𝐻0 (see eq. 5 in Methods and eq. 30 in the SI). Our BFN reconstructions of mantle 202 

convection-induced changes to the moment of inertia predict significant variability in Earth’s dynamic flattening 203 

over the past 70 million years (Figure 4(a)). The n-V1 (and n-V1*) and S40RTS-m-V2* model predictions show 204 

0.2 to 0.3% increase in dynamic flattening between 70 Ma and 30 Ma. This variability is comparable to that 205 

reported by Ghelichkhan et al. (2021), who limited their mantle convection reconstructions to the past 50 million 206 

years. Similarly to Ghelichkhan et al. (2021), our predictions show a modest 0.2% decrease in dynamical flattening 207 

from its peak value at 30 Ma to the present day (PD).  208 

From cyclostratigraphic analyses of Eocene deep-sea sediment cores, Boulila & Hinnov (2022) inferred 209 

reductions in dynamical flattening that are compatible with reduced flattening predicted by mantle convection 210 

reconstructions (Ghelichkhan et al. 2021). Such inferences are, however, highly dependent on a robust 211 

quantification of much larger amplitude changes to flattening due to tidal-induced deceleration of Earth’s rotation 212 

(see equation 48 and Figure S4(c) in SI) and are also dependent on potentially important complications (e.g. hiatus 213 



events) affecting cyclostratigraphic interpretations (De Vleeschouwer et al. 2023). It is thus important to combine 214 

both mantle convection and tidal contributions to flattening, while recognizing that the latter may have strongly 215 

varied over the past 70 Ma due to major changes in ocean tidal dissipation (TD), as suggested by numerical models 216 

that incorporate geological estimates of Earth’s paleogeographic evolution (Green et al. 2017).  217 

The combined convection and tidally driven changes to dynamic flattening, quantified as ∆𝐻(𝑡)⁄𝐻0 (see eq. 218 

30 in the SI), are presented in Figure 4(b), where it is clear that TD is the dominant contribution to dynamic 219 

flattening changes over the past 70 Ma. Mantle convection generates a relatively modest modulation of the larger 220 

amplitude dynamic flattening variation due to TD. This conclusion is verified in three different scenarios that we 221 

explored: (1) present-day (PD) TD is assumed constant over the past 70 Ma (solid lines in Fig. 4(b)), (2) TD is 222 

reduced to 50% of PD for times earlier than 5 Ma (dashed lines in Fig. 4(b)), and (3) TD is reduced to 30% of PD 223 

for times earlier than 35 Ma (dash-dotted lines in Fig. 4(b)). Scenarios 2 & 3 (see discussion in section 9 of SI,) 224 

are motivated by the paleo-tidal numerical simulations by Green et al. (2017), who modelled the impacts of 225 

changing bathymetry and continental configurations during the Cenozoic (and earlier), including the opening of 226 

the Drake Passage and Tasman Gateway, and found TD was strongly reduced relative to PD. Scenario (1) is 227 

assumed in the Laskar et al. (2004) (henceforth ‘La2004’) many-body orbital solution. As shown in equation (6) 228 

in Methods, the axial precession frequency will vary directly with the ratio 𝐻 Ω⁄ ≡ γ, therefore it is the 229 

timedependent change of this ratio relative to the PD value, Δγ(t)⁄γ0, that is of greater relevance when the rotation 230 

rate changes significantly with time. In Figure 4(c) we therefore show the predicted variation of  Δγ(t)⁄γ0 for all 231 

three TD scenarios and we note the mantle-convection modulation of the tidally driven variations is enhanced 232 

relative to its contribution in Figure 4(b). We draw particular attention to scenario 3 (TD reduced to 30% of PD), 233 

where the flattening ratio  Δγ(t)⁄γ0 changes little from 70 to 40 Ma, because of the mantle convection modulation.  234 

Finally, the implications of convection and TD for the predicted changes in Earth’s axial precession frequency,  235 

𝜔𝑝𝑟𝑒𝑐 (see equation 6 in Methods), are shown in Figure 4(d), along with observational estimates of 𝜔𝑝𝑟𝑒𝑐 in the 236 

Paleogene Period, inferred from cyclostratigraphic and astrochronological interpretations of Atlantic deep-sea 237 

sediment cores, including an outcrop from Spain (‘Sopelana’) with Cretaceous-Paleogene marine sediments (see 238 

figure caption for source references). While none of the three TD scenarios yield an optimal fit to the observational 239 



estimates of 𝜔𝑝𝑟𝑒𝑐, we suggest that scenario 3 (TD reduced to 30% of PD, prior to 35 Ma) comes closest to 240 

reconciling the data from the deep-sea cores and the ‘Sopelana’ outcrop. This inference is, of course, preliminary 241 

and is based on a simplified parametrization of past changes in TD, here modelled with a piecewise-linear variation 242 

and assuming only one transition time (i.e., 5 Ma or 35 Ma) in the past.  243 

  244 

Discussion & Conclusions  245 

Our study demonstrates a strong alignment between mantle convection models and paleomagnetic constraints on 246 

true polar wander (TPW) over the Cenozoic Era, despite uncertainties in the paleomagnetic data and in the 247 

geodynamic models. This agreement underscores the robustness of our time-dependent mantle convection 248 

reconstructions and provides new insights into Earth’s rotational dynamics. In particular, the marked U-turn in the 249 

trajectory of Earth's rotation axis around 50 million years ago that points to a significant geodynamic 250 

reorganization within Earth’s interior during that period.  251 

A critical strength of our study is that the same mantle convection reconstructions that predict the 252 

timeevolution of Earth's moment of inertia tensor, used for true polar wander (TPW) predictions, are also used to 253 

predict changes in dynamic flattening and associated precession frequency. Since both TPW and dynamic 254 

flattening arise from the same moment of inertia tensor, which is perturbed by mantle convection, our ability to 255 

accurately capture TPW dynamics verifies the reliability of our predictions of dynamic flattening changes.  256 

Beyond validating our convection models, this work reveals modest but sustained changes in Earth’s dynamic 257 

flattening over the past 70 Ma. We predict a nearly 0.3% increase in convection-driven dynamic flattening between 258 

70 Ma and 30 Ma, followed by a more gradual adjustment over the last 30 million years. The key question we then 259 

addressed (in Figure 4(d)) is how these convection-induced changes in dynamic ellipticity, combined with past 260 

variations in tidal dissipation, may influence the long-term evolution of Earth’s precession frequency.  261 

Cyclostratigraphic studies (De Vleeschouwer et al. 2023, Wu et al. 2024) provide critical data that help to 262 

address this key question and provide support for the geodynamic model predictions. The reanalysis of Eocene 263 

deep-sea sediment records (De Vleeschouwer et al. 2023) indicate that precession cycles – not obliquity cycles as 264 

previously thought – dominate the lithological variations. This reinterpretation suggests lower tidal dissipation 265 

rates during the Eocene, in agreement with our model predictions (and previous interpretations by Boulila & 266 



Hinnov 2022) that also reveal enhanced mantle convection modulation when past TD is significantly lower (Figure 267 

4(c) and (d)). These findings emphasize the importance of integrating both tidal and mantle dynamics to accurately 268 

model Earth's precessional changes. Discrepancies between cyclostratigraphic interpretations (Boulila & Hinnov 269 

2022, De Vleeschouwer et al. 2023) underscore the complexity in deciphering sedimentary records.  270 

We suggest that future progress would therefore benefit from the development of new astronomical solutions 271 

that integrate the predictions of precession-frequency changes derived from geodynamic models. Sedimentary 272 

records can then be re-analyzed using the modified astronomical models as tuning targets. Such refinements to the 273 

analysis of sedimentary frequencies would provide powerful tests of precession frequency variations predicted 274 

from the combined contributions of mantle convection and tidal dissipation. This integrated approach holds the 275 

potential to significantly advance both geodynamical modeling and the interpretation of sedimentary records, 276 

leading to a more comprehensive view of Earth's dynamical evolution.   277 
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Methods  381 

To solve the direct (forward-in-time) problem of thermal convection in Earth's mantle, we use the governing 382 

equations that satisfy conservation of mass, momentum, and energy for a Newtonian viscous fluid in a 383 

compressible and self-gravitating mantle, employing a pseudo-spectral numerical method (Glišović et al. 2012). 384 

Detailed explanations of the pseudo-spectral solution of the regularized time-reversed energy equation are 385 

presented in Glišović & Forte (2016).  386 

All flow computations are carried out using spherical harmonic expansions up to a maximum harmonic degree 387 

of 170. This yields a horizontal spatial resolution varying from ~64 km at the core-mantle boundary (CMB) to 388 

~117 km at the top of the mantle. The vertical resolution is defined using a Chebyshev polynomial expansion up 389 

to order 129, which provides a radial resolution from ~0.4 km near the isothermal boundaries to ~35 km in the 390 

mid-mantle.  391 

The reference structure (density, gravity, thermal conductivity, heat capacity, and thermal expansion) follows 392 

Glišović et al. (2012). Energy sources, including radioactive and secular cooling contributions, are uniformly 393 

distributed across all depths, providing a total energy budget of 24 TW.  394 

As discussed in Glišović & Forte (2014, 2016), the resolution of lateral variations in the upper mantle from 395 

seismic tomography, particularly their amplitudes, is often insufficient due to damping effects inherent in 396 

tomographic inversions. Thus, seismically inferred lateral temperature variations may not be in thermodynamic 397 

equilibrium with the steep radial temperature gradients in the thermal boundary layers (TBLs) within the 398 

lithospheric mantle and near the CMB. To mitigate the instability introduced by this lack of balance, we employed 399 

a purely adiabatic geotherm without (upper and bottom) TBLs, minimizing potential inaccuracies during backward 400 

modeling. The adiabatic geotherm was constructed based on temperature constraints at the upper mantle transition 401 

zone from Katsura et al. (2004), where temperatures at the phase transitions at 410 km and 660 km depths are 402 

1760 K and 1880 K, respectively. Surface and CMB conditions are isothermal, with a surface potential temperature 403 

of 1600 K and an adiabatic temperature of 2456 K at the CMB.  404 

The depth-dependent viscosity models used in our calculations, shown in Fig. S1 in the SI, have been tested 405 

against a wide range of geodynamic constraints (Mitrovica & Forte 2004; Forte et al. 2010) and independent 406 

mineral-physical models (Glišović et al. 2015). In the calculations presented in this study, we specifically employ 407 



the ‘V1’ viscosity profile, inferred by Mitrovica & Forte (2004) and the ‘V2’ viscosity profile (Forte et al. 2010). 408 

A discussion of both profiles and their geodynamic implications is presented in Forte et al. (2015).  409 

The mechanical surface boundary condition assumes plate-like behavior, with viscous coupling between plate 410 

motions and the underlying mantle flow, ensuring that mantle flow drives the plates (Forte & Peltier 1994, Forte 411 

et al. 2015). The input for this coupling comes from the history of plate geometries throughout the Cenozoic, as 412 

derived from ocean floor ages and magnetic anomalies (Rowley et al. 2016). Plate reconstructions are based on the 413 

Indo-Atlantic hotspot reference frame, sampled at 5 Myr intervals, and all models are calculated in the no-414 

netrotation (NNR) frame of reference. This boundary condition produces nearly equal amounts of poloidal 415 

(convergent/divergent) and toroidal (strike-slip) flows in the upper mantle (Forte & Peltier 1994).  416 

Geologically reconstructed plate velocities provide the only direct constraints on the past evolution of 3D 417 

mantle buoyancy. Therefore, we developed an inverse procedure to determine the minimal perturbations required 418 

to match geologically inferred plate motions at selected instants (Glišović & Forte 2016). This method allows us 419 

to map regions in the mantle where small nudges to the buoyancy field can reproduce the geological plate motion 420 

data. This approach allows us to maintain mechanical and dynamical self-consistency by ensuring that all plate 421 

motions are, at any time, entirely driven by internal buoyancy forces.  422 

The key input for mantle convection simulations is the 3D distribution of lateral density (and corresponding 423 

temperature) anomalies derived from the GyPSuM global tomography model, which integrates seismic, 424 

geodynamic, and mineral-physical data (Simmons et al. 2010). To quantify the uncertainties in our predictions, 425 

arising from imperfect resolution of mantle heterogeneity by seismic tomography, we also employ another 426 

tomography model, S40RTS (Ritsema et al. 2011). This model was derived exclusively from global seismic data 427 

that constrain the relative perturbations of seismic shear velocity in the mantle. Therefore, to evaluate the 428 

geodynamic implications of this model it is necessary to determine, a-posteriori, a scaling ratio that converts 429 

shearvelocity anomalies into equivalent density anomalies. In past studies, this scaling ratio is often assumed to 430 

have one value throughout the mantle, approximately estimated from mineral physics data. We instead ensure 431 

maximum geodynamic consistency of S40RTS by carrying out an Occam-style inversion of present-day 432 

geodynamic observables (gravity, topography, plate motions) to derive an optimal depth-dependent scaling ratio 433 

in the mantle.  434 



The inversion procedure is described in Forte et al. (2015).  435 

To reconstruct the temporal evolution of 3-D mantle heterogeneity, we use the quasi-reversibility (QRV) 436 

method, which integrates the governing conservation of energy equation backward in time. The QRV method, 437 

successfully applied in previous studies (Glišović & Forte 2014, 2016, 2017), reconstructs past temperature 438 

structures with errors below 10% for major observables like dynamic topography and gravity anomalies. To further 439 

refine our results, we couple the QRV method with the ‘Back-and-Forth Nudging’ (BFN) technique (Glišović & 440 

Forte 2016). This iterative method alternates between forward and backward integrations of the mantle convection 441 

model, spanning 2.5 Myr time windows, and iteratively updates the temperature field at each time step to minimize 442 

cumulative errors associated with thermal diffusion. The BFN method improves the resolution of mantle 443 

heterogeneity, allowing for more precise reconstructions of mantle dynamics over the past 70 million years.  444 

The geodynamic consistency of our models is verified by comparing predictions of present-day surface 445 

signals (plate motions, gravity anomalies, and dynamic topography) against observations (Glišović & Forte 2016). 446 

Additionally, the 3D mantle structure is integrated forward from 70 Ma to the present day to confirm high global 447 

correlations with initial seismic-geodynamic models (Glišović & Forte 2016).  448 

Ground truthing is a critical aspect of validating these model reconstructions. This includes verifying 449 

predictions against present-day geophysical observables such as the gravity/geoid anomalies and dynamic 450 

topography (Glišović & Forte 2014, 2016). We also establish temporal links between deep mantle upwellings and 451 

surface features, such as the Deccan Traps, the Nile River drainage basin, and the North Atlantic Igneous Province 452 

(Faccenna et al. 2019; Glišović & Forte 2017, 2019).  453 

The ellipsoidal gravitational figure and related moments of inertia of the Earth are manifested in the longest 454 

wavelength geoid undulations corresponding to spherical harmonic degree 2 (see equation 5 in the SI). These geoid 455 

undulations are computed, at each instant in time, from our reconstructed distribution of internal mantle density 456 

anomalies employing mathematical kernel functions that represent the viscous-flow response of a compressible 457 

mantle that also account for all self-gravitational loads (Forte et al. 2015).  458 

We calculated the convection-driven perturbations to Earth's time-dependent moment of inertia tensor, 𝛿𝐼𝑖𝑗(𝑡), 459 

using two approaches: the ‘differential’ approach and the ‘direct’ approach. In the differential approach, the 460 

difference between the predicted moment of inertia at any given time in the past relative to the predicted moment 461 



of inertia at the present day is added to the observed, present-day perturbation of moment of inertia: 𝛿𝐼𝑖𝑗(𝑡) = 462 

𝛿𝐼𝑖𝑗𝑜𝑏𝑠(0) + ∆𝐼𝑖𝑗𝑐𝑜𝑛(𝑡)   where  ∆𝐼𝑖𝑗𝑐𝑜𝑛(𝑡) = 𝛿𝐼𝑖𝑗𝑐𝑜𝑛(𝑡) − 𝛿𝐼𝑖𝑗𝑐𝑜𝑛(0),    (1)  463 

where 𝛿𝐼𝑖𝑗𝑜𝑏𝑠(0) is the present-day perturbation to the moment of inertia tensor determined from the degree-2 464 

nonhydrostatic geoid derived from the GRACE geopotential solution (Tapley et al. 2007) and  𝛿𝐼𝑖𝑗𝑐𝑜𝑛(𝑡) is the 465 

inertia tensor perturbation predicted by the mantle convection model. The non-hydrostatic geoid is determined 466 

relative to Earth’s hydrostatic ellipsoidal figure arising from the diurnal rotation (Chambat et al., 2010). The 467 

justification for the differential approach in equation (1) is that mantle convection alone does not entirely explain 468 

Earth’s presentday moment of inertia because other geophysical sources, notably from crustal heterogeneity and 469 

glacial isostatic adjustment, also contribute. Moreover, there are inaccuracies in the reconstructed evolution of 470 

mantle structure that lead to an imperfect prediction for the present-day moment of inertia. The direct approach, 471 

on the other hand, calculates the perturbed moment of inertia entirely from the mantle convection reconstructions 472 

without any corrections, or allowance from other contributions (e.g., the crust):  473 

𝛿𝐼𝑖𝑗(𝑡) = 𝛿𝐼𝑖𝑗𝑐𝑜𝑛(𝑡) ,                                                                                                 (2)  474 

which may potentially lead to discrepancies in the predicted present-day pole position.  475 

The numerical integration of the differential equation governing TPW driven by convection-induced 476 

perturbations to Earth’s moment of inertia (see equation 23 in SI), requires the specification of input parameters 477 

related to the long-term viscous and elastic structure of the Earth. We calculate the time constant 𝑇1 describing the 478 

long-term time dependence of the degree-2 tidal Love number (see equation 9 in SI), using the ‘V1’ and ‘V2’ radial 479 

viscosity profiles described above. For V1 we have 𝑇1 = 9.3 kyr and for V2 we have 𝑇1 = 12.9 kyr. These values 480 

are comparable to 𝑇1 = 11 kyr calculated for a two-layer viscosity model, with upper-mantle viscosity equal to 481 

1021 Pa-s and lower mantle that is 20 times more viscous (Greff-Lefftz 2011). The harmonic degree-2 tidal Love 482 

numbers in the fluid limit (𝑡 → ∞), 𝑘𝑓
𝑇(𝐿𝑇), depend on the long-term elastic lithosphere thickness 𝐿𝑇. We require 483 

two values in particular: 𝑘𝑓𝑇(𝐿𝑇 = 0) ≡ 𝑘∗𝑓𝑇 , the inviscid-fluid tidal Love number applicable to a purely hydrostatic 484 

planet, and 𝑘𝑓
𝑇(𝐿𝑇 = 30 km), where 30 km is a thickness compatible with the elastic-plate flexure modelling of 485 



free-air gravity anomalies by Watts & Moore (2017). This choice for the value of the elastic thickness, which 486 

exceeds the value 𝐿𝑇 = 10 km adopted in Creveling et al. (2012), is discussed in the SI and the implications are 487 

illustrated in Figure S2. Numerical calculations of the degree-two tidal Love number in the fluid limit  488 



488 (Mitrovica et al. 2005), employing the radial density profile in the PREM reference Earth model (Dziewonski &  

489 Anderson 1981), yield: 𝑘∗
𝑓
𝑇 = 0.9342 and 𝑘𝑓

𝑇(𝐿𝑇 = 30 km) = 0.9319. The 0.25% difference between these two  

490 values is what sustains a residual nonhydrostatic rotational flattening, termed the ‘remnant bulge’ by Matsuyama 

491 et al. (2006), represented by equation (11) in the SI.  

492 Our observational constraints on TPW are based on paleomagnetic data compiled and analyzed by Torsvik et  

493 al. (2012). We estimate the TPW trajectory (in Table 1) over the past 80 Ma from the global apparent polar 

wander  

494 paths (GAPWP) determined from data in Torsvik et al (2012) and from the global rotations of Rowley et al. 

(2016),  

495 and the O’Neill et al. (2005) rotations of plates relative to a fixed Indo-Atlantic hotspot frame. This TPW 

trajectory 496 is calculated at 5-million-year time steps, with a 20-million-year moving window average of 

the paleomagnetic  

497 study mean data. We employ the statistical α95 values as an estimate of 95% confidence uncertainty, represented  

498 by the standard error of the mean of means. We recognize that these α95 likely underestimate the true uncertainties  

499 for several reasons. First, each study mean comprises some number of individual estimates of the mean with 500 

associated uncertainties.  The study mean mean is the average of the individual estimates ignoring all of the 501 

uncertainties in the individual measurements. Second, the GAPWP mean at each time is the mean of the study  

502 means falling within the age interval window, again ignoring the uncertainties associated with each study mean. 503 

Third, there are uncertainties associated with each of the rotations of the plates needed to rotate data from each of 504 the 

various major continents into a common frame of reference, including the rotation to the fixed hotspot reference 505 frame. 

The correct summing of those uncertainties would yield a more realistic estimate of the true uncertainty.   

506 This uncertainty modelling should be the basis of a future study.  

507 The extent to which the reconstructed temporal evolution of the convection-induced perturbations to Earth’s 508 

moment of inertia are accurate and realistic, may be quantified by two measures of data fit. The first measure is 

509 the ‘variance reduction’ to the observed, present-day degee-2 nonhydrostatic geoid from the GRACE 

geopotential, 510 defined as follows:  



∑𝑚=2 

511 𝑉𝑎𝑟. 𝑅𝑒𝑑. (%) = 100 × [1 −  𝑚=−2 ‖ 

(𝛿𝑁∑𝑚=2𝑜)𝑚2  −   ‖ (𝛿𝑁(𝛿𝑁𝑜)𝑚2𝑝) 2𝑚‖2 (𝑡 = 0) ‖2 ]                              (3)  

𝑚=−2 

512 in which  (𝛿𝑁𝑜)𝑚
2 and (𝛿𝑁𝑝)𝑚

2 (𝑡 = 0)are, respectively, the degree-2 harmonic coefficients of 

the observed and  

513 predicted nonhydrostatic geoid at present day. A 100% variance reduction represents a perfect 

match between 514 predicted and observed geoids. As discussed in the SI, notably equation (5), 

there is a direct linear relationship 515 between the degree-2 geoid coefficients and Earth’s 

moment of inertia tensor. The variance reduction defined in 516 (3) thus quantifies whether the 

reconstructed 70-million-year evolution of mantle heterogeneity can successfully 517 match the 

observed present-day nonhydrostatic geoid and hence the present-day moment of inertia.  

518 Our second measure of fit, quantifies the 70-million-year match between the paleomagnetic determination of 519 the 

TPW path and that predicted by the mantle convection reconstructions. This measure of ‘goodness of fit’ is 520 analogous 

to the reduced chi-squared statistic and is defined as follows:  

𝑁 

 1 Δ𝜃(𝑡 

521 𝑋2 (  𝑖) )2                                                                                  

(4)  

𝛼95(𝑡𝑖) 

522 in which 𝑡𝑖 (𝑖 = 1 … 𝑁) are the individual mean ages (see 2nd column in Table 

1) for which a paleomagnetic pole  

523 position has been determined, Δ𝜃(𝑡𝑖) is the angular separation (in degrees) 

between the paleomagnetic pole  

524 position and the mantle convection prediction of the pole position at time 𝑡𝑖, 

and 𝛼95(𝑡𝑖) is the alpha-95 measure  

525 of uncertainty in the paleomagnetic pole position at time 𝑡𝑖. When 𝑋𝑇𝑃𝑊2

 ≲ 1, the mantle convection model is  



526 fitting the paleomagnetic TPW trajectory within the data uncertainty. 𝑋𝑇𝑃𝑊2 > 

1 indicates the fit by the predicted 527 TPW path has not fully captured the 

data or, alternatively, that the 𝛼95 underestimate the true uncertainties.  

528 In the SI, we present the theoretical framework that we employed for modelling how mantle convection and 529 tidal 

dissipation influence Earth's rotational dynamics as manifested in Earth’s time-dependent dynamic flattening 530 and 

precession frequency. Here, we briefly summarize the most important concepts and equations that underpin  

531 our modeling results presented in Figure 4. The dynamic flattening, 𝐻(𝑡), represents the deviation of Earth's shape 

532 from a perfect sphere due to centrifugal forces and internal dynamics. It is defined (see eq. 25 in SI) in terms of 533 

Earth's principal moments of inertia 𝐶(𝑡) ≥ 𝐵(𝑡) ≥ 𝐴(𝑡) as follows:  

𝐶 

534 𝐻(𝑡) =                                                                      

(5)  

𝐶(𝑡) 

535 This flattening parameter evolves over time due to changes in Earth’s 

moment of inertia tensor produced by mantle 536 convection, which 

changes the mass distribution within the mantle, and from changes in 

centrifugal forces that  

537  affect the entire planet, arising from the deceleration of Earth’s rotation rate due to luni-solar tidal dissipation. 538 

 In all calculations presented in panels (b) – (d) in Figure 4, we employ the differential changes in Earth’s  

539 moment of inertia tensor expressed in equation (1) above. As underlined in the discussion following (1), the 540 

present-day non-hydrostatic geoid contribution determined directly from the GRACE geopotential solution is held 541 

fixed. This is also the case in our exploration of the impact of tidal deceleration on the moment of inertia tensor.  

542 For the “purely tidal” modelling, the tidal changes to the inertia tensor (see equation 59 in SI) were calculated in 543 

addition to the present-day non-hydrostatic contribution, 𝛿𝐼𝑖,𝑗con(𝑡 = 0), that was held fixed over the entire 70 Ma  

544 time interval we analyzed. This approach ensures that the present-day precession frequency (see equation 6, below) 

545 agrees – in all simulations we performed – with the present-day reference value provided by the La2004 orbital 546 

solution (see equation 72 in SI).  

( 𝑡 ) − 
1 
2 
[ 𝐴 ( 𝑡 ) + 𝐵 ( 𝑡 ) ] 



547 Earth's axial precession is the slow, conical movement of its rotational axis (similar to a wobbling spinning 548 top) 

caused by gravitational forces exerted by the Sun and Moon on Earth's equatorial bulge, where the latter is 549 quantified 

by the dynamical flattening in (5). The rate of this conical motion is quantified in terms of a precession 550 frequency, 

𝜔𝑝𝑟𝑒𝑐, as follows (see also equation 71 and discussion in SI):  

551 𝜔𝑝𝑟𝑒𝑐 3 𝐻 𝐺𝑀𝑆 𝐺𝑚𝐿

 3 𝑖𝐿)] cos 𝜀                          (6)  

552 in which all parameters are defined in Table S1 in SI. This equation highlights how changes 

in dynamic flattening  

553 𝐻, Earth’s rotation rate Ω , and the distance to the Moon 𝑎𝐿 collectively affect the precession 

of Earth's rotation  

554 axis. Earth’s orbit is very stable on hundred-million-year time scales (Zeebe 2015) and 

therefore secular (i.e., non555 periodic) changes in the distance to Sun, 𝑎𝑆, are treated here 

as negligibly small.  

556 The time evolution of the Earth-Moon distance, 𝑎𝐿(𝑡), is critical in understanding how tidal dissipation 557 impacts 

Earth's rotation rate and in modelling the precession frequency 𝜔𝑝𝑟𝑒𝑐, as shown in equation (6). We  

558 modelled the evolution of 𝑎𝐿(𝑡) via the principle of conservation of vertical angular momentum in the Earth-Moon 

559 system (see equation 67 and the related discussion in section 9 of the SI) as follows:  

[𝐿𝑡𝑜𝑡𝑎𝑙 

560   𝑎 𝑧,0 − 𝐶𝐸(𝑡) (Ω0 + 𝛼𝐿Ω̇ 0t) cos 𝜀]2 

 𝐿(𝑡) = (𝑚𝐿 cos 𝑖𝐿)2 𝐺𝑀𝐸 (1 − 𝑒𝐿2)                                                        

(7)  



in which 𝐿𝑡𝑜𝑡𝑎𝑙𝑧,0 is the total vertical angular momentum of the Earth-Moon system, at present day, and is assumed 561 

to be constant, 𝐶𝐸(𝑡) is Earth’s polar moment of inertia, Ω0 is the present-day rotation rate, Ω̇ 0 is the present-day 562 

deceleration rate, and 𝛼𝐿 < 1 is a (non-dimensional parameter) that represents the relative importance of lunar tidal 563 

dissipation relative to the combined total of lunar and solar tidal dissipation (see equation 63 in SI), and all other 564 

parameters are defined in Table S1. By combining mantle convection simulations with these equations that 565 

describe the effects of tidal forces, our theoretical approach (described in the SI) allows for a comprehensive 566 

analysis of Earth’s rotational dynamics over the past 70 million years. This understanding is validated through 567 

comparison with independent observational data from paleomagnetism (Figures 1 – 3) and cyclostratigraphic 568 

studies (Figure 4(d)).   569 

  570 

References (Methods):  571 

Chambat, F., Ricard, Y., & Valette, B. (2010). Flattening of the Earth: further from hydrostaticity than previously 572 

estimated. Geophysical Journal International, 183(2), 727-732.  573 

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary Reference Earth Model. Physics of the Earth and  574 

Planetary Interiors, 25(4), 297–356.  575 

Forte, A. M., & Peltier, W. R. (1994). The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: 576 

The importance of surface plates and lateral viscosity variations. Advances in Geophysics, 36, 1-119.  577 

Forte, A. M., Quéré, S., Moucha, R., Simmons, N. A., Grand, S. P., Mitrovica, J. X., & Rowley, D. B. (2010). Joint 578 

Seismic-Geodynamic-Mineral Physical Modelling of African Geodynamics: A Reconciliation of DeepMantle 579 

Convection with Surface Geophysical Constraints. Earth and Planetary Science Letters, 295(3-4), 329–341.  580 

Forte, A.M, Simmons, N.A, Grand, S.P. (2015) “Constraints on 3-D seismic models from global geodynamic 581 

observables: Implications for the global mantle convective flow,” Treatise of Geophysics, G. Schubert, 2nd 582 

Ed. (Elsevier), vol. 1, pp. 853–907.  583 

Glišović, P., Forte, A. M., & Moucha, R. (2012). Time-dependent convection models of mantle thermal structure 584 

constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB 585 

heat flux. Geophysical Journal International, 190(2), 785-815.  586 



Glišović, P., & Forte, A. M. (2014). Reconstructing the Cenozoic evolution of the mantle: Implications for mantle 587 

plume dynamics under the Pacific and Indian plates. Earth and Planetary Science Letters, 390, 146-156.  588 

Glišović, P., Forte, A. M., & Ammann, M. W. (2015). Variations in grain size and viscosity based on vacancy 589 

diffusion in minerals, seismic tomography, and geodynamically inferred mantle rheology. Geophysical 590 

Research Letters, 42(15), 6278-6286.  591 

Greff-Lefftz, M. (2011). Length of day variations due to mantle dynamics at geological timescale. Geophysical  592 

Journal International, 187(2), 595-612.  593 

Katsura, T., Yamada, H., Nishikawa, O., Song, M., Kubo, A., Shinmei, T., ... & Funakoshi, K. I.(2004). Olivine 594 

wadsleyite transition in the system (Mg,Fe)2SiO4. Journal of Geophysical Research: Solid Earth, 109(B2).  595 

Mitrovica, J. X., & Forte, A. M. (2004). A New Inference of Mantle Viscosity Based Upon Joint Inversion of 596 

Convection and Glacial Isostatic Adjustment Data. Earth and Planetary Science Letters, 225(1-2), 177–189. 597 

Mitrovica, J. X., Wahr, J., Matsuyama, I., & Paulson, A. (2005). The rotational stability of an ice-age earth. 598 

Geophysical Journal International, 161(2), 491-506.  599 

O'Neill, C., Müller, D., & Steinberger, B. (2005). On the uncertainties in hot spot reconstructions and the 600 

significance of moving hot spot reference frames. Geochemistry, Geophysics, Geosystems, 6(4).  601 

Ritsema, J., Deuss, A., van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: A Degree-40 Shear-Velocity Model 602 

for the Mantle from New Rayleigh Wave Dispersion, Teleseismic Traveltimes, and Normal-Mode Splitting 603 

Function Measurements. Geophysical Journal International, 184(3), 1223–1236.  604 

Rowley, D. B., Forte, A. M., Rowan, C. J., Glisovic, P., Moucha, R., & Grand, S. P. (2016). Kinematics and 605 

Dynamics of the East Pacific Rise Linked to a Stable, Deep-Mantle Upwelling. Science Advances, 2(9), 606 

e1601107.  607 

Simmons, N. A., Forte, A. M., & Boschi, L. (2010). GyPSuM: A Joint Tomographic Model of Mantle Density and  608 

Seismic Wave Speeds. Journal of Geophysical Research: Solid Earth, 115(B12), B12310.  609 

Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2007). The Gravity Recovery and Climate Experiment:  610 

Mission Overview and Early Results. Geophysical Research Letters, 31(9), L09607.  611 

Watts, A. B., & Moore, J. D. P. (2017). Flexural isostasy: Constraints from gravity and topography power spectra.  612 

Journal of Geophysical Research: Solid Earth, 122(10), 8417-8430.  613 



615 Zeebe, R. E. (2015). Highly stable evolution of Earth's future orbit despite chaotic behavior of the Solar 

System.  

616 The Astrophysical Journal, 811(1), 9.    



Table 1: True Polar Wander Path for the Past 80 Myr Calculated With a 20-Myr Sliding Window Every 5 Myr
†
  617 

Window (Ma)  Age (Ma)  N  K  α95  K95  θ (° N)  φ (° E)  

 10  6.9  49  126.62  1.82  12.44  87.05  164.32  

 15  13.1  33  102.53  2.48  13.83  85.79  158.09  

 20  18.3  28  89.93  2.89  14.76  85.64  152.99  

 25  25.5  22  113.75  2.92  13.13  85.99  154.18  

 30  29.6  23  134.38  2.62  12.08  85.43  151.24  

 35  34.9  23  103.66  2.99  13.75  84.63  151.9  

 40  39.6  22  101.77  3.09  13.88  84.52  158  

 45  45.6  24  87.71  3.18  14.95  83.54  133.65  

 50  51.8  32  77.13  2.91  15.94  82.38  140.5  

 55  56.7  41  87.89  2.39  14.93  84.31  158.31  

 60  59.8  46  76.65  2.42  15.99  84.97  191.55  

 65  63  44  101.94  2.14  13.87  84.39  195.76  

 70  65.8  33  105.13  2.45  13.65  85.59  208.95  

 75  71.6  22  118.31  2.86  12.87  86.14  234.8  

 80  81.8  25  83.02  3.2  15.37  86.72  239.06  

† Calculated from GAPWP, based on data in Torsvik et al. (2012), using global rotations from Rowley et al. (2016) and O’Neill 618 
et al. (2005) rotations of plates relative to a fixed Indo-Atlantic hotspot reference frame.  619 
Window: age (in Ma) of the centre of the window; Age: mean age computed from the data; N: number of studies;  620 
K: Fisher’s precision parameter; α95: uncertainty (in °) at the 95% confidence level; K95: 95% confidence interval (in °) within 621 
which 95% of study means contributing to the GAPWP are expected to fall; θ, φ latitude and longitude of the pole positions  622 
  623 

  624 

Table 2: Fits to 70-Million-Year Paleomagnetic TPW Path
†
 and Present-Day Degree-2 Nonhydrostatic Geoid

‡
  625 

Model  GyPSuM  GyPSuM  GyPSuM  GyPSuM  S40RTS Data  n-V1 626 

 n-V1*  m-V1*  m-V2*  m-V2*  627 

Var. Red. (𝑙 = 2)  90%  90%  90%  80%  77%  628 

 𝑋𝑇𝑃𝑊2  1.4  0.95  1.3  3.8 (0.94 over 50Ma)  1.5  629 

† TPW data consist of paleomagnetic determination of pole position, for each mean age, identified in Table 1.  630 
‡ The 𝑙 = 2 nonhydrostatic geoid coefficients are derived from the GRACE geopotential solution (Tapley et al. 2007), relative 631 

to the hydrostatic ellipsoid (Chambat et al., 2010).  632 
* Denotes predicted TPW paths, shown in Fig. 1, that are based on calculations of the differential inertia tensor perturbations, 633 
as defined in equation (1) in Methods. Otherwise, the direct approach is used, defined by equation (2) in Methods. In this 634 
study, we employed two global tomography models as initial conditions for the mantle convection reconstructions: GyPSuM 635 
(Simmons et al. 2010) and S40RTS (Ritsema et al. 2011). Likewise, we also employed two geodynamic inferences of the 636 
depth-dependent mantle viscosity, V1 and V2, shown in Fig. S1 in the SI. The models denoted "m-", represent convection 637 
reconstructions in which mantle flow is constrained to match geological reconstructions of past plate motions (Rowley et al. 638 
2016).  The models denoted by “n” do not impose any matching to geologic inferences of past plate motions. In all cases, 639 
however, the models incorporate tectonic plates as a mechanical surface boundary condition, in which all plate motions are 640 
viscously coupled to mantle flow and driven by internal buoyancy.  641 
Var. Red. is a measure of data fit, to the observed present-day degree-2 geoid, defined in equation (3) in Methods. Likewise, 642 
𝑋𝑇𝑃𝑊2 is a measure of fit to the paleomagnetic determination of the TPW path (Table 1), defined in equation (4) in Methods.  643 



 
640    

Figure 1: Observed and predicted positions of Earth's rotation axis over geological time. (a) The black curve 

represents a paleomagnetic estimate of TPW path determined by Besse & Courtillot (2002) in the Indo-Atlantic hotspot 

reference frame. The green curve represents the TPW path (see Table 1) that we estimate from the paleomagnetic data 

in Torsvik et al. (2012), the global rotations of Rowley et al. (2016) and the O’Neill et al. (2005) rotations of plates 

relative to a fixed Indo-Atlantic hotspot frame. The colored curves represent the predicted TPW paths from 70-

millionyear reconstructions of the mantle for convection models that employ either of two viscosity models (V1 and V2 

– see Fig. S1) and two different tomography models (GyPSuM and S40RTS) as initial conditions (see Table 2): GyPSuM 

+ V1 (‘n-V1’, maroon curve), GyPSuM + V1 (‘n-V1*’, orange curve), GyPSuM + V2 (‘m-V2*’, red curve), S40RTS + 

V2 (‘s40-m-V2*’, blue curve). The asterisk, *, identifies the predicted TPW paths obtained using a differential 

representation of the temporal changes in the moment of inertia (see equation 1 in Methods). No asterisk indicates the 

‘direct’ representation (see equation 2 in Methods). Predictions marked with "m-" represent convection reconstructions 

where mantle flow is constrained to match geological reconstructions of past plate motions. Predictions marked with 

"n" do not impose this constraint. (b) Angular displacement of Earth's rotation poles relative to the present-day North 

Pole as a function of time (in millions of years, Ma). The figure compares predictions from different mantle viscosity 

profiles (V1 and V2) and initial tomography models (GyPSuM and S40RTS) described in panel (a), and in Table 2, with 

paleomagnetic data from Torsvik et al. (2012) and from Besse & Courtillot (2002).The U-turn at 50 Ma, determined 

from both the Torsvik et al. (2012) data and from the V1 model predictions, represents the maximum deviation of the 

rotation pole from its present-day position.   



 

Figure 2: Relative deviation between the predicted and observed positions of Earth's rotation 

pole (in Fig. 1) as a function of time (in millions of years, Ma). The relative deviation is calculated as 

the angular distance between the predicted and observed pole positions, divided by the alpha-95 (α95) 

confidence interval (in Table 1). A relative deviation of less than or equal to 1 indicates that the 

predicted pole position falls within the α95 region, signifying an acceptable (good) fit. The different 

curves represent predictions (see Fig. 1 and its caption) based on two mantle viscosity profiles (V1 and 

V2) and two tomography models (GyPSuM and S40RTS).  
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Figure 3: Predicted and observed angular velocities of true polar wander (TPW) over the past 70 

million years. The green solid curve represents the interval-averaged rate of change of the rotation pole 

position based on the observed TPW path (Table 1), calculated from the paleomagnetic data of Torsvik et 

al. (2012). Average angular velocities are computed by dividing the angular distance between successive 

pole positions by the elapsed time. The maroon solid curve shows the interval-averaged TPW velocity 

predicted by the n-V1 model using the direct approach for the moment of inertia perturbation (eq. 2 in 

Methods), averaged over 5-million-year intervals. The maroon dashed curve represents the instantaneous 

angular velocity of TPW for the n-V1 model, computed using equation (23) in the Supplementary 

Information. The orange solid and dashed curves show the interval-averaged and instantaneous TPW 

velocities, respectively, predicted by the n-V1* model using the differential approach for the moment of 

inertia perturbation (eq. 1 in Methods). The peak between 60 and 50 Ma in both the observed and 

predicted TPW velocities corresponds to the U-turn in the TPW path seen in Figure 1, reflecting a rapid 

change in the rotation pole's direction during this time. Note: 1°/Ma = 11 cm/year.  



642    

 

Figure 4: Mantle-convection and tidally induced changes of Earth's dynamic flattening (ellipticity) and 

precession frequency over the past 70 million years. (a) Change in dynamic flattening ∆𝐻(𝑡)⁄𝐻0 as a function 

of time (in millions of years, Ma) relative to its present day (PD) value 𝐻0, where ∆𝐻(𝑡) = 𝐻(𝑡) − 𝐻0. The curves 

represent predictions (see Fig. 1 and its caption) based on different mantle viscosity profiles (V1 and V2) and 

tomography models (GyPSuM and S40RTS). Positive values indicate an increase in the flattening compared to PD, 

while negative values indicate a decrease. This evolution represents the contribution of mantle convection to Earth's 

precessional dynamics (see eq. 6 in Methods). (b) Combined effect of convection and tidally driven deceleration 

of rotation on dynamic flattening changes (see Methods, discussion following eq. 5). The solid black line (‘tidal 

100%’) represents the prediction assuming PD tidal dissipation, given by the La2004 solution (see discussion in 

main text), is constant over past 70 Ma, and no changes due to mantle convection are included. The solid orange 

line represents the combined effect of TD and convection, where the latter is predicted for the n-V1* model – see 

orange curve in (a). Dashed lines show effect of reducing TD to 50% of PD for times earlier than 5 Ma, in absence 

of convection changes (black curve) and with convection (orange curve). Dashed-dotted lines represent the effect 

of reducing TD to 30% of PD for times earlier than 35 Ma, without (black curve) and with (orange) convection 

induced changes. (c) Change in flattening ratio,  𝛥𝛾(𝑡)⁄γ0 where 𝛾 = 𝐻 𝛺⁄ and 𝛥𝛾(𝑡) = 𝛾(𝑡) − γ0 . The curves 

represent the same models identified in (b). In all cases the black curves represent the effect of TD alone, while the 

orange curves represent combined TD and convection effects, where the latter is derived from the n-V1* convection 

model. (d) Changes in precession frequency, 𝜔𝑝𝑟𝑒𝑐 (see equation 6 in Methods), over the past 70 Ma. The curves 

again represent the same models identified in (b) and (c). Observational estimates of 𝜔𝑝𝑟𝑒𝑐 are also shown and they 

are labelled as: (i) ‘Newfoundland Ridge’ datum (blue diamond), from cyclostratigraphic analysis by De 



Vleeschouwer et al. (2023), (ii) ‘Walvis Ridge’ (violet circle) and ‘Sopelana L’ (red triangle) data, compiled by Wu 

et al. (2024, see their Table 1), (iii) ‘B&H (2022)’ data (green triangles), from cyclostratigraphic analysis by Boulila 

& Hinnov (2022, see their Tables 3 & 4 ). The corresponding vertical bars represent the standard deviation.  
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654  Materials and Methods  

655    

656  1. Mantle Viscosity  

657 Our back-and-forth iterative method for time-reversed convection modelling incorporates depth-dependent mantle  

658 viscosity. This input is critical for ensuring that the temporal evolution of mantle buoyancy occurs on time scales  

659 that are as Earth like as possible. Our convection modelling thus incorporates two depth-dependent, horizontally 

660 averaged, viscosity profiles (‘V1’ and ‘V2’, see Fig. S1) derived from joint inversions of convection-related 

global 661 observables, such as plate velocities, gravity anomalies, crust-corrected dynamic topography, and core-

mantle 662 boundary ellipticity. Additionally, these viscosity profiles integrate ice-age geodynamic data associated 

with 663 glacial isostatic adjustment (GIA), notably, the Fennoscandian relaxation spectrum and decay times 

determined 664 from the postglacial sea level history in Hudson Bay and Sweden (Mitrovica & Forte 2004; Forte 

et al. 2010).   



Figure S1: Mantle viscosity 

inferrences from joint inversions of 

GIA and convection data sets. The 

solid black line (model V1) is the 

viscosity profile that provides an 

optimal fit to the entire suite of 

geodynamic data (Mitrovica and Forte 

2004). The dashed line (model V2) was 

inverted with strong smoothing 

constraints applied across the horizon 

separating upper and lower mantle and 

yields slightly lower fits to the 

combined GIA– convection data sets 

(Forte et al., 2010). The thick gray 

lines illustrate the range of allowable 

values of mantle viscosity, which are 

consistent with the joint GIA– 

convection constraints. Full details of 

the iterative, Occam-style inversion 

methodology are presented in 

Mitrovica and Forte (2004).  

665   

666    

667  2. Degree-2 Geopotential and Earth’s Moments of Inertia  

668 The spherical harmonic expansion of Earth’s time-variable external gravitational potential field, 𝑈(𝑟 , 𝑡), in a 669 

coordinate system whose origin coincides with Earth’s centre of mass, is:  

 ∞ 𝑙 

 𝐺𝑀  𝑟 𝑙 

670 𝑈(𝑟, 𝜃, 𝜑, 𝑡)  ∑ ∑ 𝑈𝑙𝑚 𝑟                                           

(1)  
𝑙=2 𝑚=−𝑙 

671 where 𝑀 is the total mass of the Earth, 𝐺 is the universal constant of gravitation, 𝑟𝐸 is 

the mean radius of the Earth, 672  (𝑟, 𝜃, 𝜑) respectively represent the radius, 

colatitude and longitude of any external point at position 𝑟  , 𝑡 represents  



673 time, 𝑈𝑙𝑚(𝑡) are the dimensionless time-dependent harmonic coefficients of the external geopotential, and 674 𝑌𝑙𝑚(𝜃, 

𝜑) are complex spherical harmonics whose mean-square amplitude on the unit-radius sphere is unity:  

675 4 𝜋  𝑌𝑙𝑚′ ′∗(𝜃, 𝜑) sin𝜃 𝑑𝜃 𝑑𝜑 = 𝛿𝑙,𝑙′ 𝛿𝑚,𝑚′   

676 where * denotes complex conjugation and  𝛿𝑖,𝑗 represents the Kronecker delta equal to 

1 when 𝑖 = 𝑗 and equal to  

677 0 otherwise.  

678 The time-variable, 2nd-order moment of inertia tensor is defined by:  

679 𝐼𝑖,𝑗(𝑡) = ∭[𝑥𝑘𝑥𝑘𝛿𝑖,𝑗 − 𝑥𝑖𝑥𝑗] 𝜌(𝑟 , 𝑡) sin𝜃 𝑑𝜃 𝑑𝜑 𝑟2𝑑𝑟                                          (2)  

680 where 𝑥𝑖 (𝑖 = 1,2,3) represent the (𝑥, 𝑦, 𝑧) Cartesian coordinates of any point 𝑟  inside 

the Earth, 𝜌(𝑟 ,𝑡) is the 681 time-dependent mass density distribution inside the 

Earth, and the integration in (2) is carried out over the entire 682 volume of the Earth.  

683 In our work, the time-dependence of the internal mass density arises from mantle 

convection:  

684 𝜌(𝑟 ,𝑡) = 𝜌0(𝑟, 𝑡) + 𝛿𝜌(𝑟 , 𝑡) ,                   (3)  

685 where 𝜌0(𝑟, 𝑡) is the purely radial density distribution. In our calculations we 

assume that 𝜌0(𝑟, 𝑡 = 0) is given,  

686 by the PREM reference Earth model (Dziewonski & Anderson 1981), and 𝛿𝜌(𝑟 , 

𝑡) are time-dependent density 687 perturbations generated by mantle convection 

whose horizontal average, at all depths, is equal to zero. We note  

688  here that secular cooling due to mantle convection will also contribute to the time dependence of the radial density 

689  distribution, 𝜌0(𝑟, 𝑡). Substituting (3) into (2), we obtain the following expression for the reference moment of  

690 inertia due to the radially symmetric (𝑙 = 0) density distribution:  

𝑟𝐸 

691 𝐼𝑖,𝑗0 (𝑡) = 𝐼0(𝑡) 𝛿𝑖,𝑗, where    𝐼0(𝑡) = 𝑑𝑟                                                     (4a)  

692 and the following expression for the perturbations to the moment of inertia tensor 

generated by mantle convection:  



693 𝛿𝐼𝑖,𝑗con(𝑡) = ∭[𝑥𝑘𝑥𝑘𝛿𝑖,𝑗 − 𝑥𝑖𝑥𝑗] 𝛿𝜌(𝑟 ,𝑡) sin𝜃 𝑑𝜃 𝑑𝜑 𝑟2𝑑𝑟                                   (4b)  

694 We underline here that expressions (4a-b) describe the moment of inertia for a spherical, 

non-rotating Earth. There 695 will be additional contributions on a rotating Earth due 

to the centrifugal deformation, described in the next section  

696 below.  

697 The effect of secular cooling on the scalar moment of inertia  𝐼0(𝑡) in (4a) was assessed by Greff-Lefftz (2011),  

698 who determined that the largest contribution to the changes in  𝐼0(𝑡) will be from the secular contraction of Earth’s 

699 mean radius and then estimated that:  

1 𝑑 𝐼 

    700 

 𝐼0 𝑑𝑡 

701 assuming a secular cooling rate of 100 K/Ga. For the time interval considered here (i.e., the past 70 Ma) the  

702 cooling-induced change in 𝐼0(𝑡) will therefore be  ∆𝐼0~ − 0.14‰. This is a negligibly small perturbation, and we 

703 therefore treat 𝐼0(𝑡) = 𝐼0(0) ≡ constant in our work.  

704 Using the integral solution to the gravitational Poisson equation, one can establish a direct relationship between  

705 the convection-induced contributions to the degree 𝑙 = 2 harmonic coefficients of Earth’s external gravity 706 

potential in (1) and the individual components of the convection-induced perturbations of the moment of inertia 

707 tensor in (4):   

708 𝛿𝐼𝑥,𝑥con  𝑟𝑒2 𝑀 [  𝛿𝑅  ,      (5a)  

709 𝛿𝐼𝑦,𝑦con  𝑟𝑒
2 𝑀 [  𝛿𝑅  ,      (5b)  

710 𝛿𝐼𝑧,𝑧con  𝛿𝑅2
0(𝑡)] ,          (5c)  

711 𝛿𝐼𝑥,𝑦con  ,          (5d)  

712 𝛿𝐼𝑥,𝑧con  ,          (5e)  



713 𝛿𝐼𝑦,𝑧con  𝑀 [−  ,          (5f)  

714 where  𝛿𝑅2𝑚(𝑡) = 𝑅𝑒[ 𝛿𝑈2𝑚(𝑡)],  𝛿𝐼2𝑚(𝑡) = 𝐼𝑚[ 𝛿𝑈2𝑚(𝑡)] ,     

 (5g)  

715 and 𝛿𝑈2
𝑚(𝑡) represent the convection-induced contributions to the degree-2 

geopotential coefficients in (1).  

716 From Brun’s formula, the relationship between the convection-induced 

perturbations of the geopotential, described  

717 by harmonic coefficients 𝛿𝑈𝑙𝑚(𝑡), and the corresponding undulations of the non-

hydrostatic geoid surface,  

718 described by harmonic coefficients, 𝛿𝑁𝑙𝑚(𝑡), relative to the reference hydrostatic 

ellipsoid with mean radius equal 719 to 𝑟𝐸, is given by:  

720 𝛿𝑁𝑙𝑚(𝑡) = 𝑟𝐸 𝛿𝑈𝑙𝑚(𝑡)                      (6)  

721 Based on equation (6), we can now express all convection-induced perturbations 

of the moment of inertia tensor, 722 in (5a-f), in terms of the convection-

induced perturbations to Earth’s geoid. This connection between moment of 723 

inertia and the geoid is of special utility because it allows the immediate 

application of the theoretical formulation 724 of the viscous flow response of 

the mantle to internal density loads in terms of geodynamic kernel functions  

725 (Richards & Hager 1984, Ricard et al. 1984, Forte & Peltier 1987), as follows:  

 3 𝑟𝑠 

726 𝛿𝑁𝑙𝑚(𝑡) =  𝜌  (2𝑙 + 1) ∫𝑟𝐶𝑀𝐵𝐺𝑙(𝜂|𝑟) 𝛿𝜌𝑙𝑚(𝑟, 𝑡) 𝑑𝑟                                                          (7)  

727 where 𝜌  is the mean density of the Earth, 𝑟𝑠 is the mean radius of the solid surface of 

the Earth, 𝑟𝐶𝑀𝐵 is the mean  

728 radius of the core-mantle boundary (CMB), and 𝐺𝑙(𝜂|𝑟) is the harmonic degree-𝑙 geoid 

kernel calculated for a  

729 viscous, deformable mantle in which the explicit functional dependence on viscosity 𝜂 

is indicated, and  𝛿𝜌𝑙𝑚(𝑟, 𝑡) 730 are harmonic coefficients of the time-dependent internal 



density anomalies generated by mantle convection. For 731 the work presented in the 

main text, we employed geoid kernels for a compressible, self-gravitating mantle that 

732 are calculated for both the V1 and V2 radial viscosity profiles, for two different 

surface boundary conditions – no733 slip and free-slip – required to model the 

mechanical feedback of the tectonic plates on the underlying mantle flow  

734  (for more details, see Forte et al. 2015).  

735    

736  3. Angular Momentum of a Rotating Deformable Earth  

737 The moment of inertia on a rotating, deformable planet must also include the influence of the centrifugal potential 

738 on the internal mass distribution and on the external gravitational figure. As described in Ricard et al. (1993), the 739 

total inertia tensor will then be given by the following expression:   

𝑟5 

740 𝐼𝑖,𝑗(𝑡) = 𝐼0 𝛿𝑖,𝑗 +  3𝑒𝐺 𝑘𝑇(𝑡) ∗ [𝜔𝑖(𝑡)𝜔𝑗(𝑡) −  31 𝜔2(𝑡)𝛿𝑖,𝑗] + 𝛿𝐼𝑖,𝑗con(𝑡)                           

(8)  

741 Where 𝐼0 is the scalar moment of inertia in (4a), 𝑘𝑇(𝑡) is the time-dependent 

tidal Love number, 𝜔𝑖(𝑡) is the i’th  

742 Cartesian component of Earth’s instantaneous rotation vector 𝝎(𝑡), * denotes 

time convolution, and 𝛿𝐼𝑖,𝑗con(𝑡) is  

743 the perturbation generated by the time-dependent mass redistribution generated 

by mantle convection.  

744 For sufficiently long times, as was shown by Ricard et al. (1993), the Maxwell 

viscoelastic behaviour of Earth’s  

745 deformation can be approximated, in the Laplace transform domain, by the 

following expression for the tidal Love  

746 number:  

747 𝑘𝑇(𝑠, 𝐿𝑇) ≅ 𝑘𝑓𝑇(𝐿𝑇) [ 1 − 𝑇1 𝑠 ]                                                                           (9)  

748 where 𝑠 is the Laplace transform variable, 𝐿𝑇 is the long-term (𝑡 → ∞) elastic 

lithosphere thickness,  𝑘𝑓𝑇(𝐿𝑇) is  



749 the fluid tidal Love number that depends on the elastic thickness of the 

lithosphere, and 𝑇1 (> 0) is a time constant 750 that depends on the depth-

dependence of viscosity and density. Transforming (9) to the time domain then 

yields:  

751 𝑘𝑇(𝑡, 𝐿𝑇) ≅ 𝑘𝑓𝑇(𝐿𝑇)[ 𝛿(𝑡) − 𝑇1 𝛿̇(𝑡)]                                                         (10) 752 where 𝛿(𝑡) is the Dirac delta function 

and the overdot denotes the time derivative.  

753 The hypothesized long-term ‘remnant bulge’ that stabilizes a planet’s rotational behaviour, presented in 754 

Matsuyama et al. (2006), was further employed by Creveling et al. (2012) and Chan et al. (2014) who modelled 755 an 

additional contribution to Earth’s moment of inertia arising from this remnant rotational bulge, given by the 756 following 

expression:  

757 𝛿𝐼𝑖,𝑗bulge 3𝑟𝐺5  Ω2𝑖 (𝛿𝑖,3 −  13) 𝛿𝑖,𝑗                                                         

(11)  

758 in which 𝑘∗𝑓𝑇 is the fluid tidal Love number for a purely hydrostatic Earth (i.e.,  𝑘∗𝑓𝑇 = 

𝑘𝑓𝑇(𝐿𝑇 = 0) ) and Ω𝑖 is  

759 the initial angular velocity associated with the formation of the remnant bulge (Matsuyama 

et al. 2006). It is 760  important to note that the Einstein tensor summation convention 

is suspended in (11) (and in all subsequent  

761 expressions involving 𝛿𝐼𝑖,𝑗bulge) and there should be no summation over the index 𝑖. The Earth’s total moment of 762 

inertia is then obtained by adding the remnant bulge contribution in (11) to that in (8), yielding:  

𝑟5 

763 𝐼𝑖,𝑗(𝑡) = 𝐼0 𝛿𝑖,𝑗 + 3 𝑒𝐺 𝑘𝑇(𝑡, 𝐿𝑇) ∗ [𝜔𝑖(𝑡)𝜔𝑗(𝑡) − 13 𝜔2(𝑡)𝛿𝑖,𝑗] + 𝛿𝐼𝑖,𝑗bulge(𝑡) + 

𝛿𝐼𝑖,𝑗con(𝑡)  

764 and after substituting (10) into the above expression and working out the temporal 

convolution, we finally obtain:  

𝑟5 

765 𝐼𝑖,𝑗(𝑡) = 𝐼0 𝛿𝑖,𝑗 + 3𝑒𝐺 𝑘𝑓𝑇(𝐿𝑇){ [𝜔𝑖(𝑡)𝜔𝑗(𝑡) − 13 𝜔2(𝑡)𝛿𝑖,𝑗] 



766 − 𝑇1 [𝜔𝑖̇(𝑡)𝜔𝑗(𝑡) + 𝜔𝑖(𝑡)𝜔𝑗̇(𝑡) −  𝜔𝑘̇(𝑡)𝜔𝑘(𝑡) 𝛿𝑖,𝑗] } 

𝑟5 

767 +  𝑒   Ω2𝑖 (𝛿𝑖,3 − 13 ) 𝛿𝑖,𝑗 + 𝛿𝐼𝑖,𝑗con(𝑡)                                                                 

(12) 3𝐺 

768 We now determine Earth’s time-dependent angular momentum vector:  

769 L(𝑡) = 𝑰(𝑡) ∙ 𝝎(𝑡) = 𝐼𝑖,𝑗(𝑡) 𝜔𝑗(𝑡) 𝒆̂ 𝒊                                                                                (13)  

770 where  𝒆̂ 𝒊 is the unit basis vector on the i’th axis in a Cartesian coordinate system. 

Substituting (12) into (13) finally 771 yields the expression for the angular 

momentum of a rotating, deformable Earth perturbed by mantle convection:  

𝑟5 

772 L(𝑡) = [ 𝐼0 + 3 𝑒𝐺 𝑘𝑓𝑇(𝐿𝑇) {32 𝜔2(𝑡) − 𝑇 31 𝜔 ̇𝑘(𝑡)𝜔𝑘} ] 𝝎(𝑡) −  

𝑟5 

773 [ 3 𝑒𝐺 𝑘𝑓𝑇(𝐿𝑇) 𝜔2(𝑡) 𝑇1 ] 𝝎̇ (𝑡) + 𝛿𝐼𝑆𝑖,𝑗(𝑡) 𝜔𝑗(𝑡) 𝒆̂ 𝒊                                            (14) 774 

in which we defined a so-called “stabilized” moment of inertia perturbation:  

775 𝛿𝐼𝑆𝑖,𝑗(𝑡) = 𝛿𝐼𝑖,𝑗con(𝑡) + ( 𝑒3 Ω𝐺 2𝑖 𝑘∗𝑓𝑇) [1 − 𝑘 𝑓 𝑘𝑇(∗𝐿𝑇𝑓𝑇 )] (𝛿𝑖,3 − 13) 𝛿𝑖,𝑗                                     
(15) 𝑟5 

776 Following Munk and MacDonald (1960), the first factor appearing in the remnant bulge 

stabilization in (15) may 777  be directly related to the dynamical flattening as 

follows:  

𝑟5 

778 𝑒 Ω2𝑖 𝑘∗𝑓𝑇 = (𝐶 − 𝐴)hydro  

3𝐺 

779 where (𝐶 − 𝐴)hydro is the difference between maximum (polar) and 

minimum (equatorial) moments of inertia of  

780 a purely hydrostatic planet with angular velocity Ω𝑖.  



781    

782  4. Rotational Dynamics on a Deformable Earth  

783 We begin with the Euler equation of conservation of angular 

momentum, without external torques, in a body-fixed  

784 rotating reference frame (Goldstein 1980):  

𝑑L 

785  + 𝝎 × L = 0                                                                              (16)  

𝑑𝑡 

786 where 𝝎 is the angular velocity of the Earth. As argued by 

Ricard et al. (1993) and Greff-Lefftz (2011),  

𝑑L 

787  ≪ 𝝎 × L  

𝑑𝑡 

788 because the long-time scale, convection-induced changes in 

L(𝑡) are orders of magnitude slower than the diurnal 789 

 time scale associated with 𝝎(𝑡). This ‘quasistatic’ 

approximation, where  

𝑑L 

790  ≅ 0  

𝑑𝑡 

791 requires that ‖𝝎(𝑡)‖ = Ω = constant, namely that the 

length of day is constant (Greff-Lefftz 2011). Returning to 

792  (16), the quasistatic approximation applicable 

to mantle-convection induced changes in Earth’s angular 

793  momentum is:  

794 𝝎(𝑡) × L(𝑡) = 0  and  ‖𝝎(𝑡)‖2 = Ω2         (17)  

795 The substitution of expression (14), for Earth’s total angular momentum, into the 

quasistatic approximation (17) 796 for conservation of angular momentum 

yields:  



797 𝝎(𝑡) × {− [ 3𝑟𝑒𝐺5 𝑘𝑓
𝑇(𝐿𝑇) Ω2 𝑇1 ] 𝝎̇ (𝑡) + 𝛿𝐼𝑆𝑖,𝑗(𝑡) 𝜔𝑗(𝑡) 𝒆̂ 𝒊 } = 0    (18)  

798 Expression (18) can be identically satisfied if the terms appearing in curly braces are 

colinear with the rotation 799  vector 𝝎(𝑡):  

800 − [ 3𝑟𝑒𝐺5 𝑘𝑓𝑇(𝐿𝑇) Ω2 𝑇1 ] 𝝎̇ (𝑡) + 𝛿𝐼𝑆𝑖,𝑗(𝑡) 𝜔𝑗(𝑡) 𝒆̂ 𝒊 = 𝜆 𝝎(𝑡)      

 (19)  

801 Equation (19) shows that when 𝝎̇ (𝑡) = 0, then  

802             (20)  

803 Equation (20) is a classic eigenvalue problem that yields a solution for 𝝎(𝑡) 

corresponding to Earth’s ‘equilibrium’  

804 rotation axis, attained when the viscous adjustment of Earth’s rotational bulge is 

very rapid (i.e., when 𝑇1 → 0).  805  We thus recognize that 𝜆 in (19) is a 

‘time-dependent eigenvalue’ that satisfies (20) only for equilibrium rotation.  

806 Equation (19) can be further extended by noting that the constant length-of-day 

constraint in (17) yields:  

807 𝑑Ω2 = 0 ⇒ 𝝎(𝑡) ∙ 𝝎 ̇(𝑡) = 0            (21)  
𝑑𝑡 

808 Given the orthogonality condition in (21), taking the dot product of both sides of 

expression (19) by 𝝎(𝑡) ∙ yields 809 the following expression for the time-

dependent ‘eigenvalue’: 810                                           𝜆 

, where  𝝎 (𝑡) = 𝝎 (𝑡)                                              (22)  

Ω 

811 We next substitute (22) into equation (19) to finally obtain:  

812 𝛽 𝑇1 𝝎̇ ,       (23a)  

813 where                      𝛽 = 3𝑟𝑒𝐺5 𝑘𝑓𝑇(𝐿𝑇) Ω2 = (𝐶 − 𝐴)hydro  𝑘𝑓𝑇𝑘(∗𝐿𝑇𝑓𝑇 )     

     (23b)  



814 Equation (23a-b) is of fundamental importance, because it governs the time-dependent 

evolution of Earth’s 815 rotation vector, and hence the trajectory of the pole, in response 

to the time-dependent moment of inertia 816 perturbations generated by mantle 

convection, which are themselves modulated by the delayed response due to 817 the 

viscous adjustment of the rotational bulge and the stabilization arising from a remnant 

rotational bulge. We  

818 note that no assumption is made concerning how small or how large is the departure of the rotation pole from 819 

current North Pole, nor do we need to explicitly diagonalize the moment of inertia tensor to calculate the maximum  

820 moment of inertia and its corresponding eigenvector, which defines the equilibrium rotation pole. We further note  

821 that equation (23) was also derived in Rose & Buffett (2017), who employed it in their investigation of scaling 822 

relationships for the rates of TPW expected on a convecting Earth.  

823 In practice, in our modelling of TPW induced by mantle convection, we numerically integrate (23) using an 824 

accurate Bulirsch-Stoer algorithm for solving systems of first-order differential equations (Press et al. 2007).  

825    

826  5. Remnant Bulge Stabilization of TPW  

827 Here we explicitly explore the magnitude of the stabilization of mantle-convection-induced TPW arising from the 828 

remnant rotational bulge described in equations (11) and (15). For this purpose, we consider the TPW predictions  

829  presented in the main text for the n-V1* convection model (see Figure 1 and Table 2), obtained using the GyPSuM  



tomography model as an initial condition and using the V1 viscosity profile and the fluid tidal Love number 𝑘𝑓𝑇(𝐿𝑇 830 

= 30 km). The value 𝐿𝑇 = 30 km, chosen for all the TPW predictions presented in the main text, is motivated by 831 

the study of Watts & Moore (2017) who analyzed the impact of elastic lithosphere flexure on crustal isostatic 832 

contributions to the spectral amplitude of free-air gravity anomalies and concluded that the best match is obtained 833 

with a global mean thickness of 𝐿𝑇 = 34 km.   834 

We now consider TPW predictions, using the same convection-induced changes to the mantle density distribution 835 

obtained with the n-V1 models (Figure 1), for two different values of the elastic thickness of the lithosphere: 𝐿𝑇 836 

= 10 km and 𝐿𝑇 = 0 km. The TPW predictions obtained using 𝐿𝑇 = 0 km involve no remnant rotation bulge, as 837 

expected from equation (11). The value 𝐿𝑇 = 10 km was the preferred value employed in Creveling et al. (2012). 838 

As shown in Figure S2, the predicted TPW, in particular its maximum angular displacement relative to the position 839 

of the present-day rotation pole (in Figure S2b), will be increasingly amplified – as expected – when the elastic 840 

thickness is progressively reduced to a value of zero. The peak difference, at 50 Ma, between the 𝐿𝑇 = 30 km and 841 

𝐿𝑇 = 0 km TPW predictions is ∼2 degrees for the n-V1* model.  842 

We also find that for 𝐿𝑇 = 0 and 10 km, the goodness of fit measure 𝑋𝑇𝑃𝑊2 (see equation 4 in Methods) is 1.60 843 

and 1.34, respectively, compared to 𝑋𝑇𝑃𝑊2 = 0.95 for 𝐿𝑇 = 30 km, where in each case we refer to the n-V1* 844 

predictions in Figure S2a. These results suggest that 𝐿𝑇 = 30 km provides a better fit to the paleomagnetic 845 

constraints on TPW, when interpreted in terms of the n-V1* convection model. As the elastic thickness is reduced 846 

to zero, the speed of TPW is increased, as might be anticipated (Figure S2c) although the impact on the predicted 847 

present-day rate of TPW is relatively small. Finally, as shown in Figure S2d, the impact of the remnant bulge on 848 

the predicted changes in dynamic flattening is quite small.  849 



 

850    

Figure S2: Impact of the remnant rotational bulge on mantle-convection induced TPW. (a) The curves 

represent predicted TPW paths assuming different values of the elastic thickness of the lithosphere that govern the 

remnant or fossil rotational bulge. The solid, dashed and dotted curves, here and in all subsequence panels (b to 

d), represent the TPW predicted assuming that the elastic thickness is 𝐿𝑇 = 30,10, 0 𝑘𝑚, respectively. The paths 

of the rotation pole are predicted using 70-million-year reconstructions of the mantle for a convection model that 

employs viscosity model V1 (see Fig. S1) and the GyPSuM tomography model as an initial condition (see Table 

2): GyPSuM + V1 = ‘n-V1*’. The asterisk * identifies the predicted TPW paths obtained using a differential 

representation of the temporal changes in the moment of inertia (see equation 1 in Methods). The prefix "n-" 

denotes reconstructions where mantle flow is not constrained to match past plate motions. (b) Angular 

displacement of Earth's rotation poles relative to the present-day North Pole as a function of time (in millions of 

years, Ma) for the mantle convection predictions in (a). (c) Here are shown only the “average” angular velocities 

(not the transient, instantaneous velocities as in Fig. 3), which are computed by dividing the angular distance 

between successive pole positions by the elapsed time. In all cases, peak velocities are observed at 55 – 50 Ma, 30 

– 25 Ma and 10 – 5 Ma. (d) This figure shows the corresponding changes in dynamic ellipticity ΔH as a function 

of time (in millions of years, Ma) relative to its present-day value H0, where ΔH=H− H0. These changes 

determine the impact of mantle convection on Earth's precessional dynamics, as described in eq. 24.  



  

851    

852  6. Dynamic Ellipticity  

853 As shown in Goldstein (1980) and Stacey & Davis (2008), the average angular rate of astronomical precession,  

854 𝜔𝑝𝑟𝑒𝑐,  of Earth’s rotation axis relative to the pole of Earth’s ecliptic plane, due to the torque generated by the 855 

gravitational attraction of the Sun and Moon on Earth’s rotational bulge, is given (to zeroth order accuracy – 856 

compare with equation (8) in  Laskar et al. 2004)  by the following expression:  

 3 𝐻 𝐺𝑀 

857 𝜔𝑝𝑟𝑒𝑐 = 2 Ω [ 𝑎3𝑆 + 𝐺𝑚𝑎𝐿3𝐿]cos 𝜀                                                               (24)  

𝑆 

858 in which Ω is Earth’s diurnal rotation rate, 𝑀𝑆 & 𝑚𝐿 are the masses of the Sun 

and Moon, respectively, 𝑎𝑆 & 𝑎𝐿 859 are the corresponding average orbital 

distance (expressed in terms of the semi-major axis) between the Earth and  

860 the Sun and Moon, respectively, 𝜀 is the obliquity angle between Earth’s axis of rotation and the axis perpendicular 

861 to the ecliptic plane, and 𝐻 is Earth’s dynamic ellipticity/flattening:  

𝐶 

862 𝐻(𝑡) =                                                                  

(25)  

𝐶(𝑡) 

863 in which  

864 𝐶(𝑡) ≥ 𝐵(𝑡) ≥ 𝐴(𝑡)            (26)  

865 are the three principal moments (eigenvalues) of Earth’s time-dependent 

moment of inertia tensor.  

866 In past studies of geodynamic-induced perturbations to dynamic 

flattening (e.g., Laskar et al., 1993, Forte &  

867 Mitrovica 1997, Ghelichkhan et al. 2021), first-order perturbations of 

𝐻(𝑡) described in (25) are determined,  

868 yielding the following expression:    

( 𝑡 ) − 
1 
2 
[ 𝐴 ( 𝑡 ) + 𝐵 ( 𝑡 ) ] 



 𝛿𝐻 3 𝛿𝐶 

869 =                                                                                                     

(27)  

 𝐻 2 𝐻𝐶 

870 which is obtained assuming that 𝐻(𝑡) ≪ 1. If the 𝑈2
1 (complex-valued) 

harmonic coefficient of Earth’s  

871 gravitational potential in equation (1) is zero or negligibly small, then the 

greatest moment of inertia 𝐶 is given by 872 the following expression 

(Chambat & Valette 2001):   

873  𝐶 = 𝐼                                                                       (28) 874 in which 𝑈20 is the (real-valued) degree-2 

zonal coefficient in Earth’s geopotential (see equation 1). If we now 875 assume that some geodynamic process (e.g. mantle 

convection) perturbs Earth’s gravity field, then from (28) we 876 obtain:  

877 𝛿𝐶   

878 and substitution into (27) yields:  

𝛿𝐻𝑀𝑟 2 

879    𝐸 𝛿𝑈20                                                                        (29)  

𝐻𝐻𝐶 

880 As noted above, equation (29) is obtained assuming that the 𝑈21 

geopotential coefficient is zero or negligibly small,  

881 implying that the principal direction associated with largest moment, 

𝐶, remains fixed to the z-axis of the 882 coordinate system. The latter 

assumption does not admit displacements of the rotation axis, and 

hence no TPW. In 883 all analyses of convection-induced changes to 

dynamic flattening presented in this work, we instead calculate the 

884 following:  

 Δ𝐻(𝑡) 𝐻(𝑡) − 𝐻 

885 =  0                                                                     (30)  

 𝐻0 𝐻0 



886 in which 𝐻0 = 𝐻(0) and 𝐻(𝑡) is always calculated, according to 

(25), from the eigenvalues of the complete time- 

887 dependent moment of inertia tensor in (12), which incorporates the 

time-variable position of Earth’s rotation axis  

Figure S3: Accuracy of the 

1storder calculation of changes 

in dynamic flattening. The 

dashed curve represents the 

predicted perturbation of dynamic 

ellipticity, 𝛿𝐻/𝐻0, relative to the 

present-day value 𝐻0, calculated 

using eq. (29). In this calculation 

we also employ the present-day 

value for the principal moment 𝐶. 

The solid curve represents the 

predicted 𝛥𝐻/𝐻0 calculated using 

eq. (30) and employing the 

complete timedependent moment 

of inertia tensor in eq. (12).  



𝝎(𝑡) that is found in the TPW predictions presented in Figure 1 (main text) and Figure S2. The difference between 888 

the 1st-order approximation (29) and the exact calculation (30) is illustrated here in Figure S3.  889 

  890 

Equation (24) is an approximate expression that ignores the small (∼5°) angle between the plane of the lunar orbit 891 

relative to the ecliptic plane, the small eccentricity of the Earth and Moon orbit, and ignores the gravitational 892 

impact of other planets on the evolution of Earth’s orbit (for details see the many-body theory presented in Laskar 893 

et al. 1993,2004). Equation (24) serves, however, to identify a critical linear relationship between the frequency 894 

of precession 𝜔𝑝𝑟𝑒𝑐 and the dynamic flattening 𝐻(𝑡), which remains true in the complete many-body theory (Laskar 895 

et al. 2004). A frequency analysis of Earth’s orbital evolution over the past 18 Ma, by Laskar et al., 1993, revealed 896 

the dominant contribution from Earth’s main precession frequency 𝜔𝑝𝑟𝑒𝑐 = 50.4712 arcsec/yr (corresponding to a 897 

period of 25,678 yr) in addition to frequencies associated with quasi-periodic gravitational perturbations of other 898 

planets on Earth’s orbital evolution. The most significant of these quasi-periodic perturbations occurs at the 899 

frequency 𝑓 = 𝑠6 − 𝑔6 + 𝑔5 = 50.3017 arcsec/yr, where 𝑔5 and 𝑔6 are the secular frequencies related to the 900 

perihelion of Jupiter and Saturn, respectively and 𝑠6 is related to the node of Saturn (Laskar et al. 1993).  901 

As discussed in Laskar et al. (1993), and following from equation (24), any geodynamic process that reduces the 902 

dynamic flattening 𝐻(𝑡) by at least −0.2% will then drive the main precession frequency 𝜔𝑝𝑟𝑒𝑐 towards the 903 

frequency 𝑓 associated with the quasi-periodic perturbations by Jupiter and Saturn, leading to a resonance that 904 

significantly perturbs the temporal evolution of Earth’s orbital parameters (i.e., the obliquity angle and precession 905 

frequency) and hence will modify the Milankovitch insolation cycles. As discussed in Laskar et al. (2004) this 906 

resonance is predicted to occur in the next few million years, owing to the continuing reduction of 𝐻(𝑡) and 907 

increase in Earth-Moon distance 𝑎𝐿, due to tidal-induced deceleration of Earth’s rotation rate. The possibility that 908 

this resonance crossing may have occurred in the past was explored by Forte & Mitrovica (1997) who suggested 909 

that mantle-convection induced changes to 𝐻(𝑡), over the past 20 Ma, were large enough to generate such a passage 910 

through resonance. However, Morrow et al. (2012) subsequently examined the combined effects of glacial isostatic 911 

adjustment (GIA) and mantle convection over the past 25 Ma and found more modest time-averaged  912 



0 
3 

914 changes to 𝐻(𝑡) and that these changes were not easily reconciled with independent cyclo-stratigraphic 915 

constraints. This lack of reconciliation raised an “enigma” concerning the link between observational constraints  

916 on 𝐻(𝑡) changes and the current understanding of the fundamental geodynamic processes that drive these changes.  

917 These issues, including the above enigma, are ultimately dependent on a rigorous and accurate determination of  

918 the present-day value of dynamic ellipticity, 𝐻0 = 𝐻(𝑡 = 0), since this determines the starting, baseline-value for 

919 relative changes in dynamic ellipticity, defined in (30), and – critically – the baseline-value for the present-

day 920 rate of precession 𝜔𝑝𝑟𝑒𝑐(𝑡 = 0) in (24). These points are treated in detail below (in section 7).  

921    

922  7. Hydrostatic Flattening: Impact of Tidal Deceleration  

923 Our preceding consideration, related to equation (28), of the importance of the principal (polar) moment of inertia, 

924 𝐶, for understanding changes in Earth’s dynamic flattening (embodied in equation 27) motivates the following 925 

review of some fundamental notions concerning the hydrostatic equilibrium of a rotating planet. This will set the 926 stage 

for a quantitative assessment of the impact of secular changes of Earth’s diurnal rate of rotation (i.e., the 927 length of 

day) due to long-term tidal friction that is needed for the results presented in Figure 4b (main text) and 928 related 

discussion.  

929 In the absence of TPW, and with no internal dynamics, Earth’s angular rotation vector is 𝝎 = Ω𝒛̂  and 𝛿𝐼𝑖,𝑗con(𝑡) = 930 

0. From equation (12) we thus obtain the following expressions for the moment of inertia tensor:  

1 𝑟 

931 𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 𝐼0 − 3  𝑒53 

Ω𝐺 2 𝑘𝑇 31 𝑟53 Ω𝐺 2 𝑓 𝑓  ]  

1 𝑟5 

932 = 𝐼 −  𝑒 Ω2𝑖 𝑘∗𝑓𝑇                                        

(31𝑎)  

 3𝐺 3 3𝐺 

2 𝑟5 

933 𝐼 = 𝐼 + 

𝑒 Ω2 𝑘𝑇(𝐿𝑇) + 2 𝑟𝑒5 Ω2𝑖 [ 

𝑘∗𝑇 − 𝑘𝑇(𝐿𝑇) ]  

𝑧𝑧 0 3 3𝐺 3 3𝐺 𝑓 𝑓 



0 
3 

2 𝑟5 

934 = 𝐼 + 𝑒 Ω2𝑖 𝑘∗𝑓𝑇                                                

(31𝑏)  

 3𝐺 3 3𝐺 

935 𝐼𝑥𝑦 = 𝐼𝑥𝑧 = 𝐼𝑦𝑧 = 0                                                                           (31c)  

936 The expression describing the external gravitational potential of a 

rotating hydrostatic Earth with no internal mass  

937 anomalies is, to 2nd-order accuracy (Chambat et al. 2010), given 

by:  

938 𝑈ℎ𝑦𝑑(𝑟, 𝜃) = 𝐺𝑀𝑟 [1 −  J 2ℎ𝑦𝑑  
    (𝑎 𝑟𝐸)2 𝑃2(cos 𝜃) −  J 4ℎ𝑦𝑑  

    (𝑎

𝑟𝐸)4 𝑃4(cos 𝜃)]                     (32𝑎)  

939 where J̅̅̅̅𝑛ℎ𝑦𝑑    (𝑛 = 2,4, … ) are nondimensional gravitational form 

coefficients for a hydrostatic planet, 𝑃𝑛(cos𝜃) are  

940 the corresponding Legendre polynomials of degree 𝑛, and 𝑎𝐸 is the 

equatorial radius of the reference ellipsoid.  

941 The geopotential expansion in (1) has been defined with respect to 

the mean radius of the Earth, 𝑟𝐸 and, in the 942 interest of 

consistency, we then rewrite (32a) as follows:  

943 𝑈ℎ𝑦𝑑(𝑟, 𝜃) = 𝐺𝑀𝑟 [1 − J
2ℎ𝑦𝑑 (𝑟𝑟𝐸)2 𝑃2(cos𝜃) − J4ℎ𝑦𝑑 (𝑟𝑟𝐸)4 𝑃4(cos 𝜃)]           

(32b)  

𝑛 

944 where         J𝑛ℎ𝑦𝑑 = J̅̅̅̅𝑛ℎ𝑦𝑑      (𝑎𝑟𝐸𝐸)                                                                                        

(33) 945  Following Chambat et al. (2010),  J 2ℎ𝑦𝑑  
   
 is given by the following 

first-order accurate expressions:  

946  J̅̅2ℎ𝑦𝑑      = − [ 𝑓2(𝑟𝐸) + 𝑚3 ] (𝑎𝑎ℎ𝑦𝑑𝐸 )2  



947 ⇒ (using 33)       J2ℎ𝑦𝑑 = − [ 𝑓2(𝑟𝐸) + 𝑚3 ] (𝑎𝑟ℎ𝑦𝑑𝐸 )2                                                        

(34)  

948 where                                                              𝑎ℎ𝑦𝑑 = 𝑟𝐸 [ 1 − 12  

𝑓2(𝑟𝐸)]                                                                       (35)  

949 is the first-order accurate expression for the equatorial radius of 

the hydrostatic rotating Earth, and  

 Ω2𝑟3 

950 𝑚 =  𝐸                                                                                       

(36)  

𝐺𝑀 

951 is the ratio of the centrifugal to mean gravitational acceleration 

at the mean radius 𝑟𝐸. The degree-2 nondimensional 952 shape 

coefficient is, to first-order accuracy, given by (Chambat et al. 

2010):  

953 𝑓2(𝑟𝐸) = −(𝑘∗𝑓𝑇  𝑚                                                                

(37)  

954 where 𝑘∗𝑓𝑇 is the degree-2 fluid (tidal) Love number. Substituting 

(35 – 37) into (34) finally yields:  

955 J2ℎ𝑦𝑑 = 𝑘∗𝑓𝑇 𝑚 3 [1 + ( 𝑘∗𝑓𝑇2+ 1) 𝑚3 ] ≅ 𝑘∗𝑓𝑇 𝑚 3 

= 𝑘∗𝑓𝑇  Ω3 𝐺𝑀2𝑟𝐸3                                   (38)  

956 where the last expression in (38) is correct to first-order since 𝑚 ≪ 

1.  

957 Returning to the moment of inertia tensor in (31), the principal 

polar moment 𝐶 is identical to the 𝐼𝑧𝑧 component 958 of the 

hydrostatic inertia tensor and therefore:  

 2 Ω 2 



959 𝐶 = 𝐼0 + 3 ( Ω𝑖) 𝑀𝑟𝑒2 [𝑘∗𝑓𝑇 Ω3 𝐺𝑀2𝑟𝐸3] − 23 𝑘𝑇(∗𝐿𝑇𝑇 ) [(ΩΩ𝑖)2 − 1] 𝑀𝑟𝑒2 [𝑘∗𝑓𝑇  Ω3 

𝐺𝑀2𝑟𝐸3]  

𝑘 𝑓 

960 ⇔ (using 38)      𝐶 = 𝐼0 + 23 (ΩΩ𝑖)2 𝑀𝑟𝑒2 J2ℎ𝑦𝑑 32 𝑘𝑇𝑘(∗𝐿𝑇𝑓 ) Ω𝑖 2 − 1] 

𝑀𝑟𝑒2 J2ℎ𝑦𝑑                (39) 961 Similarly, the two principal equatorial moments 𝐴 = 𝐵 = 𝐼𝑥𝑥 = 𝐼𝑦𝑦 

are then given by:  

 1 Ω 2 

962 𝐴 = 𝐵 = 𝐼0 − 3 ( Ω𝑖) 𝑀𝑟𝑒2 J2ℎ𝑦𝑑 + 31 𝑘𝑇𝑘(∗𝐿𝑇𝑓𝑇 ) [(ΩΩ𝑖)2 − 1] 𝑀𝑟𝑒2 J2ℎ𝑦𝑑               

(40)  

963 From (38) and (39) we then immediately obtain the following expression for the 

dynamical flattening of a rotating 964 hydrostatic Earth:  

 ℎ𝑦𝑑 = 𝐶 − 𝐴𝐶

 = 𝐼0 +J2ℎ𝑦𝑑3 J2𝑀𝑟𝑒𝑀𝑟2 {𝑒(ΩΩ𝑖)2 −2𝑘𝑇𝑘(𝐿𝑇𝑓𝑇()𝐿𝑇)ΩΩ𝑖 Ω2𝑖)2 − 1]}                              

(41)  

965  𝐻 

 2 ℎ𝑦𝑑 2 {(ΩΩ𝑖) − 𝑘 𝑘∗𝑓𝑇  [( Ω 

966 In the TPW calculations carried out in this study, we arbitrarily assumed, for simplicity, that Ω𝑖 = Ω and in this 967 

case (41) simply reduces to:  

Jℎ𝑦𝑑𝑀𝑟2 

968 𝐻ℎ𝑦𝑑 =  2 𝑒                                                                        

(42)  

 𝐼0 + 23 ℎ𝑦𝑑 2  

 J2 𝑀𝑟𝑒 



969 From constraints on Earth’s mean density structure (Chambat & 

Valette 2001) we have 𝐼0 = 0.3307𝑀𝑟𝑒2and 970 therefore equation 

(42) yields:  

Jℎ𝑦𝑑 

971 𝐻ℎ𝑦𝑑 =  2                                                                       

(43)  

2 ℎ𝑦𝑑 

 0.3307 + 3 J2   

972 To first-order in 𝑚, consistent with the accuracy inherent in expression 

(38), we obtain from (43):  

973 𝐻ℎ𝑦𝑑 ≅  J2ℎ𝑦𝑑 1 )𝑘∗𝑓𝑇  𝑟𝐸3 

Ω2                                                           (44)  

3 𝐺𝑀 

974 which reveals the explicit quasi-linear dependence (to first-order 

accuracy) of the hydrostatic flattening, 𝐻ℎ𝑦𝑑, on  

975 the square of the rotation rate. Using the following values from 

Chambat et al. (2010):  

976 𝑚 = 3.45016 × 10−3, 𝑘∗𝑓𝑇 = 0.93233  

977 we obtain from the last expression in (38), the following value:  

978 J2ℎ𝑦𝑑 = 1.0722 × 10−3                                                                          (45) 

979 and hence, from (43), we obtain:   

980 (46𝑎)  

981 which 

comp

ares 

with 

the 

follo

wing 

value 

obtain

ed 

from 

(44):  

𝑯𝒉𝒚𝒅(𝒕 = 𝟎) = 𝟑. 𝟐𝟑𝟓 × 𝟏𝟎−𝟑 



982 𝐻ℎ𝑦𝑑 

= 

3.242 

× 

10−3                                                                         

(46𝑏)  

983 For 

refere

nce, 

the 

value 

of 

J2ℎ𝑦𝑑 

derive

d 

from 

a 

secon

d-

order 

accur

ate 

soluti

on of 

the 

Claira

ut 



equati

ons 

is, 

984 

follo

wing 

Cham

bat et 

al. 

(2010

):  

985 J2ℎ𝑦𝑑 = 1.0712 × 10−3    ⟹ (using 43)   𝐻ℎ𝑦𝑑(𝑡 = 0) = 3.232 × 10−3                                   (47) 986 We note that the 

relative difference between the hydrostatic flattening value in (46a) and (47) is 0.09%, whereas 987 the relative difference 

between (46b) and (47) is 0.3%, which is of the same order as the convection-induced 988 changes to the dynamic 

flattening 𝐻 shown in Figure 4a in the main text. This suggests that expression (43) should 989 be used rather than the 

less accurate formulation provided in (44). The additional implication is that expression  

990 (25) should be used for numerical accuracy when evaluating the additional changes to the time-dependent dynamic 

991 flattening 𝐻 driven by mantle convection.  

992 The largest changes to dynamic flattening 𝐻(𝑡) will arise from the deceleration of Earth’s rotation rate due to tidal  

993 dissipation in the Earth-Moon system. From the many-body orbital solution obtained by Laskar et al. (2004) that 

994 incorporates luni-solar tidal dissipation, the length of a sidereal day (LOD) 70 million years ago is predicted 

to be  

995 23.4176 hours, compared to the present-day LOD of 23.9345 hours. The Earth’s angular rotation rate at 70 Ma is  

996 therefore Ω70 = 7.453048 × 10−5 rad/s (compared to present-day Ω0 = 7.292116 × 10−5 rad/s) and, using 997 

equations (38) and (43), we obtain  



998 Jℎ𝑦𝑑(−70 Ma) = (Ω 70)2 Jℎ𝑦𝑑(0 Ma) ⟹ 𝐻ℎ𝑦𝑑(−70 Ma) = 3.379 × 10−3 

2 Ω0 2 

999 ⟹   [ 𝑯𝒉𝒚𝒅(−𝟕𝟎 Ma) − 𝑯𝒉𝒚𝒅(𝟎 Ma) ]/ 𝑯𝒉𝒚𝒅(𝟎 Ma) = 𝟒𝟓 ‰                                               (48)  

1000 Although the magnitude of this tidal-induced (purely hydrostatic) decrease in Earth’s 

dynamical flattening over  

1001 the past 70 Ma far exceeds the amplitude of the corresponding convection-induced changes 

shown in Figure 4a, 1002 the perturbation to the precession frequency 𝜔𝑝𝑟𝑒𝑐 (equation 24) 

arising from mantle convection is nonetheless 1003 resolvable in cyclostratigraphic analyses 

of Eocene-age sediment cores (Boulila & Hinnov 2022).  

1004 We now consider the signature of the remnant (fossil) rotational bulge in the present-day gravity field and estimate 

1005 its potential magnitude. For a purely hydrostatic planet, the expression for the polar moment of inertia in equation  

1006 (39) reduces to:  

2 

1007 𝐶ℎ𝑦𝑑 = 𝐼0 + 3 𝑀𝑟𝑒2 J2ℎ𝑦𝑑                                                                                        (49)  

1008 A comparison of expressions (39) and (49) reveals the perturbation, denoted by 

∆J2𝑏𝑢𝑙𝑔𝑒, to the purely hydrostatic  

1009 gravitational form factor  J2ℎ𝑦𝑑 that arises from the fossil bulge:  

2 

1010 𝐶 = 𝐼0 + 3 [ J2ℎ𝑦𝑑 + ∆J2𝑏𝑢𝑙𝑔𝑒 ]𝑀𝑟𝑒2                                                                       (50)  

1011 in which  

1012 ∆J2𝑏𝑢𝑙𝑔𝑒 = J2ℎ𝑦𝑑 ∆𝐵(Ω𝑖, 𝐿𝑇), where ∆𝐵(Ω𝑖, 𝐿𝑇) ≡ [ (Ω  Ω𝑖)2

 𝑘𝑇𝑘(𝐿𝑇𝑓 )]                                  (51)  

1013 If we arbitrarily assume that the hypothetical fossil bulge was acquired at 250 

Ma when, according to the solution  

1014 of Laskar et al. (2004) Ω𝑖 = 7.9117 × 10−5 rad/s, and again assume that 𝐿𝑇 = 

30 km, we then obtain ∆𝐵 = 



1015 4.4 × 10−4. To assess the importance of this value, we consider the value of the 

nonhydrostatic (or ‘dynamic’)  

1016 value of 𝐽2 defined relative to the satellite-observed value (Chambat et al. 2010), 

J2𝑜𝑏𝑠 = 1.0850 × 10−3 (scaled 1017 relative to 𝑟𝐸 – see equation 32b) , as 

follows:  

1018 ∆J2𝑑𝑦𝑛  ℎ𝑦𝑑∆𝐷, where ∆𝐷 ≡ [  Jℎ𝑦𝑑2𝑜𝑏𝑠 − 1]                                         

(52)  

J2 

1019 We thus determine that ∆𝐷 = 1.3 × 10−2, which is two orders of magnitude larger than 

∆𝐵, the signal generated  

1020 by a fossil bulge, if it formed at 250 Ma. It is therefore not possible to accurately 

constrain the very small 1021 gravitational signature of a hypothetical fossil bulge 

using the present-day nonhydrostatic degree-2 geoid. 1022 Finally, we may use the 

value of J2𝑜𝑏𝑠, and the extension of expression (42) to a dynamic (nonhydrostatic) Earth, 

1023 to determine the ‘observed’ present-day dynamical flattening (see also Table 6 in 

Chambat & Valette 2001):   

1024  𝐻𝑜𝑏𝑠 = J2𝑜𝑏𝑠        ⟹            𝑯                                          

(53)  

0.3307 + 23 𝑜𝑏𝑠  

J
2 

1025    

1026  8. Impact of Tidal Deceleration on TPW  

1027 As discussed in detail in the preceding section, secular changes in Earth’s rotation rate due to tidal dissipation will  

1028 alter the hydrostatic contributions to the moment of inertia tensor, via the J2ℎ𝑦𝑑coefficient, that vary with the square 

1029 of the rotation rate (see equations 38 to 40).  These long-term, rotation-induced variations in the moments 

of inertia  

𝒐𝒃𝒔(𝒕 = 𝟎) = 𝟑. 𝟐𝟕𝟑𝟖 × 𝟏𝟎−𝟑 



1030 should therefore have some impact on TPW (Greff-Lefftz 2011). We may assess 

the magnitude of this impact by  

1031 first noting that the time derivative of Earth’s angular rotation vector, 𝝎(𝑡), 

may be decomposed as follows:  

 𝑑𝝎  Ω Ω̇ 

1032 𝝎̇ =  = 𝝎 ̇ Ω + 𝝎  Ω ̇= Ω [𝝎  ̇+ 𝝎  ]                                                       (54)  

 𝑑𝑡 Ω 

1033 where 𝝎 (𝑡 ) ∙ 𝝎 (𝑡 ) = 1 and Ω(t) = ‖𝝎(𝑡)‖ is the rotation speed. This 

expression allows us to directly distinguish 1034 the relative magnitude of 

TPW rates, the first term in brackets in (54), compared to the secular rate of 

decrease of  

1035 rotation rate, the second term in brackets. The decomposition (54) also makes clear that the changes in the rotation  

1036 vector 𝝎(𝑡) due to TPW are always orthogonal to the changes in the rotation vector due to tidal deceleration,  

1037 because 𝝎 ̇ ∙ 𝝎  = 0. Figure 3 in the main text shows that the average magnitude of convection-induced TPW rates  

1038 over the past 70 Ma is about: ‖ω ̇ ‖ = 0.2°/Ma = 3.5 ×10-3 Ma-1. The Laskar et al. (2004) orbital solution yields the  

1039 present-day value Ω̇ ⁄Ω = − 9.8 ×10-18s-1 = − 3.1×10-4 Ma-1. We thus find that the relative impact of tidal 1040 

deceleration on the secular evolution of Earth’s ‘wandering’ rotation vector is: ‖ω  Ω̇ ‖ ‖⁄ ω ̇ Ω‖ ≈ 9%.   

1041  We can further assess the effect of tidal deceleration on convection-induced TPW by substituting expression (54) 

1042  into equation (18), which then yields the following revision to equation (19):  

1043 − [ 3 𝑟𝑒𝐺5 𝑘𝑓𝑇

 ̇ 

1044 ⟺   − ( ΩΩ(0t))2 [ 3𝑟𝑒𝐺5 𝑘𝑓𝑇(𝐿𝑇) Ω20 𝑇1 ] 𝝎 ̇ 

  

  



1045 where Ω0 = Ω(0) is the present-day rotation speed. From equation (55) we again 

obtain equation (20) because 1046 𝝎 ̇ ∙ 𝝎  = 0, finally yielding the following 

revision of equation (23):   

  Ω 2 

1047  𝛽 𝑇1 𝝎 ̇                                    (56) 1048  in 

which 𝛽 is again defined as in expression (23b):  

𝑟5 

1049 𝛽 = 3𝑒𝐺 𝑘𝑓𝑇(𝐿𝑇) Ω20                                                                                                  

(57)  

1050 From (56) we thus see that the secular decrease in Earth’s rotation speed will 

essentially modulate the amplitude 1051 of TPW velocity and minimally alter 

the geometric shape of the TPW trajectory. This expression also shows there 

1052 is a damping of TPW that grows with the inverse-squared of the rotation 

speed due to the larger rotational bulge. 1053 Based on the solution in Laskar 

et al. (2004), the secular decrease in rotation speed due to tidal braking over 

the 1054 past 100 Ma is about 3% and hence the rotational damping of the 

TPW speed, on the right-hand side of (57), will 1055 decrease by about 6%. 

We note that these small effects on TPW from tidal deceleration (at least over 

the time span 1056 studied here) are supported by the earlier investigation by 

Greff-Lefftz (2011).  

1057  From the preceding considerations, we then write the following approximate expression that may be employed to 

1058  incorporate the influence of tidal deceleration on the rate of change of Earth’s rotation vector:  

𝑑𝝎  Ω 

1059 𝝎̇ =  = 𝝎 ̇ Ω + 𝝎  Ω̇ ̇ (𝑡)                                               (58)  

𝑑𝑡 



1060 We may now revise expression (12), representing the time-dependent 

moment of inertia tensor, to also include 1061 secular changes in the 

rotation rate, via equation (54), as follows:  

 𝑟5   

1062  𝐼𝑖,𝑗(𝑡) = 𝐼0 𝛿𝑖,𝑗 + 𝑒 Ω3𝐺2(𝑡) 𝑘𝑓𝑇(𝐿𝑇){[𝜔 𝑖𝜔 𝑗 −  𝛿𝑖,𝑗] − 𝑇1 [(𝜔 ̇ 𝑖 + 𝜔 𝑖 Ω Ω̇ ) 𝜔 𝑗 + 𝜔 𝑖 (𝜔 ̇𝑗 + 𝜔 𝑗 ΩΩ̇ ) −  ΩΩ̇ 

𝛿𝑖,𝑗] } 

 𝑟   

𝑒𝐺   Ω𝑖 (𝛿𝑖,3 − ) 𝛿𝑖,𝑗 + 𝛿𝐼𝑖,𝑗con(𝑡)  1063 +  3

1064 Using approximation (58), the preceding expression finally simplifies to:  

Jℎ𝑦𝑑 

 

 ⏞  𝑟     

1065 𝐼𝑖,𝑗(𝑡) = 𝐼0 𝛿𝑖,𝑗 + 𝑀𝐸𝑟𝑒

 3𝑒𝐺𝑀𝐸  

Ω 𝑘 𝑓𝑇 [𝜔 𝑖𝜔 𝑗 −  𝛿𝑖,𝑗] − 𝑇1[𝜔 ̇ 𝑖𝜔 𝑗 + 𝜔 𝑖𝜔 ̇𝑗]) 

1066 𝑇 ] (𝛿𝑖,3 − ) 𝛿𝑖,𝑗} + 𝛿𝐼𝑖,𝑗con(𝑡)                                                                        

(59)  

𝑓 

1067 This representation for Earth’s moment of inertia tensor will be employed in our modelling of 

the time-dependence 1068 of dynamic flattening, 𝐻(𝑡) in equation (25), that includes the 

effects of tidal deceleration and of mantle1069 convection-induced changes to the inertia 

tensor via the direct contribution 𝛿𝐼𝑖,𝑗con(𝑡) and also via the contribution 1070 to the horizontal 

displacements (i.e. TPW) of Earth’s rotation vector 𝝎 (t). In all cases, we determine the 

principal 1071 moments needed to predict the value for 𝐻(𝑡) via a numerical calculation of the 

eigenvalues of the inertia tensor.  



1072    

1073  9. Modelling Earth-Moon Separation via Angular Momentum Conservation  

1074 Tidal dissipation in the Earth–Moon system not only generates a secular decrease of Earth’s rotation speed, 1075 

discussed above, it will also induce a so-called “recession” of the Moon, as the Earth-Moon distance increases.  

1076 Both effects, namely secular changes in rotation speed Ω(t) and Earth-Moon separation 𝑎𝐿(𝑡), will strongly impact  

1077 the time evolution of Earth’s astronomical precession frequency 𝜔𝑝𝑟𝑒𝑐(𝑡) , described in equation (24), which arises  

1078 from the luni-solar torques acting on Earth’s rotational bulge represented by the dynamical flattening 𝐻(𝑡). The 

1079 impact of the secular decrease in rotation speed over the past 70 Ma, as noted above in expression (48), will 

be  

1080 large. To also quantify the impact of secular changes in Earth-Moon separation 𝑎𝐿(𝑡) on precession, we use angular  

1081 momentum conservation, as in Lambeck (1977), Schwiderski (1985) and most recently in Farhat et al. (2022b),  

1082 which has long been the basis (Darwin 1908) for modelling the connection between tidally driven changes of 1083 

Earth’s rotation speed and variable Earth-Moon distance.  

1084 More recently, Tian & Wisdom (2020) presented numerical and theoretical demonstrations that the vertical 1085 

component of the total angular momentum vector of the Earth-Moon system, 𝐿𝑧 – defined relative to the ecliptic  

1086 plane,  is effectively conserved (to one part in a thousand) as the Earth-Moon separation evolves from 5𝑟𝐸 to 50𝑟𝐸,  

1087 where 𝑟𝐸 is the mean radius of the Earth. As noted by the authors, this quasi-conservation obtains in the absence  

1088 of any resonances. Therefore, following Lambeck (1977) and Tian & Wisdom (2020), we employed the following 

1089  simplified representation of the vertical component of the total Earth-Moon angular momentum:  

1090 𝐿𝑡𝑜𝑡𝑎𝑙
𝑧 = 𝐶𝐸 Ω cos 𝜀 + 𝑚𝐿   cos 𝑖𝐿                                               

(60)  

1091 where the first term on the right-hand side is the spin angular momentum of the 

Earth, in which 𝐶𝐸 is the polar 1092 moment of inertia of the Earth, Ω is the diurnal 

rotation rate and 𝜀 is the obliquity angle, whereas the second term  

1093 is the Moon’s orbital angular momentum in which 𝑚𝐿 and 𝑀𝐸 are the mass of the Moon and Earth, respectively,  



1094 𝑎𝐿 is the semi-major axis of the lunar orbit, 𝑒𝐿 is the eccentricity of the lunar orbit and 𝑖𝐿 is the inclination of the  

1095 orbit relative to the ecliptic (see Table S1). The second term has been derived appealing to Kepler’s Third Law 

for 1096 the mean motion of the Moon.  In (60) we ignored the spin momentum of the Moon and the orbital 

momentum of 1097 the Earth relative to the barycentre of the Earth-Moon system since both are negligibly small 

relative to the spin 1098 momentum of the Earth and orbital momentum of the Moon, respectively.  

1099 If the application of angular momentum conservation in (60) were extended to encompass the Sun-Earth-Moon  

1100 system, the vertical component of the orbital angular momentum of the Earth around the Sun, 𝐿𝑆𝑢𝑛𝑧 , would 1101 

completely dominate, being many orders of magnitude larger than any contribution within the Earth-Moon system.  

1102 However, as underlined by Lambeck (1977), angular momentum transfer between Earth and Sun is infinitesimally  

1103 small and Earth’s orbit has therefore undergone negligible solar-tidal evolution. 𝐿𝑆𝑢𝑛𝑧  may thus be treated as a  

1104 constant. But dissipation from solar tides on the Earth is not negligible and will contribute to a secular reduction 

1105 of Earth’s spin momentum and rotational kinetic energy (Lambeck 1977), without altering the Earth’s 

continuous 1106 transfer of angular momentum to the Moon’s orbit via the torque exerted by Earth’s tidal bulge 

on the Moon. This 1107 contribution from the Sun will be explicitly quantified in the considerations presented 

below.  

1108 From the many-body orbital solution provided by Laskar et al. (2004), henceforth denoted as “La2004”, we  

1109 employed their predictions for the time-dependent rotation rate Ω(t) and semi-major axis 𝑎𝐿(𝑡), while holding the  

1110 obliquity 𝜀, eccentricity 𝑒𝐿, and inclination 𝑖𝐿 fixed at their present-day values, to determine the evolution of 𝐿𝑡𝑜𝑡𝑎𝑙𝑧

   

1111 over the past 70 million years. In this calculation, we model the variation of Earth’s polar moment of inertia 𝐶𝐸 

1112 with changing Ω, according to equations (38) and (39), as follows:  

2 

1113 𝐶𝐸(𝑡) = 𝐶𝐸(0) +  𝑘∗𝑓𝑇 𝑟𝐸5 [Ω2(𝑡) −  Ω20]                                                    (61)  

 3 3 𝐺 

1114 The predicted 𝐿𝑡𝑜𝑡𝑎𝑙𝑧  shown in Figure S4(a) varies from a present-day value of 

3.3942 × 1034 𝑘𝑔 𝑚2𝑠−1 to a  



1115 value at 70 Ma of 3.3958 × 1034 𝑘𝑔 𝑚2𝑠−1, representing a small change of 

0.5‰ that is well within the tolerance 1116 described by Tian & Wisdom 

(2020).  

1117 We now examine this result more critically and explore whether the very slight, linear decrease of 𝐿𝑡𝑜𝑡𝑎𝑙𝑧  evident  

1118 in Figure S4(a) may rectified, such that 𝐿𝑡𝑜𝑡𝑎𝑙𝑧  remains constant (or nearly so) over the past 70 Ma. We begin by 

1119  noting that Earth-Moon angular momentum conservation, as described in expression (60), has traditionally 

been  

1120 employed (e.g. Lambeck 1977) to model the rate of recession of the Moon:  𝑎̇𝐿 ≡ 𝑑𝑎𝐿⁄𝑑𝑡 . The time-derivative of 1121 

(60) yields:  

2 𝐶 

1122 𝑎̇𝐿 = − ( 𝐸 cos 𝜀 √2 𝑎) cos 𝑖𝐿 𝐿) Ω̇                                                                     (62)  

𝑚𝐿√𝐺𝑀𝐸(1 − 𝑒𝐿 

1123 in which we treated 𝐶𝐸, 𝜀, 𝑖𝐿, and 𝑒𝐿 as effectively constant and Ω̇ ≡ 𝑑Ω⁄𝑑𝑡. This 

approximation is maintained  

1124 throughout the work that follows. Using the La2004 values for Ω̇ and 𝑎̇𝐿 over the 

past 70 Ma, we find that they  

1125 cannot be reconciled by equation (62). The La2004 prediction for the secular rate 

of change of Earth’s rotation  

1126 rate, Ω̇ , when substituted into (62), yields a predicted recession rate 𝑎̇𝐿that is 

systematically larger than the 1127 recession rate output by La2004. The La2004 

lunar recession rate can only be fit, in the context of equation (62),  

1128 by reducing the La2004 secular deceleration Ω̇ by a (nearly constant) factor of 0.85 ± 0.01 throughout the past 70  

1129 Ma.  

1130 This apparently ad-hoc reconciliation can be justified by recognizing that the total tidal dissipation of energy in 

1131 the Earth-Moon system also includes the dissipation of solar tides raised on the Earth and therefore the 

secular 1132 deceleration of Earth’s rotation rate, Ω̇ , contains two distinct contributions (Lambeck 1977) : (1) a 

deceleration  



1133 denoted by Ω̇ 𝐿 arising from lunar tidal dissipation and (2) a deceleration denoted by Ω̇ 𝑆 arising from solar tidal 1134 

dissipation, which does not contribute to the Earth-Moon momentum balance in expression (60). We thus write:  

Ω̇ 

1135 Ω̇ = Ω̇ 𝐿 + Ω̇ 𝑆, where Ω𝐿̇ ≡ 𝛼𝐿 ≅ 0.85 ± 0.01 ⟹ ΩΩ̇ 𝑆̇ ≡ 𝛼𝑆 ≅ 0.15 ± 0.01                             (63)  

1136 When the value of Ω̇ 𝐿 given by (63) is employed instead of Ω̇ in expression (62), we obtain a 

very good match to 1137  the lunar recession rate  𝑎̇𝐿 predicted by La2004 over the past 70 

Ma.  

1138 We briefly consider the implications of the luni-solar partitioning of Earth’s secular deceleration, in (63), for the 1139 

rate of energy dissipation in the Earth-Moon system. The power of lunar and solar dissipation of energy, denoted  

1140 respectively by 𝑃𝐿 and 𝑃𝑆, is determined by the corresponding dissipative tidal torques, denoted 

by 𝒯𝐿 and 𝒯𝑆, such  

1141 that:  

1142 𝑃𝐿 = 𝒯𝐿 Ω  and  𝑃𝑆 = 𝒯𝑆 Ω  , where 𝒯𝐿 = 𝐶𝐸 Ω̇ 𝐿 and  𝒯𝑆 = 𝐶𝐸 Ω̇ 𝑆 ⟹ 𝑃𝐿 = 𝐶𝐸 Ω̇ 𝐿 Ω   and  𝑃𝑆 = 𝐶𝐸 Ω̇ 

𝑆 Ω          

𝑑𝐸 

1143 ⟹    𝑃Total = 𝑃𝐿 + 𝑃𝑆 = 𝐶𝐸 (Ω̇ 𝐿 + Ω̇ 𝑆) Ω = 𝐶𝐸 Ω̇ Ω = 𝑟𝑜𝑡 , where 𝐸𝑟𝑜𝑡 = 1 𝐶𝐸 Ω2          (64)  

 𝑑𝑡 2 

1144 where 𝑑𝐸𝑟𝑜𝑡⁄𝑑𝑡 is the rate of change of Earth’s rotational energy. Employing present-day values 

for rotation rate  

1145 Ω and secular deceleration Ω̇ from La2004, and the present-day value for Earth’s polar moment 

of inertia 𝐶𝐸, the 1146 rate of dissipation of rotational energy, as defined in (64), is 𝑑𝐸𝑟𝑜𝑡⁄𝑑𝑡 = 

4.2 𝑇𝑊 of which 85% (i.e. 3.6 𝑇𝑊) is 1147 due to lunar tidal dissipation. These dissipation values 

are of course an expression of the tidal dissipation model  

1148 assumed in La2004 and are comparable to independent estimates of tidal dissipation obtained by Egbert and Ray  

1149 (2003) who find present-day total dissipation is ∼3.5 TW, of which ∼0.5 TW is due to solar tides and hence the 

1150 latter contribute about 14% of the total dissipation. Expression (64) for tidal energy dissipation manifested 

in the  



1151 decrease of Earth’s rotational kinetic energy does not include the small (∼3%) rate of increase of energy transferred  

1152 to the lunar orbit as result of the recession of the Moon (Lambeck 1977). (The inclusion of the latter contribution  

1153 leads to the mathematical representation for total energy dissipation by lunar tides developed in Murray & Dermott  

1154 1999).  

1155 Based on expression (63), we obtain the following linearized approximation to the time-dependent rotation rate, 

1156 in which we isolate the contribution due only to the deceleration arising from lunar tidal dissipation:  

1157 Ω(t) = Ω0 + Ω̇ 0𝑡 = Ω0 + 𝛼𝐿Ω̇ 0t + (1 − 𝛼𝐿)Ω 0̇t  

1158 ⇔ Ω , where ∆Ω𝐿(𝑡) = 𝛼𝐿Ω̇ 0t  and  ∆Ω𝑆(𝑡) = (1 − 

𝛼𝐿)Ω̇ 0t          (65)  

 

1159 where Ω𝐿(𝑡) represents the (dominant) lunar-tidal contribution to the time-

varying rotation rate of the Earth. We 1160 return to expression (60), in which 

Ω(t) is now replaced by  and we thus obtain:  

1161 𝐿𝑡𝑜𝑡𝑎𝑙
𝑧 = 𝐶𝐸(𝑡)Ω𝐿(𝑡) cos 𝜀 + 𝑚𝐿  cos 𝑖𝐿                                               (66)  

1162 where we again use the rotation-rate dependence of the polar moment of inertia given in (61). 

Using the values  

1163 for 𝑎𝐿(𝑡) and Ω̇ 0 from La2004, using 𝛼𝐿 = 0.85 (see 65) and other parameters from Table S1, 

we recalculate 𝐿𝑡𝑜𝑡𝑎𝑙𝑧   

1164 and now find (see red curve in Figure S4(a)) that 𝐿𝑡𝑜𝑡𝑎𝑙𝑧  varies at most by 0.03‰ over 

the past 70 Ma, confirming 1165  the near-constancy of the total angular momentum.  

1166 With this last result in hand, we can now derive a simple, closed-form expression for the time-dependence of the  

1167 semi-major axis of the lunar orbit, 𝑎𝐿(𝑡), using the revised expression for angular momentum conservation in (66), 

1168 thus yielding:  

 [𝐿𝑡𝑜𝑡𝑎𝑙 ̇ 2 

1169 𝑎𝐿(𝑡) =  𝑧,0t)cos 𝜀]                                                       

(67) (𝑚𝐿 cos 𝑖𝐿)  𝐺𝑀𝐸  𝐿 

1170 in which 𝐿𝑡𝑜𝑡𝑎𝑙𝑧,0  is the total, Earth-Moon angular momentum calculated with 

present-day values for the variables  



1171 appearing in (60) and 𝐶𝐸(𝑡) is calculated, according to equation (61), assuming that 

Ω(t) = Ω0 + Ω̇ 0𝑡. We again 1172 assume that 𝜀, 𝑖𝐿, and 𝑒𝐿 remain constant. In 

Figure S4(b) (see red curve) we verify expression (67) against the  

1173 time-evolution of 𝑎𝐿(𝑡) provided by the La2004and find an excellent match over the past 70 Ma. The largest  

1174 deviation relative to the La2004 values for 𝑎𝐿(𝑡), obtained at 70 Ma, is only 0.06‰. (This close match is perhaps 

1175  better than one should expect, given our assumption of constant 𝜀, 𝑖𝐿, and 𝑒𝐿over the past 70 Ma!)  

1176 The closed-form expression (67) provides a useful tool for exploring the impact of changing luni-solar tidal  

1177 dissipation rates over the past 70 Ma, by simply adjusting the value of  Ω̇ 0. This adjustment will directly translate 

1178 into corresponding adjustments in the tidal-dissipation power, as shown in (64). We explored two scenarios: 

(1) 1179 The first scenario is motivated by the modelling of Green et al. (2017), who estimated changes in tidal 

dissipation  

1180 over the past 252 Ma using paleogeographic reconstructions and found that tidal dissipation was much weaker 1181 

than at present over a long interval of time preceding the Pliocene. These authors infer past rates of tidal dissipation 1182 

that were 50% lower than present-day rates, and perhaps as low as 30% of present-day during the Paleocene1183 Eocene. 

They therefore proposed that the modern, high rates of tidal dissipation are distinctly anomalous relative  

1184 to the reconstructed pre-Pliocene rates. (2) The second scenario is a hypothetical case study in which we assume 1185 

that tidal dissipation was reduced to 30% of the present-day value for times earlier than 35 Ma. This time 1186 corresponds 

to the beginning of permanent glaciation over Antarctica and the corresponding drop in global mean  

1187 sea level by about 58 metres (corresponding to the current ice mass in Antarctica). It is thus hypothesized that the 

1188 resulting shallowing of global bathymetry, and the development of the Antarctic Circumpolar Current after the 1189 

opening of the Drake Passage and Tasman Gateway, led to greater rates of tidal dissipation over the past 35 Ma, 1190 

compared to pre-Oligocene rates. This admittedly speculative scenario is explored to investigate the degree to 1191 which 

the precession frequency will be perturbed by large changes in tidal dissipation, at earlier times in the past  

1192 (relative to scenario 1). Both scenarios are motivated by the paleo-tidal modelling simulations by Green et al.  

1193 (2017) and their implications for the history of Earth-Moon separation (calculated with equation 67) are presented  



1194 in Figure S4(b), where we used (67) with changes to Ω̇ 0 at 5 Ma, or 35Ma, and we found that both scenarios lead 

1195  to between 1000 and 1300 km less lunar recession than predicted by the La2004 model.  

 

Figure S4: Modelling changes of Earth’s precession rate due to secular deceleration of Earth rotation and 

Earth-Moon separation. (a) Modeled total angular momentum of the Earth over the past 70 million years, based 

on equation (60). The black curve represents predictions based on the variations of rotation-rate and Earth-Moon 

distance given by the La2004 model. The red curve shows the total angular momentum calculated only including 

rotation-rate changes due to lunar tidal deceleration: see equation (66). (b) Changes in the Earth-Moon distance 

over time. The black curve shows the prediction from the La2004 model, while the red curve represents the 

EarthMoon distance calculated using equation (67), derived from angular momentum conservation. The blue curve 

illustrates a scenario with tidal deceleration reduced to 50% of the present-day value for times greater than 5 

million years ago, and the orange curve depicts a scenario where tidal deceleration is reduced to 30% of present 

day for times greater than 35 million years ago. The inset graph shows the corresponding lunar tidal dissipation 

rates (in TW), demonstrating the energetic implications of different tidal deceleration scenarios. (c) Changes in 

Earth's dynamic flattening, 𝛥𝐻(𝑡)⁄𝐻0, defined in equation (30) and modelled using equation (69). The black curve 

is the prediction obtained using the time dependence of rotation rate in equation (65) and using the present-day 

deceleration, 𝛺̇ 0, from La2004. The blue curve represents the prediction assuming reduced tidal deceleration 

(50%) for times greater than 5 million years ago, and the orange curve shows changes with tidal deceleration 

reduced to 30% for times greater than 35 million years ago. These results underscore the significant variability in 

dynamic flattening due to tidal dissipation. (d) Modeled precession rate of the Earth over the past 70 million years. 

The black curve corresponds to La2004 model predictions. The red solid curve represents a prediction based on 

equation (71), using 𝑎𝐿 calculated from angular momentum conservation (equation 67) and the present-day rate of 



deceleration, 𝛺̇ 0, from La2004, used in equation (65). The red dashed curve is the corresponding prediction 

holding the Earth-Moon distance 𝑎𝐿 fixed to present-day value. The blue curve reflects the predicted precession 

rate with 50% reduced tidal deceleration for times greater than 5 million years ago, and the orange curve depicts 

the precession rate with tidal deceleration reduced to 30% for times greater than 35 million years ago.  

1196     

1197  10. Secular Influence of Variable Tidal Dissipation on Dynamic Flattening and Precession  

1198 As discussed above (in section 9), we explored two scenarios where tidal dissipation is reduced at 𝑡 = −5 Ma or − 

1199 35 Ma, to explore the impact on the evolution of Earth-Moon distance 𝑎𝐿(𝑡), compared to the La2004 solution  

1200 (Figure S4(b)). We now consider the implications for Earth’s dynamical flattening 𝐻(𝑡), defined in (25), and for 1201 

precession frequency 𝜔𝑝𝑟𝑒𝑐(𝑡), defined in (24).  

1202 The present-day (‘observed’) value of dynamic flattening, given by the IERS (International Earth Rotation and 1203 

Reference Systems) Conventions of 2010 (Petit & Luzum 2010) is:  

1204 𝐻𝑜𝑏𝑠(0) = 3.273795 × 10−3                                                                    (68) 1205 This value compares with the present-

day hydrostatic value (see equations 46, 47):  𝐻ℎ𝑦𝑑(𝑡 = 0) = 

1206 3.235(±5) × 10−3, where the uncertainty in the last significant figure stems from the (1st or 2nd order) accuracy 1207 

employed in the determination of J2ℎ𝑦𝑑(0).  

1208 If we assume that Earth’s angular rotation vector is 𝝎(𝑡) = Ω(t) 𝒛̂ , which implies that we ignore TPW, and we 1209 

follow the derivations that led to equation (43), but also include a contribution from internal dynamics – defined 1210 in 

equation (52), we then obtain the following expression for Earth’s time-dependent dynamic flattening:  

 ℎ𝑦𝑑  Ω2(𝑡) 𝑑𝑦𝑛 

 J2 (0)  Ω2 + ∆J2 (𝑡) 

1211 𝐻(𝑡) =  2 ℎ𝑦𝑑 0 𝛺2(𝑡) 𝑑𝑦𝑛                                                    

(69) 0.3307 + 3 [ 𝐽2 (0) 𝛺02 + ∆J2 (𝑡)] 

1212 in which we used the rotation-rate dependence of J2ℎ𝑦𝑑 given in equation (38), J2ℎ𝑦𝑑(0) 

is the present-day value  



1213 given and ∆J2𝑑𝑦𝑛(𝑡) represents the time-dependent contribution to Earth’s flattening 

from dynamical 1214 (nonhydrostatic) processes, notably mantle convection and 

glacial isostatic adjustment.  For the secular variation  

1215 of the rotation rate, we again assume the following linearized expression from (65): Ω(t) = Ω0 + Ω̇ 0𝑡, where we 1216 

can adjust Ω̇ 0 at different times in the past, as in the two scenarios that explored (see section 9) the impact of  

1217 reduced tidal dissipation in the past. We also constrain ∆J2𝑑𝑦𝑛(𝑡 = 0) such that expression (69) exactly yields the  

1218 same value for 𝐻(0) as 𝐻𝑜𝑏𝑠(0) in (68), and for this purpose we also used  𝐽2ℎ𝑦𝑑(0) from equation (47). We then  

1219 kept ∆J2𝑑𝑦𝑛 fixed to its present-day value to show the temporal variations of 𝐻(𝑡) that would result only from tidal  

1220 deceleration. In our first simulation, we modelled the secular decrease of rotation rate using Ω̇ 0 from La2004 and 

1221  the resulting variation of 𝐻(𝑡) over the past 70 Ma is shown in Figure S4(c). The 46‰ change over this 

time  

1222 interval far exceeds any changes to 𝐻(𝑡) that may be predicted by mantle convection (see Figure 4 in the main 1223 

text). We also considered the two scenarios described in section 9, in which tidal dissipation (TD) is strongly 1224 reduced 

relative to present-day: (1) prior to 5 Ma, TD is reduced to 0.5 of present-day, and (2) prior to 35 Ma, TD  

1225 is reduced to 0.3 of present-day. The resulting impact of such reductions in TD on the evolution of 𝐻(𝑡) is large,  

1226 as shown in Figure S4(c), and they greatly exceed any changes that would likely be driven by mantle convection 

1227 (Figure 4).  

1228 In previous modelling of secular changes in 𝐻(𝑡) and their influence on Earth’s precession frequency 𝜔𝑝𝑟𝑒𝑐(𝑡),  

1229 via equation (24), Farhat et al. (2022b) employed a value 𝐻(0) = 3.243 × 10−3, which is essentially that 1230 

predicted (to 1st-order accurate theory) for a purely hydrostatic planet (see equations 44 and 46b), and they model  

1231 its variation with rotation as follows: 𝐻(𝑡) = 𝐻(0) × Ω2(𝑡)⁄Ω2
0 (compare with equation 69). Similarly, Boulila  

1232 & Hinnov (2022) also model precession with equation (24), assuming a hydrostatic flattening, 𝐻(0) = 

1233 3.24 × 10−3, assuming an  Ω2 dependence as in Farhat et al. (2022b). We examine the implications of these  

1234 flattening values for the predicted present-day precession frequency 𝜔𝑝𝑟𝑒𝑐(0), using equation (24). The additional  



1235 inputs required for equation (24) are listed in Table S1. With these tabulated parameters and the different values 

1236 for present-day dynamical flattening discussed above, equation (24) yields the following predictions:  

50.7223 "/yr  for   𝐻𝑜𝑏𝑠 = 3.273795 × 10−3  (𝑒𝑞. 68) 

1237 𝜔𝑝𝑟𝑒𝑐(0) = {50.0747 "/yr  for  𝐻ℎ𝑦𝑑 = 3.232 × 10−3          (𝑒𝑞. 47)                     (70) 

50.1212 "/yr  for  𝐻ℎ𝑦𝑑 = 3.235 × 10−3        (𝑒𝑞. 46𝑎) 

1238 compared to (from La2004):                                𝜔𝑝𝑟𝑒𝑐𝐿𝑎2004(0) = 50.4758 "/yr                                                                   

1239 All three predictions in (70) differ from the present-day precession frequency in 

the La2004 solution 𝜔𝑝𝑟𝑒𝑐𝐿𝑎2004(0).  

1240 While calculating the results in (70), it became apparent that the predicted precession values are quite sensitive to  

1241 small changes of the input parameters in Table S1, notably 𝑎𝐿 and 𝜀. The magnitude of the differences in (70) 1242 

relative to La2004 can be regarded as large in the context of cylcostratigraphy and they would be detectable in 

1243 these analyses (Pälike & Shackleton 2000).  

1244 In a further effort to examine whether the present-day flattening in (68) may be reconciled with the value of  

1245 𝜔𝑝𝑟𝑒𝑐𝐿𝑎2004(0), we next considered a somewhat more refined theoretical expression for the precession frequency 

that 1246 is taken from equations (6) and (8) in La2004:  

1247 𝜔𝑝𝑟𝑒𝑐 3 𝐻 𝐺𝑀𝑆 𝐺𝑚𝐿

 3 𝑖𝐿)] cos𝜀                          (71)  

1248 The additional input parameters appearing in (71) are defined in Table S1. We again 

repeated the calculations for  

1249 𝜔𝑝𝑟𝑒𝑐, using expression (71), and obtained the following results:  

50.4655 "/yr  for   𝐻𝑜𝑏𝑠 = 3.273795 × 10−3  (𝑒𝑞. 68) 

1250 𝜔𝑝𝑟𝑒𝑐(0) = { 49.8212 "/yr  for  𝐻ℎ𝑦𝑑 = 3.232 × 10−3          (𝑒𝑞. 47)                     (72)  

49.8675 "/yr  for  𝐻ℎ𝑦𝑑 = 3.235 × 10−3        (𝑒𝑞. 46𝑎) 

1251 compared to (from La2004):                                𝜔𝑝𝑟𝑒𝑐𝐿𝑎2004(0) = 50.4758 "/yr                                                                    



1252 We now can very nearly reconcile the value of 𝐻𝑜𝑏𝑠 with the present-day precession 

frequency predicted by the 1253 orbital solution of La2004. The difference between the 

two precession values is only 0.2‰. We therefore employed  

1254  expression (71) for all predictions of the precession frequencies that are presented in the main text (Figure 4) and 

1255  in the following discussion.  

1256 The key time-dependent variable that appears in (71), apart from the dynamic flattening 𝐻(𝑡) (see Figure S4(c)),  

1257 is the Earth-Moon semi-major axis: 𝑎𝐿(𝑡). We performed a first simulation in which we modelled Earth-Moon  

1258 separation according to (67), and 𝐻(𝑡) according to (69) – again keeping ∆J2𝑑𝑦𝑛 fixed to its present-day value, and 

1259 using the present-day deceleration rate from La2004. We obtained very good agreement with the time-

dependent  

1260 𝜔𝑝𝑟𝑒𝑐𝐿𝑎2004(𝑡) values from La2004 over the past 70 Ma, as shown by the black and red curves in Figure S4(d). The 

1261 average difference between the two curves over the entire 70 Ma interval was 0.4‰. In a sensitivity experiment, 1262 

we ran another simulation keeping the Earth-Moon separation fixed to present-day value while allowing the 𝐻(𝑡) 1263 to 

evolve as before, and the result (see dashed red curve in Figure S4(d)) shows that the variation in 𝐻(𝑡) alone 1264 

contributes 55% of the total change in 𝜔𝑝𝑟𝑒𝑐𝐿𝑎2004(𝑡) over the past 70 Ma, with the other 45% due to the change in 1265 

 Earth-Moon separation. Finally, we calculated the evolution of 𝜔𝑝𝑟𝑒𝑐(𝑡) for the two scenarios in which TD was 1266 

 0.5 of present-day prior to 5 Ma, and TD was 0.3 of present-day prior to 35 Ma. The results, shown by the blue 1267 

 and orange curves in Figure. S4(d), reveal that these hypothetical changes in TD have a large impact that should 1268 

 be detectable in cyclostratigraphic analysis of pre-Pliocene age sedimentary sequences, especially in the Paleogene 1269 

 period.  

1270     

Table S1: Values of input parameters for the numerical calculation of angular momentum and precession rate  

Solar gravitational constant: 𝐺𝑀𝑆 (IAU 2009)  
1.3271244 × 1020 m3s-2  

Earth’s gravitational constant: 𝐺𝑀𝐸 (IAU 2009)  
3.9860044 × 1014 m3s-2  



Lunar gravitational constant: 𝐺𝑚𝐿  

(From IAU 2009 value for 𝑚𝐿⁄𝑀𝐸 = 1.23000371 × 10−2)  4.902800 × 1012 m3s-2  

Constant of gravitation: 𝐺  (IAU 2009)  
6.67428 × 10−11 m3kg-1s-2  

Earth orbit semi-major axis: 𝑎𝑆  (IAU 2009)  
1 au = 1.495978707 × 1011m  

Lunar orbit semi-major axis: 𝑎𝐿  

(From JPL DE440/DE441 Ephemerides)  384399 × 103m  

Present-day sidereal rotation rate: Ω0  (IAU 2009)  
7.292115 × 10-5 s-1  

Present-day obliquity of the ecliptic: 𝜀  

(From t = 0 orbital solution of Laskar et al. 2004)  23.270773°  

Present-day lunar inclination to the ecliptic: 𝑖𝐿 (from 

Williams & Boggs 2016)  
5.145°  

Present-day eccentricity of Earth orbit: 𝑒𝑆 (from 

Simon et al. 1994)  
0.0167086  

Present-day eccentricity of lunar orbit: 𝑒𝐿 (from 

Williams & Boggs 2016)  
 0.0549  

1271    
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