
Stabilizer Entanglement Distillation and Efficient Fault-Tolerant Encoders

Yu Shi,1, 2, 3, ∗ Ashlesha Patil,1, 2 and Saikat Guha1, 2, 3, †

1Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
2NSF-ERC Center for Quantum Networks, University of Arizona, Tucson, Arizona 85721, USA

3Department of Electrical and Computer Engineering,
University of Maryland, College Park, Maryland 20742, USA

(Dated: March 11, 2025)

Entanglement is essential for quantum information processing, but is limited by noise. We address
this by developing high-yield entanglement distillation protocols with several advancements. (1) We
extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n− 1) protocols
that can correct any single-qubit errors. These protocols are evaluated through numerical simula-
tions focusing on fidelity and yield. We also outline a method to adapt any classical error-correcting
code for entanglement distillation, where the code can correct both bit-flip and phase-flip errors
by incorporating Hadamard gates. (2) We propose a constant-depth decoder for stabilizer codes
that transforms logical states into physical ones using single-qubit measurements. This decoder is
applied to entanglement distillation protocols, reducing circuit depth and enabling protocols de-
rived from high-performance quantum error-correcting codes. We demonstrate this by evaluating
the circuit complexity for entanglement distillation protocols based on surface codes and quantum
convolutional codes. (3) Our stabilizer entanglement distillation techniques advance quantum com-
puting. We propose a fault-tolerant protocol for constant-depth encoding and decoding of arbitrary
states in surface codes, with potential extensions to more general quantum low-density parity-check
codes. This protocol is feasible with state-of-the-art reconfigurable atom arrays and surpasses the
limits of conventional logarithmic depth encoders. Overall, our study integrates stabilizer formalism,
measurement-based quantum computing, and entanglement distillation, advancing both quantum
communication and computing.

I. INTRODUCTION

Entanglement is essential for quantum communica-
tion [1–4], quantum metrology [5–8], and distributed
quantum computing [9–13], but it is severely limited by
noise [14–18]. Entanglement distillation [19–22], or en-
tanglement purification, is a process that transforms pre-
viously shared, less entangled Bell states into fewer, but
higher-quality states through local operations and clas-
sical communication. This technique has been explored
across various physical platforms [23–27], demonstrated
experimentally [28–38], and extended to multiqubit sys-
tems [39–48]. However, the basic 2-to-1 protocols [19, 21]
are inefficient, invariably sacrificing at least half of the
input states, regardless of their initial fidelity. The hash-
ing protocol [20, 49], while offering adaptive yields based
on the input fidelity, requires an infinitely large input,
limiting its practical use. This highlights the need for
more efficient entanglement distillation protocols capa-
ble of generating higher yields from finite input states.

Research on efficient distillation protocols has ex-
plored strategies such as high-dimensional systems [50–
55], entanglement-assisted methods [56–60], symmetry-
based searches [61, 62], and heuristic optimizations [63–
69]. A key approach utilizes quantum error correc-
tion [70–76], which provides reliable performance guar-
antees. Specifically, in the so-called “stabilizer protocol”
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of entanglement distillation [77], Alice and Bob start with
n shared noisy Bell states. As shown in Figure 1(a), each
party independently measures n − k stabilizer genera-
tors on their n qubits, projecting them onto logical sub-
spaces. Alice sends her stabilizer parities to Bob, who
identifies an error syndrome and corrects the errors by
applying appropriate Pauli operators. After error correc-
tion, both parties perform unitary decoding, the inverse
of the unitary encoding circuit, to transform the k log-
ical Bell states into k physical Bell states. Crucially, it
was shown that the same can be accomplished by a di-
rect unitary decoding applied to both Alice’s and Bob’s
qubits of the n noisy Bell states [70, 71], as illustrated
in Figure 1(b). This is followed by each party perform-
ing n − k single-qubit measurements to reveal stabilizer
parities, Alice communicating her parities to Bob, and
Bob performing a recovery operation to his k unmeasured
qubits, resulting in k distilled physical Bell states. This
approach makes initial stabilizer measurements unneces-
sary. However, stabilizer measurements exhibit a more
compact structure than unitary decoding circuits, par-
ticularly in quantum low-density parity-check (QLDPC)
codes [78], with surface codes being a prominent exam-
ple [79–81]. These codes feature a constant number of
qubits per stabilizer generator and a constant number
of generators acting on each qubit, enabling constant-
depth stabilizer measurements. The primary challenge
lies in developing an efficient entanglement distillation
scheme that leverages the compactness of stabilizer mea-
surements.

In this paper, we explore high-yield entanglement dis-
tillation protocols and their implementation through sta-
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FIG. 1. Schematic diagrams of entanglement distillation protocols derived from quantum codes. (a) A complete stage of
stabilizer entanglement distillation [77], featuring stabilizer measurements, recovery by Pauli operators, and unitary decoding.
(b) An alternative protocol that eliminates stabilizer measurements [70, 71]. (c) Our proposed protocol, incorporating stabilizer
measurements and single-qubit measurement decoding.

bilizer measurements and efficient decoding via single-
qubit measurements. We also extend their application to
fault-tolerant quantum computing. The main contribu-
tions of this study are summarized as follows:

1. We review stabilizer entanglement distillation and
apply it to the protocols of Bennett et al. [19] and
Deutsch et al. [21], mapping these protocols onto a
[2, 1, 2] classical error detection code. We demon-
strate that bilateral Hadamard gates on the dis-
tillation output can alternate Pauli-X and Pauli-
Z errors while preserving the standard Bell states.
Consequently, two sequential applications of these
protocols can effectively address any single-qubit
errors. Drawing on this insight, we extend the
2-to-1 protocol to higher-rate n-to-(n− 1) proto-
cols, corresponding to an error detection process
using a

[[
n2, (n− 1)

2
, 2
]]

quantum code. We eval-

uate the performance of these protocols through
numerical simulations, assessing both input-output
fidelity and yield. Additionally, we present a
method to adapt any classical error-correcting code
to an entanglement distillation protocol using a
two-iteration process. The first iteration corrects
bit-flip errors, then Hadamard gates convert phase-
flip errors to bit-flip errors, which the second it-
eration corrects. Since the errors in both itera-
tions are classical, the error-correcting capability
matches that of the classical code used.

2. We propose a constant-depth decoder for stabi-
lizer codes using single-qubit measurements, and
apply it to stabilizer entanglement distillation. Our
protocol, illustrated in Figure 1(c), involves Al-
ice and Bob performing stabilizer measurements
and single-qubit measurement decoding. This com-
pact, parallel approach significantly reduces cir-
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TABLE I. Comparison of circuit complexity between unitary and measurement-based protocols for stabilizer entanglement
distillation. The unitary decoding circuit for general codes is from [82]; the lower bound for surface codes is discussed in [83, 84].

Circuit Deptha

Unitary Protocol Measurement-Based Protocol
General Code O (n) O (n)
Surface Code Ω(log n) O (1)

a We measure circuit depth by counting only the two-qubit gates, as these are the key determinants of circuit complexity.

TABLE II. Comparison of unitary and measurement-based methods for a rate- 1
3

quantum convolutional code [85, 86]. The
unitary decoding circuit is sourced from [87]. Numbers represent circuit complexity on a single side, either Alice or Bob, in the
entanglement distillation protocol. To our knowledge, there is no established general scaling for circuit complexity in unitary
decoding of quantum convolutional codes.

Unitary Protocol Measurement-Based Protocol
Circuit Depth 11 4
Two-Qubit Gates per Framea 14 12
Longest Span of Two-Qubit Gates 3 frames 2 frames

a A “frame” refers to a set of qubits processed together at one stage of a quantum circuit, akin to windows or blocks of data in classical
convolutional coding.

cuit depth compared to previous protocols. Ap-
plying this method to convolutional entanglement
distillation [58], known for its robust error correc-
tion in communications, we demonstrate its effi-
ciency with a rate-1/3 quantum convolutional code.
Our method outperforms the conventional unitary
method [87, 88]. For a detailed comparison of cir-
cuit complexities, see Tables I and II.

3. We propose a fault-tolerant protocol for constant-
depth encoding and decoding of arbitrary quan-
tum states, applicable to QLDPC codes and sur-
face codes. The protocol incorporates stabilizer
measurements and efficient decoding to establish
physical-logical Bell states. We enhance fault tol-
erance through entanglement distillation of these
Bell states and employ quantum teleportation for
encoding and decoding quantum states. The pro-
tocol is feasible with current reconfigurable atom
arrays [89, 90] and surpasses the conventional
depth limits for surface codes, lower bounded by
Ω (log (n)) [83, 84], where n is the number of qubits.

Consequently, this study integrates stabilizer formal-
ism, measurement-based quantum computing, and en-
tanglement distillation, strengthening the connections
between quantum communication and computing, ad-
vancing these fields, and contributing to practical and
efficient quantum information processing.

II. REVIEW OF STABILIZER
ENTANGLEMENT DISTILLATION

A. Error Model

Entanglement distillation involves transforming noisy
Bell states shared between two parties, Alice and Bob,

into a smaller number of higher-quality Bell states. For
clarity, we define the standard Bell state as

∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩) , (1)

where |xy⟩ = |x⟩A ⊗ |y⟩B represents qubit states on Al-
ice’s and Bob’s sides, respectively. We model a noisy Bell
state as a standard Bell state affected by a noisy quantum
channel. This channel applies random errors to the state,
denoted by EA ⊗ EB |Φ+⟩, where EA(B) ∈ {I,X, Y, Z}
are operators acting on Alice’s (Bob’s) qubit. The Bell-
state matrix identity (see Appendix A),

(M ⊗ I)
∣∣Φ+

〉
=
(
I ⊗MT

) ∣∣Φ+
〉
,

signifies that an arbitrary operator M applied to Alice’s
qubit of the standard Bell state |Φ+⟩ is equivalent to its
transpose applied to Bob’s qubit. This allows us to sim-
plify the error model by assuming that only Bob’s qubit
is subjected to a noisy channel, while Alice’s qubit re-
mains error-free (see Appendix A for a detailed calcula-
tion). For our model, we consider a depolarizing channel
that applies Pauli errors randomly with equal probability.
The resulting noisy Bell state is given by
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ρ = (1− p)
∣∣Φ+

〉 〈
Φ+
∣∣+ p

3

3∑
i=1

(I ⊗ σi)
∣∣Φ+

〉 〈
Φ+
∣∣ (I ⊗ σ†

i

)
, (2)

where p is the probability of error, and σi ∈ {X,Y, Z}
is the Pauli operator. This state is equivalent to a mix-
ture of the standard Bell state |Φ+⟩ with the other three
orthogonal Bell states.

We study entanglement distillation protocols that dis-
till n independent and identically distributed (i.i.d.)
noisy Bell states, represented by ρ⊗n, into k higher-
quality states. The initial state can be viewed as a mix-
ture of pure states, represented by

ρ⊗n =
∑
E

(I ⊗ E)
∣∣Φ+

n

〉 〈
Φ+

n

∣∣ (I ⊗ E†) ,
where |Φ+

n ⟩ = |Φ+⟩⊗n denotes the tensor product of n
standard Bell states. Here, I is the identity operator act-
ing on Alice’s qubits, and E represents an n-qubit Pauli
operator, expressed as E = E1⊗E2⊗· · ·⊗En, with each
Ei ∈ {I,X, Y, Z} acting on Bob’s qubits indexed from 1
to n. The occurrence of E = I⊗n indicates an error-free
event, while Ei ̸= I for any i signifies an error on the i-th
qubit, marking an erroneous event. For brevity, we omit
the ⊗ symbol for one-partite tensor products in subse-
quent discussions, for example, writing E = E1E2 · · ·En.

B. Entanglement Distillation Protocol

To facilitate entanglement distillation, we use a stabi-
lizer code parameterized by [[n, k, d]] [91]. Here, n rep-
resents the number of physical qubits, k the number of
logical qubits encoded, and d the code distance, defined
as the minimum weight of any logical operator. The
code features n − k stabilizer generators, which are es-
sentially n-qubit Pauli operators, each denoted as gi for
i = 1, 2, . . . , n−k. These generators are independent and
mutually commuting. If a state |ψ⟩ is an eigenvector of
the generator gi, satisfying

gi |ψ⟩ = (−1)
si |ψ⟩ ,

where si = 0 or 1, then we say |ψ⟩ is stabilized by gi with
parity si. A state stabilized by all generators with par-
ities s = s1s2 . . . sn−k is referred to as the logical state
with parity vector s. When an error affects the logical
state, it flips the parities if it anti-commutes with the cor-
responding generators. Subsequent stabilizer measure-
ments, characterized by the projector

P
(s′i)
i =

I + (−1)
s′i gi

2
,

can reveal the new parities s′ = s′1s
′
2 . . . s

′
n−k. By com-

paring the two sets of parities, s⊕s′ (bitwise XOR), one
can determine the error syndrome and correct it using

appropriate Pauli operators. A code with distance d can
correct up to t =

⌊
d−1
2

⌋
physical errors. This capability

makes quantum error-correcting codes essential for dis-
tilling entanglement, as they can effectively handle up to
t errors in the ensemble ρ⊗n.

Considering an instance I ⊗ E |Φ+
n ⟩ from the ensem-

ble of n noisy Bell states, the entanglement distillation
protocol is outlined as follows:

1. Alice performs n−k stabilizer measurements on her
qubits. These measurements project the state onto
P

(si)
i ⊗ E |Φ+

n ⟩, where P
(si)
i is the projector cor-

responding to the measurement outcome si. Uti-
lizing operator commutation, projector property
P 2 = P , and Bell-state matrix identity associated
with the standard Bell state |Φ+⟩, the postmea-
surement state can be represented as

P
(si)
i ⊗ E

∣∣Φ+
n

〉
= P

(si)
i ⊗ E

(
P

(si)
i

)T ∣∣Φ+
n

〉
.

Thus, Alice’s measurements project both her qubits
and Bob’s qubits onto subspaces stabilized by gen-
erators gi and gTi , respectively. If gi contains an
odd number of Pauli-Y operators, then gTi = −gi;
otherwise, gTi = gi.

2. Alice communicates her measurements, sA =
s1s2 . . . sn−k, to Bob. This allows Bob to know the
parities of his qubits before any errors. The parities
are given by sB = s′1s

′
2 . . . s

′
n−k. If a generator gi

contains an odd number of Pauli-Y operators, then
s′i = si ⊕ 1; otherwise, s′i = si.

3. Bob performs n− k stabilizer measurements on his
qubits, yielding t = t1t2 . . . tn−k. He calculates the
error syndrome, c = sB⊕t, and corrects them with
appropriate Pauli operators. Bob’s measurement of
gi with outcome ti projects the state onto

P
(si)
i ⊗ P

(ti)
i EP

(s′i)
i

∣∣Φ+
n

〉
.

If E commutes with gi, then ti = s′i; otherwise,
ti = s′i ⊕ 1. This step mirrors the process used in
quantum error correction.

4. Alice and Bob decode the logical qubits and extract
k higher-quality Bell states.

This one-way protocol allows Alice and Bob to always
distill k Bell states from n inputs. Alternatively, the
stabilizer code in error detection mode enables two-way
entanglement distillation [70, 71]. Bob compares his par-
ities with Alice’s. If the parities match, the Bell states
are kept; otherwise, they are discarded. The two-way
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scheme can address up to d − 1 errors for a code with
distance d, surpassing the one-way scheme’s capability
of addressing up to

⌊
d−1
2

⌋
errors. However, the two-way

scheme is probabilistic and requires Bob to communicate
his decision back to Alice.

III. APPLICATION I: EXTENDED
RECURRENCE ENTANGLEMENT

DISTILLATION PROTOCOL

We apply the stabilizer formalism to the well-known 2-
to-1 recurrence entanglement distillation. The protocol
by Bennett et al. [19] can be seen as a stabilizer entan-
glement distillation in error detection mode. The code
uses a single generator, X1X2, which detects single-qubit
Y and Z errors but not X errors. To address X errors,
Bennett et al. used twirling to randomize them, enabling
detection in later iterations. Alternatively, Alice and Bob
can apply Hadamard gates to their output qubits. The
bilateral Hadamard gates preserve the standard Bell state
and switch X and Z errors, as

(H ⊗H)
∣∣Φ+

〉
=
∣∣Φ+

〉
,

(H ⊗H) (I ⊗X)
∣∣Φ+

〉
= (I ⊗ Z)

∣∣Φ+
〉
.

This allows the remaining Z errors to be addressed in the
next iteration, which is more efficient than twirling. The
revised protocol is equivalent to the protocol by Deutsch
et al. [21], where the stabilizer code Y1Y2 is used to detect
X and Z errors, and Rx (π/2) is used to switch Y and Z
errors. Since this protocol can detect X, Y , and Z errors
over two sequential iterations, it can detect any single-
qubit error according to the discretization of quantum
errors [91]. This explains why the recurrence protocols
are effective in various error models, not just the Werner-
state model.

Based on the above insight, we can extend the 2-to-1
recurrence protocol to a higher-rate n-to-(n− 1) proto-
col using a stabilizer code X1X2 · · ·Xn. For example,
consider the 3-to-2 entanglement distillation circuit illus-
trated in Figure 2, constructed using the unitary de-
coding method. The two dashed boxes represent circuits
for two sequential iterations. In each box, the projec-
tive measurement on the first qubit reveals the parity
of X1X2X3. By comparing parities, Alice and Bob can
detect single-qubit Y or Z errors. Hadamard gates on
the remaining qubits convert X errors to Z errors, which
are detected in the next iteration. The protocol is simi-
lar to the generalized Shor’s construction of a quantum
code [92], with one code addressing bit-flip errors and
the other addressing phase-flip errors. By permuting the
measurements and gates in Figure 2, we obtain the sta-
bilizers for two iterations:

X X X I I I I I I
I I I X X X I I I
I I I I I I X X X
Z Z I Z Z I Z Z I
Z I Z Z I Z Z I Z

,

which characterize a [[9, 4, 2]] quantum code capable of
detecting a single-qubit error. For the n-to-(n− 1) pro-
tocol, two iterations correspond to a

[[
n2, (n− 1)

2
, 2
]]

quantum code. The term “n-to-(n − 1) protocol” re-
flects that each iteration can be executed independently,
requiring only n inputs, corresponding to a classical
[n, n− 1, 2] error-detecting code. It corrects bit-flip or
phase-flip errors, effectively improving output fidelity
similarly to the original 2-to-1 protocol.

To prevent correlated multiqubit errors, it is essential
to use outputs from different iterations as inputs in subse-
quent iterations. For example, in Figure 2, anX1 error on
the control qubit can propagate through the CNOT gates
to become X1X2X3. Assuming a depolarizing channel
with an error probability of p per input qubit, the effec-
tive error probability in the first iteration is 2p

3 due to Y
and Z errors. In the second iteration, the effective error
probability is also 2p

3 due to undetected X errors on the
output and control qubits. Thus, if the input meets the
fidelity threshold initially, it will meet the threshold in
subsequent iterations. This result applies to other n-to-
(n− 1) recurrence protocols as well.

We evaluate the performance of recurrence entangle-
ment distillation protocols based on input-output fidelity
and yield. Fidelity is defined as

F =
〈
Φ+
∣∣ρ∣∣Φ+

〉
,

where ρ is a mixed Bell state. Yield is defined as

Y =
k · PS

n
,

where k and n are the logical and physical qubits in an
[[n, k, d]] code, and PS is the success probability. Our
simulation uses the QuantumClifford.jl package, which
utilizes the stabilizer tableaux formalism [93]. To evalu-
ate the performance of protocols capable of correcting all
types of quantum errors, we simulate two sequential it-
erations per protocol, corresponding to an n2-to-(n− 1)

2

entanglement distillation that corrects both bit-flip and
phase flip errors. We use Werner states as inputs, which
are mixtures of a standard Bell state and a completely
mixed state, as described by Equation 2. We assume
error-free local quantum operations and classical com-
munication, a valid assumption given that channel noise
significantly exceeds local noise.

Figure 3(a) shows the fidelity of distilled Bell states
as a function of input fidelity for several distillation pro-
tocols. Circles mark the threshold where output fidelity
exceeds input fidelity, which increases with the code rate.
Figure 3(b) shows yield as a function of input fidelity.
The 4-to-1 protocol has the highest yield for input fideli-
ties from 0.5 to 0.887. Beyond this range, higher-rate
protocols are superior. Near ideal fidelity, yield is de-
termined by code rate. Achieving optimal yield at high
fidelity requires large n in n2-to-(n− 1)

2 protocols. In
Appendix B, we demonstrate that adaptively increasing
the block size n based on input fidelity allows for a con-
stant overall yield rate for any desired fidelity.
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FIG. 2. Circuit on Alice’s (or Bob’s) side for processing Bell states through two iterations in the 3-to-2 recurrence entanglement
distillation. Dashed boxes indicate the first and second iterations.

We can further extend the recurrence protocol by
adapting classical codes. In the first iteration, the code
corrects bit-flip errors. Hadamard gates then convert the
remaining phase-flip errors to bit-flip errors, which the
code can correct in the second iteration. Since these are
classical codes, the commutation condition for each sta-
bilizer is automatically met. Moreover, each iteration
is flexible in its choice of classical code, allowing cus-
tomization based on the strength of phase-flip and bit-
flip errors. For example, if phase-flip errors dominate,
we can apply a high-rate classical code in the first (bit-
flip) iteration and a lower-rate code with greater error-
correcting capability in the second (phase-flip) iteration.
This recurrence entanglement distillation supports the
direct implementation of well-developed classical error-
correcting codes, such as polar codes, LDPC codes, and
turbo codes. Although the generalized Shor construc-
tion can build quantum codes [92], this method sacrifices
certain desired properties. For example, combining two
classical LDPC codes via Shor’s construction does not
produce a quantum LDPC code [94]. In contrast, our
approach can apply classical LDPC codes in separate it-
erations, preserving the sparsity of parity-check matri-
ces. While quantum LDPC codes can be constructed
using the hypergraph product [94], the recurrence proto-
col simplifies the direct use of classical LDPC codes and
can readily extend to other types of codes. In practice,
noisy Bell states can be non-Werner [95–97]. Combining
the stabilizer formalism with fidelity and yield aids in
designing effective distillation protocols.

IV. DECODING THE STABILIZER CODE BY
SINGLE-QUBIT MEASUREMENTS

We propose a decoder that transforms logical Bell
states into physical Bell states using single-qubit mea-
surements and conditional Pauli operators. Since stabi-
lizer and single-qubit measurements can be performed in

parallel, this significantly reduces the circuit depth for
implementing stabilizer entanglement distillation proto-
cols. We first outline how logical Bell states result from
stabilizer measurements on physical Bell states, then ex-
plain decoding these logical states into physical states
via single-qubit measurements. While presented here
for entanglement distillation, this measurement-based de-
coder applies to any scenario involving decoding stabi-
lizer codes, including quantum computing.

To develop the decoder, we represent the stabilizer
code using a binary check matrix (X|Z) [91], where
X and Z are submatrices of dimensions (n− k) × n.
The rows represent generators g1 through gn−k, and the
columns of each submatrix correspond to the n physi-
cal qubits. In the ith row, represented by vector (xi|zi),
xij = 1 indicates a Pauli-X operator on the jth qubit,
zij = 1 indicates a Pauli-Z operator, and 1 on both in-
dicates a Pauli-Y operator. Two generators gi and gj
commute if and only if their symplectic inner product is
zero, given by

xi · zT
j + zi · xT

j = 0 .

Operations on the check matrix, such as swapping rows
(relabeling generators), adding two rows (multiplying
generators), and simultaneously swapping columns in
both submatrices (relabeling qubits), preserve the prop-
erties of the stabilizer code.

There is a standard form for the stabilizer code [82, 91],
derived by applying Gaussian elimination to the binary
check matrix and represented by

r {
n− k − r {

[ r︷︸︸︷
I

n−k−r︷︸︸︷
A1

k︷︸︸︷
A2

r︷︸︸︷
B

n−k−r︷︸︸︷
0

k︷︸︸︷
C

0 0 0 D I E

]
.

(3)
This matrix has a block structure with dimensions indi-
cated. I is the identity matrix, and other submatrices are
determined by Gaussian elimination. Using the rows of
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(a)

(b)

FIG. 3. Input-output fidelity and yield of recurrence entan-
glement distillation protocols. Each undergoes two iterations,
forming an n2-to-(n− 1)2 protocol. Circles mark the thresh-
old where output fidelity exceeds input fidelity.

this check matrix as new generators, we define k logical
operators. The logical X operators are given by

LX =
[
0 ET I CT 0 0

]
, (4)

where each submatrix has k rows, with column sizes
(r, n− k − r, k) for both left and right blocks. The ith
row, Li

X , represents the X operator for the ith logical
qubit. The logical Z operators are given by

LZ =
[
0 0 0 AT

2 0 I
]
, (5)

which follows the same dimensions. The ith row, L(i)
Z ,

represents the Z operator for the ith logical qubit. These
logical operators commute with the stabilizer generators.
X

(i)
L and Z

(i)
L anti-commute, while X(i)

L and Z
(j)
L com-

mute for i ̸= j.
The n Bell states naturally form logical Bell states in

the standard form. The standard Bell state, as given in
Equation 1, is stabilized by operators X ⊗X and Z ⊗Z,
which act in the Hilbert space HA ⊗HB . The stabilizers

for n Bell states can be enumerated as

X1 ⊗X1 , Z1 ⊗ Z1

X2 ⊗X2 , Z2 ⊗ Z2

...
...

Xn ⊗Xn , Zn ⊗ Zn

, (6)

where subscripts denote qubit indices. Aligning these
Bell stabilizers with the generators of a quantum code, we
have the following observations based on Equations 3, 4,
and 5:

1. The tensor product of code generators gi ⊗ gi com-
mutes with all Bell stabilizers Xj⊗Xj and Zj⊗Zj .

2. Among the first r generators, gi is independent of
Xj for j < i. For the remaining n−k−r generators,
gi is independent of all Xs and independent of Zj

for r < j < i.

3. The logical operator X(i)
L is independent of Xj for

j ≤ r and n− k < j < n− k + i, and independent
of Zj for r < j ≤ n. The logical operator Z(i)

L is
independent of all Xs and independent of Zj for
r < j < n− k + i.

4. Among the first r generators, gi anti-commutes
with Zi but commutes with all other Zj for j ≤ r
and j ̸= i. For the remaining n− k − r generators,
gi anti-commutes with Xi but commutes with all
other Xj for r < j ≤ n− k and j ̸= i.

Observation 1 allows for an equivalent representation of
the n Bell states using the code generators. Multiply-
ing the Bell stabilizers in Equation 6 according to the
standard form yields

g1 ⊗ g1 , Z1 ⊗ Z1

...
...

gr ⊗ gr , Zr ⊗ Zr

Xr+1 ⊗Xr+1 , gr+1 ⊗ gr+1

...
...

Xn−k ⊗Xn−k , gn−k ⊗ gn−k

X
(1)
L ⊗X

(1)
L , Z

(1)
L ⊗ Z

(1)
L

...
...

X
(k)
L ⊗X

(k)
L , Z

(k)
L ⊗ Z

(k)
L

. (7)

Observation 2 enables the transformation of Xi⊗Xi into
gi⊗gi for i = 1 to r, and Zi⊗Zi into gi⊗gi for i = r+1
to n − k. Observation 3 enables the transformation of
Xi⊗Xi and Zi⊗Zi into logical operators for i = n−k+1
to n. During the derivation, we assume each gi contains
an even number of Y s, resulting in a bilateral stabilizer of
gi⊗gi. For cases with an odd number of Y s, the bilateral
stabilizer is given by −gi ⊗ gi.

Alice’s stabilizer measurements update the Bell stabi-
lizers in Equation 7. For example, gi ⊗ I anti-commutes
with Zi⊗Zi for i = 1 to r and with Xi⊗Xi for i = r+1
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to n−k according to Observation 4. Measuring gi⊗I re-
places the anti-commutative operator with (−1)

si gi ⊗ I,
where si is the measured parity. The n−k stabilizer mea-
surements result in new stabilizers, symmetrically repre-
sented by

(−1)
s1 gi ⊗ I , (−1)

s1 I ⊗ g1
...

...
(−1)

sn−k gn−k ⊗ I , (−1)
sn−k I ⊗ gn−k

X1
L ⊗X1

L , Z1
L ⊗ Z1

L
...

...
Xk

L ⊗Xk
L , Zk

L ⊗ Zk
L

. (8)

Here, (−1)
si I ⊗ gi results from multiplying gi ⊗ gi with

(−1)
si gi ⊗ I, representing the generator on Bob’s side.

The standard form in Equation 8 facilitates efficient
decoding of logical Bell states into physical Bell states via
single-qubit measurements. According to Equations 4
and 5, the logical operators commute with Zj for j = 1
to r and with Xj for j = r + 1 to n − k. To decode the
logical states, Alice and Bob separately measure the first
r qubits in the Z basis and the next n − k − r qubits
in the X basis. For example, as per Equation 4, the ith
logical operator Xi

L is given by the vector[
0 e′i δi c′i 0 0

]
,

where c′i, e′i, and δi are the ith rows of submatrices CT ,

ET and I, respectively. Thus, Xi
L can be expressed as

Xi
L =

⊗
j:CT

ij=1

Zj

⊗
j:ET

ij=1

Xr+j

⊗
Xn−k+i , (9)

which is the tensor product of Zj for j with CT
ij = 1

among the first r qubits, Xj with ET
ij = 1 among the next

n−k−r qubits, and the X operator on the (n− k + i)th
qubit. We denote Alice’s single-qubit measurement out-
comes as decoding parities, represented by the binary
vector a = a1a2 . . . an−k. Replacing the Pauli operators
in Equation 9 with these measurements gives

X
(i)
L = (−1)

α(i)
x Xn−k+i , (10)

where α(i)
x =

∑
j:CT

ij=1 aj +
∑

j:ET
ij=1 ar+j . Similarly, the

logical operator Z(i)
L is given by

Z
(i)
L = (−1)

α(i)
z Zn−k+i , (11)

where α(i)
z =

∑
j:(AT

2 )ij=1 aj and
(
AT

2

)
ij

is the element of

submatrix AT
2 from Equation 5. The single-qubit mea-

surements anti-commute with the code generators, up-
dating the stabilizers in Equation 8 to

(−1)
a1 Z1 ⊗ I , (−1)

b1 I ⊗ Zr

...
...

(−1)
ar Zr ⊗ I , (−1)

br I ⊗ Zr

(−1)
ar+1 Xr+1 ⊗ I , (−1)

br+1 I ⊗Xr+1

...
...

(−1)
an−k Xn−k ⊗ I , (−1)

bn−k I ⊗Xn−k

(−1)
α(1)

x +β(1)
x Xn−k+1 ⊗Xn−k+1 , (−1)

α(1)
z +β(1)

z Zn−k+1 ⊗ Zn−k+1

...
...

(−1)
α(k)

x +β(k)
x Xn ⊗Xn , (−1)

α(k)
z +β(k)

z Zn ⊗ Zn

.

Here, b = b1b2 . . . bn−k denotes Bob’s decoding parities
from single-qubit measurements, which are independent
of Alice’s. β(i)

x and β(i)
z are computed in the same way as

α
(i)
x and α(i)

z , respectively. After the measurements, Alice
and Bob discard their first n−k qubits and retain the last
k qubits, forming the decoded physical Bell states. They
adjust the phases α(i)

x , α(i)
z , β(i)

x , and β(i)
z to 0 by applying

Pauli operators to the corresponding qubits, yielding k
standard Bell states.

By integrating stabilizer measurements, error correc-

tion, and our decoder (see Appendix C for more details),
we outline the measurement-based stabilizer entangle-
ment distillation protocol as follows:

1. Alice measures stabilizer parities sA =
s1s2 . . . sn−k and decoding parties a =
a1a2 . . . an−k. She communicates sA to Bob,
discards her first n − k qubits, and corrects the
phase of her last k qubits based on a.

2. Bob measures stabilizer parities sB = s′1s
′
2 . . . s

′
n−k

and decoding parities b = b1b2 . . . bn−k. After re-
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FIG. 4. Circuit implementing stabilizer measurements, de-
coding, and error correction using the [[5, 1, 3]] code. R repre-
sents a recovery Pauli operator conditioned on the measure-
ment outcomes.

ceiving sA, he calculates the error syndrome c =
sA ⊕ sB , discards his first n − k qubits, and cor-
rects the phase of his last k qubits based on b and
c.

This results in k distilled Bell states shared between Al-
ice and Bob. Note that two-way entanglement distilla-
tion, where the stabilizer code operates in error detection
mode, can be implemented similarly using this protocol.
For example, consider the [[5, 1, 3]] code. Its stabilizer
generators are

Y Z I Z Y
I X Z Z X
Z Z X I X
Z I Z Y Y

.

We can integrate stabilizer measurements and single-
qubit measurement decoding into a circuit as shown in
Figure 4. This circuit yields both stabilizer parities and
decoding parities needed for error correction.

We compare the circuit complexity of entangle-
ment distillation between a unitary protocol and our
measurement-based protocol. For general stabilizer
codes, both circuits scale similarly in the number of
two-qubit gates, with an upper bound of O (n (n− k)).
This is expected, as the unitary decoding circuit de-
rives from the standard form of stabilizer generators [82].
However, stabilizer measurements offer more flexibil-
ity. Well-designed codes, such as quantum convolu-
tional codes (Section V) and quantum low-density parity-
check (QLDPC) codes (Section VI), support parallel
stabilizer measurements, reducing circuit depth. The
measurement-based decoder applies broadly, including
in quantum computing, as it relies only on the stan-
dard form of logical operators. The logical X and Z
operators share commutative Pauli operators on the first
n−k qubits, allowing single-qubit measurements on these
qubits to preserve logical information. Replacing these

Pauli operators with their measurement outcomes de-
codes the logical operators into single-qubit operators.
However, the phase to be corrected is calculated by the
sum of single-qubit measurement outcomes, where er-
rors can accumulate. In Section VI, we propose a fault-
tolerant protocol for encoding and decoding arbitrary
quantum states by combining entanglement distillation,
constant-depth decoders, and quantum teleportation.

V. APPLICATION II: ENTANGLEMENT
DISTILLATION USING QUANTUM

CONVOLUTIONAL CODES

Convolutional entanglement distillation implements
the stabilizer entanglement distillation protocol using
convolutional codes [58, 85, 86, 98–100]. These codes
are widely used in modern communication systems due to
their robust error correction capabilities [101] and are key
components of Turbo codes [102–104]. They allow flexi-
ble adjustments in code rates to balance error correction
strength and efficiency, making them ideal for address-
ing fluctuating noise. Quantum convolutional codes in-
herit these benefits and show potential for entanglement
distillation. However, they are prone to catastrophic er-
ror propagation [87, 88, 102], where a single error can
spread indefinitely. To avoid this, encoding circuits are
selectively constructed using a restricted set of quan-
tum gates, often requiring many gates and deeper cir-
cuits. This increased demand for resources can challenge
current quantum technologies. Our measurement-based
approach provides an efficient non-catastrophic scheme,
making convolutional entanglement distillation viable.

Quantum convolutional codes use a stream of sta-
bilizers, represented by the extended check matrix
G (D) = (X (D)|Z (D)) [87], where X (D) and Z (D)
are (n− k) × n submatrices. The entries of the subma-
trices are polynomials in the delay operator D, given by

Xij (D) =
m∑

k=0

xij (k)D
k ,

Zij (D) =
m∑

k=0

zij (k)D
k ,

where xij (k) and zij (k) are binary numbers, and m
is the constraint length. The rows of G (D) represent
n − k independent, shift-invariant stabilizer generators,
and the columns of each submatrix correspond to the
n physical qubits in a frame. The tuple (xij (k)|zij (k))
denotes the Pauli operator on the jth qubit of the ith
generator in the kth frame. The operator Dk delays the
Pauli operators by k frames or kn qubits. For example,
the row

[
1 1 +D D 1 +D2

]
represents the generator

X1Y2Z3X4Z6 and its shifts.
Like block codes, operations on the check matrix corre-

spond to generator operations, such as swapping rows (re-
labeling generators), adding two rows (multiplying gen-
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erators), and swapping columns in both submatrices (re-
labeling qubits). Additionally, multiplying row gi (D) by
Dk delays the generator by k frames. Both gi (D) and
Dkgi (D) independently act as generators of the convo-
lutional code. The inverse operator D−k moves the gen-
erator forward by k frames. We limit the forward move-
ment to be finite but allow unrestricted delays. Com-
bining shift and addition operations produces convoluted
generators, represented by f (D) gi (D), where f (D) =∑∞

i=d fiD
i is a Laurent series, fi is a binary number,

and d is a lower bounded integer. Note that f (D) can
be expressed as p(D)

q(D) , where p (D) and q (D) are polyno-
mials. For example, 1

1+D = 1+D+D2+ · · · is a Laurent
series. Similarly, f

(
D−1

)
also forms a Laurent series.

Two shift-invariant generators gi(D) = (xi (D)|zi (D))
and gj(D) = (xj (D)|zj (D)) commute if gi(D) also com-
mutes with the generator Dlgj(D). Setting their sym-
plectic inner product to zero for all l, the condition for
two shift-invariant generators to commute is given by [87]

xi (D) zT
j

(
D−1

)
+ zi (D)xT

j

(
D−1

)
= 0 . (12)

Deriving the standard form of the check matrix G (D)
for convolutional codes involves Gaussian elimination and
column permutations, similar to block codes. The stan-
dard form is given by[

I A1 (D) A2 (D) B (D) 0 C (D)
0 0 0 D (D) I E (D)

]
,

where the submatrices conform to the dimensions spec-
ified in Equation 3. Here, I is the identity matrix, and
other submatrices contain Laurent series in D. Logical
operators are defined as

LX (D) =
[
0 ET

(
D−1

)
I CT

(
D−1

)
0 0

]
,

LZ (D) =
[
0 0 0 AT

2

(
D−1

)
0 I

]
. (13)

We can verify the commutativity of these operators with
the stabilizers using Equation 12. For convenience, we
denote A′ (D) = AT

2

(
D−1

)
, C ′ (D) = CT

(
D−1

)
, and

E′ (D) = ET
(
D−1

)
. Generally, the entries of these sub-

matrices are Laurent series, but we assume them to be
finite Laurent polynomials. This assumption holds when
Gaussian elimination is performed with row operations
using finite Laurent polynomial multipliers (see the ex-
ample in Appendix E). For cases involving entries as Lau-
rent series, pre-shared Bell states can facilitate decoding
with asymptotically zero overhead. These Bell states can
be obtained from previous entanglement distillation. For
more details, see Appendix D.

Given that the submatrices A′ (D), C ′ (D), and E′ (D)
consist of polynomial entries, the measurement-based de-
coding mirrors the block code method in Section IV. For
each frame of n qubits, we measure the first r qubits in
the Z basis and the next n− k− r qubits in the X basis.
The remaining k qubits form the decoded qubits, with
their phases corrected based on measurement outcomes,
as given by Equations 10 and 11. Note that since the en-
tries are polynomials, the phases are also influenced by
measurements in nearby frames.

We use a rate- 13 quantum convolutional code from [86]
to demonstrate the measurement-based protocol. This
code encodes one logical qubit into three physical qubits
per frame. The stabilizer generators are

X1X2X3 Z4Y5X6

Z1Z2Z3 Y4X5Z6

X4X5X6 Z7Y8X9

Z4Z5Z6 Y7X8Z9

. . .

,

where the qubits are rearranged from the original con-
figuration by permuting (1, 2, 3) → (2, 3, 1). The check
matrix is given by

G (D) =

[
1 1 +D 1 +D D D 0
D D 0 1 +D 1 1 +D

]
.

Gaussian elimination (see Appendix E for detailed steps)
yields the standard form

[
1 0 D−1 + 1 D−2 D−2 +D−1 + 1 D−2 + 1
0 1 D−1 + 1 D−2 +D−1 + 1 D−2 + 1 D−2 +D−1

]
. (14)

According to Equation 13, the logical operators are de-
fined as

XL =
[
0 0 1 1 +D2 D +D2 0

]
,

ZL =
[
0 0 0 1 +D 1 +D 1

]
. (15)

The logical qubit depends on qubits in the current and
next two frames. Decoding involves measuring first two
qubits in the Z basis and identifying the third qubit as
the decoded physical qubit in each frame. In the kth

frame, the post-measurement logical operators are given
by

XL (k) = (−1)
x(k)

X3k ,

ZL (k) = (−1)
z(k)

Z3k ,

with phases determined by

x (k) = z3k−2 + z3k+2 + z3k+4 + z3k+5 ,

z (k) = z3k−2 + z3k−1 + z3k+1 + z3k+2 ,
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FIG. 5. Alice’s circuit for the entanglement distillation protocol using the rate- 1
3

quantum convolutional code. Each input qubit
forms a Bell state with a corresponding qubit on Bob’s side. Measured qubits are discarded, and unmeasured output qubits
form the distilled Bell states at one-third the input rate. The dashed box indicates two stabilizer measurements per frame.
R represents a recovery Pauli operator conditioned on single-qubit measurement outcomes. Bob’s circuit mirrors Alice’s, with
recovery gates adjusted based on his measurement outcomes and stabilizer parities from both sides.

where zi is the measurement outcome of the ith qubit.
These phases are then corrected using Pauli operators.

Figure 5 shows Alice’s circuit for the entanglement
distillation protocol using the rate- 13 quantum convolu-
tional code. Each input qubit forms a Bell state with
a corresponding qubit on Bob’s side. Unmeasured out-
put qubits result in distilled Bell states at one-third the
input rate. The setup includes stabilizer measurements,
measurement-based decoding, and conditional phase re-
covery gates. Alice sends her stabilizer measurement
outcomes to Bob. Bob’s circuit mirrors Alice’s but in-
cludes additional error correction. His phase recovery
gates are adjusted based on his single-qubit measurement
outcomes and the error syndrome [101, 105], which is de-
rived by comparing stabilizer parities from both Alice
and Bob.

We compare the circuit complexity of our method with
the unitary method described from [87] for the rate- 13
convolutional code. Our circuit on one side has a depth
of 4, using 12 two-qubit gates per frame, with the longest
two-qubit gate spanning 2 frames. The unitary decoding
circuit, constrained by the non-catastrophic requirement,
has a depth of 11 and 14 two-qubit gates per frame, with
the longest gate spanning 3 frames. Thus, our method
is simpler. While this code is a relatively simple con-
volutional code, more complex convolutional codes with
higher encoding rates and larger code distances may be
preferable for improved performance, where our method
could offer even greater advantages. However, comparing
general convolutional codes remains an open question,
requiring theoretical complexity analysis of their unitary
encoding circuits.

VI. APPLICATION III: EFFICIENT
FAULT-TOLERANT ENCODING AND

DECODING FOR QLDPC CODES

We propose an efficient fault-tolerant protocol for en-
coding and decoding quantum states in quantum com-
puting, using stabilizer entanglement distillation and
quantum teleportation. This approach is particularly ef-
fective for quantum low-density parity-check (QLDPC)
codes [78], which feature a constant number of qubits
per stabilizer generator and a constant number of gen-
erators acting on each qubit. This enables parallel sta-
bilizer measurements, significantly reducing the circuit
depth compared to unitary encoding methods. In this
section, we first present a constant-depth encoder and
decoder for surface codes [79–81], a well-studied class of
QLDPC codes, and then demonstrate its fault tolerance.
Finally, we discuss the potential and challenges of ex-
tending these encoder and decoder protocols to broader
QLDPC codes with higher encoding rates.

The efficient encoder and decoder protocol for surface
codes involves generating a resource physical-logical Bell
state, represented by

|ΦR⟩ =
1√
2
(|0⟩A |0L⟩B + |1⟩A |1L⟩B) ,

where 0 and 1 represent physical states, and 0L and 1L
represent logical states. Even though the physical qubits
may reside in the same quantum computer, they are di-
vided into two groups labeled Alice and Bob for clarity.
The system uses a surface code on an L × L square lat-
tice, with Alice’s and Bob’s qubits placed on separate



12

!!

""

!#

"#

(a)

!" " " " "

#
#
#
#
#

(b)

FIG. 6. Planar code on a 6 × 6 lattice where each edge rep-
resents a physical qubit. (a) Vertex and boundary vertex
stabilizers consist of X operators. Plaquette and boundary
plaquette stabilizers consist of Z operators. Dashed and solid
lines indicate logical operators XL and ZL, respectively. (b)
Decoding involves single-qubit measurements targeting logi-
cal XL and ZL operators, excluding the intersecting qubit,
which is identified as the decoded qubit.

but interconnected layers. The protocol is outlined as
follows:

1. All qubits start in the state |0⟩⊗n. Alice and Bob
apply transversal gates to generate n Bell states
between their qubits.

2. Alice and Bob measure the code stabilizers on their
qubits, projecting the physical Bell states into a
logical Bell state.

3. Alice communicates her stabilizer parities to Bob,
who performs error correction based on the error
syndrome.

4. Alice uses single-qubit measurement decoding on
her logical qubit, yielding the resource physical-
logical Bell state |ΦR⟩.

5. To encode a state, Alice teleports the physical state
to Bob by Bell measurement and classical commu-
nication. To decode a state, Bob teleports the log-
ical state back to Alice through logical Bell mea-
surement and classical communication.

Logical operators, such as Pauli, Hadamard, phase, and
CNOT gates, can be implemented transversally [106–
108]. Therefore, the entire protocol can operate within
constant depth, improving on the well-known lower
bound of Ω (log (n)) for surface code unitary encoding
circuits without classical communication [83, 84], where
n is the number of physical qubits. For example, Fig-
ure 6 illustrates stabilizers, logical operators, and de-
coding measurements for a planar code with parameters[[
2L2 − 2L+ 1, 1, L

]]
. Note that decoding measurements

are not unique. Single-qubit measurements can target
any logicalXL and ZL operators, except for the intersect-
ing qubit, which is identified as the decoded qubit [109].

In the presence of noise, all operations except
measurement-based decoding can be applied fault-
tolerantly, as in conventional quantum computing. The
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FIG. 7. Measurement error threshold as a function of lattice
length L for the efficient fault-tolerant encoding and decoding
of a L× L planar code.

decoding challenge arises from accumulated errors in the
phase corrections, which are based on the sum of single-
qubit measurement outcomes. We model these errors us-
ing a noisy channel on the resource states, with an error
probability of

PL =
3

4
− 1

2
(1− 2p)

L−1 − 1

4
(1− 2p)

2(L−1)
,

where p is the error probability of a single-qubit mea-
surement, and L is the lattice length (see Appendix F
for a detailed derivation). We can suppress the error by
distilling the resource state using a constant-depth cir-
cuit. To achieve fault tolerance, the resource state needs
only a fidelity of 1− pth, where pth is the error threshold
for fault-tolerant quantum computing with the surface
code. This fidelity is attainable with a constant number
of distillations, maintaining constant circuit depth. How-
ever, successful distillation necessitates PL < 0.5, defin-
ing a threshold for measurement error. Figure 7 shows
this threshold as a function of lattice size, following the
power law p ∝ L−1 at large L. For an L = 23 lattice,
encoding a logical qubit with 1013 physical qubits, the
measurement error threshold is 0.0196, which is feasible
with current technology.

Noisy stabilizer measurements present another chal-
lenge, potentially introducing errors during correction
and leading to logical errors. This issue can be addressed
by multiple measurement rounds [110, 111] or by prepar-
ing high-quality entangled states [106, 112, 113]. Our
protocol uses a constant number of stabilizer measure-
ment rounds, with remaining errors corrected through
entanglement distillation of the resource state |ΦR⟩. Typ-
ically, Θ(d) rounds of stabilizer measurements are re-
quired to suppress logical errors to pΩ(d) [106, 108], where
d is the surface code distance and p is the measurement
error probability. However, for the encoder, this require-
ment can be relaxed, as logical errors on Bob’s part of
|ΦR⟩ can be transferred to Alice’s qubit via the Bell-
state identity (see Appendix A). These errors can then
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be interpreted as errors on the input states, primarily
determined by very few physical gates. Consequently,
the fidelity of the resource state only needs to meet the
fault-tolerance threshold, supporting a constant number
of rounds for stabilizer measurements and distillation.

Quantum LDPC codes with constant encoding rates
offer advantages over 2D surface codes [78, 114]. Our
protocol is compatible with these codes at each step,
though some challenges remain. One issue is handling
non-local stabilizer measurements, as qubits within the
same stabilizer may be spatially separated. According
to the BPT bound [115], the best QLDPC codes with
local stabilizers in D dimensions are constrained by pa-
rameters

[[
n, k = n1−

2
D , d = n1−

1
D

]]
[116, 117]. Surface

codes are optimal for D = 2 but achieve only a rate of
1/n, while asymptotically constant-rate QLDPC codes
become feasible in D ≥ 3 [118–120]. Multi-layer architec-
tures enable higher-dimensional connections [121, 122],
and reconfigurable neutral atoms support long-range con-
nectivity [90]. However, implementing non-local stabi-
lizer measurements with these atoms may require atom
rearrangement, potentially increasing gate times. The
single-shot property, which enables quantum error cor-
rection with a single round of syndrome measurements, is
often needed for the efficient implementation of QLDPC
codes. Certain QLDPC codes, including specific topolog-
ical codes [110, 123], quantum expander codes [90, 124],
and quantum Tanner codes [125], are currently known
to exhibit this property. Another challenge is the limi-
tation of transversal gates, as each block encodes multi-
ple qubits, complicating selective logical operations. Re-
search on logical gates for QLDPC codes is ongoing. For
example, code deformation [126] provides a universal gate
set through state injection within a single block. Another
approach uses state teleportation into ancilla codes, en-
abling logical operations by separating computation and
memory [90, 127–130]. However, these logical gates may
increase circuit depth. The challenges discussed above
are general to quantum computing with QLDPC codes
rather than specific to our protocol [131]. Our protocol
remains more efficient than unitary encoding, benefiting
from QLDPC code sparsity and classical communication.
For general stabilizer codes, both unitary encoding and
our measurement-based encoding have a circuit depth of
O(n) and a gate count of O(n2) [82].

We discuss the advancements of our results with pre-
vious literature. Our encoding and decoding scheme
operates on quantum platforms that support multi-
dimensional qubit interactions, recently enabled by re-
configurable atom arrays [89, 90]. Łodyga et al. [132] pro-
posed an encoding and decoding scheme for surface codes
using stabilizer and single-qubit measurements, asserting
that logical operators must intersect at a single physical
qubit or at adjacent qubits. However, our findings indi-
cate this condition is not necessary, as our scheme nat-
urally arises from the standard form of stabilizer codes.
Unlike their approach, which relies on a specific 3D lat-
tice, our scheme uses entanglement distillation for fault

tolerance and is adaptable to various geometries, enhanc-
ing its applicability. Bravyi et al. [106] proposed a scheme
for preparing logical state 0L and logical Bell state of sur-
face codes using measurements within a constant circuit
depth. Their scheme requires a prepared 3D Raussendorf
cluster state [133] as well. Notably, when preparing the
logical 0L state via stabilizer measurements, starting with
all physical qubits in the state |0⟩⊗n results in a maxi-
mally mixed logical state. However, by initializing qubits
according to the standard form, with some in |0⟩ and
others in |+⟩, the logical 0L state can be prepared with
a single round of stabilizer measurements.

VII. CONCLUSION

In this paper, we first review stabilizer entanglement
distillation and apply it to the well-known 2-to-1 distil-
lation protocols of Bennett et al. and Deutsch et al.,
mapping these protocols onto a [2, 1, 2] classical error de-
tection code. We show that bilateral Hadamard gates on
the distillation output can alternate Pauli-X and Pauli-Z
errors while preserving the standard Bell states. There-
fore, two sequential applications of these protocols can
effectively address any single-qubit errors. Building on
this insight, we extend the 2-to-1 distillation protocol to
higher-rate n-to-(n− 1) protocols, which achieve higher
yield for high-fidelity input Bell states. We also present a
method to adapt any classical error-correcting code to an
entanglement distillation protocol using the two-iteration
process. The first iteration corrects bit-flip errors, then
Hadamard gates convert phase-flip errors to bit-flip er-
rors, which the second iteration corrects. The errors in
both iterations are classical, so the error-correcting ca-
pability matches that of the classical code used.

Furthermore, we propose a constant-depth decoder for
stabilizer codes and apply it to a stabilizer entangle-
ment distillation protocol based on quantum convolu-
tional codes, achieving reduced circuit complexity com-
pared to unitary decoding. We also develop an efficient
fault-tolerant encoding and decoding protocol for surface
codes, discussing its potential and challenges in extend-
ing to broader QLDPC codes with higher encoding rates.
This protocol combines techniques from stabilizer entan-
glement distillation, constant-depth decoders, and quan-
tum teleportation. These operations are feasible with
state-of-the-art reconfigurable atom arrays, and the en-
coder surpasses the conventional depth limits for surface
codes, which are lower bounded by Ω (log (n)).

Our work directly applies to entanglement routing
protocols in quantum networks [134, 135]. The n-to-
(n− 1) protocol with small values of n could poten-
tially be demonstrated experimentally in the near future.
Measurement-based decoding reduces circuit depth and
minimizes latency, thereby enhancing the performance
of quantum repeaters. Overall, our work integrates sta-
bilizer formalism, measurement-based quantum comput-
ing, and entanglement distillation, advancing both quan-
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tum communication and computing, and contributing to
the development of practical and efficient quantum infor-
mation processing techniques.
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Appendix A: Bell-State Matrix Identity

We show the Bell-state matrix identity for n standard
Bell states. The standard Bell state is defined by∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩) .

Thus, we express the tensor product of n Bell states as

∣∣Φ+
n

〉
=

1√
2n

2n−1∑
x=0

|x⟩A |x⟩B .

Applying an operator M =
∑

pqMpq |p⟩ ⟨q| to Alice’s
qubits yields

(M ⊗ I)
∣∣Φ+

n

〉
=

1√
2n

∑
x

∑
p

Mxp |p⟩A |x⟩B

=
1√
2n

∑
p

|p⟩A

(∑
x

(
MT

)
px

|x⟩B

)

=
1√
2n

∑
p

|p⟩AM
T |p⟩B ,

where we use Mxp =
(
MT

)
px

. Therefore, we have the
Bell-state matrix identity

(M ⊗ I)
∣∣Φ+

n

〉
=
(
I ⊗MT

) ∣∣Φ+
n

〉
.

For Pauli operators, XT = X, ZT = Z, and Y T = −Y .
We demonstrate the equivalence of the bilateral and

single-lateral depolarizing channels on the standard Bell
state using the Bell-state identity. Starting with the
bilateral depolarizing channel, we assume a channel on
both side that applies a Pauli operator from {X,Y, Z},
each with probability pi = p/3, or an identity operator
with probability p0 = 1−p. The Kraus operators for this
channel are given by {√pipjEj ⊗Ei}, where E0 = I and
Ei ∈ {X,Y, Z} for i = 1, 2, 3. Applying these operators

to the Bell state |Ψ+⟩, we use the Bell matrix identity
to express them as {√pipjI ⊗EiE

T
j }. For simplicity, we

rewrite the equivalent Kraus operators as {√pipjEiEj},
omitting the operator on Alice’s side and applying only
to Bob’s qubit. Any minus sign from Pauli-Y operator
is absorbed when applied as a superoperator. The Kraus
operators fall into three cases:

1. i = j = 0: The Kraus operator is {(1− p) I}.

2. Either i or j = 0: The Kraus operators are
{
√

2
3p (1− p)Ek} for k = 1, 2, 3.

3. Both i and j ̸= 0: The Kraus operators are
{
√
3
3 pI,

√
2
3 pEk} for k = 1, 2, 3.

Summing these terms yields a single-lateral depolarizing
channel with Kraus operators {

√
1− p′I,

√
p′

3 Ei}, where
p′ = 2p − 4

3p
2. Thus, the bilateral depolarizing channel

is equivalent to a single-lateral depolarizing channel with
an adjusted error probability. The single-lateral model,
simplifying simulations, was used. Figure 3, as a function
of input and output fidelity, automatically captures the
adjusted error probability, remaining unaffected by the
choice of channel model.

Appendix B: Adaptive Distillation with Constant
Yield Rate

In this appendix, we demonstrate that iterative ap-
plications of the

[[
n2, (n− 1)

2
, 2
]]

distillation protocol,
with adaptive block size n based on input fidelity, achieve
a constant overall yield rate. We compute the yield
rate R for bit-flip error correction. For both bit-flip and
phase-flip errors, the yield rate is given by R2. The Bell
states are characterized by their infidelity (error rate)
p = 1 − F , where F denotes the fidelity. In the fol-
lowing calculations, we consider the regime where the
infidelity is asymptotically small (p → 0), allowing us
to retain only the first-order term in p while neglecting
higher-order contributions. Since the protocol improves
fidelity at each round, this assumption holds throughout.
Achieving any finite infidelity requires only a finite num-
ber of distillation rounds, ensuring constant overhead for
the yield rate.

Applying the [n, n− 1, 2] protocol to n Bell states with
initial infidelity pin, the output infidelity is given by
pout = n(n−1)

2 p2in and the distillation success probabil-
ity is PS = 1 − npin, both calculated using a first-order
approximation. The protocol requires pout < pin, which
imposes the condition n ≤

√
2p

−1/2
in on the block size. To

satisfy this condition, we set n =
√
2p−α

in , where α is a
constant parameter chosen within the range 0 ≤ α ≤ 1

2 .
In a sequence of distillations, each iteration k is char-

acterized by input infidelity pk−1 and output infidelity
pk, with the output of iteration k serving as the input
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for iteration k + 1. The initial infidelity is p0, used as
input to the first iteration. The recursive parameters for
iteration k are as follows:

nk =
√
2p−α

k−1 ,

rk =
nk − 1

nk
,

pk =
1

2
n2kp

2
k−1 ,

Pk = 1− nkpk−1 ,

where nk, rk, pk, and Pk represent the block size, encod-
ing rate, output infidelity, and success probability, re-
spectively. Solving these recursive equations yields:

nk =
√
2p

−α(2−2α)k−1

0 ,

rk = 1−
√
2

2
p
α(2−2α)k−1

0 ,

pk = p
(2−2α)k

0 ,

Pk = 1−
√
2p

1
2 (2−2α)k

0 .

The overall yield rate is given by R =
∏

k rkPk. Taking
its logarithm and applying the approximation ln(1+x) ≈
x for small x, we derive the first-order result

− lnR =
∑
k

(
√
2p

1
2 (2−2α)k

0 +

√
2

2
p
α(2−2α)k−1

0

)
.

For 0 < α < 1
2 at large k, (2− 2α)k > k. We can bound

the summation as

c =
∑
k

(
√
2p

1
2 (2−2α)k

0 +

√
2

2
p
α(2−2α)k−1

0

)

<
∑
k

(
√
2p

1
2k
0 +

√
2

2
p
α(k−1)
0

)

=

√
2p0

1−√
p0

+

√
2

2(1− pα0 )
.

Thus, the overall yield rate of the adaptive entanglement
distillation is lower bounded by R > e−c, ensuring a con-
stant yield rate. Further optimization of the protocol is
possible; for example, selecting block sizes as nk ∼ k2

also satisfies the threshold requirements and maintains a
constant lower bound for the overall yield rate.

Appendix C: Integrating Stabilizer Measurements,
Error Correction, and Decoding

The entanglement distillation protocol can be en-
hanced by integrating stabilizer measurements, error cor-
rection, and decoding. We consider Bob’s side, with Alice
following a similar strategy.

First, we explain the integration of error correction
and decoding. Bob computes the error syndrome c =

sA⊕sB , where sA are the stabilizer parities received from
Alice, and sB are from Bob’s stabilizer measurements.
He determines the recovery operation as

F (c) =
n⊗

j=1

F
(c)
j ,

with F
(c)
j as the Pauli operator on the jth qubit. For

measurement-based decoding, Bob measures his first r
qubits in the Z basis and the next n−k− r qubits in the
X basis, resulting in decoding parities b = b1b2 . . . bn−k.
He then applies Pauli operators to the last k qubits to
adjust their phases, given by

D(b) =
r⊗

j=1

P
(bj)
Z

n−k⊗
j=r+1

P
(bj)
X

n⊗
j=n−k+1

D
(b)
j ,

where P (bj)
X and P

(bj)
Z are projectors with measurement

outcome bj , and D(b)
j is a Pauli operator on the jth qubit

to adjust its phase. Conventionally, Bob performs error
correction and decoding sequentially as D(b)◦F (c). How-
ever, he can reorder these operations as

r⊗
j=1

F
(c)
j P

(b′j)
Z

n−k⊗
j=r+1

F
(c)
j P

(b′j)
X

n⊗
j=n−k+1

D
(b)
j F

(c)
j .

If the projector commutes with F (c)
j , then b′j = bj ; other-

wise, b′j = bj ⊕ 1. Once b′ is computed, Bob discards the
first n − k qubits. Thus, error correction and decoding
can be integrated into a single operation

R(b,c) =

r⊗
j=1

P
(bj)
Z

n−k⊗
j=r+1

P
(bj)
X

n⊗
j=n−k+1

R
(b′,c)
j ,

where R(
b′,c)

j = D
(b′)
j F

(c)
j represents a Pauli operator on

the jth qubit.
We can integrate stabilizer measurements with single-

qubit measurement decoding. Consider a stabilizer code
in its standard form. The ith generator, for i < r, con-
sists of a single bit flip on the ith qubit. After measuring
gi, the following stabilizer and single-qubit measurements
use only Pauli-Z operators on the ith qubit. This allows
us to replace Zi in these stabilizers with its measurement
outcome, reducing the number of two-qubit gates. Refer
to Figure 4 for an example of entanglement distillation
using the [[5, 1, 3]] code.

Appendix D: Decoding Quantum Convolutional
Codes with Laurent Series

Given the standard form of logical operators for quan-
tum convolutional codes in Equation 13, the matrix
entries are generally Laurent series. A Laurent series
f
(
D−1

)
can be expressed as p(D)

q(D) , where p (D) and q (D)
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are polynomials. Thus, the logical operators can be rep-
resented as

LX (D) =
1

Q (D)

[
0 E′ (D) Q (D) C ′ (D) 0 0

]
,

LZ (D) =
1

Q (D)

[
0 0 0 A′ (D) 0 Q (D)

]
,

where Q (D) is the least common multiple of the denom-
inators of all entries, also a polynomial. For convenience,
we define

Q (D) = Q (D) I ,

A′ (D) = Q (D)AT
2

(
D−1

)
,

C ′ (D) = Q (D)CT
(
D−1

)
,

E′ (D) = Q (D)ET
(
D−1

)
.

Multiplying the matrix of the logical operators by Q (D),
we obtain a new set of logical operators

L′
X (D) =

[
0 E′ (D) Q (D) C ′ (D) 0 0

]
,

L′
Z (D) =

[
0 0 0 A′ (D) 0 Q (D)

]
,

where all entries are finite Laurent polynomials.
Single-qubit measurement decoding applies to these

logical operators, decoupling different logical qubits while
qubits within the same logical qubit remain coupled.
Their relationship is determined by the polynomial
Q (D). Given Q (D) =

∑m
l=0 qlD

l, the ith logical op-
erators can be represented by

X
(i)
L =

m⊗
l:ql=1

X(l+1)n−k+i ,

Z
(i)
L =

m⊗
l:ql=1

Z(l+1)n−k+i .

These operators, associated with a catastrophic encoding
circuit [99], require further decoding. For example, with

Q (D) = 1 + D + D2, the logical qubits are encoded by
the following circuit

Here, a single-qubit error operator X can propagate in-
definitely through the CNOT gates.

To avoid catastrophic error propagation in decoding
logical qubits, we use an entanglement-assisted method.
For simplicity, we illustrate this with Q (D) = 1+D+D2,
which can be extended to any polynomials. We relabel
the relevant qubits and define the logical operators as

XL (k) = XkXk+1Xk+2 ,

ZL (k) = ZkZk+1Zk+2 ,

where k indexes the frames.
Considering logical Bell states shared between Alice

and Bob, their stabilizers are

X1X2X3 ⊗X1X2X3 , Z1Z2Z3 ⊗ Z1Z2Z3

X2X3X4 ⊗X2X3X4 , Z2Z3Z4 ⊗ Z2Z3Z4

X3X4X5 ⊗X3X4X5 , Z3Z4Z5 ⊗ Z3Z4Z5

...
...

.

The parities of the operators X1⊗X1, Z1⊗Z1, X2⊗X2,
and Z2⊗Z2 are unknown. Assuming Alice and Bob have
two pre-shared standard Bell states, indexed as −1 and
0, the total stabilizers are

X−1 ⊗X−1 , Z−1 ⊗ Z−1

X0 ⊗X0 , Z0 ⊗ Z0

X−1X1X0X2X3 ⊗X−1X1X0X2X3 , Z−1Z1Z0Z2Z3 ⊗ Z−1Z1Z0Z2Z3

X0X2X3X4 ⊗X0X2X3X4 , Z0Z2Z3Z4 ⊗ Z0Z2Z3Z4

X3X4X5 ⊗X3X4X5 , Z3Z4Z5 ⊗ Z3Z4Z5

...
...

.

Alice and Bob perform local parity measurements of X−1X1, Z−1Z1, X0X2, and Z0Z2, resulting in the post-
measurement stabilizers
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(−1)
a(1)
x +a(2)

x +b(1)x +b(2)x X3 ⊗X3 , (−1)
a(1)
z +a(2)

z +b(1)z +b(2)z Z3 ⊗ Z3

(−1)
a(2)
x +b(2)x X3X4 ⊗X3X4 , (−1)

a(2)
z +b(2)z Z3Z4 ⊗ Z3Z4

X3X4X5 ⊗X3X4X5 , Z3Z4Z5 ⊗ Z3Z4Z5

...
...

.

Here, a(1)x and b
(1)
x are the measurement outcomes of

X−1X1 by Alice and Bob, respectively. a(2)x and b(2)x are
the outcomes of X0X2, a

(1)
z and b(1)z are the outcomes of

Z−1Z1, and a
(2)
z and b

(2)
z are the outcomes of Z0Z2. By

recursively calculating the parities for subsequent physi-
cal Bell states, these logical Bell states are decoded.

Errors in parity measurements can propagate indefi-
nitely. For example, if an error occurs on a1x, it intro-
duces an incorrect recovery phase for X3 ⊗ X3, which
then propagates through subsequent operators such as
X4⊗X4 and X5⊗X5, leading to catastrophic errors. To
address this, we segment the sequence into blocks of N
frames. Measuring parities independently for each block
confines error propagation to a length of N . For a gen-
eral polynomial Q (D) =

∑m
l=0 qlD

l, the entanglement-
assisted approach consumes m pre-shared Bell states and

the first m Bell states per block, yielding N −m decoded
physical Bell states. The overhead, defined as the ratio
of consumed to output Bell states, is 2m

N−m , approaching
zero as N increases.

Appendix E: Deriving the Standard Form for the
Rate-1/3 Convolutional Code

The check matrix of the rate-1/3 quantum convolu-
tional code from [86] is given by[

1 +D 1 1 +D 0 D D
0 D D 1 +D 1 +D 1

]
.

We derive its standard form through the following steps:

1. Permute Columns (1, 2, 3) −→ (2, 1, 3) :[
1 1 +D 1 +D D 0 D
D 0 D 1 +D 1 +D 1

]
.

2. Row 2 −→ D−1 × Row 2 + Row 1 :[
1 1 +D 1 +D D 0 D
0 1 +D D D−1 + 1 +D D−1 + 1 D−1 +D

]
.

3. Permute Columns (1, 2, 3) −→ (1, 3, 2) :[
1 1 +D 1 +D D D 0
0 D 1 +D D−1 + 1 +D D−1 +D D−1 + 1

]
.

4. Row 2 −→ D−1 × Row 2 :[
1 1 +D 1 +D D D 0
0 1 D−1 + 1 D−2 +D−1 + 1 D−2 + 1 D−2 +D−1

]
.

5. Row 1 −→ Row 1 + (1 + D)× Row 2 :[
1 0 D−1 + 1 D−2 D−2 +D−1 + 1 D−2 + 1
0 1 D−1 + 1 D−2 +D−1 + 1 D−2 + 1 D−2 +D−1

]
.

This process results in the standard form as specified
in Equation 14. Note that during Gaussian elimination,

multiplication factors representing finite shifts are pre-
ferred. Using a Laurent series as a multiplication factor,
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such as 1
1+D = 1 + D + D2 + · · · , can result in a stan-

dard form consisting of Laurent series entries, increasing
decoding complexity. Obtaining a standard form solely
through row Gaussian elimination is challenging, as it
requires column entries to be coprime; otherwise, only
the greatest common divisor of the polynomials is ob-
tained. Further elimination would require column oper-
ations involving two-qubit gates, which we aim to avoid
in measurement-based decoding. We leave it as an open
problem to develop a general algorithm for achieving a
standard form with finite entries.

Appendix F: Modeling Errors in
Measurement-Based Decoding

In measurement-based decoding, Pauli operators in
logical operators are replaced by their measurement out-
comes

X
(i)
L = (−1)

α(i)
x Xn−k+i ,

Z
(i)
L = (−1)

α(i)
z Zn−k+i ,

where α
(i)
x =

∑
j:CT

ij=1 aj +
∑

j:ET
ij=1 ar+j and α

(i)
z =∑

j:(AT
2 )ij=1 aj , as defined in Equations 10 and 11. Noise

from single-qubit measurements leads to phase errors.

α
(i)
x errors yield a Z error, α(i)

z errors yield an X error,
and errors in both α

(i)
x and α

(i)
z yield a Y error on the

decoded qubit.
We can derive the error probability for a qubit decoded

from a planar code on an L × L lattice using induction.
To decode the logical XL operator, L−1 qubits are mea-
sured in the X basis along a horizontal line. The error
probability of the parity sum for k qubits is given by

qk = (1− p) · qk−1 + p · (1− qk−1) ,

where p is the error probability of a single-qubit measure-
ment, and qk−1 is the error probability of the parity sum
for k − 1 qubits. We obtain

qk =
1

2
− 1

2
(1− 2p)k .

The effective error arises when parities on logical XL or
ZL operators are incorrect, with a probability of 2qk−q2k.
Let k = L − 1 for decoding a planar code on an L × L
lattice, the error probability is given by

PL =
3

4
− 1

2
(1− 2p)L−1 − 1

4
(1− 2p)2(L−1) .
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