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Abstract—Quantum subsystem codes have been shown to
improve error-correction performance, ease the implementation
of logical operations on codes, and make stabilizer measurements
easier by decomposing stabilizers into smaller-weight gauge
operators. In this paper, we present two algorithms that produce
new subsystem codes from a “seed” CSS code. They replace
some stabilizers of a given CSS code with smaller-weight gauge
operators that split the remaining stabilizers, while being compat-
ible with the logical Pauli operators of the code. The algorithms
recover the well-known Bacon-Shor code computationally as well
as produce a new [[9, 1, 2, 2]] rotated surface subsystem code with
weight-3 gauges and weight-4 stabilizers. We illustrate using a
[[100, 25, 3]] subsystem hypergraph product (SHP) code that the
algorithms can produce more efficient gauge operators than the
closed-form expressions of the SHP construction. However, we
observe that the stabilizers of the lifted product quantum LDPC
codes are more challenging to split into small-weight gauge op-
erators. Hence, we introduce the subsystem lifted product (SLP)
code construction and develop a new [[775, 124, 20]] code from
Tanner’s classical quasi-cyclic LDPC code. The code has high-
weight stabilizers but all gauge operators that split stabilizers
have weight 5, except one. In contrast, the LP stabilizer code
from Tanner’s code has parameters [[1054, 124, 20]]. This serves
as a novel example of new subsystem codes that outperform
stabilizer versions of them. Finally, based on our experiments,
we share some general insights about non-locality’s effects on the
performance of splitting stabilizers into small-weight gauges.

I. INTRODUCTION

Quantum error correction is vital for quantum computers to
achieve their full potential. The technique requires identifying
the location of errors on a quantum computer without dis-
turbing the delicate superposition states of the qubits involved
in the computation. This is done by measuring stabilizers,
which are quantum parity checks on different subsets of qubits,
that help elucidate the locations of errors through an error
syndrome. However, if measuring the stabilizers involves a
high number of qubits, then the entangling measurements of
the process pose the risk of creating additional errors.

Subsystem codes may help alleviate this issue [1], [2].
These are codes with gauge operators or operators on virtual
qubits that do not carry quantum information. If designed
well, then the eigenvalue of a high-weight stabilizer can be
obtained as a product of the eigenvalues of several lower-
weight gauge operators that can be measured more easily.
Generally, these gauge operators form a non-abelian group,
meaning that the order of measurement matters. The ordering
can be chosen carefully during the process of gauge fixing,

where changes to the code can be made mid-computation to
help ease measuring stabilizers or even implementing logical
operations [3]. Recent work has even translated these gauge-
fixing insights of subsystem codes into the ZX calculus [4].
There are several examples of subsystem codes in the liter-
ature. The prototypical example of a subsystem code is the
Bacon-Shor code [2]. Most constructions have topological or
geometrically local properties, which makes finding the gauge
group an intuitive process [5]. Closed-form expressions exist
for constructing generalized Bravyi-Bacon-Shor or Subsystem
Hypergraph Product (SHP) Codes [6]. There are also some
computational methods for forming a set of gauge generators
out of a set of Pauli operators via Gram-Schmidt orthogonal-
ization [7], and computational search methods for finding the
optimal subsystem code from a set of two-qubit measurement
operators [8].

However, there does not exist an algorithm that allows
one to input a stabilizer code and derive a subsystem code
directly from it, especially one that determines gauge operators
that compose to form stabilizers of the input code. In recent
years, there has been tremendous progress in constructing
quantum low-density parity-check (QLDPC) stabilizer codes
with optimal code parameters. Such an algorithm can leverage
these advances in stabilizer codes and potentially decompose
their stabilizers into smaller-weight local gauge checks. For
example, a good Lifted Product (LP) code can have stabilizer
weights of 8 or even larger than 10, which involve long-range
connections between qubits. Hence, the LDPC property alone
does not make these constructions practical.

In this work, we present two algorithms capable of deriving
subsystem codes from a “seed” CSS stabilizer code and
present non-trivial examples of subsystem codes found by
our algorithms. The algorithms identify a [[9, 1, 2, 2]] rotated
surface subsystem code whose stabilizer weights are still 4
but gauge weights are 3, albeit with some non-locality. In
contrast, the subsystem surface code known in the literature [9]
uses more qubits and has stabilizers of weight 6. Next, we
demonstrate a modified SHP code that reduces the weight
of gauge operators needed to produce a stabilizer compared
to the closed-form expressions in [6]. We observe that it
is in general difficult to decompose stabilizers of the LP
construction into small-weight gauge operators. Hence, we
introduce an extension to the SHP construction that we call
the Subsystem Lifted-Product (SLP) codes, which can have
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superior parameters compared to the Lifted Product stabilizer
code constructed from the same base matrix. As an illustrative
example, we produce a [[775, 124, 20]] SLP code from Tanner’s
classical quasi-cyclic LDPC code, whereas the corresponding
LP code has parameters [[1054, 124, 20]]. The code has high-
weight stabilizers but the gauge operators to produce the
stabilizer are weight-5, except one of high weight. It remains
to be seen if the high-weight nature of stabilizers or some of
the gauges is intrinsic to the SLP construction.

The paper is organized as follows: Section II introduces the
necessary background to discuss the results in this work. Sec-
tion III reviews the binary symplectic representation of stabi-
lizer and subsystem codes. Section IV provides our algorithms
for splitting stabilizers into gauges. Section V discusses some
non-trivial examples found using our algorithms, including the
SHP and SLP constructions. Section VI concludes the paper
with thoughts about future work.

II. BACKGROUND

A. Representing Pauli Operators as Binary Vectors

Given the vectors a = [a1, ..., an], b = [b1, ..., bn] ∈ Fn
2 , we

define the Hermitian operator

E(a, b) := ia1b1Xa1Zb1 ⊗ ...⊗ ianbnXanZbn , (1)

where X and Z are the standard Pauli operators and i :=
√
−1.

We can define the n-qubit Pauli group Pn as

Pn := ⟨iαE(a, b) : a, b ∈ Fn
2 ;α ∈ {0, 1, 2, 3}⟩ . (2)

This is also known as the Heisenberg-Weyl Group
HWN , N = 2n. The standard symplectic inner product in
F2n
2 is defined as [10]:

⟨[a, b], [a′, b′]⟩s := a′bT + b′aT (mod 2)

= [a, b] Ω [a′, b′]T (mod 2), (3)

where the matrix Ω =

[
0 In

In 0

]
is the symplectic form in

F2n
2 . We notice that two operators E(a, b), E(a′, b′) commute

if and only if ⟨[a, b], [a′, b′]⟩s = 0 (mod 2). Thus, we see that
a vector [a, b] ∈ F2n

2 is isomorphic to an operator E(a, b) via
the map γ : Pn/ ⟨iαI2n⟩ −→ F2n

2 defined by

γ(E(a, b)) := [a, b]. (4)

Thus, without loss of generality, we can represent n-qubit Pauli
operators as binary vectors. The weight of an n-qubit Pauli
operator is the number of qubits on which it applies a non-
identity Pauli operator, e.g., the operator X1⊗X2⊗ I3 can be
described as [ 1 1 0, 0 0 0 ], and its weight is 2.

B. Quantum Stabilizer Codes

A stabilizer group S ∈ Pn is an abelian subgroup of the
Pauli group that does not contain −I . The corresponding
stabilizer code is defined by:

Q :=
{
|ψ⟩ ∈ C2n : S |ψ⟩ = |ψ⟩ ∀ S ∈ S

}
. (5)

A stabilizer code with n physical qubits and m independent
stabilizer generators can encode k = n−m logical qubits. The
logical Pauli operators of the code come from the normalizer
of S in Pn, which is also its centralizer, defined as

N (S) := {U ∈ Pn : [U, S] = 0 ∀ S ∈ S} , (6)

where [U, S] := US−SU is the commutator of U and S. Here,
notice that S ⊂ N (S). Finally, the minimum distance, d, of the
code is given by the minimum weight of any Pauli operator
in N (S) \ S , or the lowest weight of any logical operator.
Thus, we denote the parameters of a quantum stabilizer code
as [[n, k, d]]. Finally, a CSS code is a stabilizer code whose
stabilizer S =

〈
γ−1(HX), γ−1(HZ)

〉
, HXHT

Z = 0, where
HX , HZ are classical binary parity check matrices, and the
map γ−1 is applied to each row of HX , HZ .

C. Subsystem Codes

A subsystem code is a quantum error-correcting code that
splits the code space C = A ⊗ B into the logical subspace,
A, and a gauge subspace, B, that does not carry any logical
information [1]. The Hilbert space of a subsystem code can be
written as H = C⊕C⊥ = A⊗B⊕C⊥. The gauge subspace is
supported on r gauge qubits such that, given n physical qubits
and m independent stabilizers, the number of logical qubits is
k = n−m−r. Thus, a subsystem code with these parameters
and code distance d can be written as an [[n, k, r, d]] subsystem
code. A subsystem code is defined by its gauge group

G := ⟨iI,S, X ′
1, Z

′
1, . . . , X

′
r, Z

′
r⟩ ⊂ Pn, (7)

where X ′
i, Z

′
i are the Pauli operators for the i-th gauge qubit,

and S is the stabilizer group of the code.
We can use G to define the stabilizers of the code:

S := Z(G) = C(G) ∩ G, (8)

where Z(G) is the center of G, and C(G) is the centralizer of
G in Pn. We define the bare logical operators Lb as:

Lb := C(G) \ G = C(G) \ S. (9)

These are generated by k pairs of anti-commuting Pauli
operators such that [G,Lb] = 0. These operators only act non-
trivially on the subspace A. We also have the dressed logical
operators L, Lb ⊂ L, where:

L = C(S) \ ⟨iI⟩ . (10)

In other words, the set of dressed logical operators is the set of
bare logical operators multiplied by an operator from G \⟨iI⟩.

Finally, we can define the code distance d such that

d := min
P∈L

|P |, (11)

i.e., the minimum weight of a dressed logical operator.



Fig. 1: A diagram describing the relation of the Gauge group
G to the other important subsets of Pn for a subsystem code.

III. BINARY DESCRIPTION OF SUBSYSTEM CODES

A. Stabilizer Code Construction via Binary Matrices

We can describe a stabilizer code as a 2n × 2n matrix U
which has the following form [11], [12], [10]:

U =


LX

S
LZ

S ′

 , (12)

where its rows ⟨u1, . . . ,u2n⟩ span F2n
2 . We are overloading

notation to represent both the group as well as a binary matrix
whose rows represent the generators of the group. Here, LX

and LZ are the binary matrices that represent the generators
of the logical Pauli operators. The sub-matrix S ′, otherwise
known as the “destabilizer” [11], is added so that U has full
rank. For a stabilizer code, we choose S ′ such that:

UΩUT = Ω (mod 2). (13)

This means that each row vector in S ′ is chosen so that it
anti-commutes with only one stabilizer generator inside S . In
other words, U is a binary symplectic matrix [12].

Theorem 1. Let U be a binary matrix constructed as in (12).
If U satisfies (13), then U describes a valid stabilizer code.

Proof: The L.H.S. of (13) is our definition of the sym-
plectic inner product in (3) extended to a matrix. Since Ω
has a single non-zero element per row, each row of U anti-
commutes with exactly one other row, which is n rows below
(or above) it. Such pairs of rows are called symplectic pairs.
Since an [[n, k, d]] stabilizer code has n − k stabilizers, the
symplectic pairs of rows in LX must be in the rows of
LZ . This means that the codes’ logical operators commute
with the operators represented as binary vectors in S , S ′.
Thus, satisfying (13) verifies all necessary conditions for U
to represent a valid stabilizer code.

B. Subsystem Code Construction via Binary Matrices

To construct a subsystem code using the methods of the
previous section, we can take a binary matrix U constructed
as in (12), and choose 2r rows of it to become our gauge
generators, and LX , LZ become our bare logical operators.

It should be noted that, generally, one can replace these 2r
rows with other rows and still have a valid subsystem code,
as long as U remains symplectic. Also, one is free to choose
logical operators to become gauge operators.

Theorem 2. Let U be a 2n × 2n binary matrix that has
the construction of (12) except that 2r of its rows have
possibly been altered. We call this altered matrix U ′. Then
U ′ represents a valid subsystem code if:

U ′ΩU ′T = Ω (mod 2). (14)

Proof: Since only the 2r rows that have been altered are
those promoted to gauge operators, the rest of the rows of
the matrix on the R.H.S. of (14) are identical to the rows in
the same positions in (12). This means that the bare logical
operators only anti-commute with their respective symplectic
pairs and commute with the operators that generate the gauge
group. Furthermore, this also means that since the leftover
stabilizers in S only anti-commute with the leftover operators
in S ′, the operators of S indeed form Z(G). Finally, as long
as the previous conditions are met, then (14) guarantees that
U ′ represents a valid subsystem code.

Appendix A proves our algorithm’s ability to find all
suitable representations for the gauge generators.

IV. GNARSIL ALGORITHMS TO FIND GAUGE OPERATORS

Here we will use gauge generators to describe the non-
stabilizer generators of the gauge group. In practice, a sub-
system code’s utility comes from measuring the product of
a set of lower-weight gauge operators that yields the same
information as measuring a higher-weight stabilizer [5]. Using
the binary matrix constructions of the previous section, we
can find low-weight gauge operators for CSS codes whose
composition produces the code’s stabilizers up to a remaining
gauge operator that is not a gauge generator. Let us call this
remaining gauge operator the residual operator for that stabi-
lizer. We refer to the minimum (Pauli) weight over all residual
operators as the residual weight. For a gauge decomposition
to be useful, the residual weight must be less than the weight
of the decomposed stabilizer. To achieve this, we propose
two algorithms. The first algorithm finds the set of r gauge
generators that decompose stabilizers with the least residual
weight and then adds back stabilizers so that n = k−r−m is
still satisfied. We describe the first GNarsil algorithm, which
“cuts” stabilizers into gauges, in Algorithm 1.

We also note that by bypassing the anti-commutation condi-
tions, gauge operators that are not necessarily gauge generators
may be found such that they decompose a stabilizer with lower
residual weight. We also provide a second GNarsil algorithm
for this case in Algorithm 2.

V. EXAMPLES FOUND BY OUR ALGORITHMS

A. [[9, 1, 4, 3]] Bacon-Shor Code

Algorithm (1) was able to find the [[9, 1, 4, 3]] Bacon-Shor
code from the [[9, 1, 3]] Shor (stabilizer) code. This required



Algorithm 1 GNarsil 1: Gauge Generators to Split Stabilizers

1: Input: U =

LX

S
LZ

S ′

, {i1, i2, . . . , ir} ⊆ {k + 1, k + 2, . . . , n} :

indices of rows of U to be replaced with X-type gauge genera-
tors, desired Pauli weight w for gauge generators

2: Initialization:
GX ← ∅, GZ ← ∅
validXGauges← ∅, validZGauges← ∅
maxSize← max. number of gauge candidates to consider;
SXtargets ← indices of rows of U that are X-stabilizers;
SZtargets ← indices of rows of U that are Z-stabilizers;
gaugesPerStab← # of gauge generators per stabilizer;
Xops ← weight-w (row) vectors in {0, 1}n appended with

0 at the end to make length 2n (for X-gauges);
Zops ← weight-w (row) vectors in {0, 1}n appended with

0 at the front to make length 2n (for Z-gauges);
V ← U(1 : (n+ k)) (i.e., remove S ′ from U )

▷ Find X , Z gauge generators
3: for i in 1:size(Xops) do
4: if size(validXGauges) ≥ maxSize then
5: break
6: end if
7: if Xops(i)ΩV T = 0 (mod 2) and

8: rank

([
V

Xops(i)

])
> rank(V ) and

9: rank

([
validXGauges

Xops(i)

])
> rank (validXGauges) then

10: validXGauges← validXGauges ∪Xops(i)
11: end if
12: end for
13: if validXGauges == ∅ then
14: w ← w + 1
15: Regenerate Xops and Zops
16: if w ≥ n then
17: stop ▷ Algorithm Fails
18: else
19: go to Line 3
20: end if
21: end if
22: XgChoices← NCHOOSEK(validXGauges , gaugesPerStab)

▷ List of all combinations of gaugesPerStab elements in
23: validXGauges
24: for i in SXtargets do
25: for j in 1:size(XgChoices) do
26: resultantGauge ← U(i) + XgChoices(j) (mod 2)
27: residualWeight(j) ← HammingWeight(resultantGauge)
28: end for
29: minIndex ← argmin(residualWeight)
30: GX ← GX ∪XgChoices(minIndex)
31: if size(GX) ≥ r then
32: Drop all rows from r + 1 (if they exist)
33: break
34: end if
35: end for
36: Clear the rows {i1, i2, . . . , ir} and {n+ i1, n+ i2, . . . , n+ ir}

from U to add gauge generators
37: U([i1, i2, . . . , ir])← GX
38: Repeat from Line 3 for Zops by appropriately replacing

variables; add Zops(i) to validZGauges only if
HammingWeight

(
Zops(i)ΩGTX

)
= 1

▷ Zops(i) anti-commutes with exactly one X-gauge
39: U([n+ i1, n+ i2, . . . , n+ ir])← GZ
40: Replace unused destabilizers in S ′ such that U is symplectic
41: Return: U , codeDistance(U )

Algorithm 2 GNarsil 2: Gauge Operators to Split Stabilizers

1: Input: U =

LX

S
LZ

S ′

, {i1, i2, . . . , ir} ⊆ {k + 1, k + 2, . . . , n} :

indices of rows of U that will be removed to add gauge operators
2: Initialization:

GX ← ∅, GZ ← ∅
validXGauges← ∅, validZGauges← ∅
maxSize← max. number of gauge candidates to consider;
SXtargets ← indices of rows of U that are X-stabilizers;
SZtargets ← indices of rows of U that are Z-stabilizers;
gaugesPerStab← # of gauge operators per stabilizer;
numXGauges← gaugesPerStab×# of X stabilizers;
numZGauges← gaugesPerStab×# of Z stabilizers;
Xops ← weight-w vectors in {0, 1}n appended with 0 at

the end to make length 2n (for X-gauges);
Zops ← weight-w vectors in {0, 1}n appended with 0 at

the beginning to make length 2n (for Z-gauges);
V ← U(1 : (n+ k)) (i.e., remove S ′ from U )

▷ Find X , Z gauge operators
3: for i in 1:size(Xops) do
4: if size(validXGauges) ≥ maxSize then
5: break
6: end if
7: if Xops(i)ΩV T = 0 (mod 2) and
8: Xops(i) /∈ LX then
9: validXGauges← validXGauges ∪Xops(i)

10: end if
11: end for
12: if validXGauges == ∅ then
13: w ← w + 1
14: if w ≥ n then
15: stop ▷ Algorithm Fails
16: else
17: go to Line 3
18: end if
19: end if
20: XgChoices← NCHOOSEK(validXGauges , gaugesPerStab)

▷ List of all combinations of gaugesPerStab elements in
21: validXGauges
22: for i in SXtargets do
23: for j in 1:size(XgChoices) do
24: resultantGauge ← U(i) + XgChoices(j) (mod 2)
25: residualWeight(j) ← HammingWeight(resultantGauge)
26: end for
27: minIndex ← argmin(residualWeight)
28: GX ← GX ∪XgChoices(minIndex)
29: end for
30: Remove rows {i1, i2, . . . , ir} and {n + i1, n + i2, . . . , n + ir}

from U ; replace with numXGauges and numZGauges empty
rows, respectively

31: U([i1, i2, . . . , inumXGauges])← GX
32: Repeat from Line 3 for Zops by appropriately replacing

variables; add Zops(i) to validZGauges only if
HammingWeight

(
Zops(i)ΩGTX

)
≥ 1

▷ Zops(i) may anti-commute with more than one X-gauge
33: U([n+ i1, n+ i2, . . . , n+ inumZGauges])← GZ
34: Return: U , codeDistance(U )

first replacing two of the weight-2 Z-stabilizers with lin-
early independent weight-6 Z-stabilizers from the span of the
weight-2 Z-stabilizers before running the algorithm. Finding
this prototypical subsystem code example with our algorithm



Fig. 2: The Bacon-Shor code and its weight-2 gauge operators.
points to its validity. We note here that although six gauge
operators are shown in Fig. 2, not all are linearly independent.
The last two are the product of the linearly independent
gauge operators and stabilizers. The specific pre-processing
of the stabilizers above is a key step that can naturally be
generalized to other CSS concatenated codes. Specifically,
the inner code stabilizers can be multiplied to produce large-
weight stabilizers, thereby allowing us to make low-weight
gauges from the original (inner code) stabilizers.

B. [[9, 1, 2, 2]] Rotated Surface Subsystem Code

In this example, we present a novel subsystem version of
the [[9, 1, 3]] rotated surface code found by Algorithm (1). The

Fig. 3: The rotated surface subsystem code found by Algo-
rithm 1. The two red (resp. green) operators are the X-gauges
(resp. Z-gauges), all weight-3 (also see Table I). The product
of the pair of red gauge operators, X1X2X3 and X3X4X5,
gives SX1, and the product of the pair of green operators gives
SZ1. Stabilizers SX2, SZ2 can be obtained by multiplying
GX1, GZ1 by the respective stabilizers to find the respective
dependent gauges. GX2, GZ2 are not shown here.

code has weight-4 stabilizer generators and weight-3 gauge
operators, as shown in Fig. 3. We summarize the set of gauge
operators, both generators and dependent ones, in Table I.
Using the dependent gauges and gauge generators GX1, GZ1,
we can measure all of the weight 4 stabilizers shown above
at the cost of the dependent gauge operators being not fully
local and a small loss of distance. The well-known subsystem
version of the surface code in the literature [5], [9] has
weight-6 stabilizers instead of the usual weight-4 and requires
significantly more qubits, e.g., for lattice size L = 3 the
code uses 3L2 + 4L + 1 = 40 qubits. It is not unreasonable
to consider the code in Fig. 3, but it will be interesting to
explore whether there is an intermediate subsystem surface
code between these two solutions that still has distance 3.

C. [[100, 25, 3]] Subsystem Hypergraph Product (SHP) Code

Using Algorithm (2), we present a [[100, 25, 3]] SHP code
built from a [10, 5] linear code [13] with parity-check matrix

H =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 . (15)

We construct the SHP code with the following definitions [6]:

GX := (H ⊗ In) ,

GZ := (In ⊗H) ,

LX := (In ⊗G) , (16)
LZ := (G⊗ In) ,

SX := (H ⊗G) ,

SZ := (G⊗H) ,

where G is the generator matrix of the code defined by the
parity check matrix H , i.e, GHT = 0. Thus, in general,
the SHP construction in this form gives an [[n2, k2, d]] code
with n, k, d being the respective values for the classical code
defined by the parity check matrix H . Here, the key observa-
tion is that although the stabilizers for this code are weight-
12, our algorithm finds a decomposition that only requires
weight-4 operators with a residual weight of 0 (resp. 5) for

List of [[9, 1, 2, 2]] subsystem code gauge operators
Gauge Identifier Gauge Operator

GX1 X3X4X5

GX2 X3X4X7

GX1d X1X2X3

GX2d X5X6X7

GZ1 Z1Z4Z7

GZ2 Z4Z5Z8

GZ1d Z0Z3Z7

GZ2d Z1Z5Z8

TABLE I: Gauge operators of the [[9, 1, 2, 2]] rotated surface
subsystem code. GX1, GX2, GZ1, GZ2 are the independent
gauge generators. The letter ‘d’ in subscripts indicates depen-
dent gauge operators that are products of the gauge generators
and stabilizers. The stabilizers are shown in Fig. 3.



the X-stabilizers (resp. Z-stabilizers). This is in contrast to
the gauge operators found from the closed-form expression in
(16), which are all weight-4, requiring residual weights of 6
and 16 for X- and Z-stabilizers respectively. Thus, not only
does our algorithm find more gauge operators than the closed-
form expression, it also finds gauge operators that decompose
the given stabilizers more efficiently than the closed-form
operators. This decomposition makes this high-rate code far
easier to implement. We also note that high-weight stabilizers
are common for the SHP construction, as shown by the
[[49, 16, 3]] SHP code [6] built from the [7, 4, 3] Hamming
code with stabilizer weights 12 and 16, respectively. The parity
check matrix for the [7, 4, 3] Hamming code is given below.

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 . (17)

Hence, our algorithm is likely useful to determine more
efficient implementations of SHP codes in general.

D. Subsystem Lifted-Product (SLP) Codes

As a natural extension of hypergraph product codes, lifted-
product (LP) CSS codes [14] are constructed from the hyper-
graph product of base parity-check matrices A and A∗, which
is then lifted over the ring R = Fq(G), where G is some group.
The resulting parity-check matrices are as follows:

HX = [A⊗ I, I ⊗A] ,

HZ = [I ⊗A∗,A∗ ⊗ I] . (18)

where A∗ is the conjugate transpose of A. This construction is
typically to obtain good quantum LDPC codes, but its sparsity
ends up producing non-local stabilizer operators. When LDPC
codes are input into (18), and the resulting HX ,HZ are used
as input for Algorithm 2, the algorithm is able to find several
gauge operators for these codes. However, none of them are
useful since the residual weight will greatly exceed the weight
of the stabilizers themselves. This fact seems to stem from the
sparse nature of the stabilizers: in order to commute with them,
the gauge operators must also be sparse, which in turn requires
a larger amount of residual weight to cover the spread of the
stabilizers. The precise understanding of this situation for LP
codes is an interesting future direction.

The SLP Construction: To find a lifted code with a
better gauge decomposition, one is tempted to use the SHP
construction in (16) as a natural extension of LP codes. We
will refer to this as the SLP construction. By employing the
base parity check-matrix A along with its (base) generator
matrix GA into (16) and then lifting the construction by a
circulant of size L, we obtain an [[Ln2, Lk2, D]] subsystem
code, where n, k are the respective values defined by the
base parity-check matrix A. Here, AG∗

A = 0, which implies
that GXS∗

Z = 0. This lifting procedure yields codes with
potentially larger distances than a typical SHP code.

1) Comparing the SHP and SLP Constructions: For the
most direct comparison, we choose a binary base matrix:

A =

[
0 1 1
1 1 0

]
, (19)

where the generator matrix of (19) is given by:

GA =
[
1 1 1

]
. (20)

Placing into (16), this yields a [[9, 1, 3]] SHP code, which
is simply the Bacon-Shor code. For the SLP construction,
we interpret (19) as the matrix of powers of monomials
corresponding to L = 2 circulant matrices. Thus, we define
our new base matrix as:

B =

[
1 x x
x x 1

]
. (21)

Clearly, Eqn. (20) interpreted in the same fashion is no longer
a valid solution, so we must use another generator matrix. It
can be shown that the following matrix is a valid generator
matrix for the base matrix B:

GB =

1 + x 1 + x 0
1 + x 0 1 + x
x 0 1

 . (22)

This yields a [[18, 2, 2]] SLP code. The SLP code here has the
same rate as the SHP code but with more physical qubits and a
small loss in distance. However, we will see other cases where
the distance fairs favorably compared to an LP code with the
same base matrix. We now look at a few non-trivial examples
of the SLP construction and their performance.

2) [[27, 12, 2]] SLP code: Given L = 3, the [[27, 12, 2]] SLP
code can be constructed by the following base matrix:

A =
[
1 + x+ x2 1 + x x

]
, (23)

along with the base generator matrix of the code:

GA =

x2 x 1
x x2 x
1 0 1 + x+ x2

 . (24)

After inserting these into (16) and lifting the construction,
we find that the Pauli weight of the code’s stabilizers is 18, and
the Pauli weight of the gauge operators is 6. We also find that
the gauge operators in the closed-form construction decom-
pose the stabilizers with a residual weight of 9, given three
weight-6 gauge operators as input. However, our algorithm
is able to decompose the stabilizers with residual weights of
4, 6, 8 for the X- and Z-stabilizers, an improvement over the
closed-form gauge operator decomposition. Finally, we also
note that the rate of the SLP construction is 4

9 , which is greater
than the rate of the [[39, 12, 2]] LP code constructed from the
same base matrix, 4

13 . Note that this is also while preserving
the distance of the code.



3) [[775, 124, 20]] SLP code: For our final example, we give
the SLP code constructed by Tanner’s (3, 5) QC-LDPC code
with L = 31. Here, we use the following base matrix [15]:

B =

 x x2 x4 x8 x16

x5 x10 x20 x9 x18

x25 x19 x7 x14 x28

 . (25)

As shown by Smarandache, and then Chimal-Dzul, Lieb,
and Rosenthal [16], [17], a generator matrix for (25) can be
constructed using the matrix:

GB =


u11 u12 u13 u14 0
u21 u22 u23 0 u25
f f 0 0 0
f 0 f 0 0
f 0 0 f 0
f 0 0 0 f

 ,
u11 = x28 + x25 + x18 + x16 + x5 + x,

u12 = x23 + x22 + x20 + x17 + x7 + x4,

u13 = x29 + x25 + x21 + x12 + x5 + x,

u14 = u25 = x28 + x18 + x16 + x14 + x9 + x8,

u21 = x27 + x24 + x19 + x11 + x10 + x2,

u22 = x30 + x28 + x26 + x18 + x16 + x6,

u23 = x20 + x14 + x9 + x8 + x7 + x4,

f =
x31 − 1

x− 1
= x30 + · · ·+ x+ 1. (26)

We find that the code has stabilizer weights of 120, 310,
and 465 and gauge operator weights of 5. Due to the large
number of physical qubits, this code is beyond the practical
scale that our algorithm can handle. Our algorithm is suited
for small- to medium-sized codes due to its exponential
memory complexity, but this decomposition by GNarsil may
be achievable with a sufficiently large amount of memory.
Our SLP example demonstrates that the SLP construction can
be quite advantageous if a generator matrix can be found
for a certain base matrix. For the same base matrix (25), an
LP(B,B∗) construction yields a [[1054, 124, 20]] code, which
trails the SLP version both in rate. If a circulant form generator
matrix is found for a base matrix, then the resulting SLP
code will have a higher rate than its LP counterpart with the
same code dimension. No relationship between the distance of
the two constructions has been formalized, but it seems that
the SLP code will at least have the same distance as its LP
counterpart. This makes the SLP construction for a given base
matrix a very attractive construction whenever possible.

VI. CONCLUSION

In this paper, we have introduced a new set of algorithms,
which we call GNarsil, for deriving subsystem codes from
an input “seed” stabilizer code. We have demonstrated that
these algorithms not only recover well-known examples of
subsystem codes but also find interesting new ones, such as
a novel version of the rotated surface subsystem code and
a new SHP code that is more efficient than the closed-form

construction in [6]. We also reported that we could not find
useful gauge decompositions of LP codes due to the highly
non-local structure of the stabilizers. However, by using our
new SLP construction, we can construct codes with excellent
parameters that also have promising stabilizer decomposition
properties, which our algorithms can improve. As noted, this
also depends on finding a generator matrix for the base matrix
in circulant form, which is not always guaranteed to exist.

We foresee these algorithms becoming useful tools for
finding subsystem versions of stabilizer codes that may prove
easier to implement due to the stabilizers’ decomposition
into smaller-weight gauge operators. However, it is clear
that this problem remains complex, as the solution spaces
for useful gauge generators are sparse, making it likely that
our algorithms are optimal for this case, even though they
are exponentially complex in memory. Thus, our algorithms
work best for small- to medium-sized codes. Improving our
algorithms’ performance will most likely require specializing
them for certain code constructions. This would allow us to
exploit code symmetries to find optimal gauge operators.

We also foresee that the measure of residual weight can
be useful for understanding the properties of good subsystem
codes and the symmetries that they may possess. Finally,
we wish to extend this work into looking at the relationship
between fault-tolerant operations on a stabilizer code and its
derived subsystem code(s) by extending tools such as the
LCS algorithm [10]. This can potentially be approached by
observing how new gauge operators found by our algorithm
change the structure of logical gates for our code from the seed
stabilizer code. Insights into this relationship may be useful for
the development of logical operations on Floquet codes [18],
at least the ones with parent subsystem codes [19].
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APPENDIX A
PROOF OF ALGORITHM’S ABILITY TO FIND ALL POSSIBLE
REPRESENTATIONS OF A SUBSYSTEM CODE USING BINARY

SYMPLECTIC MATRICES

Theorem 3. Given an [[n, k, d]] CSS code with logical oper-
ators Xi,Zi for each logical qubit, the GNarsil algorithms
can find all representations for the 2r gauge generators of the
derived [[n, k, r, d]] subsystem code, where 2n−2r of the rows
of the matrix U representing the code (12) are fixed.

Proof: Let r be the number of gauge qubits chosen from
the input code. The input code is described by a 2n × 2n
matrix U , a symplectic matrix that describes the code’s logical
operators and stabilizers. The row vectors {u1, . . . ,u2n} of
U then span the space U = F2n

2 . We choose 2r vectors {ui :
i ∈ I}, I = {i1, i2, . . . , ir, n + i1, n + i2, . . . , n + ir}, from

U which correspond to a submatrix U r of U . These vectors
from I form a symplectic basis for a 22r-dimensional subspace
Ur ⊆ U . Since the subspace is symplectic, we see that any
vector ui, i ∈ I , has a symplectic product ⟨ui,uj⟩s = 0
(mod 2) with any vector uj , j /∈ I.

We now replace the vectors from U r with vectors ũ ∈ Ur

such that ⟨ũi, ũi+r⟩s = 1 (mod 2). To see which pairs of
vectors in Ur form valid symplectic pairs we arrange all of
the symplectic products of vectors in Ur into a matrix P =∑

ij⟨u′
i,u

′
j⟩s |i⟩ ⟨j| (mod 2), where u′

i,u
′
j ∈ Ur. We use

P to count the number of possible representations generated
of symplectic pairs of Ur. The number of representations is
defined as the number of unique matrices V built from U by
replacing the vectors {ui : i ∈ I} with vectors ũ such that
V ΩV T = Ω, where Ω =

[
0 In

In 0

]
.

This condition is equivalent to all constraints needed to be
satisfied by a valid subsystem code. The number of representa-
tions for a given r can be found by examining P . For instance,
in the case of r = 2 we see that:

P =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0


. (27)

By examining P , we first see that there are 22r−1 = 15 non-
zero vectors of Ur that can be chosen as the first vector. Each
of these vectors has 22r−1 = 8 available symplectic partners.
For finding the third vector to add to V , out of 2r needed
vectors, we look for possible candidates by searching for the
columns of P where the first two vectors’ rows are 0, i.e., the
third vector is symplectically orthogonal to the first two vectors
added to V . We find 4 such columns but note that one is the
column corresponding to the trivial zero vector. Therefore, we
have 22r−2 − 1 = 3 possible nontrivial choices for the third
vector. Finally, we search for the compatible symplectic pairs
of the third vector, which gives us 22r−3 = 2. Thus, our total
number of subsystem codes for r = 2 is 720.

However, this number includes the multiplicity of codes due
to the possible permutations of the 2r rows that still allow V to
satisfy V ΩV T = Ω. By looking at all possible permutations
of the rows such that we preserve the symplectic pairs between
the row vectors, we find that the multiplicity is 8 for r = 2.
Thus, the total number of unique representations for r = 2 is
90. We can extrapolate this procedure to arbitrary r and find
that the number of representations for a given r ≥ 2 is

1

M

 ∏
l∈{0,1,2,...,r−1}

22r−2l − 1

 ∏
m∈{1,3,5,...,2r−1}

22r−m

 ,

(28)
where M is the multiplicity of the 2r rows. We conclude that
these form all possible representations of the subsystem code
as the gauge generators must necessarily come from Ur.
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