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Abstract—The standard approach to universal fault-tolerant
quantum computing is to develop a general purpose quantum
error correction mechanism that can implement a universal set
of logical gates fault-tolerantly. However, we know that quantum
computers provide a significant quantum advantage only for spe-
cific quantum algorithms. Hence, a universal quantum computer
can likely gain from compiling such specific algorithms using
tailored quantum error correction schemes. In this work, we take
the first steps towards such algorithm-tailored quantum fault-
tolerance. We consider Trotter circuits in quantum simulation,
which is an important application of quantum computing. We
develop a solve-and-stitch algorithm to systematically synthesize
physical realizations of Clifford Trotter circuits on the well-
known [n,n — 2,2] error-detecting code family. Our analysis
shows that this family implements Trotter circuits with optimal
depth, thereby serving as an illuminating example of tailored
quantum error correction. We achieve fault-tolerance for these
circuits using flag gadgets, which add minimal overhead. The
solve-and-stitch algorithm has the potential to scale beyond this
specific example and hence provide a principled approach to
tailored fault-tolerance in quantum computing.

Index Terms—Quantum error correction, fault-tolerance, Trot-
ter circuits, quantum simulation, error-detecting code, Clifford
gates, flag gadgets, logical Clifford synthesis (LCS)

I. INTRODUCTION

Quantum error correction (QEC) is fundamental to the real-
ization of scalable fault-tolerant quantum computers. In recent
years, QEC has moved from theory to practice where there
have been several demonstrations of small error corrected sys-
tems [1]-[4]. The next frontier is the development of scalable
QEC schemes that enable significant quantum advantages for
certain problem domains, when compared to the best classical
supercomputers. The common approach is to pursue universal
fault-tolerant quantum computing where a general-purpose
QEC scheme is shown to fault-tolerantly realize a universal
set of logical operations on the encoded information [S]-[7].
Given such a scheme, one can execute any quantum algorithm
on the logical qubits by composing elements of this fault-
tolerant universal set. In parallel, quantum algorithms continue
to be developed for various problems. However, it is widely
expected that significant quantum advantage will be achieved
only for some targeted problems and applications [8]-[10].
Hence, even in a universal fault-tolerant quantum computer,
there are likely gains to be achieved by compiling such specific
algorithms using tailored QEC mechanisms. More specifically,
rather than composing individual gates from the universal set,
it could be much more efficient to directly design fault-tolerant
realizations of the logical circuit as a whole. Such exciting
opportunities form the primary motivation for this work.
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Fig. 1: Quantum Simulation Kernel (QSK) with 3 qubits

At the outset, it is unclear how one can pose the goal of
tailoring QEC schemes to logical algorithms as a systematic
mathematical problem. When can we say that a QEC scheme
is “well-matched” to execute an algorithm? In this paper, we
work with the objective of achieving a depth-optimal fault-
tolerant realization of a given logical circuit. Since quantum
simulation is a key motivation and application of quantum
computers, we consider the problem of executing Trotter
circuits fault-tolerantly with optimal depth [11], [12]. A Trotter
circuit is sometimes referred to as the quantum simulation
kernel (QSK) [13], so we will use these terminologies inter-
changeably. An example QSK circuit for 3 qubits is shown in
Fig. 1, where the Z-rotation angle 6 depends on the specifics
of the simulation algorithm. For this work we set § = 7
throughout, i.e., consider Clifford [14] QSK (C-QSK) circuits,
to take the first steps towards the above goal. We develop
a principled approach of deriving the physical realization of
the logical C-QSK circuit on the well-known error-detecting
family of [n,n — 2,2] codes [15], [16]. The methods have
the potential to generalize beyond this family and also be
amenable to optimization with respect to compilation con-
straints in the hardware.

We consider a bottom-up approach to synthesizing physical
realizations of logical C-QSK circuits on the error-detecting
code family. The key idea is to characterize the logical circuit
via input-output Pauli tracking constraints, solve for separate
small circuits to satisfy each of these constraints (the “solve”
step), and then suitably merge these circuits to simultaneously
satisfy all constraints (the “stitch” step), thereby realizing the
logical circuit. We refer to this as the solve-and-stitch method.
For this code family, we achieve fault-tolerance by adding flag
gadgets [16] to the two-qubit gates in the solutions and proving
that any single fault in the circuit remains detectable at the end.
Most excitingly, by leveraging some properties of the code
family, we prove that the depth of these fault-tolerant physical
circuits only grows linearly in the number of logical qubits k.
Since the logical QSK circuit itself has depth 2k 4+ 1 (from
2(k — 1) CNOTs, the Z-rotation, and two layers of single-



qubit gates), the depth of these physical circuits is optimal.
While £ = n—2 for this family, which means that the depth is
effectively linear in n, the proof involves calculations primarily
in terms of the variable k. Therefore, the proof strategy has
the potential to extend beyond this specific code family. Refer
to the full version of this work [17] for all technical details.

Overall, our results suggest that the error-detecting code
family is indeed well-matched to efficiently realize logical
C-QSK circuits fault-tolerantly. Obviously, the code doesn’t
allow one to correct errors, so we will consider extending the
solve-and-stitch approach to more non-trivial code families in
future work. In such cases, decoders can also be tailored to
these circuits since the error propagation has more structure.

The remainder of the paper is organized as follows. Sec-
tion II provides necessary background to understand the details
of this work. Section III explores transversal implementations
of the logical C-QSK circuits and shows that this appears to
be impossible using stabilizer codes. Section IV develops the
solve-and-stitch method to physically realize logical C-QSK
circuits on the error-detecting code family. It also provides the
depth analysis for the circuits produced by the method. Finally,
Section V concludes the work and highlights opportunities for
future work related to our results.

II. PRELIMINARIES
A. Pauli Group and Stabilizer Codes

For a single qubit, the Hermitian Pauli operators are denoted
by I, X,Y, Z. For n > 1 qubit(s), the Pauli group is given by

P = ("I,X,Y,Z; k €{0,1,2,3})®". (1)

The weight of a Pauli operator is the number of non-identity
elements in its tensor product, e.g., X ® Z ® Y has weight 3.
Let N := 2™ for an n-qubit system. A stabilizer group, S,
is a group generated by commuting Hermitian Pauli operators
such that —Iy ¢ S. The associated stabilizer code, Qs, is
the subspace of unit vectors in CV that are the common +1-
eigenvectors of operators in S. In other words, each |¢)) € Og
satisfies S 1) = |¢) forall S € S. The logical Pauli operators
of a code are Hermitian Pauli operators that commute with the
stabilizers but are not stabilizers themselves. If S has r = n—k
independent generators and the minimum weight of any logical
Pauli operator is d, then the code is an [n, k,d] code. Such
a code encodes k logical qubits into n physical qubits. It can
detect up to (d — 1) Pauli errors but can correct only up to
L%j Pauli errors using a maximum-likelihood decoder. A
CSS code is a stabilizer code whose stabilizer group can be
generated by purely X-type and purely Z-type operators.

B. The [n,n — 2,2] Code Family

This is a family of CSS codes with exactly two stabilizer
generators, X1 Xs--- X, and Z1 2> --- Z,, where n is set to
be even. It is easily checked that these generators commute.
The generators of logical-X and Z operators are of the form
X; = X1 X,y and Z; = Z; 1 Z,, where i = 1,2,...,n — 2.
Hence, the distance of the codes in this family is always 2.
The family is only error-detecting because it can detect up

to 1 error but cannot correct any errors. As an example, for
n = 6, the [6,4,2] is described by the stabilizer group & =
(X -+ Xg,7Z1 -+ Zg) and the logical Pauli generators

X1 =X1Xy, Zy = Zs 7 ;

Xy =X1X3 , Zy=Z3Zs ;

X3 =X1Xy, Z3= 2476 ;

Xy=X1X5, Zy=ZsZs . 2)
We will use this code as our running example in this paper.

C. Quantum Simulation Kernel (QSK)

In quantum (Hamiltonian) simulation, the circuit to imple-
ment an exponentiated Pauli operator exp(+6E) is called a
Trotter circuit or a quantum simulation kernel (QSK) circuit.
An example for 3 qubits is shown in Fig. 1, which corresponds
to the case & = 77X, 73. The structure generalizes for any
k-qubit Pauli: start with single-qubit gates on those qubits
that have a non-Z component in E (Hadamard H for X or
H, = % [} :{] for ), then perform CNOTs from the first
(k—1) qubits (control) to the k-th qubit (target), then perform a
Z-rotation R, (0) of the k-th qubit, and finally apply the gates
before the rotation in the reverse order. It is easily seen that
the depth of this circuit is (2k 4 1), i.e., linear in k.

We only consider Clifford QSK (C-QSK) circuits, so we
set = 5 (e, R.(0) = P = V/Z). In this case the circuit
is completely characterized by how it maps Pauli operators at
its input to Pauli operators at its output using standard Pauli
conjugation relations for Clifford gates. For the k = 3 circuit
in Fig. 1, one can check the following input-output mappings:

X1=>Y1XeZs |, Z1— 2y,
Xo = Xy , Lo —Z1Yols
X3 = Z1X5Y3 s J3 v L3 . (3)

Hence, for any [n, k, d] stabilizer code, the physical realization
of the logical C-QSK circuit must satisfy the above relations
for its k logical Pauli operators. Besides, the physical circuit
must also preserve the stabilizer group S under conjugation.

ITI. FAULT-TOLERANT QSK VIA TRANSVERSALITY

A natural fault-tolerant implementation of logical circuits
is via a transversal physical operation, i.e., one that splits
into a Kronecker product of single-qubit gates. Any fault
in such a physical circuit does not propagate into other
qubits. While the Eastin-Knill theorem [18] prevents an error-
detecting stabilizer code from implementing a universal set of
gates fault-tolerantly, there might exist a stabilizer code that
realizes the specific logical C-QSK circuit transversally. In
this section, we pursue this possibility and consider transversal
Hadamard or Phase gates for implementing the logical C-QSK
circuit.

Theorem 1. There exists no stabilizer code where transversal
Hadamard realizes the logical C-QSK circuit.

Theorem 2. There exists no stabilizer code where transversal
Phase realizes the logical C-QSK circuit.



In our proofs [17], we have refrained from specifying any
particular code, leading us to the compelling conclusion that
finding a stabilizer code capable of realizing the logical C-
QSK circuits via transversal combinations of Hadamard and
Phase gates appears inherently impossible. Note that this
encompasses all transversal Clifford circuits since Hadamard
and Phase gates generate the single-qubit Clifford group.
Remarkably, based on the properties of C-QSK circuits, this
conclusion can likely be extended to C-QSK circuits of
arbitrary size and combinations of H and H, gates. Our
analysis suggests that leveraging stabilizer degrees of freedom
is unlikely to alter this conclusion. Of course, all this remains
to be proven rigorously, hence we leave it as a conjecture.

Conjecture 3. There exists no stabilizer code where transver-
sal Clifford gates realize the logical C-QSK circuit for any
non-trivial exponentiated Pauli operator.

IV. REALIZING C-QSK ON [n,n — 2,2] CODE FAMILY

The discussion in Sec. III implies that transversal implemen-
tations of logical C-QSK circuits seem inherently impossible.
Hence, we must incorporate two-qubit gates in the construction
of physical circuits. This, however, raises a crucial question:

Given specific input-output Pauli mapping rules dictated by
the logical C-QSK circuit on a stabilizer code, what can we
infer about the structure of the physical circuit satisfying these
Pauli constraints, even without considering fault-tolerance?

Our goal in this section is to address this question by
developing a principled approach to circuit synthesis that
allows us to track structural information during the synthesis.
Naturally, such an approach provides a feasible solution that
upper bounds depth, number of two-qubit gates etc.

The Logical Clifford Synthesis (LCS) algorithm [19] sys-
tematically synthesizes physical (Clifford) circuits satisfying
Pauli constraints imposed by the logical (Clifford) circuit and
code structure. This includes the constraints to ensure that
the stabilizer group is preserved under conjugation by the
physical Clifford circuit. The algorithm formulates the Pauli
constraints as linear equations on a target binary symplectic
matrix representing the desired physical Clifford circuit. Then
it systematically solves for all feasible symplectic solutions
by using symplectic transvections. Finally, it decomposes each
solution into elementary Clifford gates. Despite its value, the
LCS algorithm falls short of elucidating circuit properties and
structure during the construction of solutions. This is because
it directly finds the symplectic representation of the full circuit,
which hides the circuit structure until it is decomposed into
elementary gates. Therefore, one must determine all solutions
before identifying the most desirable circuit. Unfortunately,
since the number of solutions is 27" +1)/2 where r = n — k,
the computational efficiency decreases super-exponentially
with the dimension of the stabilizer group of the code.

We circumvent these issues of the LCS algorithm by de-
veloping a bottom-up approach to synthesize physical circuits.
The key idea is to “solve” for a small circuit satisfying one
Pauli constraint by identifying a root qubit. Such a qubit

is involved in both the input and output Pauli operator, but
the Pauli acting on that qubit changes from input to output.
Then these small circuits for different constraints are “stitched”
together appropriately to satisfy all constraints simultaneously.
By employing this approach for logical C-QSK circuits on
[n,n — 2,2] codes, we can track circuit properties, such as
depth, during the construction of the circuit. Notably, this
method yields results comparable to the optimal circuits gen-
erated by LCS for this code family, but without enumerating
all solutions. The following section illustrates such realization
of logical C-QSK circuits under different scenarios.

A. Circuit Synthesis via Solve-and-Stitch Approach

For an illustrative example, we assume that the logical
C-QSK circuit consists of an even number of Hadamard
gates. The [6,4,2] code serves as an excellent testbed for
our exploration, in which case the logical circuit comprises
4 qubits. As an example, consider the circuit in Fig. 2,
where the Hadamard gates are applied to the second and
third qubits. The circuit implements the exponentiated Pauli
operator exp (72%21X2X324). A similar approach applies
for Pauli operators with Y entries, where H gates are replaced
with H, gates (see Section II-C).

This C-QSK circuit dictates the following input-output
mappings of logical Pauli operators:

X1 Y1 XoX32Zy , Zi— 7y,

X5 - Xy . Zovr —Z1 Yo X372y ,
X3 X3 . Zyrr —Z1 X2 Y3 Z4
Xy 21 XoX3Yy , Zy— Zy . (4)

Substituting for the logical operators of the [6,4, 2] code, we
obtain the following mappings of physical Pauli operators:

X1 Xo = XnYoX3X4Zs5 , ZoZes— Zals

X1X3 = X1X3 , L3l —Z2Y3 Xy 7576

X1 Xy = X1 Xy ,  Laldie vy —Z2 X3YsZ5Zg

X1X5 — X1Z2X3X4}/5 s Z5ZG —> Z5Z6 . (5)
Additionally, we require that the two stabilizer generators
Xi1---Xg and Zy---Zg are mapped to themselves, even
though it is sufficient to map them to a pair of equivalent
stabilizers, i.e., normalize the stabilizer group. The minimum

depth solution produced by the LCS algorithm for this case
is shown below in Fig. 3. This physical circuit satisfies all
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Fig. 2: C-QSK circuit with even number of Hadamard gates



stipulated Pauli constraints above while preserving stabilizers.
Observe that the (naive) depth of this circuit is 10, which is
comparable to the depth of the logical circuit in Fig. 2.

A Phase gate is then applied to the root qubit to complete the
rooted circuit in Fig. 4b for mapping X7 X5 to X1 2> X3X,Y5.

=] =] [5

Fig. 3: The minimum depth solution of LCS algorithm for
realizing the logical circuit in Fig. 2 on the [6, 4, 2] code. Note
that the algorithm does not perform circuit simplification.

For the [n,n — 2,2] code family, we have r = n — k =
2, so the number of symplectic solutions (for a fixed set of
Pauli constraints) is only 2"("*1)/2 = 8 Hence, it is easy
to enumerate the solutions and identify the minimum depth
circuit. However, this becomes impractical even for r = 6.
Besides, the LCS algorithm does not enable us to predict the
minimum depth until we obtain all solutions and decompose
each of them into elementary Clifford gates as in Fig. 3.

To address these limitations, we propose an alternative
method for constructing physical circuits by identifying a root
qubit for each (physical) Pauli constraint. For a non-trivial
constraint, we identify qubits that appear in both the input
and output, and then eliminate the qubits with an unchanged
Pauli gate. From the remaining root qubits, we choose one
as the root. For instance, consider the mapping of X;X»
to X1Y2X3X,4Z5. In this case, we choose the second qubit
as the root rather than the first qubit because X; remains
unchanged, requiring no additional gates in the circuit. For
(non-root) qubits that are absent in the input Pauli but present
in the output of the constraint, we introduce two-qubit gates
controlled by the root qubit because single-qubit gates like H
and P cannot affect the Pauli on other qubits.

Specifically, for the above example, since CNOT gate maps
XTI to XX, we apply CNOT,_,3 and CNOT5_,4 for the third
and fourth qubits with the second qubit as the root (control).
Since the CZ gate maps XI to XZ, we apply CZy_,5 for
the fifth qubit to satisfy its mapping. The output term of the
second qubit is a Y gate, so we directly introduce a Phase
gate to achieve the desired mapping at the end. This “local”
circuit construction is illustrated in Fig. 4a.

For mappings involving X, and X3, where the input gates
are the same as the output gates, we have verified that these
mappings remain unchanged as the gates propagate through
the above rooted circuit we constructed. Consequently, there
is no need to construct new rooted circuits for these trivial
mappings. Additionally, for the Pauli constraint of X, we
choose the fifth qubit as the root and apply CNOT or CZ
gates to other qubits based on the input-output Pauli relations.

(@) X1 Xo — X1Y2X3X4Z5 (b) X1 X5 — X125 X3X4Y5
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Fig. 4: Rooted circuit construction for logical-X constraints.

For the mappings corresponding to the logical-Z con-
straints, the construction of rooted circuits has some variations.
For example, consider the mapping ZsZg — Z2Y3X4Z5Z¢.
Here, just as before, we designate the third qubit as the root
rather than the sixth qubit because Zz remains unchanged.
However, unlike the logical-X constraints, where the root’s
mapping is processed at the end, here we process this qubit
at the beginning. To transform Zs to Y3 in the output, we
apply H followed by P on the third qubit. Next, we observe
that the output of the fourth qubit is X4. While it might seem
intuitive to apply CNOT3_,4, which maps Y3l to Y374, we
realize that the constraint Z,Zg — Z9X3Y, 757 would later
require a reversed CNOT, i.e., CNOT,4_,3. Since the CNOT
is not symmetric with respect to swapping the control and
target qubits, we apply a CZ gate on the third and fourth
qubits instead, followed by H on these qubits. Subsequently,
we apply CNOTs for qubits 2 and 5, with the root qubit as the
target and themselves as controls. Finally, as for the logical-
X constraints, we verify that these rooted circuits satisfy the
trivial mappings of Z; and Z, as well. The final rooted circuits
for logical-Z constraints are illustrated in Figs. 5a and 5b.

To consolidate the rooted circuits satisfying individual
Pauli constraints into a comprehensive physical circuit that
simultaneously meets all constraints, we follow a systematic
“stitching” approach, initially addressing logical-X's and sub-
sequently logical-Zs. We begin with the rooted circuit for X7,
which we have verified adheres to the trivial mappings of
X, and X3. Subsequently, we seamlessly append the rooted
circuit for X, at the end. During this process, we ensure
smooth integration of shared gates; for example, since CZss,
is already present, we incorporate it without duplication. Then
we consolidate all P gates into a single stage.

Upon checking all mappings of the logical-X part, we
confirm the circuit’s validity. Moving to the rooted circuits
for the logical-Z constraints in Fig. 5, we observe that the
two CNOT gates in Fig. 5a have already been incorporated
in the logical-X part. Consequently, we exclude them and
proceed to add Hs, P3,CZsy, and H, into the final circuit.
At this stage, we verify that all prior Pauli constraints are
still satisfied. Next, in Fig.5b, we observe a similar H-P-
CZ-H structure, sharing the same CZ gate. This structure is
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(b) Z4Zs — Z2X3Y4Z5Ze (ignoring sign)

Fig. 5: Rooted circuit construction for logical-Z constraints.

consolidated into the physical circuit, as depicted in Fig. 6.
Once again, the CNOT gates in Fig. 5b are already present
in previous rooted circuits, so we do not duplicate them.
Through this process, we validate that all Pauli constraints
are satisfied simultaneously, the two stabilizer generators are
preserved, and the depth aligns with the circuit generated by
the LCS algorithm in Fig. 3. The notable differences lie in
the repositioning of certain gates and the cancellation of some
Hadamard gates. Hence, we have a bottom-up approach to
derive the best output of the LCS algorithm in this case, while
being able to track the structure of the circuit at each stage of
the process. This directly addresses the question we posed at
the beginning of Section IV.

In the case of logical C-QSK circuits with an odd number
of Hadamard gates, we encounter some variations in the
established pattern. However, the fundamental idea of root
qubits and the solve-and-stitch mechanism continues to prove
valuable and the complete circuit structure is shown in Fig. 7.

While it may appear that we must check for past constraints
when stitching each rooted circuit to the existing physical
circuit, this was done for pedagogical reasons. In the next sec-
tion, we prove rigorously that the stitching procedure always
satisfies all constraints for logical C-QSK circuits on this code
family. Therefore, the validity of the circuits is established
analytically, and for all members of the code family.

B. Solve-and-Stitch Approach on all [n,n — 2,2] Codes

Define the set [k] = {1,2,3,....,k}. Let ¢,5 € [k] index
(logical) qubits of the C-QSK circuit. Let I, C [k] be the
index set of qubits where Hadamard gates appear in the C-
QSK circuit. Recall that the set I; corresponds to qubits
with an X in the exponential Pauli operator corresponding
to Trotter circuits. For convenience of analysis, we do not
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Fig. 6: Physical realization of Fig. 2 on the [6,4,2] code
produced by the solve-and-stitch approach using root qubits.
Signs for Z5 and Z3 can be fixed with Pauli gates at the end.

discuss operators with Y terms, which correspond to H,, gates
in Sec. II-C, but the ideas here will likely generalize.

Lemma 4. The logical Pauli mappings of the C-QSK circuit
on k qubits can be expressed as follows:

1) Ifi ¢ I, then

=

oy [0%

I 7| ®

JE€In JERNInU{i})
Zi = Z;. @)
2) Ifi € Iy, then
Xi = X, (8)
Zi-—v| Il || Il Z|- ©
jen\{i} JERNIn

We can substitute for the logical Pauli operators in the above
result. For the [n,n — 2,2] codes, logical Pauli operators are
defined as Z = XlXi+17Z = i+1Zn,?i = X1Y;‘+1Zn.
These physical operators provide the physical Pauli mappings
for logical C-QSK circuits on these codes for the cases of even
and odd number of Hadamards. The primary distinction lies
in the parity of the number of elements in I;, which governs
the number of terms in the products in Lemma 4.

Armed with these general expressions for desired Pauli
mappings, we can investigate the solve-and-stitch algorithm
carefully. The “solve” phase of the algorithm solves for small
rooted circuits, one for each mapping, by identifying root
qubits. Let us first focus on the logical-X mappings.

Lemma 5. The rooted circuits for logical-X constraints in
Lemma 4 can be stitched by concatenating them and dropping
duplicate CZ gates. The stitched circuit satisfies all the logical-
X constraints simultaneously.

The proofs of all results can be found in [17].

Lemma 6. The rooted circuits for logical-Z constraints in
Lemma 4 can be stitched by concatenating them and dropping
duplicate CZ gates. The stitched circuit satisfies all the logical-
Z constraints simultaneously.
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Fig. 7: The sequence of gates in the full physical circuit realizing the logical C-QSK (i.e., Clifford Trotter) circuit on the
[n,n — 2,2] codes. The set I;, C [n — 2] consists of the indices of logical qubits on which the logical circuit applies a
Hadamard. The white blocks and non-highlighted gates are common to the cases of even and odd number of Hadamards, i.e.,
|I1,|, but the gray blocks and the highlighted gates are needed only for the case of odd number of Hadamards.
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Fig. 8: Logical identity gadget for the [4, 2, 2] code.

Now, we provide the main result of this section: the con-
struction of the complete physical circuit for logical C-QSK
on [n,n—2,2] codes by stitching the logical-X and logical-Z
stitched circuits, as shown in Fig. 7 (see [17] for pseudocode).

Theorem 7. The logical C-QSK (i.e., Clifford Trotter) circuit
can be realized on the [n,n — 2,2] codes by concatenating
the logical-X and logical-Z stitched circuits, then dropping
duplicate CNOT gates. If the number of Hadamards in the
logical circuit is odd, then CNOTs and Phase gates can be
added to preserve the stabilizer group.

Theorem 8. Consider the physical circuit constructed by the
solve-and-stitch algorithm in Theorem 7 to realize a logical
C-0OSK circuit on the [n,n — 2,2]; codes. The depth of this
circuit is upper bounded by k(kT_l + 5 when h is even and

M;’Hl) + 5 when h is odd, where k = n — 2.

We have demonstrated that the depth of physical circuits
grows quadratically with the dimension of the [n,n — 2,2]
codes. To mitigate this, we propose the incorporation of
“complementary” CZ gates at the beginning of the physical
circuit. When combined with P gates on all n qubits, these
CZ gates only implement the logical identity on the code,
thereby not affecting the logical functionality of the physical
circuit. Figure 8 illustrates an example of this logical identity
circuit for the [4,2,2] code, which can be extended to any
member of the [n,n — 2,2] code family. Indeed, this CZ-
P gadget induces the mappings 7, = 414y " Liv124y,
and X; = X1X41 — X1X,41, which are trivial, indicating
that all logical Pauli operators remain unchanged. It is easily
checked that the stabilizers are also preserved. Therefore,
by implementing the logical identity at the beginning of the

physical circuit in Fig. 7, we can cancel the CZ; ,, gates for
all ¢ ¢ I,. We prove that the physical circuit incorporating
these cancellations has depth scaling only linearly with k.

Theorem 9. Consider the physical circuit constructed by the

solve-and-stitch algorithm in Theorem 7 to realize a logical

C-0OSK circuit with h Hadamards on the [n,n — 2,2] codes.

After integrating the logical identity, the depth is at most
(2+2h)k —h?> —h+6 for even h, (10)
(24 2h)k —h®>+h+T for odd h.

In general, these physical circuits are not inherently fault-
tolerant, as a single fault from a two-qubit gate can propagate
to other qubits. However, by applying flag gadgets [16] to the
physical circuits on the [6,4,2] code, we observe that two
additional flag qubits make the circuit fault-tolerant, i.e., they
enable the detection of correlated errors arising from a single
fault in the circuit (see [17] for details). A similar approach
could be extended to the full [n,n — 2,2] family.

V. CONCLUSION AND FUTURE WORK

In this work, we were motivated by the fact that quantum
computers are expected to show major advantages over clas-
sical computers only in specific algorithms and applications.
Hence, we began to explore a new path where compilers for
universal fault-tolerant quantum computers tailor the codes
to execute a given target algorithm efficiently and fault-
tolerantly. As an illustrative algorithm, we considered Trotter
circuits for quantum simulation, which is a key application
of quantum computers. We developed a systematic solve-and-
stitch approach to synthesize optimal-depth realizations of
Clifford Trotter circuits on the well-known [n,n — 2, 2] code
family. We analyzed the approach rigorously and described the
steps in Fig. 7. We ensured fault-tolerance by embedding flag
gadgets in the synthesized physical circuits.

Obviously, this code family can only detect errors but not
correct them. In future work, we will explore the generaliza-
tion of the approach to better code families. We will leverage
the insights developed in Theorem 7 to understand the code
properties necessary to realize Trotter circuits efficiently and
fault-tolerantly. This will bring us closer to truly tailoring code
design for this application.
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