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Abstract. In this work, a constrained multi-objective function formulation of
liver machine perfusion (MP) based on widely accepted viability criteria and net-
work metabolic efficiency is described. A novel Monte Carlo method is used toAQ1

improve machine perfusion (MP) performance by finding optimal temperature
policies for hypothermic machine perfusion (HMP), mid-thermic machine perfu-
sion (MMP), and subnormothermic machine perfusion (SNMP). It is shown that
the multi-objective function formulation can exhibit multiple maxima, that greedy
optimization can get stuck at a local optimum, and that Monte Carlo optimization
finds the best temperature policy in each case.AQ2
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1 Introduction

Machine perfusion (MP), in which an organ is placed in chamber at fixed temperature
and constantly supplied with nutrients (called a perfusate) containing dissolved oxygen
through recirculation of the perfusate, is rapidly gaining acceptance as a better alternative
to static cold storage (SCS) for the preservation of organs (i.e., kidney, liver, heart) for
transplantation. Machine perfusion protocols are often classified based on the tempera-
ture of the perfusion chamber [1]. The most common protocols are Hypothermic (HMP,
0–12 °C), Mid-thermic (MMP, 13–20 °C), Subnormothermic (SNMP, 21–34 °C), and
Normothermic (NMP, 35–37 °C) MP. There are also various metrics used for establish-
ing organ viability for transplantation. However, those based on the energy state of the
organ (i.e., ATP content or energy charge) seem to be the most widely accepted metrics
for predicting transplantation success [2, 3]. In this paper, the terms protocol, profile,
and policy, have the same meaning.

While conventional temperature protocols for MP use a fixed temperature, recent
clinical studies [4, 5] in kidney MP have shown that gradual rewarming to body temper-
ature (37 °C) improves the energy state of kidneys compared to conventional HMP and
MMP. Recent optimization results using greedy and Monte Carlo optimization [7] and
a metabolic model of the liver [6] also yield discrete policies that systematically raise
the temperature of the perfusion chamber to body temperature and show improvements
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in the energy state of liver cells compared to conventional SNMP and NMP. See Fig. 1.
We note that the temperature policy for Monte Carlo optimization shown in Fig. 1 has
the same shape as the results for gradual rewarming for kidney shown in Fig. 3A in [5].

The constrained optimization problem studied in [7] was based only on the liver
viability criteria in [8] and formulated as follows:

max
T (t)

R: pH > 7.3; [lactate] < 2.3mM;T1 ≤ T2 ≤ · · · ≤ TN (1)

where T(t) = {T1, T2, …, TN} is a discrete temperature policy, N is the number of
discrete temperature adjustments, and the reward, R, is defined by

R = w1|Glc| + w2ATP + w3Mev + w4EC (2)

Glc in Eq. 2 denotes glucose consumption, ATP is net ATP synthesis, Mev denotes
mevalonate production, which was used as a measure of bile synthesis, EC is energy
charge, and w1 through w4 are weights.

Fig. 1. Liver machine perfusion temperature policies for SNMP, NMP, GREEDY, and MONTE
CARLO. Numbers in parenthesis represent amounts of ATP generated in pmol/cell.
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Monte Carlo Optimization of Liver MP Temperature Policies 3

1.1 SNMP Monte Carlo Temperature Policy Optimization and Statistics

The SNMP temperature policy optimizations in [7] were initialized to a flat temperature
protocol of 21 °C. Random temperature changes for eachMonte Carlo cycle (or episode)
were permitted every 30 min over the course of 4 h and 3000 Monte Carlo cycles (or
episodes)were used for each optimization run,which proved sufficient to find the optimal
temperature policy shown in Fig. 1.

One of the more interesting aspects of Monte Carlo temperature optimization from
an SNMP starting profile from the study conducted in [7] was the observation that there
were three distinct levels of reward (i.e., two maxima in the reward function) – two local
maxima at ~2.87 and 3.08 and a global maximum at ~3.55. Moreover, the existence of
multiple optimal solutions did not appear to be an artifact of the modeling since both
greedy and Monte Carlo optimization gradually warmed the perfusion chamber to body
temperature and improved SNMP performance. In addition, we observed that Monte
Carlo optimization bounced between the two local and global maxima quite regularly,
indicating that the barriers between the three optima are small. However, as the number
of cycles (i.e., episodes) was increased, the probability associated with states (i.e., the
temperature policies) became much higher for the global maximum than that of either
local maximum, as shown in Table 1, where probabilities were computed by counting the
number of production cycles for the local and global maxima and dividing each by the
total number of production cycles. Table 1 also shows that for 3000 Monte Carlo cycles,
the probability of encountering states associated with the global maximum were at least
two times higher than those for the local maxima. This last fact suggests that machine
learning approaches might prove useful in this application in training and deployment.

Table 1. Reward and probability of states for SNMP Monte Carlo optimization

Reward Probability

Optimum

Local maximum 1 2.8716 0.0862

Local maximum 2 3.0816 0.3029

Global maximum 3.5548 0.6078

1.2 Optimal Temperature Policies for HMP, MMP and SNMP Initial Profiles

To get a more complete understanding of the performance of Monte Carlo optimization,
optimal temperature policies were also determined for HMP and MMP. As in the case
for SNMP, initial profiles for HMP andMMPwere taken as flat temperature profiles of 6
and 16 °C, respectively, Monte Carlo optimization temperature changes were permitted
every 30 min, machine perfusion was run for 4 h, and 3000 episodes were used to find
the optimal temperature policy.

Figure 2 shows a comparison of all three cases where it is interesting to note the
following: (1) the optimal temperature policy is different in each case, (2) the colder the
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4 A. Lucia and K. Uygun

initial temperature profile is, the more rapid is the rise during the first 2.5 h of operation,
(3) all global optimal solutions have an energy charge at the low end of the normal
range [0.6, 0.95], and (4) it is somewhat surprising that mid-thermic machine perfusion
synthesizes the largest amount of net ATP.

Fig. 2. Liver machine perfusion globally optimal temperature policies from initial profiles for
HMP,MMP, and SNMP.Numbers in parenthesis represent amounts of ATP generated in pmol/cell.

2 Multi-objective Optimization of MP Temperature Profiles

The constrained optimization problem described in Eqs. 1 and 2 does not consider
networkmetabolic efficiency,E. Herewe include networkmetabolic efficiency by adding
the following objective to the problem formulation

maxE = net ATP

|Glc| (3)

Equations 1, 2 and 3 strike a balance between pure reward and network metabolic
efficiency and give rise to a Pareto optimal front. To illustrate this, we chose to apply
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Monte Carlo Optimization of Liver MP Temperature Policies 5

multi-objective optimization to MMP since it provided the ‘best’ optimal solution in
Fig. 2 as measured by net ATP produced.

2.1 Multi-objective Optimization of MMP

For MMP, each of the eight temperatures in the initial temperature policy was set to 16
°C and each episode for MMP was the same as that for earlier studies of SNMP. That
is, the liver was flushed with University of Wisconsin (UW) solution and then placed
in static cold storage (SCS) at 4 °C for 6 h. SCS was then followed by 4 h of machine
perfusion. See [6, 7] for details.

Using 3000Monte Carlo episodes, multi-objective optimization with an initialMMP
temperature profile produced the discrete objective function sets and Pareto optimal front
shown in Fig. 3.

Pareto optimal front

Fig. 3. Pareto set and optimal front for mid-thermic machine perfusion

Note that the Pareto optimal set (dotted lines) is rather flat in R and shows more
variationwith respect to networkmetabolic efficiency,E. In addition, there is virtually no
discernable difference in the best temperature policies along the Pareto optimal front. On

A
ut

ho
r 

Pr
oo

f



6 A. Lucia and K. Uygun

the other hand, themost significant differences lie in themetabolic behavior of glycolysis
and malonyl-CoA synthesis, the latter of which is a driver of fatty acid synthesis and
b-oxidation. Comparable results were obtained for the Pareto sets and optimal fronts
computed from initial flat HMP and SNMP temperature profiles.

3 Discussion of Results

In this section, the machine perfusion optimization results are discussed along with the
performance of the Monte Carlo algorithm.

3.1 Machine Perfusion Optimization

The results shown in Figs. 1, 2 and 3 show that Monte Carlo temperature policy opti-
mization is an effective tool for improving the performance of liver machine perfusion.
Using a constrained multi-objective function derived from (1) a reward function based
on clinical liver viability criteria [8] and (2) network metabolic efficiency measured in
terms of net ATP synthesized per amount of glucose consumed, temperature policy opti-
mization improved net ATP synthesis, energy charge, and bile production while clearing
lactate and maintaining pH within the physiological range for healthy liver cells from
the following static cold storage results: lactate concentration was 4.11 mM, the energy
charge of the cell was 0.4395, and the pH was 8.93. In addition, the results in Figs. 1
and 2 are consistent with recent clinical results in gradual warming [4, 5].

3.2 Algorithm Performance

The constrained optimization formulation given by Eqs. 1–3 is novel in that it is a multi-
objective function that accounts for gradual warming, constraints on the temperature
policy, viability constraints, and network metabolic efficiency.

In this work, Monte Carlo acceptance ratios ranged from 0.1 to 0.37, which is within
the usual range of ‘good’ acceptance ratios for Monte Carlo methods. In all cases, the
algorithm found the global maximum in under 3000 Monte Carlo cycles. Computer
times required for the temperature policy optimizations with 3000 Monte Carlo cycles
averaged 1335 CPU sec (0.37 CPU hrs.). However, it is important to note that episodes
tend to jump back and forth between the global and local maxima suggesting that the
barriers between all maxima (i.e., valleys) were shallow and presented little resistance
to movement on the reward surface.

Another point of interest is the fact that the global maximum in reward found from an
initial SNMP temperature profilewas different from the globalmaximum in reward found
from either the initial HMP or MMP temperature profile and this was a bit confusing
at first. Two additional considerations are important here. First, when the number of
Monte Carlo cycles for the optimization starting with an SNMP temperature profile was
increased to 5000, the algorithm still did not find a global maximumwith a reward value
of ~3.8. Second, using a different initial temperature profile of 28 °C, which is midway
in the region classified as SNMP, the resulting global maximum reward changed only
slightly from 3.5548 to 3.5619. Thus, it appears that using initial SNMP temperature
profilesmay preclude the existence of the global maximum that occurs when initial HMP
and MMP temperature profiles are used.
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Monte Carlo Optimization of Liver MP Temperature Policies 7

4 Conclusions

A multi-objective function consisting of (1) a reward function based on liver viability
criteria [8] and (2) a measure of network metabolic efficiency along with Monte Carlo
optimization were used to determine globally optimal temperature policies for a mathe-
maticalmodel of livermetabolism duringmachine perfusion. Initial temperature policies
corresponded to traditional hypothermic, mid-thermic, and subnormothermic tempera-
ture profiles. In each case, the global optimum temperature policywas determinedwithin
a reasonable number ofMonteCarlo cycles (episodes). SeeFig. 2.However, optimization
results varied depending on the initial temperature profile.

No single initial temperature profile gave the best results for all terms in the reward
function. The best overall results were obtained when the Monte Carlo optimizations
were initiated from aMMP temperature profile. In addition, the probability of finding the
globalmaximumrewardof~3.8wasmuchhigher in this case thanwhen theoptimizations
were started from an initial HMP temperature profile. It also came as a surprise that
starting from an initial SNMP temperature profile yielded results that were not as good
as those for MMP.

A Pareto set and optimal front were determined for mid-thermic machine perfusion.
Results here showed that the objective function set is discrete, that the Pareto optimal
front is flat in terms of the reward function and that all solutions along the front result
in essentially the same optimal temperature policy. On the other hand, the network
metabolic efficiency varied considerably along the Pareto optimal front, suggesting that
other factors in addition to those in the multi-objective formulation may play a role in
determining liver metabolism during machine perfusion.
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