
Progressive-Proximity Bit-Flipping for the 2D Toric
Code

Michele Pacenti∗, Mark F. Flanagan†, Dimitris Chytas∗ and Bane Vasić∗
∗Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA

†School of Electrical and Electronic Engineering, University College Dublin,Belfield, Dublin 4, Ireland
{mpacenti,dchytas}@arizona.edu, mark.flanagan@ieee.org, vasic@ece.arizona.edu

Abstract—We propose a novel bit-flipping (BF) decoder tai-
lored for toric codes. We introduce the proximity vector as
a heuristic metric for flipping bits, and we develop a new
subroutine for correcting a particular class of harmful degen-
erate errors. Comparing to other decoders, our algorithm is
particularly suitable for efficient hardware implementation as it
does not require operations on dynamic memories. The proposed
decoder shows a decoding threshold of 7.5% for the 2D toric code
over the binary symmetric channel.

Index Terms—Toric codes, topological codes, bit flipping,
decoding algorithm, quantum error correction.

I. INTRODUCTION

Quantum computers make use of the principles of quan-
tum mechanics to perform computations. Quantum states are
fragile and very sensitive to errors, and thus it is crucial
to implement quantum error correction techniques to protect
quantum information. A very important class of quantum
codes are topological codes, specifically surface and toric
codes [1], as they can be implemented on a planar quantum
chip. Decoding of surface codes is typically performed using
the minimum-weight-perfect-matching (MWPM) decoder [2];
although MWPM provides excellent decoding performance,
its computational complexity makes it infeasible for large-
scale implementation. Because of this, many alternative ap-
proaches have been studied to lower the decoding complexity
of surface codes. The most promising alternative is the union-
find (UF) decoder [3], due to its good performance and low
complexity.

Bit flipping (BF) decoders are a class of iterative de-
coding algorithms known to be very fast and efficient [4],
although generally they provide lower performance than Belief
Propagation (BP). In general, BF decoders do not perform
well on surface codes, mainly because of the low column
weight of the parity check matrix, and also because of
error degeneracy, which refers to the property of quantum
codes where multiple error patterns of the same weight can
correspond to the same syndrome. Nevertheless, because of
its extremely low complexity, BF is still attractive in the
scenario of decoding topological codes: indeed, the latency
constraint that a quantum decoder should meet is very tight,
to prevent the so-called backlog problem [5]. Moreover, it is
essential that the decoder has a low power consumption, as it
has to be embedded in a cryogenic environment with a strict
power budget [6]. This makes hardware implementation of the

decoder a crucial aspect; unfortunately, state-of-art decoders
such as MWPM or UF do not allow an efficient hardware
implementation, mainly because they make use of complex
data structures, which require random memory access and
dynamic memory allocation that are known to be less efficient
as they introduce latency and increase circuit complexity as
well as power consumption. MWPM, for instance, makes
use of Dijkstra’s algorithm to construct syndrome graphs
on which they perform the perfect matching, which utilizes
priority queues (dynamic data structures) and is inherently
sequential. Similarly, UF relies on dynamic trees. In contrast,
the BF algorithm, due to its simplicity, only requires static
memories with fixed access, thus having a distinct advantage
for hardware implementation.

In this paper, we develop a BF algorithm which is capable
of decoding surface codes. In the proposed approach, instead
of considering the number of unsatisfied checks as in con-
ventional BF, each bit is assigned a heuristic weight which
is the entry of what we call proximity vector. The proximity
vector is the sum of different contributions called individual
influences, and each individual influence is associated with
an unsatisfied check. Ultimately, bits connected with checks
with low entries in the proximity vector will be flipped first,
while bits connected with checks with high entries in the
proximity vector will be flipped last. After each flip, the
proximity vector is updated in an efficient manner. To deal
with high-weight consecutive errors, i.e., errors occurring on
a set of adjacent qubits, which are particularly harmful for
iterative decoders, we design an iterative matching procedure
that runs after BF and that is able to correct these errors. We
show that our decoder has an asymptotic complexity ofO(n2),
where n is the code’s blocklength, and we provide simulation
results that show a comparison, in terms of performance, with
MWPM, UF and traditional BF. We also highlight how our
decoder is more suitable for hardware implementation than the
alternatives. An extended version of this work can be found
at [7].

The rest of the paper is organized as follows. In Section II
we introduce the preliminaries of quantum error correction.
In Section III we define the proximity vector and how it
can be computed efficiently. Section IV provides a detailed
description of our proposed decoder. In Section V we carry out
a complexity analysis and a comparison with other state-of-art
decoders. Finally, Section VI presents simulation results.

2024 IEEE Global Communications Conference: Selected Areas in Communications: Quantum Communications and Computing

3998

G
LO

B
EC

O
M

 2
02

4
- 2

02
4

IE
EE

 G
lo

ba
l C

om
m

un
ic

at
io

ns
 C

on
fe

re
nc

e
| 9

79
-8

-3
50

3-
51

25
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

G
LO

B
EC

O
M

52
92

3.
20

24
.1

09
01

28
6

Authorized licensed use limited to: University of Arizona. Downloaded on June 23,2025 at 23:06:57 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

A. Stabilizer formalism

Consider the n-fold Pauli group,

Gn ≜ {cB1 ⊗ · · · ⊗ cBn : c ∈ {±1,±i}, Bj ∈ {I,X, Y, Z}},
where I,X, Y, Z are called Pauli operators. Every non-
identity Pauli operator P ∈ Gn has eigenvalues ±1 and any
two Pauli operators in Gn either commute or anti-commute
with each other. The weight of a Pauli operator P is defined
as the number of non-identity elements in the tensor product.
A stabilizer group S is an Abelian subgroup of Gn, and
an Jn, k, dK stabilizer code is a 2k-dimensional subspace
C of the Hilbert space (C2)⊗n that satisfies the condition
Si |Ψ⟩ = |Ψ⟩ , ∀ Si ∈ S, |Ψ⟩ ∈ C. Thus, the code C is
defined as the common +1-eigenspace of the stabilizer group
S . The stabilizer group S is generated by a set of n − k
independent generators S1, ..., Sn−k that can be represented
using a matrix S, called the stabilizer matrix, whose (i, j)
element is given by the Pauli operator corresponding to the
j-th qubit in the i-th stabilizer. The minimum distance d is
defined as the minimum weight of an element of S \ C(S),
where C(S) is the centralizer of S . Using the Pauli-to-binary
isomorphism [8] we can map the stabilizer matrix S to a
(n− k)× 2n binary matrix:

H = [HX | HZ] (1)

which we call the parity check matrix of C.
An Jn, kX − kZ , dK Calderbank-Shor-Steane (CSS) code C

is a stabilizer code constructed using two classical [n, kX , dX]
and [n, kZ , dZ] codes CX and CZ , respectively, where
d ≥ min{dX , dZ} and CZ ⊂ CX [9]. Note that kX , kZ and
dX , dZ correspond to the dimensions and minimum distances
of CZ and CX , respectively. The stabilizer matrix of the CSS
code C has the form

H =

[
HZ 0
0 HX

]
, (2)

where HX and HZ are the parity check matrices of CX and
CZ , respectively. To correct depolarizing errors on the qubits,
a syndrome s is computed such that

s = [sX sZ], (3)

where sX = eXHT
Z mod 2 and sZ = eZH

T
X mod 2.

Because of the structure of H, X and Z errors can be
corrected independently using HZ and HX , respectively.

Toric codes [1] are a widely known class of CSS codes.
Generally, a toric code is characterized by a L × L lattice,
where L is the size of the horizontal (or vertical) dimension.
To an L × L lattice corresponds a J2L2, 2, LK quantum CSS
code. The HX matrix is the incidence matrix between vertices
(check nodes) and edges (variable nodes), and the HZ matrix
is the incidence matrix between squares (check nodes) and
edges (variable nodes).

A depolarizing channel characterized by channel param-
eter ϵ (depolarizing error rate), which induces error pattern
e ∈ {I,X,Z, Y }n on the n qubits. In this paper we consider a
bit-flip channel, where each qubit experiences an X error with

probability p, and remains correct with probability 1−p. Note
that the bit-flip channel that we consider and the depolarizing
error model are closely related: indeed, assuming that X
and Z errors are decoded separately, we can model the
depolarizing channel as two binary symmetric channels with
probability of error px = pz = 2

3ϵ; assuming that dX = dZ ,
is possible to switch from the logical error rate curve over
a binary symmetric channel to the logical error rate under
depolarizing noise by re-scaling it of a factor of 3/2 [10].

Any Pauli error can be expressed as a combination of a true
error and a stabilizer such that e = et+Si, with Si ∈ S; since,
by definition, elements of the stabilizer group S commute with
each other (thus, their syndrome is zero), the syndrome s is
only dependent on the true error et; nonetheless, this also
means that for every true error et, there exist a set of Pauli
errors E = et + S that will lead to the same syndrome. This
phenomenon is known as error degeneracy.

It is convenient to introduce the notion of Tanner graph
[11]. A Tanner graph is a bipartite graph defined from H,
such that it has two sets of nodes V = {v1, v2, ..., vn} and
C = {c1, c2, ..., cn−k} called variable nodes and check nodes,
respectively, and there is an edge between vj and ci if and only
if hi,j = 1. A check node ci is said to be satisfied if si = 0,
and unsatisfied if si = 1. The degree of a variable or check
node is defined as the number of its incident edges. We define
the distance between two nodes i and j to be the number of
variable nodes belonging to the shortest path between i and
j. The two Tanner graphs corresponding to HX and HZ of
the toric code are identical and they obviously correspond to
a torus as well.

III. THE PROXIMITY VECTOR

In this section we introduce the proximity vector, a vector
that the decoder uses as a bit flipping criterion. We describe
the rationale behind it, and we describe how it can be
efficiently computed while decoding.

The proximity vector is a heuristic weight assignment to
the variable nodes and check nodes in the Tanner graph, and
we define it to be the sum of multiple contributions which we
call proximity influences, which we describe hereafter. Let cj
be an unsatisfied check; we want variable and check nodes
neighboring cj to have the highest weights, while the weights
should decrease with increasing distance from cj . A simple
way to achieve this is by computing the proximity influence
recursively, as follows:

Definition 1. Let cj be an unsatisfied check, and let all the
other check nodes be satisfied. We define γ(0)(cj) to be a
1×m vector such that

γ
(0)
i (cj) =

{
1 for i = j

0 otherwise ,
(4)

and let ν(0)(cj) be a 1× n vector such that

ν(0) = γ(0) ·H . (5)

2024 IEEE Global Communications Conference: Selected Areas in Communications: Quantum Communications and Computing

3999
Authorized licensed use limited to: University of Arizona. Downloaded on June 23,2025 at 23:06:57 UTC from IEEE Xplore. Restrictions apply.

Then, let γ(ℓ)(cj) and ν(ℓ)(cj) be defined recursively as{
γ(ℓ)(cj) = ν(ℓ−1)(cj) ·HT

ν(ℓ)(cj) = γ(ℓ)(cj) ·H ,
(6)

for ℓ = 1, 2, ..., D. We call ν(ℓ)(cj) the proximity influence of
cj on qubits (or variable nodes) of depth ℓ, and γ(ℓ)(cj) the
proximity influence of cj on checks of depth ℓ.

We then combine the proximity influence of each unsatis-
fied check node to obtain the proximity vectors by adding, for
each variable and check node, the values of each proximity
influence.

Definition 2. Let c1, ..., cm be all the unsatisfied check nodes,
and let ν(D)(c1), ...,ν

(D)(cm) and γ(D)(c1), ...,γ
(D)(cm) be

the respective proximity influences on qubits and checks. We
define ν(D) and γ(D) to be the proximity vectors on qubits
and check nodes of depth D, respectively, such that:{

ν(D) =
∑m

i=1 ν
(D)(ci)

γ(D) =
∑m

i=1 γ
(D)(ci)

. (7)

It is also possible to define ν(D) and γ(D) by setting γ(0) = s,
and then using (5) and (6) directly.

Since the value D will be fixed in the rest of the paper, we
simply refer to the influences as ν(cj) and γ(cj), and to the
vectors as ν and γ.

1) Efficient computation of the proximity vector: If the
flipping of variable node vi causes its two neighboring check
nodes cj and ck to become satisfied, the updated proximity
vectors shall be{

γ′ = γ − (γ(cj) + γ(ck))

ν ′ = ν − (ν(cj) + ν(ck)).
(8)

We exploit the quasi-cyclic property of the toric code to update
the proximity vector in an efficient manner. The idea is to pre-
compute the proximity influence of an arbitrary check node,
say γ(c1),ν(c1), store it prior to the decoding process, and
then compute online γ(ci),ν(ci) when needed, by appropri-
ately permuting γ(c1),ν(c1). We can label the variable nodes
with non-negative integers row-wise in increasing order (so
that the first row is labeled from 0 to L− 1, the second row
is labeled from L to 2L − 1, and so on), and we can do the
same for the check nodes. Assume that we have already stored
ν(ci) and γ(ci) for some arbitrary check node ci, and that we
now wish to compute ν(cj) and γ(cj), for some j ̸= i, by
appropriately permuting ν(ci) and γ(ci). By exploiting the
indexing we have defined for the check and variable nodes,
we can define a vertical shift σy and an horizontal shift σx

in the following manner:{
σy = ⌊(j − i)/L⌋
σx = j − i mod L ,

(9)

assuming that i < j. We can express the index transformation
in a closed form, using σx and σy . Let kc ∈ [1, L2] and
kv ∈ [1, 2L2] be the indices of the check and variable nodes,
respectively. We can express a coordinate shift using two

linear maps from kc to k′c and from kv to k′v respectively,
such that

k′c =
{
{kc + σx} mod L +

L⌊(kc − 1)/L⌋+ σyL
}

mod L2

k′v =
{
{kv + σx} mod L +

L⌊(kv − 1)/L⌋+ 2σyL
}

mod 2L2

(10)

Hence, we have γℓ
k′
c
(cj) = γℓ

kc
(ci) and νℓk′

c
(cj) = νℓkc

(ci). An
example of this coordinates mapping is illustrated in Fig. 1.

0 0 1

4

463

3

1 2

5

57

2 0

3

38

9

6 12 7

10

13 8

11

14 6

9

15

0 0 1

16

1 2

17

2 0

15

(a) The depth-1 influence of c4 (highlighted in red) is computed;
check and variable nodes such that ν(c4) ̸= 0 and γ(c4) ̸= 0
are represented in gray, while nodes such that ν(c4) = 0 and
γ(c4) = 0 are represented in white.

0 0 1

4

463

3

1 2

5

57

2 0

3

38

9

6 12 7

10

13 8

11

14 6

9

15

0 0 1

16

1 2

17

2 0

15

(b) The influence of Fig. 1(a) is shifted to the node c8: in this
case, σx = σy = 1.

Fig. 1: Example of shifting of the proximity influence from
c5 to c8.

2) Auxiliary proximity influence: We also define an auxil-
iary proximity influence of a check node cj , that we denote
as v(cj).

Definition 3. The auxiliary proximity influence v(cj) is a
1 × n vector such that vi(cj) is the length of the shortest
path between the variable node vi and the check node cj . For
example, if a variable node vi is directly connected to cj , then
vi(cj) = 1.

2024 IEEE Global Communications Conference: Selected Areas in Communications: Quantum Communications and Computing

4000
Authorized licensed use limited to: University of Arizona. Downloaded on June 23,2025 at 23:06:57 UTC from IEEE Xplore. Restrictions apply.

Note that the proximity influences ν(cj) and v(cj) share
the same non-zero positions, but in general they have different
values: while ν(cj) will have higher values for the variable
nodes close to cj , in v(cj) the variable nodes connected to
cj will have value 1, those at distance 2 will have value 2,
and so on. We can compute v(cj) in a similar way to ν(cj).
Thus, it is sufficient to construct v(c1) offline, and apply (10)
to create v(cj), for any j.

IV. PROGRESSIVE-PROXIMITY BIT-FLIPPING

We are now ready to describe our proposed decoder, which
we call Progressive-Proximity Bit-Flipping (PPBF). It is il-
lustrated in Algorithm 1, and it is composed of two decoding
steps: the first is called Preliminary BF, and the second is
called Iterative matching.

Algorithm 1 Progressive-Proximity Bit-Flipping
Input: s, H
Output: ê

1: ν,γ ← Compute proximity metric(s)
2: ê, ŝ,ν ′ ← Preliminary BF(s,H,ν)
3: ê← Iterative matching(ŝ,H,γ)
4: return

Algorithm 2 Preliminary BF

Input: s, H
Output: ê

1: ê← 0
2: ŝ← s
3: u← s ·H
4: ν ′ ← ν
5: S ← {i ∈ [1, n] : ui = 2}
6: while S ̸= ∅ do
7: j ← arg min

i∈S
ν′i

8: êj ← êj ⊕ 1
9: s′ ← ê ·HT mod 2

10: ν ′ ← Shift and remove(ν ′, ·, s′)
11: ŝ← s⊕ s′

12: u← ŝ ·H
13: end while
14: return ê, ŝ

The Compute proximity metric subroutine takes the
syndrome s as input and combines (10) and (7) to get the
proximity vectors γ and ν. The Preliminary BF algorithm,
illustrated in Algorithm 2, is a serial BF decoder which,
at each iteration, flips the bit with minimum νi that is
connected to two unsatisfied checks, and consequently obtains
the updated ν ′ = ν − ν(cj)− ν(ck), where cj and cj are the
two checks connected to the flipped bit. More details on these
subroutines can be found in [7]. The Iterative matching

routine, illustrated in Algorithm 3, utilizes the proximity
vector γ to match pairs of unsatisfied checks together; specif-
ically, we start by identifying the unsatisfied check ci with

the lowest proximity vector entry γi (line 4) calling it a pivot
node, and compute its auxiliary proximity influence v(ci)

1.
Among all the other unsatisfied checks, we pick the one at
the smallest distance from the pivot (if there is more than one
candidate at the same distance, we choose the check cj with
lowest proximity vector entryγj); we call this the target node
(line 9), and denote its distance from the pivot by δ. After
computing the auxiliary vectors for cj , namely c(cj),v(cj),
we compute v(ci) + v(cj); the result of this operation is a
vector such that if the k-th element is equal to δ + 1, the
variable node vk belongs to the shortest path between ci and
cj . If the number of entries of v(ci)+v(cj) that are equal to
δ+1 is equal to δ, it means that there is only one shortest path
between ci and cj , that corresponds to the most likely error
matching that syndrome; on the other hand, if the number
of entries of v(ci) + v(cj) that are equal to δ + 1 is larger
than δ, it means that the corresponding error is degenerate,
as there is more than one shortest path between ci and cj .
In the first case, it is sufficient to flip all the variable nodes
associated with the value δ + 1, while in the latter case one
of the possible degenerate errors must be chosen; specifically,
we introduce an extra unsatisfied check cz (line 22), which is
positioned ∆x steps to the right (or left) of ci, and ∆y steps
below (or above) of cj . There will be only one path of shortest
length connecting ci with cz and cz with cj , respectively,
and we flip the bits corresponding to this two paths. A more
comprehensive explanation of the algorithm can be found in
[7].

V. COMPLEXITY ANALYSIS AND HARDWARE
IMPLEMENTATION

The computation of the proximity vector for c1 is done
offline and only once, thus it does not contribute to the
computational complexity of the algorithm. In [7] we show
that the computational complexity of calculating γ and ν
can be considered O(1), and that the Preliminary BF step
has a complexity of O(n). In each iteration of Algorithm 3,
all of the operations can be performed in O(1), except for
the arg min function which has complexity of O(n); since
the procedure is repeated for each pair of unsatisfied checks,
namely |s|/2 times, making the complexity of the algorithm
proportional to O(n|s|), and since |s| = O(m) [12], m being
the number of check nodes, and since m = O(n) (for instance,
for the toric code we have m = n/2) we have that the
complexity of our decoder is O(n2). Regarding the hardware
implementation aspects, PPBF only requires the storage of
γ(c1) and ν(c1), which are two integer vectors of length n,
and the value L which is an integer. The algorithm does not
make use of dynamic data structures, but only uses arrays
and integers of fixed dimension which can be pre-allocated
in memory, increasing the hardware efficiency. The algorithm
has a fixed and predictable access to the arrays, indeed all the

1In Algorithm 3, we refer with Shift influence and
Shift and remove to two subroutines that utilize (7), (8), and (10)
to compute and update the proximity vectors. More details can be found in
[7].

2024 IEEE Global Communications Conference: Selected Areas in Communications: Quantum Communications and Computing

4001
Authorized licensed use limited to: University of Arizona. Downloaded on June 23,2025 at 23:06:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Iterative matching

Input: ê, s, H, γ
Output: ê

1: ŝ← s
2: γ′ ← γ
3: while |ŝ| > 0 do
4: i← arg min

i∈[1,m]

γ′ | ŝi = 1 ▷ Pivot.

5: t← ŝ
6: ti ← 0
7: c(ci),v(ci)← Shift influence(i)
8: j← j | tj > 0 ∧ cj(ci) > 0
9: j ← arg min

j∈j
c(ci) ∧ arg min

j∈j
γ′ ▷ Target.

10: c(cj),v(cj)← Shift influence(j)
11: δ ← cj(ci)
12: f ← k | vk(ci) + vk(cj) = δ + 1
13: if |f | = δ then
14: êf ← êf ⊕ 1
15: else
16: if j − i mod L < i− j mod L then
17: ∆x← j − i mod L
18: else
19: ∆x← −(i− j mod L)
20: end if
21: ∆y ← min{⌊ i−1

L ⌋ − ⌊
j−1
L ⌋ mod L, ⌊ j−1

L ⌋ −
⌊ i−1

L ⌋ mod L}
22: z ← i+∆x mod L+ L⌊ i−1

L ⌋
23: c(cz),v(cz)← Shift influence(z)
24: f1 ← k | vk(ci) + vk(cz) = ∆x+ 1
25: f2 ← k | vk(cj) + vk(cz) = ∆y + 1
26: êf1,f2 ← êf1,f2 ⊕ 1
27: end if
28: s′ ← ê ·HT mod 2
29: γ′ ← Shift and remove(·,γ, s′)
30: ŝ← s⊕ s′

31: end while
32: return ê

functions which act on arrays are element-wise operations,
which can be made parallel (except for the arg min func-
tion). Finally, the proximity vectors can be normalized and
stored with finite precision. For these reasons, our algorithm
possesses unique advantages for hardware implementation
compared to the competing approaches.

VI. RESULTS

In this section we present simulation results for toric code.
We perform our simulation assuming a bit-flip channel and
assume perfect syndrome measurements, and we compare
our decoder with MWPM and UF. For our simulations we
fix D = ⌊L/2⌋. For each data point in the plotted curves,
the simulation was run until either 100 logical errors were
obtained or 105 error vectors were processed. In Fig. 2 we
plot simulation results of our decoder on toric codes over the
bit-flip channel. As can be seen from the figure, the threshold

10-2 10-1

Crossover probability

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l E

rro
r R

at
e

Th
re

sh
ol

d
at

 7
.5

%

L=3

L=5

L=7

L=9

L=11

L=13

Fig. 2: Performance of the proposed decoder on toric codes
of different sizes, assuming a BSC channel. The threshold,
which is around 7.5%, is highlighted.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Crossover probability

10-5

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l E

rro
r R

at
e

BF
PPBF
UF
MWPM

Fig. 3: Performance comparison between our decoder, tradi-
tional BF, MWPM and UF for distance 13 toric code over
BSC.

is around 7.5%2; to obtain the threshold for the depolarizing
channel, it is sufficient to multiply the threshold value by 3/2
[10]. In Fig. 3 we highlight the comparison between our
decoder, traditional BF, MWPM and UF for the toric code
with L = 13. For the traditional BF, in each iteration we flip
all of the bits involved in two unsatisfied checks, and we run
it for a maximum of 100 iterations. As expected, MWPM,
having higher complexity, achieves the best performance,
both in terms of threshold and waterfall; the UF presents
slightly worse performance than MWPM, although it has
significantly lower complexity. Our decoder still achieves
good performance, comparable to that of MWPM and UF,
while achieving low complexity and latency; we also need
to stress that our decoder is a hard-decision decoder, while

2For threshold we mean the depolarizing probability below which the
decoder error probability approaches zero while increasing the distance of
the code.

2024 IEEE Global Communications Conference: Selected Areas in Communications: Quantum Communications and Computing

4002
Authorized licensed use limited to: University of Arizona. Downloaded on June 23,2025 at 23:06:57 UTC from IEEE Xplore. Restrictions apply.

MWPM and UF both utilize soft information. Comparing to
the classical BF decoder, the PPBF shows a significantly lower
error rate.

VII. CONCLUSION

We have presented a new decoder for toric codes which is
able to achieve a very good decoding performance while al-
lowing efficient hardware implementation. Future work could
include improving the performance of the decoder using
decoding diversity, i.e., running several rounds of PPBF, each
one using a different variation of the proximity metric, and
choosing as error estimate the one with least weight.

ACKNOWLEDGMENTS

This work has been conducted as a part of the CoQREATE
program which is funded by the National Science Foundation
under grant ERC-1941583 and Science Foundation Ireland
under the US-Ireland R&D Partnership Programme under
grant SFI/21/US-C2C/3750. The work of Michele Pacenti,
Dimitris Chytas and Bane Vasić is also supported by the
NSF under grants CIF-1855879, CIF-2106189, CCF-2100013,
ECCS/CCSS-2027844, ECCS/CCSS-2052751, and in part by
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration and funded through JPL’s Strategic University
Research Partnerships (SURP) program. Bane Vasić has dis-
closed an outside interest in his startup company Codelucida
to The University of Arizona. Conflicts of interest resulting
from this interest are being managed by The University of
Arizona in accordance with its policies.

REFERENCES

[1] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum
memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–
4505, Aug. 2002.

[2] A. G. Fowler, “Minimum weight perfect matching of fault-tolerant
topological quantum error correction in average O(1) parallel time,”
Oct. 2014. [Online]. Available: http://arxiv.org/abs/1307.1740

[3] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algo-
rithm for topological codes,” Quantum, vol. 5, p. 595, Dec. 2021.

[4] P. Ivaniš, S. Brkić, and B. Vasić, “Suspicion Distillation Gradient
Descent Bit-Flipping Algorithm,” Entropy, vol. 24, no. 4, p. 558, Apr.
2022.

[5] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T.
Chong, “NISQ+: Boosting quantum computing power by approximating
quantum error correction,” in 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), May 2020, pp.
556–569.

[6] S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller,
J. Lütolf, C. Eichler, and A. Wallraff, “Engineering cryogenic setups
for 100-qubit scale superconducting circuit systems,” EPJ Quantum
Technology, vol. 6, no. 1, pp. 1–29, Dec. 2019.

[7] M. Pacenti, M. F. Flanagan, D. Chytas, and B. Vasic, “Progressive-
proximity bit-flipping for decoding surface codes,” 2024. [Online].
Available: https://arxiv.org/abs/2402.15924

[8] P. Panteleev and G. Kalachev, “Degenerate Quantum LDPC Codes With
Good Finite Length Performance,” Quantum, vol. 5, p. 585, Nov. 2021.

[9] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Physical Review A, vol. 54, no. 2, pp. 1098–1105, Aug. 1996.

[10] D. MacKay, G. Mitchison, and P. McFadden, “Sparse-graph codes for
quantum error correction,” IEEE Transactions on Information Theory,
vol. 50, no. 10, pp. 2315–2330, Oct. 2004.

[11] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, Sep.
1981.

[12] O. Higgott, “PyMatching: A Python Package for Decoding Quantum
Codes with Minimum-Weight Perfect Matching,” ACM Transactions on
Quantum Computing, vol. 3, no. 3, pp. 16:1–16:16, Jun. 2022.

2024 IEEE Global Communications Conference: Selected Areas in Communications: Quantum Communications and Computing

4003
Authorized licensed use limited to: University of Arizona. Downloaded on June 23,2025 at 23:06:57 UTC from IEEE Xplore. Restrictions apply.

