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A drinking water distribution network (WDN) is designed to adequately carry quantities and

qualities of potable water from treatment plants or reservoirs to consumers. To ensure safe drinking

water, the most used disinfectant in WDNs is chlorine, and a minimum chlorine residual is typically

maintained according to the regulations enforced by the U.S. Environmental Protection Agency

(EPA). However, maintaining minimum chlorine concentrations or performing real-time water

quality control (WQC) and regulation are challenging tasks due to the lack of (i) a proper control-

oriented model considering complicated components in WDNs (e.g., junctions, tanks, pipes, and

valves) for water quality modeling (WQM), and (ii) a corresponding scalable control algorithm

that performs real-time water quality regulation.

The objective of this dissertation is to propose a control-oriented state-space representation of

the water quality model that is friendly to the state-of-the-art algorithms to model, control, and

estimate water quality state in WDNs. Based on the proposed state-space model, this dissertation

solves two essential research challenges — optimal water quality control and sensor placement

problems. Furthermore, this dissertation explores other potential ways to create more compact

water quality models by reducing the system order of proposed control-oriented water quality

model and identifying system models only by data-driven methods.

In particular, water quality models depict the decay and transport of disinfectants (e.g., chlo-

rine) in WDNs. However, traditional water quality models fail to describe the explicit relationship

between inputs (chlorine dosage at booster stations) and states/outputs (chlorine concentrations in

the entire network) from the perspective of control theory such that the advanced control algo-

rithms are prohibited from being applied in WDNs. This dissertation proposes a control-oriented
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state-space form of water quality model that not only can describe the spatiotemporal evolution of

disinfectants accurately but also is friendly for existing control algorithms. With such proposed

WQM, a highly scalable model predictive control algorithm that showcases fast response time and

resilience against some sources of uncertainty is developed. The goal of maintaining the minimum

chlorine residual in entire WDNs, that is, the requirements of water quality control (WQC) are

met.

Furthermore, real-time water quality sensors in WDNs have the potential to enable contamina-

tion event detection, closed-loop feedback control of water quality dynamics/models, and network-

wide observability of water quality indicators. However, this objective is overlooked in recent

research studies. Hence, this dissertation also provides a computational water quality sensor place-

ment (WQSP) method considering improve the network-wide observability of the water quality

dynamics with the assistant of the proposed WQM. This metric finds the optimal WQSP that min-

imizes the state estimation error via the Kalman filter for noisy water quality dynamic — a metric

that quantifies WDN observability.

With the proposed WQM and solving the corresponding WQC and WQSP problems, this dis-

sertation revisits the WQM problem and explores several methods (such as reducing system orders

and identifying system dynamics using data-driven techniques) to obtain a more compact water

quality model that potentially reduces computational load.

Specifically, model order reduction (MOR) methods for water quality dynamics are investi-

gated. The presented investigation focuses on (i) reducing state-dimension by orders of magnitude

while retaining the input-output relationship and stability of the MOR methods and (ii) combining

the reduced-order model with model predictive control. System identification (SysID) algorithms,

seeking to approximate models using only input-output data without relying on WDN parame-

ters/typologies, are explored while overcoming several challenges. Such challenges are the com-

plex water quality and reaction dynamics and the mismatch between the requirements of SysID

algorithms and the properties of water quality dynamics. Through case studies, we demonstrate

the applicability of SysID algorithms and show the corresponding performance in terms of accu-
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racy and computational time by comparing it with the proposed WQM. Moreover, the possible

factors impacting water quality model identification are explored.

In short, this dissertation is the first thorough system, network, and control-theoretic attempt at

modeling water quality dynamics, controlling them, and scaling their implementation via model-

free methods. Future work will focus on more complex and nonlinear multi-species models as well

as feedback control problems that regulate such complex models.
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CHAPTER 1: INTRODUCTION

A drinking water distribution network (WDN) is composed of complex components that ade-

quately carry quantities and qualities of potable water from treatment plants or reservoirs to con-

sumers to satisfy the demands and requirements from residential, industrial, commercial, and fire

fighting. Water quality is typically ensured by chemical disinfection such as injecting chlorine-

based disinfectants. Moreover, residual chlorine concentrations are routinely monitored by water

quality sensors to verify that a sufficient residual is maintained throughout WDNs. Maintenance

of a detectable residual is also typically mandated by state and federal regulations in many coun-

tries. For example, water utilities in the US are required to preserve detectable chlorine residual

throughout the WDNs under the Surface Water Treatment Rule (SWTR) [47], the Safe Drinking

Water Act of 1974 and its amendments in 1986 also require that a measurable disinfectant residual

(i.e., 0.2 mg/L of chlorine residual) must be present at points of water consumption such as the end

of users [2]. In addition, many states have established even more stringent numerical thresholds on

the minimum residual concentration [109].

1.1 Motivations and challenges

WDNs should be capable of meeting the demands at all times and with satisfactory water quality.

However, in our modern era, it is challenging to achieve the aforementioned goals due to the lack of

(i) a proper control-oriented water quality modeling (WQM) considering complicated components

(junctions, reservoirs, tanks, pipes, pumps, and valves), (ii) a corresponding scalable control al-

gorithm that performs real-time water quality control (WQC), and (iii) an effective, optimal water

quality sensor placement (WQSP) strategy to place sensors that can monitor chlorine concentration

to improve the observability of the WDNs instead of installing the more expensive water quality

sensors at random locations.

The main objective of this dissertation is addressing the modeling problem of water quality

dynamics from the perspective of control theory and solving the corresponding optimal control
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and sensor placement problems in WDNs. We discuss the detailed challenges of each problem

next.

• The WQM problem depicting the decay and transport of chlorine-based disinfectants in WDNs

is hard to tackle because the network components are complex. A WDN mainly consists of

pipelines, storage facilities (i.e., tanks and reservoirs), pumps, and other accessories (e.g., var-

ious types of control valves). The mathematical models of these components introduce more

intractable problems. For example, the water quality models in pipes are described PDEs. Addi-

tionally, the topology of these components is also very diverse and complex, and there exist four

typical typologies: grid, ring, tree or radial, and dead-end. Furthermore, the hydraulics in WDNs

are dynamic and the dynamic comes from multiple aspects such as the time-varying demands

and uncertainty caused by leaks.

• The WQC problem — maintaining the minimum chlorine residual in WDNs while satisfying

specific constraints—is also a challenging task since it needs advancing control algorithms to

determine the appropriate chlorine dosage to ensure a sufficient residual, particularly at the far

ends of WDNs where the water age is the highest. Applying large doses of chlorine-based disin-

fectants at the treatment plant has been associated with multiple issues, including the excessive

formation of disinfection byproducts as well as aesthetic issues with water taste and odor [40].

Alternatively, the disinfectant can be injected in smaller doses at multiple locations in the net-

work, a practice commonly known as booster disinfection, to maintain a uniform disinfectant

concentration throughout the WDNs [128].

• The WQSP problem that maximizes the observability or state estimation metrics of the mon-

itored WDNs given a limited number of sensors is NP-hard in general when searching over all

possible sensor combinations. Herein, observability is defined as the ability to estimate water

quality model states from available measurements via a state estimation routine. This provides

situational awareness for the operator given data from a few water quality sensors. Although the

WQSP problem considering different purposes such as detecting contamination events has been
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studied in water quality literature [48,59], the sensor placement to improve the observability has

not been explored yet.

Revisiting water quality modeling for more compact models

Even if we could successfully develop the water quality model and propose effective algorithms

that can potentially solve the corresponding WQC and WQSP problems for WDNs. The efficiency

or scalability of such models and algorithms is still an issue. This is because the dimension (or

system order) of the water quality model can reach 104 or 106 even for small-to-midsize due to

ensuring high fidelity after discretizing the PDEs describing the spatiotemporal evolution of disin-

fectant concentration in pipes. It implies that high-accuracy models, though effective for predicting

system dynamics, are not amenable to controller or estimator design for large-scale networks —

especially in the presence of state or input constraints.

To that end, model order reduction (MOR) is necessary to derive a compact model for fast

simulation and efficient synthesis of controllers and state estimators. The motivation of MOR

is to reduce the full-order model to a reduced-order model that has a much smaller number of

states or order without significantly decreasing model accuracy while maintaining input-output

relationships and retaining certain properties of the system such as controllability and observabil-

ity [13, 110, 146].

Traditional water quality modeling including the proposed WQM method in this dissertation

is analysis-based [44, 60]. However, the analysis-based methods either rely on cumbersome,

extensive water/chemistry-based modeling or are based on obtaining hydraulic and many other

parameters—or require both. This is because the water quality analysis depends on the results of

hydraulic analysis such as the flow rates in all links. Since we already have the booster stations

installed to regulate the water quality and have the water quality sensors installed to monitor the

WDNs, an intuitive idea is to take advantage of these actuators and sensors by collecting experi-

mental data to identify the water quality models. In this way, a compact model could be obtained

because only a few actuators and sensors would be deployed in WDNs. Moreover, the process

of obtaining the full-order of the water quality model first and reducing the system model using
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MOR algorithms to generate a compact model can be avoided. System identification (SysID)

algorithms for generic dynamic system models seek to approximate such models using only input-

output data without relying on network parameters. This dissertation also investigates SysID al-

gorithms for water quality model approximation to obtain a compact water quality model. This

research problem is complicated and mainly caused by the mismatch between the requirements of

SysID algorithms and the properties of water quality dynamics.

1.2 Literature review

In this section, we only provide a brief review of the literature related to the topics aforementioned

in the Introduction section since a separate, thorough literature review on each topic is provided

accordingly in the ensuing chapters of this dissertation.

1.2.1 Literature review of WQM

Over the past two decades, many studies have investigated the WQM problem in WDNs. Wa-

ter quality modeling depicts the decay and transport of chlorine-based disinfectants in WDNs.

This can be expressed via the advection-reaction dynamics for which three different families of

numerical schemes can be used to obtain the numerical solution: Eulerian-based schemes [106],

Lagrangian-based schemes [19, 78], and hybrid Eulerian-Lagrangian schemes [11]. For example,

EPANET [107] is a widely used modeling software using a Lagrangian-based approach. For ex-

ample, the studies [117, 150] derive an input/output (I/O) water quality model giving an explicit

relationship between inputs and outputs based on Lagrangian scheme.

All these studies have their limitations. Most of these studies fail to describe the input and

output relationship and are not designed for control-related purposes. For example, the I/O model

does not explicitly model the states, which results in a model that only captures the output per-

formance rather than all state variables in the network, and has to be updated once the locations

of inputs (boosters) and outputs (sensors) change. In this dissertation, we overcome these issues

by showcasing that the formulation of the state-space representation/form of water quality model
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