

**CONTROL THEORY FOR WATER QUALITY REGULATION IN DRINKING WATER
DISTRIBUTION NETWORKS**

by

SHEN WANG, M.Eng.

DISSERTATION
Presented to the Graduate Faculty of
The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

COMMITTEE MEMBERS:
Ahmad F. Taha, Ph.D., Chair
Chunjiang Qian, Ph.D.
Nikolaos Gatsis, Ph.D.
Marcio Giacomoni, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Engineering
Electrical and Computer Engineering
August 2021

Copyright 2021 Shen Wang
All rights reserved.

PREVIEW

DEDICATION

To my dad, mom, sister, and wife

PREVIEW

ACKNOWLEDGEMENTS

First of all, I would like to thank my dad, mom, sister, and other family members for so many years of support that allowed me to focus on my studies and research.

Second, I would like to thank my wife. I feel so lucky that I met her at the best time of my life when I was in college, and it's her to encourage me to explore a better world and give me the courage to move forward without fear when exploring. These several lines of the poem from Zhimo Xu are the best to describe how we feel:

*We encountered on the sea on a dark night,
When we sailed for our own light.
It would be nice if you remember,
But I hope you'd rather forget
The spark we mutually sent when we met.*

Now, we do not have to forget the mutual spark when we met. Instead, we earn the right to remember it with the completion of this dissertation.

Third, I would like to say thank you to my mentor — Professor Ahmad F. Taha. His knowledge in control theory, optimization, power systems, and writing skills astonished me when we finished our first paper together. Moreover, his kindness to people, willingness to teach and guide students, and excellent communication skills are the keys to help me finish this dissertation. I experienced the best academic training from him in the past four years, and I learned a lot from him not only in writing and publishing papers but also about the attitude and philosophy of doing research.

Furthermore, I would like to thank Professor Chunjiang Qian for giving me a new chance to do research by letting me into the great Ph.D. program. Besides that, I appreciate Professor Nikolaos Gatsis for providing his fantastic mathematical intuition when solving problems that I was stuck in, and I would like to thank Professor Marcio Giacomoni for instructing me to understand water systems. I also want to thank Professor Lina Sela, Professor Ahmed Abokifa, Dr. Ankush Chakrabarty, Professor Elias Bou-Harb, Professor Jianhui Wang, and Professor Tyler Summers for

offering me endless academic resources during my Ph.D. journey. In addition, it is fantastic to collaborate with Ph.D. candidate Krishna Sandeep Ayyagari, Dr. Sebastian Nugroho, Dr. Yi Guo, and Ph.D. student Salma Elsherif to explore many interesting research problems.

I am thankful for having a bunch of great friends met in San Antonio, Texas. In particular, I am grateful to my friends: Dr. Yang, Tianyi, Xueling, Jack, Peggy, Yuki, Mohammadhafez, Paresh, Junwhan, Shuaipeng, Manuel, Ali, Baha, and Aime. Moreover, I would like to thank the Tomlin family for proving me with such a great environment to do research, helping me out whenever I was in trouble, and the gifts in each holiday. Especially, I want to thank Brian Tomlin for everything we did together during the pandemic. I also want to thank Sue and Patty for enlightening me about the life balance and defining me.

Finally, I am in immense awe to UTSA for providing me with world-class education, and many thanks to the faculty from the ECE department, since without them, I cannot finish this dissertation.

In addition, this dissertation is based upon work supported by the National Science Foundation under Grants 1728629 and 2015671.

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doctoral Dissertation the text of an original paper, or papers, submitted for publication. The Masters Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dissertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a full introduction and literature review, and a final overall conclusion. Additional material (procedural and design data as well as descriptions of equipment) must be provided in sufficient detail to allow a clear and precise judgment to be made of the importance and originality of the research reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include as chapters authentic copies of papers already published, provided these meet type size, margin, and legibility requirements. In such cases, connecting texts, which provide logical bridges between different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the student is required to make an explicit statement in the introductory material to that manuscript describing the student's contribution to the work and acknowledging the contribution of the other author(s). The signatures of the Supervising Committee which precede all other material in the Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

August 2021

CONTROL THEORY FOR WATER QUALITY REGULATION IN DRINKING WATER DISTRIBUTION NETWORKS

Shen Wang, Ph.D.
The University of Texas at San Antonio, 2021

Supervising Professor: Ahmad F. Taha, Ph.D.

A drinking water distribution network (WDN) is designed to adequately carry quantities and qualities of potable water from treatment plants or reservoirs to consumers. To ensure safe drinking water, the most used disinfectant in WDNs is chlorine, and a minimum chlorine residual is typically maintained according to the regulations enforced by the U.S. Environmental Protection Agency (EPA). However, maintaining minimum chlorine concentrations or performing real-time water quality control (WQC) and regulation are challenging tasks due to the lack of (*i*) a proper control-oriented model considering complicated components in WDNs (e.g., junctions, tanks, pipes, and valves) for water quality modeling (WQM), and (*ii*) a corresponding scalable control algorithm that performs real-time water quality regulation.

The objective of this dissertation is to propose a control-oriented state-space representation of the water quality model that is friendly to the state-of-the-art algorithms to model, control, and estimate water quality state in WDNs. Based on the proposed state-space model, this dissertation solves two essential research challenges — optimal water quality control and sensor placement problems. Furthermore, this dissertation explores other potential ways to create more compact water quality models by reducing the system order of proposed control-oriented water quality model and identifying system models only by data-driven methods.

In particular, water quality models depict the decay and transport of disinfectants (e.g., chlorine) in WDNs. However, traditional water quality models fail to describe the explicit relationship between inputs (chlorine dosage at booster stations) and states/outputs (chlorine concentrations in the entire network) from the perspective of control theory such that the advanced control algorithms are prohibited from being applied in WDNs. This dissertation proposes a control-oriented

state-space form of water quality model that not only can describe the spatiotemporal evolution of disinfectants accurately but also is friendly for existing control algorithms. With such proposed WQM, a highly scalable model predictive control algorithm that showcases fast response time and resilience against some sources of uncertainty is developed. The goal of maintaining the minimum chlorine residual in entire WDNs, that is, the requirements of water quality control (WQC) are met.

Furthermore, real-time water quality sensors in WDNs have the potential to enable contamination event detection, closed-loop feedback control of water quality dynamics/models, and network-wide observability of water quality indicators. However, this objective is overlooked in recent research studies. Hence, this dissertation also provides a computational water quality sensor placement (WQSP) method considering improve the network-wide observability of the water quality dynamics with the assistant of the proposed WQM. This metric finds the optimal WQSP that minimizes the state estimation error via the Kalman filter for noisy water quality dynamic — a metric that quantifies WDN observability.

With the proposed WQM and solving the corresponding WQC and WQSP problems, this dissertation revisits the WQM problem and explores several methods (such as reducing system orders and identifying system dynamics using data-driven techniques) to obtain a more compact water quality model that potentially reduces computational load.

Specifically, model order reduction (MOR) methods for water quality dynamics are investigated. The presented investigation focuses on (*i*) reducing state-dimension by orders of magnitude while retaining the input-output relationship and stability of the MOR methods and (*ii*) combining the reduced-order model with model predictive control. System identification (SysID) algorithms, seeking to approximate models using only input-output data without relying on WDN parameters/typologies, are explored while overcoming several challenges. Such challenges are the complex water quality and reaction dynamics and the mismatch between the requirements of SysID algorithms and the properties of water quality dynamics. Through case studies, we demonstrate the applicability of SysID algorithms and show the corresponding performance in terms of accu-

racy and computational time by comparing it with the proposed WQM. Moreover, the possible factors impacting water quality model identification are explored.

In short, this dissertation is the first thorough system, network, and control-theoretic attempt at modeling water quality dynamics, controlling them, and scaling their implementation via model-free methods. Future work will focus on more complex and nonlinear multi-species models as well as feedback control problems that regulate such complex models.

PREVIEW

TABLE OF CONTENTS

Acknowledgements	iv
Abstract	vi
List of Tables	xiv
List of Figures	xvi
Chapter 1: Introduction	1
1.1 Motivations and challenges	1
1.2 Literature review	4
1.2.1 Literature review of WQM	4
1.2.2 Literature review of WQC	5
1.2.3 Literature review of WQSP	5
1.2.4 Literature review of MOR	6
1.2.5 Literature review of SysID	6
1.3 Research contributions	7
1.4 Organization of this dissertation	8
1.5 Notation used in this dissertation	10
1.6 List of publications	11
Chapter 2: Control-oriented Water Quality Modeling—State-Space Representation . .	14
2.1 Introduction	14
2.1.1 Literature review	14
2.1.2 Objectives and contributions	16
2.2 Control-oriented water quality modeling	17
2.2.1 Conservation of mass	20

2.2.2	Steps to find difference equations for components based on dependence forest	27
2.3	Water quality modeling in state-space form	28
2.3.1	Nonlinear state-space form	29
2.3.2	Single-species reaction model in state-space form	31
2.4	Case studies	34
2.4.1	Setup and validation metrics	34
2.4.2	Three-node network	35
2.4.3	Net1 network	38
2.4.4	Net3 network	40
2.5	Conclusions and limitations	41

Chapter 3: How Effective is Model Predictive Control in Real-Time Water Quality Regulation?

3.1	Introduction	43
3.1.1	Literature review	44
3.1.2	Objectives and contributions	46
3.2	Plug-and-Play MPC for WQC	47
3.3	Scaling WQC-MPC for real-time implementation	50
3.3.1	Ultra-fast, analytical solution to WQC-MPC	51
3.3.2	Guaranteeing satisfaction of state and input bounds	54
3.3.3	Real-time implementation	56
3.4	Case studies	57
3.4.1	Control effects of MPC algorithms	58
3.4.2	Comparisons with rule-based control	64
3.5	Conclusions, broader impacts, and limitations	66

Chapter 4: Revisiting the Water Quality Sensor Placement Problem: Optimizing Net-

work Observability and State Estimation Metrics	68
4.1 Introduction and literature review	68
4.2 State-space water quality model	71
4.3 Observability metrics for water quality dynamics	72
4.3.1 Metrics for observability and its interpretations	72
4.3.2 Metrics for water quality observability matrix	73
4.3.3 Relationship with the Kalman filter	75
4.4 Water quality sensor placement formulation	76
4.5 Case studies	80
4.5.1 Three-node network	81
4.5.2 Looped Net1 network	82
4.5.3 Net3 network	87
4.5.4 Estimation performance and comparing with random SP	88
4.6 Conclusions, limitations, and future directions	90
Chapter 5: Model Order Reduction for Water Quality Dynamics	92
5.1 Introduction and contributions	92
5.1.1 Literature review of MOR algorithms	93
5.1.2 Contributions	94
5.2 State-space water quality model	95
5.3 Model order reduction	97
5.3.1 Principle of MOR for DT-LTI system	97
5.3.2 Description of common MOR algorithms	99
5.4 Theoretical comparisons of MOR algorithms for water quality dynamics	103
5.5 Stabilizing MOR algorithms	106
5.5.1 A posteriori stabilization for POD-based approach	106
5.5.2 A priori stabilization for BPOD approach	108
5.6 Case studies	111

5.6.1	Network settings, practical conditions, and validation	111
5.6.2	Accuracy and stability of MOR methods	114
5.6.3	Computational time	118
5.6.4	SBPOD-Based MPC vs. Full-Order MPC	119
5.7	What should the operator use? Conclusions and future work	122

Chapter 6: Data-Driven Identification of Dynamic Quality Models in Drinking Water

Networks	123	
6.1	Introduction and contributions	123
6.1.1	Literature review of system identification	124
6.1.2	Contributions	127
6.2	State-space water quality model	128
6.3	System identification methods	128
6.3.1	Fundamentals of system identification	129
6.4	Properties of water quality model, challenges of identification, and possible solutions	135
6.4.1	Properties of water quality model	135
6.4.2	Challenges and solutions for water quality model identification	137
6.5	Case studies	139
6.5.1	Network settings and validation	140
6.5.2	Performance of SysID algorithms	142
6.5.3	Possible factors affecting SysID algorithms	147
6.6	Conclusions and future work	147

Chapter 7: Summary and future directions 149

7.1	Summary	149
7.2	Limitations	149
7.3	Future work	150

Appendix A: Water Quality Model Derivation	152
A.1 An illustrative example of water quality model derivation of typical components	152
A.2 Matrix form derivation for junctions	155
A.3 Matrix form derivation for tanks	157
Appendix B: Sensor placement Algorithm Implementation	159
B.1 Scalability and efficient algorithm implementation	159
Appendix C: Model Order Reduction Related Proofs	162
C.1 Proof for states retained in BT and BPOD are the same	162
Bibliography	164
Vita	

PREVIEW

LIST OF TABLES

2.1	Vector notation of water quality modeling.	20
2.2	Water quality modeling and corresponding matrix forms.	22
3.1	Time-scales in water quality control problem.	48
3.2	Number of optimization variables (percentage reduction) of MPC (worst case scenario defined as booster stations installed at each node).	62
3.3	Comparison of performances for the Three-node network. The three optimization objectives correspond with $\frac{1}{2}(\mathbf{y}^{\text{ref}} - \mathbf{y}_p)^\top \mathbf{Q}(\mathbf{y}^{\text{ref}} - \mathbf{y}_p)$ (for reference deviation), $\frac{1}{2}\Delta\mathbf{u}_p^\top \mathbf{R}\Delta\mathbf{u}_p$ (for smoothness of the control action), and $\mathbf{b}^\top \Delta\mathbf{u}_p$ (for the chlorine cost).	66
4.1	Sensor placement results with detailed occupation time (Base case of Net1: $\Delta t = 10$ sec, $k_f = 300$ sec, Pattern I, Base demand 1).	83
4.2	Sensor placement results considering the impacts of L-W scheme time-step Δt and the length of the single observation time t (Case A: $\Delta t = 10$ sec, $k_f = 300$ sec; Case B: $\Delta t = 5$ sec, $t = 60$ sec).	83
4.3	Sensor placement results for Net 3.	88
5.1	Comparisons among three classical MOR methods.	104
5.2	Basic information of three tested networks.	111
5.3	Accuracy with (i) step signal as inputs, and (ii) non-zero (zero) initial conditions and corresponding computational time (in second) among three classical MOR methods for three tested networks.	115
6.1	Comparison between analysis-based and data-driven based methods.	124
6.2	Basic information of three tested networks.	141

6.3	Computational time (in seconds) of various SysID algorithms for all tested networks.	144
6.4	RMSEs of SysID algorithms for Three-node network under different scenarios.	146

PREVIEW

LIST OF FIGURES

1.1	Organization of each chapter in this dissertation.	9
2.1	Time-space discretization of Pipe ij based on the L-W scheme.	21
2.2	An illustrative example with pipes are divided into three segments (only P23 is split and displayed).	22
2.3	Demand profiles for all junctions during 24 hours.	33
2.4	Tested networks installed with mass boosters (marked as blue stars) and concentration sources (marked as green stars): (a) Three-node network, (b) Net1, and (c) Net3.	35
2.5	Chlorine concentrations at Junction 2, Tank 3, and Pipe 23 during $[0, 1440]$ minutes of Three-node network under only concentration source with fixed $c_1^R = 0.8$ mg/L installed at Reservoir 1 from (a) EPANET software, and (b) developed LDE model. The first 40 minutes of the data are zoomed in.	36
2.6	Relative error between EPANET and LDE.	37
2.7	(a) random amount of chlorine injected from the mass booster installed at Junction 2, and chlorine concentrations at Junction 2, Tank 3, and Pipe 23 during $[0, 1440]$ minutes with both concentration resource and mass booster from (b) EPANET software, and (c) developed LDE model. The first 40 minutes of the data are zoomed in.	38
2.8	(a) Number of segments of all 12 pipes and the corresponding pipe length in Net1 (Pipe IDs are omitted); (b) time-space discretization results of Pipe 21 in Net1 based on the L-W scheme.	38
2.9	Chlorine concentrations at Junctions 11, 22 and 31 during $[0, 1440]$ minutes of Net1 network under only concentration source installed at Reservoir 9 from (a) EPANET software, and (b) developed LDE model. The $[70, 140]$ minutes of the data are zoomed in.	39

2.10	Chlorine concentrations at Pipes 21, 31, and 110 during [0, 1440] minutes of Net1 network under only concentration source installed at Reservoir 9 from (a) EPANET software, and (b) developed LDE model. The [70, 140] minutes of the data are zoomed in.	39
2.11	Number of segments of all 117 pipes and the corresponding pipe length in Net1 (Pipe IDs are omitted).	40
2.12	Chlorine concentrations at Junctions 35, 105, and 117 during [0, 1440] minutes of Net3 network from (a) EPANET software, and (b) developed LDE model. The [1170, 1200] minutes of the data are zoomed in.	41
2.13	Chlorine concentrations at Pipes 111, 131, and 277 during [0, 1440] minutes of Net3 network from (a) EPANET software, and (b) developed LDE model. The [1170, 1200] minutes of the data are zoomed in.	41
3.1	Relationship among different time-scales for WQC problem and a discrete MPC scheme ($T_d = N_1 T_h = N_2 T_p = N_p \Delta t$, where N_1 , N_2 , and N_p are integers).	48
3.2	Control diagram for WQC problem.	56
3.3	Tested networks installed with mass boosters (marked as blue stars) and concentration sources (marked as green stars): (a) Three-node network, (b) Net1, and (c) Net3 and its zoomed-in control area.	58
3.4	(a) MPC control action u during 1440 minutes for Three-node network, (b) chlorine concentration at Junction 2, Tank 3, and Pipe 23 under three uncertainty sources, and unknown disturbance happens at 200-th minute.	59
3.5	Control action u at three mass booster locations in Net1 (4 days).	60
3.6	Chlorine concentration at Junction 11 (a), Junctions 21 and 31 (b) for 4 days under three uncertainty sources (unknown disturbance happens at 3000-th minute and it takes 12 minutes to recover).	60

3.7	Chlorine concentration in Pipe 11 (a), Pipes 31 and 110 (b) for 4 days under three uncertainty sources (unknown disturbance happens at 3000-th minute and it takes 50 and 200 minutes for Pipe 11 and Pipe 110 to recover).	61
3.8	Control action u at three mass booster locations in Net3 (1 day).	64
3.9	Chlorine concentrations in junctions (a) and pipes (b) in controlled area of Net3 (range zone and average value marked as red/blue are the results before/after applying MPC controller)	65
3.10	(a) RBC control action u during 1440 minutes for Three-node network, (b) chlorine concentration at Junction 2, Tank 3, and Pipe 23 under three uncertainty sources, and unknown disturbance happens at 200-th minute. . .	66
4.1	(a) Three-node network, (b) Net1, and (c) Net3.	80
4.2	Patterns for Three-node and Net1 networks.	81
4.3	Different base demands (a) and demand patterns (b) for nodes in Net1. . . .	81
4.4	Sensor placement results for Net1 in 24 hours with $t = 5$ minutes, $\Delta t = 5$ sec, Pattern I, and Base demand 1.	82
4.5	Sensor placement results for Net1 with $k_f = 300$ sec, $\Delta t = 5$ sec, Pattern I under (a) Base demand 2, (b) Base demand 3.	85
4.6	Sensor placement results for Net1 with $k_f = 300$ sec, $\Delta t = 5$ sec, and Base demand 1 under (a) Pattern II, (b) Pattern III.	86
4.7	Final sensor placement results for Net1 with $k_f = 300$ sec, $\Delta t = 5$ sec consider five different demand profiles (fusion of Fig. 4.4b, Fig. 4.5, and Fig. 4.6).	86
4.8	Sensor placement results for Net3 with $r = 2, 8, 14$ (95 node IDs are not shown for brevity).	88

4.9	Kalman filter performance $f(\mathcal{S}_r^*)$ with $r = \{1, \dots, 14, 95\}$ when $T_h = 0^{\text{th}}, 10^{\text{th}}, 20^{\text{th}}$ hour (a), performance $f(\mathcal{S}_{r=14}^*)$ for 24 hours (blue line in (b)), and the relative performance of ten randomized sensor placements $\Delta f(\hat{\mathcal{S}}_{r=14})$ (red lines in (b)).	89
5.1	(a) exemplar topology of a WDN (multi-input and multi-output system with two boosters (inputs) and one sensor (output) to inject and detect chlorine), and Pipe 23 (P_{23}) is split into three segments according to L-W scheme for illustration purpose; (b) demand profiles for all junctions during 24 hours.	96
5.2	Coordinate transformation and the corresponding dimensions.	98
5.3	Chlorine travel paths from the input location (booster station) to different output locations (Sensors 1 and 2).	109
5.4	Three tested networks: (a) Three-node network, (b) Net1 network; (c) Net3 network (zoomed-in part is the controlled area).	112
5.5	Step responses (with amplitude of 50) of full-/reduced- order models for the Three-node network under: (a) zero-initial conditions; (b) non-zero initial conditions. (c) The step response errors between full-/reduced- order models under zero-initial conditions as n_r increases from 30 to 120.	113
5.6	(a) step responses from BPOD and SBPOD with two stabilization methods for Net1 under non-zero initial conditions; (b) step responses from different output locations of reduced-order models via BPOD methods for Net3 under on-zero initial chlorine concentrations.	117
5.7	The comparisons of (a) control actions and (b) subsequent chlorine concentrations solved by the full- and reduced-order model (i.e., SBPOD) for the constrained MPC problems.	121
6.1	Two approaches to obtain a water quality model in a WDN—analysis-based and data-driven based methods.	124

6.2	An example to illustrate the properties of water quality dynamics.	136
6.3	Three tested networks: (a) Three-node network; (b) Net1 network.	140
6.4	Input signals for tested SysID algorithms (generated by booster station J1 in Fig. 6.3a). The first two signals are the inputs for SysID algorithms whereas the last one is for validation of identified systems.	142
6.5	Poles (blue "+") and zeros (red "o") in complex plane of original and identified systems via various SysID algorithms. The solid/dashed line is the real/imaginary axis of complex plane.	143
6.6	Output comparisons between various SysID algorithms and original system (sensors are installed at J1 and TK3).	144
6.7	Test and validation inputs for Net1 and output comparisons between SysID algorithms and original system (see booster station and sensors locations in Tab. 6.2).	145
A.1	Concentration dependence forest of the illustrative example in Fig. 2.2 (the segment in a pipe is denoted as s).	154

CHAPTER 1: INTRODUCTION

A drinking water distribution network (WDN) is composed of complex components that adequately carry quantities and qualities of potable water from treatment plants or reservoirs to consumers to satisfy the demands and requirements from residential, industrial, commercial, and fire fighting. Water quality is typically ensured by chemical disinfection such as injecting chlorine-based disinfectants. Moreover, residual chlorine concentrations are routinely monitored by water quality sensors to verify that a sufficient residual is maintained throughout WDNs. Maintenance of a detectable residual is also typically mandated by state and federal regulations in many countries. For example, water utilities in the US are required to preserve detectable chlorine residual throughout the WDNs under the Surface Water Treatment Rule (SWTR) [47], the Safe Drinking Water Act of 1974 and its amendments in 1986 also require that a measurable disinfectant residual (i.e., 0.2 mg/L of chlorine residual) must be present at points of water consumption such as the end of users [2]. In addition, many states have established even more stringent numerical thresholds on the minimum residual concentration [109].

1.1 Motivations and challenges

WDNs should be capable of meeting the demands at all times and with satisfactory water quality. However, in our modern era, it is challenging to achieve the aforementioned goals due to the lack of (i) a proper control-oriented water quality modeling (WQM) considering complicated components (junctions, reservoirs, tanks, pipes, pumps, and valves), (ii) a corresponding scalable control algorithm that performs real-time water quality control (WQC), and (iii) an effective, optimal water quality sensor placement (WQSP) strategy to place sensors that can monitor chlorine concentration to improve the observability of the WDNs instead of installing the more expensive water quality sensors at random locations.

The main objective of this dissertation is addressing the modeling problem of water quality dynamics from the perspective of control theory and solving the corresponding optimal control

and sensor placement problems in WDNs. We discuss the detailed challenges of each problem next.

- The **WQM problem** depicting the decay and transport of chlorine-based disinfectants in WDNs is hard to tackle because the network components are complex. A WDN mainly consists of pipelines, storage facilities (i.e., tanks and reservoirs), pumps, and other accessories (e.g., various types of control valves). The mathematical models of these components introduce more intractable problems. For example, the water quality models in pipes are described PDEs. Additionally, the topology of these components is also very diverse and complex, and there exist four typical typologies: grid, ring, tree or radial, and dead-end. Furthermore, the hydraulics in WDNs are dynamic and the dynamic comes from multiple aspects such as the time-varying demands and uncertainty caused by leaks.
- The **WQC problem** — maintaining the minimum chlorine residual in WDNs while satisfying specific constraints—is also a challenging task since it needs advancing control algorithms to determine the appropriate chlorine dosage to ensure a sufficient residual, particularly at the far ends of WDNs where the water age is the highest. Applying large doses of chlorine-based disinfectants at the treatment plant has been associated with multiple issues, including the excessive formation of disinfection byproducts as well as aesthetic issues with water taste and odor [40]. Alternatively, the disinfectant can be injected in smaller doses at multiple locations in the network, a practice commonly known as booster disinfection, to maintain a uniform disinfectant concentration throughout the WDNs [128].
- The **WQSP problem** that maximizes the observability or state estimation metrics of the monitored WDNs given a limited number of sensors is NP-hard in general when searching over all possible sensor combinations. Herein, observability is defined as the ability to estimate water quality model states from available measurements via a state estimation routine. This provides situational awareness for the operator given data from a few water quality sensors. Although the WQSP problem considering different purposes such as detecting contamination events has been

studied in water quality literature [48, 59], the sensor placement to improve the observability has not been explored yet.

Revisiting water quality modeling for more compact models

Even if we could successfully develop the water quality model and propose effective algorithms that can potentially solve the corresponding WQC and WQSP problems for WDNs. The efficiency or scalability of such models and algorithms is still an issue. This is because the dimension (or system order) of the water quality model can reach 10^4 or 10^6 even for small-to-midsize due to ensuring high fidelity after discretizing the PDEs describing the spatiotemporal evolution of disinfectant concentration in pipes. It implies that high-accuracy models, though effective for predicting system dynamics, are not amenable to controller or estimator design for large-scale networks — especially in the presence of state or input constraints.

To that end, **model order reduction** (MOR) is necessary to derive a compact model for fast simulation and efficient synthesis of controllers and state estimators. The motivation of MOR is to reduce the *full-order model* to a *reduced-order model* that has a much smaller number of states or order without significantly decreasing model accuracy while maintaining input-output relationships and retaining certain properties of the system such as controllability and observability [13, 110, 146].

Traditional water quality modeling including the proposed WQM method in this dissertation is analysis-based [44, 60]. However, the analysis-based methods either rely on cumbersome, extensive water/chemistry-based modeling or are based on obtaining hydraulic and many other parameters—or require both. This is because the water quality analysis depends on the results of hydraulic analysis such as the flow rates in all links. Since we already have the booster stations installed to regulate the water quality and have the water quality sensors installed to monitor the WDNs, an intuitive idea is to take advantage of these actuators and sensors by collecting experimental data to identify the water quality models. In this way, a compact model could be obtained because only a few actuators and sensors would be deployed in WDNs. Moreover, the process of obtaining the full-order of the water quality model first and reducing the system model using

MOR algorithms to generate a compact model can be avoided. **System identification** (SysID) algorithms for generic dynamic system models seek to approximate such models using only input-output data without relying on network parameters. This dissertation also investigates SysID algorithms for water quality model approximation to obtain a compact water quality model. This research problem is complicated and mainly caused by the mismatch between the requirements of SysID algorithms and the properties of water quality dynamics.

1.2 Literature review

In this section, we only provide a brief review of the literature related to the topics aforementioned in the Introduction section since a separate, thorough literature review on each topic is provided accordingly in the ensuing chapters of this dissertation.

1.2.1 Literature review of WQM

Over the past two decades, many studies have investigated the WQM problem in WDNs. Water quality modeling depicts the decay and transport of chlorine-based disinfectants in WDNs. This can be expressed via the advection-reaction dynamics for which three different families of numerical schemes can be used to obtain the numerical solution: Eulerian-based schemes [106], Lagrangian-based schemes [19, 78], and hybrid Eulerian-Lagrangian schemes [11]. For example, EPANET [107] is a widely used modeling software using a Lagrangian-based approach. For example, the studies [117, 150] derive an input/output (I/O) water quality model giving an explicit relationship between inputs and outputs based on Lagrangian scheme.

All these studies have their limitations. Most of these studies fail to describe the input and output relationship and are not designed for control-related purposes. For example, the I/O model does not explicitly model the states, which results in a model that only captures the output performance rather than all state variables in the network, and has to be updated once the locations of inputs (boosters) and outputs (sensors) change. In this dissertation, we overcome these issues by showcasing that the formulation of the state-space representation/form of water quality model