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A drinking water distribution network (WDN) is designed to adequately carry quantities and
qualities of potable water from treatment plants or reservoirs to consumers. To ensure safe drinking
water, the most used disinfectant in WDNs is chlorine, and a minimum‘chlorine residual is typically
maintained according to the regulations enforced by the U,S. Enwirenmental Protection Agency
(EPA). However, maintaining minimum chlorine congéntrations-or\performing real-time water
quality control (WQC) and regulation are challenging tasKs"due 4o the lack of (i) a proper control-
oriented model considering complicated comporents in"WBKs (e.g., junctions, tanks, pipes, and
valves) for water quality modeling (WQM)~and._(i7) a corresponding scalable control algorithm
that performs real-time water quality_ rfegulation.

The objective of this disseptation \is te propose a control-oriented state-space representation of
the water quality model that is ffi€ndiy—0 the state-of-the-art algorithms to model, control, and
estimate water quality state in’ WDNS. Based on the proposed state-space model, this dissertation
solves two essential research challenges — optimal water quality control and sensor placement
problems. Furthermore, this dissertation explores other potential ways to create more compact
water quality models by reducing the system order of proposed control-oriented water quality
model and identifying system models only by data-driven methods.

In particular, water quality models depict the decay and transport of disinfectants (e.g., chlo-
rine) in WDNs. However, traditional water quality models fail to describe the explicit relationship
between inputs (chlorine dosage at booster stations) and states/outputs (chlorine concentrations in
the entire network) from the perspective of control theory such that the advanced control algo-

rithms are prohibited from being applied in WDNs. This dissertation proposes a control-oriented
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state-space form of water quality model that not only can describe the spatiotemporal evolution of
disinfectants accurately but also is friendly for existing control algorithms. With such proposed
WQM, a highly scalable model predictive control algorithm that showcases fast response time and
resilience against some sources of uncertainty is developed. The goal of maintaining the minimum
chlorine residual in entire WDNSs, that is, the requirements of water quality control (WQC) are
met.

Furthermore, real-time water quality sensors in WDNs have the potential to enable contamina-
tion event detection, closed-loop feedback control of water quality dynamics/models, and network-
wide observability of water quality indicators. However, this objéctive is overlooked in recent
research studies. Hence, this dissertation also provides a computatienial Water quality sensor place-
ment (WQSP) method considering improve the network<wide-observability of the water quality
dynamics with the assistant of the proposed WQM. This. metric finds the optimal WQSP that min-
imizes the state estimation error via the Kalman filter for noisywater quality dynamic — a metric
that quantifies WDN observability.

With the proposed WQM and solvirig the corresponding WQC and WQSP problems, this dis-
sertation revisits the WQM problenrand expleies several methods (such as reducing system orders
and identifying system dynéaniicsAsing-data-driven techniques) to obtain a more compact water
quality model that potediially reduces computational load.

Specifically, model arder reduction (MOR) methods for water quality dynamics are investi-
gated. The presented investigation focuses on (i) reducing state-dimension by orders of magnitude
while retaining the input-output relationship and stability of the MOR methods and (ii) combining
the reduced-order model with model predictive control. System identification (SysID) algorithms,
seeking to approximate models using only input-output data without relying on WDN parame-
ters/typologies, are explored while overcoming several challenges. Such challenges are the com-
plex water quality and reaction dynamics and the mismatch between the requirements of SysID
algorithms and the properties of water quality dynamics. Through case studies, we demonstrate

the applicability of SysID algorithms and show the corresponding performance in terms of accu-
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racy and computational time by comparing it with the proposed WQM. Moreover, the possible
factors impacting water quality model identification are explored.

In short, this dissertation is the first thorough system, network, and control-theoretic attempt at
modeling water quality dynamics, controlling them, and scaling their implementation via model-
free methods. Future work will focus on more complex and nonlinear multi-species models as well

as feedback control problems that regulate such complex models.
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CHAPTER 1: INTRODUCTION

A drinking water distribution network (WDN) is composed of complex components that ade-
quately carry quantities and qualities of potable water from treatment plants or reservoirs to con-
sumers to satisfy the demands and requirements from residential, industrial, commercial, and fire
fighting. Water quality is typically ensured by chemical disinfection such as injecting chlorine-
based disinfectants. Moreover, residual chlorine concentrations are routinely monitored by water
quality sensors to verify that a sufficient residual is maintained throughout WDNs. Maintenance
of a detectable residual is also typically mandated by state and fedefal regulations in many coun-
tries. For example, water utilities in the US are required to preserve.detectable chlorine residual
throughout the WDNs under the Surface Water Treatment;Rule~(SWTR) 7], the Safe Drinking
Water Act of 1974 and its amendments in 1986 also réqairehat a measurable disinfectant residual
(i.e., 0.2 mg/L of chlorine residual) must be presént af pointsofvater consumption such as the end
of users []Z[] In addition, many states have established ever’more stringent numerical thresholds on

the minimum residual concentration [[T09]].

1.1 Motivations and challenges

WDNss should be capabie of/meeting the demands at all times and with satisfactory water quality.
However, in our modern eré, it is challenging to achieve the aforementioned goals due to the lack of
(i) a proper control-oriented water quality modeling (WQM) considering complicated components
(junctions, reservoirs, tanks, pipes, pumps, and valves), (ii) a corresponding scalable control al-
gorithm that performs real-time water quality control (WQC), and (iii) an effective, optimal water
quality sensor placement (WQSP) strategy to place sensors that can monitor chlorine concentration
to improve the observability of the WDNSs instead of installing the more expensive water quality
sensors at random locations.

The main objective of this dissertation is addressing the modeling problem of water quality

dynamics from the perspective of control theory and solving the corresponding optimal control



and sensor placement problems in WDNs. We discuss the detailed challenges of each problem

next.

* The WQM problem depicting the decay and transport of chlorine-based disinfectants in WDNs
is hard to tackle because the network components are complex. A WDN mainly consists of
pipelines, storage facilities (i.e., tanks and reservoirs), pumps, and other accessories (e.g., var-
ious types of control valves). The mathematical models of these components introduce more
intractable problems. For example, the water quality models in pipes are described PDEs. Addi-
tionally, the topology of these components is also very diverse and complex, and there exist four
typical typologies: grid, ring, tree or radial, and dead-end. Furthermore, the hydraulics in WDNs
are dynamic and the dynamic comes from multiple aspecis.such, as the) time-varying demands

and uncertainty caused by leaks.

* The WQC problem — maintaining the minimuns chlosin€ residual in WDNs while satisfying
specific constraints—is also a challengizg-task ‘since 1¢#'needs advancing control algorithms to
determine the appropriate chlorine dgsage.to ensure a sufficient residual, particularly at the far
ends of WDNs where the water-age 1s.tlie highe€st. Applying large doses of chlorine-based disin-
fectants at the treatment piafit has“oeen-associated with multiple issues, including the excessive
formation of disinfeefion byproducts as well as aesthetic issues with water taste and odor [A0].
Alternatively, the disinfeCtant can be injected in smaller doses at multiple locations in the net-
work, a practice commonly known as booster disinfection, to maintain a uniform disinfectant

concentration throughout the WDNss [[T28]!.

* The WQSP problem that maximizes the observability or state estimation metrics of the mon-
itored WDN’s given a limited number of sensors is NP-hard in general when searching over all
possible sensor combinations. Herein, observability is defined as the ability to estimate water
quality model states from available measurements via a state estimation routine. This provides
situational awareness for the operator given data from a few water quality sensors. Although the

WQSP problem considering different purposes such as detecting contamination events has been



studied in water quality literature [48][59]l, the sensor placement to improve the observability has

not been explored yet.

Revisiting water quality modeling for more compact models

Even if we could successfully develop the water quality model and propose effective algorithms
that can potentially solve the corresponding WQC and WQSP problems for WDNs. The efficiency
or scalability of such models and algorithms is still an issue. This is because the dimension (or
system order) of the water quality model can reach 10* or 10° even for small-to-midsize due to
ensuring high fidelity after discretizing the PDEs describing the spatiotemporal evolution of disin-
fectant concentration in pipes. It implies that high-accuracy mod¢Is;though effective for predicting
system dynamics, are not amenable to controller or estimater design forarge-scale networks —
especially in the presence of state or input constraints

To that end, model order reduction (MOR)is\necessary/tg” derive a compact model for fast
simulation and efficient synthesis of controllers and state estimators. The motivation of MOR
is to reduce the full-order model to a/réduced-order model that has a much smaller number of
states or order without significantly deepéasing model accuracy while maintaining input-output
relationships and retaining c€ttain properties of the system such as controllability and observabil-
ity [T3}[LTO}[T44].

Traditional water quality modeling including the proposed WQM method in this dissertation
is analysis-based [A4] [60]. “lowever, the analysis-based methods either rely on cumbersome,
extensive water/chemistry-based modeling or are based on obtaining hydraulic and many other
parameters—or require both. This is because the water quality analysis depends on the results of
hydraulic analysis such as the flow rates in all links. Since we already have the booster stations
installed to regulate the water quality and have the water quality sensors installed to monitor the
WDN:ss, an intuitive idea is to take advantage of these actuators and sensors by collecting experi-
mental data to identify the water quality models. In this way, a compact model could be obtained
because only a few actuators and sensors would be deployed in WDNs. Moreover, the process

of obtaining the full-order of the water quality model first and reducing the system model using



MOR algorithms to generate a compact model can be avoided. System identification (SysID)
algorithms for generic dynamic system models seek to approximate such models using only input-
output data without relying on network parameters. This dissertation also investigates SysID al-
gorithms for water quality model approximation to obtain a compact water quality model. This
research problem is complicated and mainly caused by the mismatch between the requirements of

SysID algorithms and the properties of water quality dynamics.

1.2 Literature review

In this section, we only provide a brief review of the literature related (o, the topics aforementioned
in the Introduction section since a separate, thorough literature ieyiew~oh each topic is provided

accordingly in the ensuing chapters of this dissertation.
1.2.1 Literature review of WQM

Over the past two decades, many studies, have-investigated the WQM problem in WDNs. Wa-
ter quality modeling depicts the decay apd/transport of chlorine-based disinfectants in WDNss.
This can be expressed via the ddvection<reaction dynamics for which three different families of
numerical schemes can be used\t0-Obtain’the numerical solution: Eulerian-based schemes [[T06],
Lagrangian-based sckezhes JJI9][78]l’and hybrid Eulerian-Lagrangian schemes [[[T]]. For example,
EPANET [[I07] is a widely used modeling software using a Lagrangian-based approach. For ex-
ample, the studies [IT7}[I50] derive an input/output (I/O) water quality model giving an explicit
relationship between inputs and outputs based on Lagrangian scheme.

All these studies have their limitations. Most of these studies fail to describe the input and
output relationship and are not designed for control-related purposes. For example, the I/O model
does not explicitly model the states, which results in a model that only captures the output per-
formance rather than all state variables in the network, and has to be updated once the locations
of inputs (boosters) and outputs (sensors) change. In this dissertation, we overcome these issues

by showcasing that the formulation of the state-space representation/form of water quality model
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