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Learning for Efficient Encrypted Policy Synthesis
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Abstract—We propose an efficient encrypted policy
synthesis to develop privacy-preserving model-based
reinforcement learning. We first demonstrate that the
relative-entropy-regularized reinforcement learning frame-
work offers a computationally convenient linear and
“min-free” structure for value iteration, enabling a direct
and efficient integration of fully homomorphic encryption
with bootstrapping into policy synthesis. Convergence and
error bounds are analyzed as encrypted policy synthesis
propagates errors under the presence of encryption-
induced errors including quantization and bootstrapping.
Theoretical analysis is validated by numerical simulations.
Results demonstrate the effectiveness of the RERL frame-
work in integrating FHE for encrypted policy synthesis.

Index Terms—Encrypted control,
encryption, reinforcement learning.

fully homomorphic

[. INTRODUCTION

EINFORCEMENT Learning (RL) is a useful and widely
recognized framework for solving an optimal control
problem [I, Ch. 1]. RL algorithm is model-free when an
explicit environment model—such as system dynamics or
reward structures—is not used, and model-based when the
model is used (whether the model is known a priori, or learned
by interacting with the environment). Sample efficiency is one
of the strengths of model-based RL, making it successful for
high-risk applications with expensive real-world data such as
robotics and finance. Despite its sample efficiency, building a
high-fidelity, and often large-scale model can be a challenge
as developing it requires extensive domain expertise and
significant investments; yet, for the same reasons, owning such
models can be an advantage against competitors.
After the model is learned satisfactorily, these expensive
models may need high-performance computing resources for
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subsequent computations, such as planning. While outsourcing
these tasks to existing third-party cloud servers can be an
attractive solution for maintenance and scalability reasons, it
unveils additional data privacy and security issues, which are
frequently overlooked yet critical. For example, there exists a
potential eavesdropping threat on the data being transmitted.
In addition, the cloud could try to steal critical information
from the hard-earned proprietary model.

Encrypted control [2], [3] is a framework that aims to
solve the aforementioned security issues of networked control
systems. It integrates various cryptographic computation meth-
ods, such as homomorphic encryption (HE) or random affine
transformations, into control and decision-making processes.
HE is an encryption scheme that allows direct computation
of addition and/or multiplication over encrypted data with-
out decryption. Building upon its initial concept [4], the
development of encrypted control has mainly focused on
implementing a pre-synthesized controller over encrypted data,
for example, infinite-time-horizon dynamic controllers [5], [6],
[7], [8], model predictive control [9], [10], and cooperative
control [11].

Compared to control implementation, control synthesis has
been less explored in the literature on encrypted control;
nevertheless, control synthesis often involves highly private
models and specific constraints, as discussed earlier for model-
based RL. In this context, there have been recent efforts to
implement encrypted control for private control design beyond
implementation, such as solving a quadratic programming [12]
and tuning PID parameters [13]. However, in a more focused
view on integrating RL framework, we only find encrypted
model-free RL [14], [15] closely related to this letter; [16]
also ties RL with encrypted control but discusses encrypted
implementation of the pre-trained explicit NMPC control law
via deep RL algorithm.

One of the main difficulties observed in integrating RL
with encrypted control has been the restricted arithmetic
flexibility of HE because operations commonly needed in RL,
such as min, max, or comparison, cannot be approximated
easily using only homomorphic additions and multiplications.
Worse yet, HE schemes generally have a limit on the number
of multiplications allowed (see Section II-A). Due to these
factors, [14] and [15] required intermediate re-encryption of
encrypted values, which necessitates constant communication
efforts from the client.

This letter aims to serve as the foundation for privacy-
preserving model-based RL. We consider the client-server
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architecture given in [14], [15], where a resource-limited client
wishes to outsource the offline policy synthesis task to a cloud
server in a privacy-preserving manner, as the client’s learned
model is assumed to be privacy-sensitive. The client has a
relatively accommodating timeframe for the completion of the
synthesis, enjoying more arithmetic flexibility (by the use of
bootstrapping) compared to many online implementation sce-
narios with strict real-time requirements, where bootstrapping
must be underutilized.

This letter makes four main contributions:

« We demonstrate that a certain class of RL, which we call
relative-entropy-regularized RL (RERL), offers a linear
and min/max-free structure that is particularly effective
in integrating HE.

o We propose Encrypted RERL that efficiently synthesizes
the control policy over the encrypted model. The efficient
algorithm allows the direct use of bootstrapping and
does not require communication-heavy intermediate re-
encryptions.

« We analyze the convergence error bounds for the
Encrypted RERL under the encryption-induced errors.

o We validate the feasibility of the Encrypted RERL con-
vergence error analysis using numerical experiments.
We distribute an open-source library that includes the
experiment in this letter, as well as base homomorphic
operations and high-level subroutines such as linear
algebra operations and bootstrapping used to experiment,
enabling reproducibility and further extensions.

Notation: The set of integers, positive integers, and complex

numbers are denoted by Z, N, C, respectively. For a (matrix)
vector of scalars, || - || denotes the (induced) infinity norm. The
Hadamard product (element-wise multiplication) is written by
©®. For x € C" and r > 0, we denote by RotVec, (x) the vector
obtained by shifting the element of x upward (or left) by r
positions. For example, RotVec,([12345]T) =[34512]".

[I. PRELIMINARIES
A. Fully Homomorphic Encryption - CKKS Cryptosystem

Generally speaking, an HE scheme is a fully homomorphic
encryption scheme (FHE) if it supports both homomorphic
addition and multiplication for an arbitrary number of times.
Typically, a FHE scheme accompanies bootstrapping [17],
a special method to enable an arbitrarily many number of
homomorphic operations. Throughout this letter, we use the
CKKS (Cheon-Kim-Kim-Song) cryptosystem[18], which is a
FHE with its bootstrapping [19]. We briefly review its basic
operations, security, and effects of errors in the next.

A message (to be encrypted) lives in CN/2, the N/2
dimensional (i.e., N/2 slots) vector space of complex floating-
point numbers. The message is first encoded into a plaintext;
quantization error is introduced during this encoding process
as the message turns into integers by multiplying a scaling
factor A > 0 and rounding. The encryption—or the encoding—
and—encryption' to be precise—algorithm Enc : CN/?2 —
C maps the input message to an encrypted message (the
ciphertext) that lives in C, the ciphertext space.

The following homomorphic operations can be used in the
CKKS cryptosystem to conduct arithmetic on ciphertexts:

e ®:CxC— C (addition)
e ®:CxC—C (element-wise multiplication)
e RotCt, : C — C (RotVec,)

1Encoding typically takes place before encryption. However, for simplicity,
we make this implicit as a part of the encryption algorithm Enc. Similarly,
decoding takes place after Dec but is made implicit.

and can be understood better by examining their effects on
decryption. The decryption algorithm Dec : ¢ — CN/2
approximately recovers the message encrypted by Enc. For
example, @ evaluates the addition of two messages x1,xy €
CN/2 as Dec(Enc(x;) ® Enc(xz)) ~ x| + x2. The decryption
is approximate[18] for several reasons: each ciphertext has its
quantization error from encoding, and is injected with small
errors during Enc, as the security of CKKS relies on the
hardness of the Ring Learning With Errors problem [20].

Notably, although necessary for quantization and security,
these errors can grow under homomorphic operations. If
these errors grow beyond the limit, the decryption can fail.
This necessitates the bootstrapping operation, which, though
expensive, resets the accumulated errors in an old ciphertext:

Boot : C — C (bootstrapping)

The accumulation of errors under each homomorphic oper-
ation discussed earlier can be upper bounded as in Lemma 1;
they are presented with Big-O notations for simplicity, but
concrete bounds can be found in [18] and [19].

Lemma 1: For any x € CN2 ¢, ¢ € C, and r > 0, there
exists BENC, pMult gRotCt gBoot = ) ()//A) such that

|IDec(Enc(x)) — x|| < BE"®, (1a)
|Dec(c & ¢’) — (Dec(e) + Dec(c))| = 0, (1b)
IDec(Enc(x) ® ¢) — x ® Dec(c)| < BMUIL, (1c)

|Dec(RotCt,(c)) — RotVec, (Dec(e)) | < BRI, (1d)
IDec(Boot(c)) — Dec(c)| < BB, (le)

Here, ¢ and ¢’ in Lemma 1 are not necessarily the fresh
outputs from Enc; they could be the output ciphertexts on
which a composition of many homomorphic operations is
applied. Lemma 1 states that the error growth attributed to
each low-level homomorphic operation is bounded by some
constants. They will help break down the total error analysis
(Section III-C) for the high-level encrypted algorithm, which
consists of multiple low-level homomorphic operations.

The parameters N and A affect the security of the CKKS
cryptosystem; roughly, increasing N or decreasing A enhances
the security level. In practice, these parameters must be cho-
sen carefully under the security and precision requirements;
however, choosing practical security parameters is beyond the
scope of this letter; we refer to [18, Sec. 5].

B. Model-Based Reinforcement Learning

RL [1] can be formalized by the Markov Decision Processes
(MDP) framework. A discrete-time MDP with time-invariant
dynamics and a cost function is formalized by the tuple
(X,U, P, C), where X is the finite state space, U is the finite
action space, P(-|x,u) : X — [0, 1] is the state transition
probability distribution governing the system dynamics when
input u is applied at state x, and C : X x U — R is the cost
incurred during state transition.

A policy mw = (w9, 71, M2, ...) is a sequence of probability
distributions over actions, where m;(us|xo:, uo:s—1) gives the
probability of choosing an action u; € U conditioned on the
history (xo.;, 4o:r—1). For a time-invariant and discounted MDP,
an optimal policy of the form 7 (u|x;), that is time-invariant
and Markov, always exists [21]. Without loss of optimality, we
assume the optimal policy to be deterministic in the sequel,
i.e., uy = w(xy) for all x, € X.
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The expected cumulative cost of a policy @ can be quanti-
fied by the value function V7:& — R:

o

Vi(x) =E" [C(XO, uo) + Y v'Clxe, up) | xo = X}, 2
=1

where C(xg, ug) is the immediate cost for the initial state xg =

x, and y € [0, 1) is the discount applied to the future cost

starting from the next state x; € X. For deterministic policies,

the value function (2) admits a recursive form:

Vi(x)=Clx,u) +y Z P(x'|x, u) VT (X').
x'eX

3)

The optimal policy 7* minimizes (3) for all x € X, and we
denote the corresponding optimal value function by V* This
leads to the celebrated Bellman’s principle of optimality:

Vi(x) = Iuléizrjl[c(x’ u +vy Z P(x/|x, u)V*(x/):|,

x'eX

and 7* can be synthesized as the minimizer

T*(x) = argmin|:C(x, u) +y Z P(x/|x, u)V*(x/)].

ueld YeX

Policy synthesis aims to learn the optimal policy 7 *.
Value iteration (V1) is an iterative algorithm that solves for
the optimal value V* given an arbitrary initial value Vj(x):

Vir1(x) = min|:C(x, u +y Z P(x’|x, u)Vk(x/):|’
uett x'eX
and the convergence of VI is guaranteed after a finite number
of iterations when the state and action spaces are finite.

The client can consider outsourcing the above VI to a
resourceful cloud server. However, the client risks unwanted
disclosure of its private model. While HE can provide privacy
protection, it introduces a technical challenge for the client:
homomorphically evaluating the min function using only
additions and a limited number of multiplications.

Though approximating min is possible, accurate approxima-
tions require a direct evaluation of high-degree polynomials,
or a separate iterative algorithm [22], consuming many
multiplications for each iteration of VI, making this approach
inefficient. This motivates us to propose an alternative
framework in the sequel, which leads to an efficient algo-
rithm entirely without the need for evaluating the min
itself.

[1l. MAIN RESULTS: ENCRYPTED POLICY SYNTHESIS

This section first presents the relative-entropy-regularized
RL (RERL) framework, closely related to linearly-solvable
MDP [23], and derives a linear and min-free VI. This HE-
friendly VI resolves the limitation noted towards the end of
Section II-B, and leads to an efficient encrypted algorithm,
which we call Encrypted RERL in Section III-B.

A. RERL Framework and HE-Friendly Value Iteration

Suppose we are given a nominal probability distribution
b(u|x), which can be understood as the default policy of an agent.
In RERL, the optimal policy is not necessarily deterministic—
therefore, we optimize over the space of time-invariant, Markov,

and randomized policies 7 («|x) in the sequel. The stage-wise
cost to be minimized by the policy 7 (u|x) is

7 (u|x)
b(ulx)’

where we assume C(x, u) > 0 for each state-action pair (x, u)
and A > 0 is a regularization constant. When taking the
expectation of Cyyg(x, u) with respect to actions sampled from
the policy w—in the similar context of the expected cumulative
cost (2), the second term becomes Y, 7 (u|x)log 71;((:\5)) ,
which corresponds to the definition of RE of m(-|x) from
b(-|x). Thus, the second term can be thought of as a penalty
for deviations from the default policy b(u|x). We also impose
that 7 (u|x) = O for all u € U such that b(ulx) = 0.
To exploit the computational advantages of RERL, we make
the following assumptions:
(A-1) The state transition P(x;4+1l|xs, #;) is deterministic. In
other words, there exists a deterministic function F such
that Xt+1 = F(.Xt, Mt).

Cayg(x, u) = C(x,u) + rlog (E))

(A-2) The cost to be minimized is the following expected
undiscounted cumulative cost:
o0
VT () = B [Z Caug (it 1) | x0 = x} NS
=0
To ensure that (5) is bounded, we additionally assume
(A-3) There exists at least one absorbing state x,ps € X such

that x,ps is reachable from any starting state xp € X.
Moreover, C(x,u) > 0 for all x € X'\ {xaps} and u € U
while C(xaps, ) = 0 and 77 (u|xaps) = b(u|xaps) for all
u € U and the RERL value function V7 (xaps) = O for
all .
While these assumptions can seem relatively restrictive,
many real-world problems can be formulated within this
framework [23]. More importantly, these assumptions allow
computational advantages as we will show soon.
Lemma 2: Under assumptions (A-2) and (A-3), the RERL
optimal value function V*(x) is bounded and satisfies

Vi) = —Mog(Z buly) exp(—p(x, u)/>»)> ©)
ueld

where p(x, u) = C(x,u) +)_ ey P(X'x, u)V*(x'). Moreover,
the RERL optimal policy 7* takes the form of a Boltzmann
distribution:

b(ulx) exp(—p(x, u) /1)
Y weu b 1x) exp(—p(x, ') /1)

Proof: By Bellman’s optimality principle, V*(x) satisfies

V*x) = rrjl_[in Z 7 (u|x) (Caug(x, u) + Z P(x/|x, u)V* (x/)>

)

¥ (ulx) =

ueld xeX
. 7 (]x)
= rr}}nl; 7 (u|x) (,o(x, u) + A log o ) (®)

The minimizer of the convex optimization (8) is given by (7)
— see [24, Proposition 1.4.2] for an elementary proof. The
result (6) is obtained by substituting (7) into (8). [ |
The following theorem emphasizes the linearly solvable
nature of RERL.
Theorem 1: Suppose assumptions (A-1), (A-2), and (A-3)
hold. Let V*(x) be the RERL optimal value function, and
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define the desirability function z*(x) via the exponential
transformation z*(x) := exp(—V*(x)/A). Then, z*(x) satisfies
the linear equation

@) =Y bulx) exp(—Clx, ) /A" (F(x,u)).  (9)
ueld
The optimal policy can be expressed in terms of z*(x) as
7 (ulx) = b(ulx) exp(—=C(x, u) /1) z* (F(x, u)). (10)

Z*(x)

Proof: Applying the exponential transformation to (6), we

obtain
ol 2

exp(—V*(x)/A)

= Zb(ulx) exp( e w + Z

ueld xeX
Clx,u) V()
< —
Z Z x '\x, u b(ulx) exp( n 5
ueld XxeX

where the last step follows from Jensen’s inequality. Under
the assumption (A-1) of deterministic transition, the inequality
holds with equality, yielding

exp(—V*(x) /1)

= 3 bt exp(— G2 Y enp( - ER2),

ueld

This proves (9). The result (10) follows from (7). [ |

Importantly, Theorem 1 leads to an efficient VI algorithm
that is linear and free of min. To see this, let us first assume,
without loss of generality, a single absorbing state xapg, and
enumerate the state space as X = {q1, q2, . . ., gs, Xabs}, Where
S is the cardinality of the non-absorbing states. Then, we
construct a vector that consists of the z* values of non-
absorbing states as follows:

-
Z* = [2"(q) ¥ (q2) -+ Z*(gs)] . (11)

As each element of (11) satisfies (9), we have the following:
Z8=AZ" +w, (12)

where A € R5*S and w € RS are defined element-wise by

aj =y blulg)exp(=Clgi,w/»),  (13)
w:F(gi,u)=q;
wi= Y blulg)exp(—=Clgi,w/h).  (14)

u:F(qi,u)=Xaps

Note that we excluded the absorbing state since z*(xaps) = 1
by (A-3), and iteration is unnecessary.

Lemma 3: The spectral radius r(A) of the square matrix A
defined by (13) satisfies r(4) < 1.

Proof: We have a;; > 0 for all i,j, and thus, the square
matrix A is non-negative. Then, by [25, Th. 8.1.22]:

min Z ajj < r(A) < max Z ajj.
1 n 1 R
J J

In fact, each row sum of A satisfies

Zal, Yo Y blulg)exp(—Clgi, w/h),

J wF(gi,u)=q;

b(ulgi) exp(=C(gi, u)/1) < 1,

- ¥

w:F(qi,u) € X \{xaps}

where the inequality holds because of Assumption (A-2) and
(A-3). Therefore, r(A) < 1 follows. [ |

Lemma 3 implies that A is contractive and that we have a
linear and stable recursion:

Ziy1 =AZ +w, (15)

that converges to Z* for any Zy > 0.

B. Encrypted RERL Policy Synthesis

We are now ready to present Encrypted RERL. To proceed,
let us first transform the linear system (15) into the encryption-
friendly version using addition, Hadamard product ©, and
vector-rotation RotVec,, as follows:

S—1
gri = »_ RotVec,(4; © Z),
r=0
N

Ziy1 =w+ Zei O &k,is
i=1

(16)

where AIT € C'*S denotes the i-th row vector of A and ¢; € C5
is the vector with 1 in the i-th component and 0’s elsewhere for
i=1,...,8. It can be seen that g ; is a vector with elements
holding copies of the inner product AiTZk.

Using operations from Section II-A, we can now
encrypt (16), which yields the primary equation® of Encrypted
RERL.:

S—1
gi = Y _ RotCt.(Enc(4) ® Zy),
r=0

S
Zii = Boot(Enc(w) @ Z Enc(e;) ® gk,i>, a7n
i=1

where the initial value is encrypted as Zy = Enc(Zp) and
the summations are taken with respect to the homomorphic
addition &.

These two operations of (17) can be executed by the server,
who uses the encryptions of Zp, w, and A; and e; for i =

1,..., S (the encrypted model) received from the agent as in
Fig. 1. After a pre-determined number of iterations, i.e., k =
1,...,T € N, the server returns Zr to the client, who decrypts

to obtain ZT = Dec(Zr), and the client can reconstruct the
policy using (10).

C. Convergence and Error Analysis

In what follows, we analyze the performance of the
proposed Encrypted RERL (17). To this end, we define

Zx = Dec(Zy), Vk >0,

and show that Z; converges to a vicinity of the optimal Z*
value. We derive an explicit upper bound function on the
convergence error | Zx — Z*||. The following lemma first states
that Z; follows a dynamics of the form (15) with a bounded
perturbation.

2If we have S < N, /2 in (15), we can always zero-pad the matrices and
vectors until $ = N/2 to make encryptions in (17) well-defined.
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§ Model RERL Policy
2 2 T
& (Encrypted) S (Encrypted)

Enc Dec
€
2 | Model Policy
O

Fig. 1. Outsourced Encrypted RERL: an agent encrypts the model
and outsources to the server offline. The server runs (17) over FHE and
returns the result, which the agent can decrypt to construct the policy.

Lemma 4: The dynamics of Z is given by

Ziyi =AZk+wH e, Zo=Zo+ <o,

where ||€g]| < Bo and ||€x|| < B for all k > 0O for some positive
constants By € O(N/A) and B € O(SN/A).

Proof: By definition, Zo = Dec(Enc(Zy)), and therefore,
Bo = BE"® € O(N/A) by (1a). In order to derive the upper
bound B, observe that foreach k>0 and i=1,...,S,

S—1
Dec(gr.i) = »  Dec(RotCt.(Enc(4) ® Zy)). (. (1b))
r=0
- Z RotVec(Dec(Enc(A )@ Zy)) + XU (- (1d))

_Z RotVec,(A @Zk+eM“">+ER°t ¢ (lc))

= Z RotVec Ai © Zi) + Z RotVec,(eM”") + ekt

=8k —ef,
for some eMUlt ROt ¢ CS bounded by [|eMUt) < BMUlt and
leRety| < BROtCt for r=0,...,S — 1, which leads to

”6}31-” < S. (BMU” + BROtCt)-

Then, for each k > 0,

s
Zry1 = Dec <Boot(Enc(w) ) Z Enc(e;) ® gk,i>>,

i=1

S
Dec(Enc(w) 3} Z Enc(e;) ® gk,[) + 5]]?001 . (o (le)
i=1
N
w+ Y Dec(Enc(e) ® gk.i) + €™ +€f™, (. (1a), (1b))
i=1

S
Wt e (gk,+ek,) + et e 4 efoot

¢ (le))

Mult + e,]::nc + 6/l(3oot ,

~ N
=AZi+w+) GO€ +e

=

for some EMUlt kE”C, Boot ¢ 5 bounded by IIGI'C\AiUItII < BMult

fori=1,...,S, ||eE”°|| < BE™, and [|Po°| < BB Note
that the last equahty follows from (16) and the definition of
8k.i- As a result, we have

||6k|| <S. (2BMu|t + BROtCl) + BEnc + BBOOl c O(SN/A),

and this concludes the proof. |
It can be seen that the perturbations Sy and f in Lemma 4
originate from the growth of errors under homomorphic

operations. The following theorem states that the effect of
those perturbations on the convergence error || Z;—Z* || remains
bounded for each k£ > 0.

Theorem 2: There exist some constants ¢ > 1 and o €
(0, 1) such that

12c =271l < c( “(120 — Z1l + o) + %)

where By and 8 are as in Lemma 4.
Proof: 1If holds from Lemma 4 that

k-1 k-1
Zr = A*Zy + ZASW + ZASGk—l—s, Zy = Zo + €0,
s=0 s=0

where |legll < Bo and |lex—1—s]l < B. In addition, the
contractivity of A (Lemma 3) implies that there exist ¢ > 1
and « € (0, 1) such that ||A¥| < ca* for all k > 0. Therefore,
it follows that

k—1
1Zk = Z* 1l < 1411 Z0 — Z*11 + ) 1A | lex—1—]l,
5s=0
oo
< ca* (1120 — Z*|l + o) + Y _ ca’ B,
s=0
where Z* = AZ* +w = AkZ* + le:(% A’w. The claim holds
because Y oo ca =c/(1 —a). ]
Since « € (0, 1), it holds from Theorem 2 that
li 7 —Z* P
imsup [|Zy — Z7|| < ¢ ,
k—o00 l -«

where the right-hand-side can be made arbitrarily small by
increasing the scale factor A relative to the degree N. However,
as discussed in Section II-A, for security reasons, increasing
A in turn needs increasing N, which can slow down the
computation speed.

IV. NUMERICAL EXPERIMENT

We have performed a numerical experiment to: (i) test the
feasibility and correctness of the Encrypted RERL, and (ii) to
validate the analysis on encryption-induced errors, and the
computation time based on the CKKS parameters.

The experiment was set up for the Grid-World environment,
a simple toy example frequently employed for tabular RL for
finite state MDPs. Following parameters were held constant
after arbitrarily chosen: A = 10.0, C(x, u) = 0.5 (the stage
cost) for all non-absorbing states and action pairs, |[U| = 9
for horizontal, vertical, and diagonal directional movements as
well as do-nothing. The state space size |X| was constrained
by the parameter N as we wanted each Z to have a dimension
less than or equal to the slot size N/2. For example, for
N = 23, the slot size needs to be N/2 =4, and thus |X| =
4 (including one absorbing state). However, we expect that
parallelization can resolve this constraint. An agent’s default
policy was set as a uniform distribution over possible actions,
ie., b(ulx) = 1/|U]|.

For the experiment, we first computed the optimal value Z*
as a reference using (12). Upon observing that the unencrypted
VI of (15) converged rapidly (less than 7 = 30) under the
convergence tolerance le—10, we set the max iteration at
T = 50 to ensure a reasonable number of iterations for the
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Fig. 2. Encryption errors vs. scaling factors Ay 3 = (234,238, 242),

TABLE |
COMPUTATION TIME STATISTICS (MEAN, MIN, AND MAX) FOR EACH
ITERATION OF (17) AND ENCRYPTION ERROR AT THE FINAL ITERATION

Config ‘ Parameters ~ Results

IS N A |Mean (s) Min(s) Max (s) Err(T)
1 3 27 228| 8.05 5.79 8.35  6.0de—4
2 3 27 230 819 5.82 8.91 1.05e—4
3 7 27 228| 3231 19.25 37.44 1.32e—3
4 7 27 232| 3234 2049 37.83 3.54e—4
5 3 2% 229 4175 29.06 43.05 6.63e—4
6 3 210 230 9027 1561 2097 4.31e—3

encrypted counterpart. At each iteration, we measured the
computation time and the encryption error defined by

gie X\ e [1 26 — Z*1]
Egie 0\ s} [£7]

E
Err(k) ==

For reference, Config. 3 has the following sample values:

AR 1.006—2[2.4295 4.1524 3.5592 3.7762 ]
Zr = 1.00e—2[2.4290 4.1518 3.5588 3.7758 ]

Note that the ciphertext modulus was set at ¢ = 24 for each
Config. Results in Table I numerically support the theory as
(1) increasing N or S increases encrypted computation times;
compare Configs. 2-6, or 1-3, and (ii) increasing A generally
reduces encryption errors per step; compare Configs. 1-2, or
3—4. This supports Lemma 4 and Theorem 2, which suggested
error bounds in O(SN/A) per step, asymptotic convergence
to a vicinity of the optimal value, and finally, that the error
bound could be made smaller by increasing A, as visualized
in Fig. 2. The results also agree with intuition as both S and
N determine the size of the computation at each iteration, for
example, S directly affects the number of encrypted operations
(see Section III-B). Lastly, as N is a security parameter, it
suggests a trade-off between the increased security level vs.
computation time. The practical implication is that we should
increase A relative to S and N to achieve better precision. The
impact on practical security is beyond the scope of this letter
and left to future analysis.

Data obtained, and the complete implementation of the algo-
rithms described in this letter—including low-level encryption
utilities and high-level encrypted algorithms we used—are
available at https://github.com/jsuh9/HERL and results can be
reproduced.

V. CONCLUSION

We proposed Encrypted RERL—a homomorphically
encrypted policy synthesis algorithm—as a step towards
privacy-preserving model-based RL. We observed that the
RERL framework can eliminate the need for evaluating
the min operation, enabling an efficient encrypted RL over
FHE. The effects of encryption errors in the proposed

algorithm were theoretically analyzed. A software library has
been developed and publicly released to support numerical
experiments, and results validated the feasibility and analysis.

For future work, we aim to investigate the class of efficient
encrypted RL algorithms beyond tabular RL in the RERL
framework. Moreover, performance optimization in terms of
underlying encrypted operations can be pursued to reduce the
gap between unencrypted and encrypted computations.
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