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Figure 1: With our method, VR users can interact with a virtual agent naturally through a combination of multiple modalities including
verbal expressions, body language, and eye contact. In the right, the top row shows a VR user’s multi-modal behaviors while he
interacts with a virtual agent; the bottom row shows the agent’s real-time reactions.

ABSTRACT

Virtual agents serve as a vital interface within XR platforms. How-
ever, generating virtual agent behaviors typically rely on pre-coded
actions or physics-based reactions. In this paper we present a
learning-based multimodal agent behavior generation framework
that adapts to users’ in-situ behaviors, similar to how humans in-
teract with each other in the real world. By leveraging an in-house
collected, dyadic conversational behavior dataset, we trained a con-
ditional variational autoencoder (CVAE) model to achieve user-
conditioned generation of virtual agents’ behaviors. Together with
large language models (LLM), our approach can generate both the
verbal and non-verbal reactive behaviors of virtual agents. Our
comparative user study confirmed our method’s superiority over con-
ventional animation graph-based baseline techniques, particularly
regarding user-centric criteria. Thorough analyses of our results
underscored the authentic nature of our virtual agents’ interactions
and the heightened user engagement during VR interaction.

Index Terms: Virtual agents, human-VR interaction, user-
conditioned motion generation, user-aware interaction.

1 INTRODUCTION

Extended Reality (XR) technologies have heralded an exciting era
of immersive interaction, enabling users to see, hear, and interact
with virtual content as if it were part of their physical surroundings.
This paradigm shift towards lifelike virtual environments naturally
extends our desire for virtual agents that emulate human-like commu-
nication and interaction. The development of such intelligent virtual
agents is paramount for future XR systems, with potential benefits

*e-mail: bsgunawardhana@uh.edu
†e-mail: yunxiang.zhang@nyu.edu
‡e-mail: qisun@nyu.edu
§e-mail: zdeng4@central.uh.edu

across diverse applications such as client services, professional work
settings, and video games.

Despite long-standing aspirations for responsive virtual agents
in XR platforms, these agents have not yet achieved the level of
naturalness and realism required for real-time interaction with the
level of naturalness and realism required, often making them easily
distinguishable from actual users [30]. This limitation is primarily
due to several shortcomings in previous approaches: (i) Overreliance
on scripted rules: Many prior attempts have leaned heavily on pre-
scripted rules and a fixed set of pre-coded responses, limiting the
agents’ adaptability and authenticity. (ii) Lack of contextual adapta-
tion: These virtual agents typically fail to adapt to the user’s in-situ
behaviors, missing the contextual nuances essential for lifelike inter-
actions. (iii) Limited response diversity: The responses generated by
such agents generally lack necessary diversity, leading to predictable
and repetitive interactions. Addressing these issues is crucial to
achieving the goal of creating responsive and socially-aware agents
within XR environments.

To overcome these limitations, we developed a machine-learning-
based virtual agent system capable of natural interactions with VR
users using multimodal cues in real-time. Our virtual agents engage
in verbal communication while performing appropriate eye contact
and body language based on the VR user’s behavior. This is achieved
by learning a conditional variational autoencoder (CVAE) model
using a high-quality dataset of dyadic communication behaviors.
Specifically, we tracked subjects’ eyes, head, and body motion dur-
ing natural conversations and trained the CVAE model to generate
one subject’s behaviors while conditioned on the other’s. Conse-
quently, our model can generate natural eye contact and responsive
body movements for virtual agents based on the VR user’s verbal
and non-verbal actions.

Our user study and quantitative evaluations demonstrate that our
model can bluegenerate user-aware communication behaviors for
virtual agents, significantly facilitating natural human-agent inter-
actions in VR. Virtual agents with model-generated behaviors are
perceived as plausible and appropriate by human users, leading to
more engaging XR interaction experiences. This is validated through
subjective evaluations and quantifiable behavioral measures.
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In summary, our work makes the following main contributions: (i)
A multimodal and high-fidelity dataset of dyadic natural communi-
cation behaviors, including speech, eyes/head, and full-body motion
data. Besides the dataset, we make our model/code available to the
community (https://cg-im.github.io/ismar24 intelligent agent/ ). (ii)
A user-aware natural communication behavior generation model for
interactive virtual agents. (iii) An end-to-end runtime system that
generates responsive and human-like agent behaviors based on the
tracked behaviors of the VR user.

2 RELATED WORK

Motion synthesis for virtual humans. Numerous previous efforts
have been made to create gaze models, from conveying emotional
nuances in gaze behavior [54] to emulating turn-taking protocols [32,
60], highlighting conversation points of interest [38], and simulating
agent attending behaviors across various activities and cognitive
actions [26]. Some existing studies concentrated on leveraging
statistical models to animate natural gaze behaviors [14, 17, 33, 37,
43], without incorporating the semantics of communicative context.

Researchers introduced various techniques to generate realistic
head motion, including using dynamic programming algorithms
to synthesize head motion [12] and co-speech gestures [59], and
extending Hidden Markov Models (HMMs) for head motion gener-
ation [10, 11, 35, 55]. Additionally, rule-based methods have been
used to facilitate virtual conversations between two parties, driven
by speech and semantically annotated texts [45]. Researchers have
also focused on effectively synchronizing head movement with gaze
during conversations [25, 33, 43, 46] and learning rules from an-
notated conversation datasets to generate gestures, including head
movements, for listening agents [19, 44].

Researchers learned statistical models with predefined gesture
units [39, 47], or employed deep learning techniques including de-
terministic models [9, 41], generative models [67, 68], and diffusion
models [4] for co-speech gesture generation. To ensure semantic
alignment between speech and gesture, neural network systems have
been specifically designed to explicitly model both gesture rhythm
and content semantics [5, 6, 40].

Human-agent interaction. Digital agents have been an intuitive
and promising interface that contextualizes complex AI computation
to human users [42]. Examples include the Microsoft Office Clippit,
Apple Siri, Google Assistant. One representative implementation is
robots. An extensive line of research has been proposed to study and
understand the interaction between humans and robots, such as trust
[20, 66] and efficiency [13, 18]. In virtual environments, humanoid
agents have been implemented as virtual agents to enable social
naturalness and presence. The main advantages of using agents in
XR-based communications include trustworthiness and co-presence
[8], but depending on the interpretation of visual realism [22,49] and
behavioral realism [28, 53, 65]. Also, compared to visual realism,
the behavioral realism of agents is generally believed to be a more
important factor for social interaction and social presence [50, 64].
The behavioral realism includes verbal and non-verbal behaviors,
responsiveness, and interactivity with the user [30].

Similar to motion synthesis techniques, existing immersive agents
are either driven by physics-based engines [63], pre-computation
[34], or mapping real users’ actions at run-time (e.g., the Meta
Horizon Worlds). Recent studies used machine learning models,
including Generative Adversarial Networks (GAN) [24, 48] and
Long Short-Term Memory (LSTM) models [15], to generate certain
non-verbal facial behaviors of the agent (e.g., facial expressions and
head movements) based on user states such as affective state and
facial expressions. However, modeling the implicit and cognitive
process to drive agents that adapt to the real users’ actions in a
socially realistic manner still remains an under-explored challenge.
The main goal of this work is to develop an end-to-end framework
with a high-fidelity dataset and a real-time deep neural network.
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Stations

2 Motion
Controllers

HMD

Figure 2: A runtime snapshot of our system, where a VR user wears
a Varjo Aero HMD and holds two hand motion controllers.

3 SYSTEM OVERVIEW

In this section, we provide an overview of our end-to-end interac-
tive conversational agent system, developed using Unreal Engine
5 [16]. Our system uses state-of-the-art technology and hardware
components, as illustrated in Figure 2.

To ensure a high-quality virtual reality experience, we choose
the Varjo Aero HMD headset [3] due to its high VR fidelity and
integrated eye-tracking capabilities. Additionally, we incorporate
two HTC vive [2] motion controllers to capture hand movements of
the VR user. The controllers are tracked within a two-meter diagonal
setup consisting of two HTC base stations. We use Steam to create
a user-friendly play area that measures approximately 1.5 meters by
1.5 meters, allowing immersive VR conversations and interactions.

Before a user engages with our system, we need to perform an
HMD calibration process for the specific user. Specifically, foveated
rendering calibration entails the user focusing on a white circle
shown on the headset screen for a brief period. Foveated rendering
optimizes the resolution around the fixation region, enhancing the
visual experience.

During human-agent interaction, the VR user needs to push and
hold a trigger button on the left-hand motion controller, while speak-
ing naturally with gestures. Once the user completes the speech,
he/she can release the trigger button on the left-hand motion con-
troller. The virtual agent in our system responds interactively to
the user’s speech input, delivering not only vocal responses but
also synchronized lip movements, eye contact, body language, and
hand gestures. All these dynamic behaviors of the virtual agent
are generated in real-time by our system, facilitating multi-round
conversations.
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Figure 3: Pipeline overview of our system

Figure 3 shows a pipeline overview of our system and its core
components. Inputs to our system can be categorized into two types:
audio and motion. Audio consists of the user’s live speech signals,
while motion includes 11 features: three head rotation angles from
the HMD, three rotation angles from two motion controllers for
left/right hands, respectively, and HMD-provided eye-tracking XY
positions. Our system outputs two types of responses: audio re-
sponses and motion responses. Motion responses are further divided
into third-party motions and our CVAE model-generated motions,
which are blended into the agent character’s bone hierarchy as the fi-
nal output. Third-party motions include facial lip-sync blendshapes
for the MetaHuman skeleton and joint angles of both hands and
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Figure 4: A snapshot of our dyadic conversation data acquisition
experiments

fingers. Our CVAE model generates 35 upper body (i.e., torso,
arm, head) joint angles and XY eye coordinates in the agent’s view-
ing frustum. The internal processing between input and output is
explained below.

When the VR user speaks, we first employ the OpenAI’s Whis-
per API to transcribe the user’s speech to text (STT). The text is
then further fed into the ChatGPT developed by OpenAI, a sophis-
ticated large language model (LLM), to generate a text response,
ensuring the preservation of conversational context and flow in the
generated text response. The LLM-generated text responses are
subsequently transformed into audio using text-to-speech (TTS)
technology (i.e., Google TTS with configurations speechtext, pre-
mium, en-US-Neural2-A, MALE, MP3). To further enhance the
immersive experience, we utilize the MetaHuman SDK [1] to gener-
ate synchronized lip-sync animations based on the generated audio.
To efficiently generate user-aware conversational behaviors for the
virtual agent, including eye movements, torso movements, arms
and head movements, we train a CVAE model (in Section 5). It
takes input from the VR user’s in-situ behavior, and outputs the eye
movements, head movements, and body movements of the virtual
agent. Furthermore, we integrate the method in [29] to dynamically
generate hand gestures based on audio input, further improving the
realism of conversational experience.

4 DATA ACQUISITION

In this work, we used an in-house data acquisition system to record
high-quality, synchronized, multi-modal behavior data from dyadic
conversations [36]. The resultant dataset encompassed various be-
havioral cues, including eye movements, head movements, hand
gestures, body movements, and audio signals. Each participant in
dyadic conversations was equipped with specialized equipment to
facilitate data capture, as depicted in Figure 4.

To capture head movements, hand gestures, and body movements,
we outfitted each participant with a motion capture (mocap) suit in
our experimental setup. These suits were placed with optical mocap
markers that allowed the VICON optical motion capture system to
precisely record the motions of all conversational participants.

For eye movement tracking, we chose the Ergoneers Dikablis
Glass 3 eye tracker due to its high accuracy, wireless functionality,
and comprehensive software suite that facilitated in-depth analysis.
This eye tracker featured two cameras directed towards the user’s
eyes, tracking eye movements through the pupil’s xy coordinates.
Simultaneously, a third camera captured video footage from the
participant’s perspective, which we utilize as a reference for the
motion data cleanup process. This setup ensured comprehensive eye
movement data acquisition.

Audio data, a crucial component of our dataset, was captured
using high-definition microphones to ensure clarity and high-quality
recordings. Synchronization of the eye tracking data and the au-
dio data was orchestrated using the D-Lab software provided by

Ergoneers, ensuring precise alignments in our experiments.
In our data acquisition experiments, a total of three participants

(two males and one female) engaged in dyadic conversations. They
were formed in three pairs and were encouraged to discuss freely
topics of personal interest, such as hobbies and campus life. The
recorded data from these interactions totaled approximately 62 min-
utes, 63 minutes, and 55 minutes for the respective pairs, cumula-
tively amounting to 180 minutes of raw recorded data. Subsequently,
we further processed and cleaned the data, resulting in 112 minutes
of high-quality refined data.

5 OUR METHOD

We formulate the task of user-aware behavior synthesis for virtual
agents as a conditional generative learning problem. Specifically,
we train a conditional variational autoencoder (CVAE) model [58]
to synthesize the virtual agent’s head, eye, and body movements
based on the tracked in-situ motion of the VR user, which also
encompasses eye, head, and body movements. CVAE is a variant of
the base variational autoencoder (VAE) model [27]. In the following,
we briefly describe the VAE model and our CVAE model.

5.1 Variational Autoencoder (VAE)
A VAE model consists of an encoder and a decoder. The encoder
maps input data x to a latent space z with parameters q and f . The
decoder maps the latent space back to the data space. The objective
of VAE is to maximize the evidence lower bound (ELBO) on the
marginal likelihood as follows.

log pq (x)� Eqf (z|x)[log pq (x|z)]�DKL(qf (z|x)||p(z)), (1)

where pq (x|z) denotes the likelihood function, qf (z|x) denotes the
approximate posterior distribution of z, p(z) denotes the prior distri-
bution of z (typically assumed to follow a standard normal distribu-
tion), and DKL is the Kullback-Leibler divergence.

5.2 Conditional Variational Autoencoder (CVAE)
In a CVAE model, both the encoder and decoder are influenced by
additional contextual information denoted as c. This implies that the
encoder and the decoder not only consider the data x and the latent
variable z, but also this supplementary context c.

The objective function for CVAE becomes:

log pq (x|c)� Eqf (z|x,c)[log pq (x|z,c)]�DKL(qf (z|x,c)||p(z|c)),
(2)

where pq (x|z,c) is the conditional likelihood function, qf (z|x,c)
denotes the approximate posterior distribution of z conditioned on
c, and p(z|c) denotes the prior distribution of z conditioned on c. In
practice, this conditioning is often achieved by incorporating c as an
additional input to both the encoder and decoder networks.

5.3 Our CVAE Model and Implementation
In our specific problem, we possess the ground truth data cA, which
includes upper body joint angles and eye gaze data for person A at
each frame. Similarly, xB comprises upper body joint angles and
eye gaze data for person B at each frame. Notably, both cA and
xB consist of 35 features, encompassing head movement angles,
and joint angles associated with the pelvis, thorax, left and right
clavicles, humeri (upper arms), radii (forearms), and hands. Each
of these anatomical segments contributes three joint angles along
the three axes. Furthermore, eye movement features, represented as
eye x and eye y, denote the horizontal and vertical positions of the
pupil, respectively. The primary objective of our CVAE model is
to generate these motions for person B, frame by frame, based on
the motion of person A. Figure 5 illustrates the architecture of our
CVAE model.

Our CVAE model was implemented using PyTorch. The encoder
module consists of two encoder blocks, each of which contains a
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Figure 5: Architecture illustration of our CVAE model

series of layers for effectively processing input data. Within each
block, the first layer is a 1-dimensional convolutional layer, followed
by a batch normalization layer to ensure stable activations. The
CVAE model was tailored to process inputs with 35 features, and
we defined the latent space with a dimensionality of 10. The model
architecture included hidden layers with 128 units, specifically de-
signed to handle sequence data with a length of 32.

5.4 CVAE Model Training Details
The training was initialized with a random seed of 123. We set
the initial learning rate to 0.001 and trained the model using mini
batches, each containing 128 samples. During our model training,
we optimize the parameters q and f to maximize the Evidence
Lower Bound (ELBO) evaluation metric, as defined in the aforemen-
tioned objective function (Eq. 2), which combines the reconstruction
loss and KL divergence. The training spanned over 50 epochs; to
mitigate the risk of overfitting and regularize the model parameters,
we applied a weight decay factor of 0.0005. Our model was trained
on a PC with an Intel Core i7-8700K processor, 24 GB of RAM, and
NVIDIA GeForce RTX 2080 Ti Graphics card.

Once our CVAE model has been trained, we can leverage the
encoder and decoder to generate motion sequences for person B
based on new motion data from person A. Specifically, we first
input cA for each frame into the encoder, which yields the latent
variable z. After that, we use the decoder with z and cA to produce
the synthesized motion x0B for person B.

5.5 Runtime Algorithms and System
After the above CVAE model has been trained, our runtime algo-
rithms and system work as follows. To facilitate efficient runtime
inference of our system, we pre-converted our PyTorch-based CVAE
model to the Open Neural Network Exchange(ONNX) format. Sub-
sequently, in the Unreal Engine we harnessed the Neural Network
Inference (NNI) plugin to execute model inference efficiently. In or-
der to acquire the VR user’s real-time motion as input to our CVAE
model, we used the transformations from the VR HMD headset
and two motion controllers to generate corresponding transforma-
tions for other upper body bones using inverse kinematic techniques.
Specifically, we utilized the Forward And Backward Reaching In-
verse Kinematics (FABRIK) solver [7]. Meanwhile, we can obtain
live eye gaze data of the VR user from the HMD headset [3]. The
amalgamation of these two data at each frame serves as the input to
our CVAE model during runtime.

STT LLM Repsonse TTS Lip Sync* CVAE*

0.53 0.6 0.8 5.96 2.43
Table 1: Average running time (in seconds) consumed by core components of
our pipeline. Note that LipSync* and CVAE* run in parallel.

To create animations for the virtual agent, we utilize the MetaHu-
man SDK to generate lip-sync animations based on audio input. In

this setup, we configure MetaHuman in the mapping mode to enable
the mapping of MetaHuman-compatible lip-sync blend shapes. To
ensure real-time efficiency, we segment the response audio, allowing
us to obtain the animations in chunks as they are generated. Table 1
shows the average running time consumed by core components of
our pipeline. The average time to generate multi-modal response
on an off-the-shelf computer was about 6.20 seconds, and the main
latency bottleneck is the lip-sync component. As a comparison,
the average response delay is about 3.06 seconds according to our
acquired real-life human conversation dataset. To synthesize hand
gestures, we implemented an encoder-decoder model, following the
approach outlined by Kucherenko et al. [29]. Here, the encoder pro-
cesses the speech signal to derive a set of representational features,
and then the decoder utilizes these features to generate correspond-
ing hand gesture motion sequences.

5.6 Comparison with References
We further assessed the performance of our CVAE model by directly
comparing it with the reference data in the test dataset. Figure 6 and
Figure 7 show the head and eye motion trajectories produced by our
CVAE model juxtaposed with the reference data. The two figures
highlight that our model successfully captures the fundamental mo-
tion patterns, underscoring the capability of latent space learning
within our model. Furthermore, not only does our model reflect
the overall motion trends, but also the nuances of the generated tra-
jectories also closely align with the reference data. This alignment
attests to our model’s ability to accurately replicate the dynamics
and features of real-world conversational motion.

6 EVALUATION: USER STUDY

To evaluate the effectiveness and usefulness of our system, we con-
ducted a comparative user study between our approach and a base-
line. In addition to collecting subjective evaluations via question-
naires, we also recorded the eye tracking signals of participants when
they wore the HMD headset and interacted with the virtual agent
by both our method and the baseline method. Subsequently, we
analyzed and compared the objective behavioral measures between
the two methods.

Conditions: The following two conditions were used in our
comparative study.

• Our Method. The proposed algorithms and system in this
work were used to automatically generate the conversational
behaviors of the virtual agent.

• Baseline. In the baseline, torso, arms, and head movements,
and eye movements of the virtual agent were generated by the
animation graph method in the Unreal Engine, while the lip-
sync animation and hand gesture generation modules were the
same as those in our approach. This baseline setup served to
highlight the distinction in motion synthesis achieved through
our CVAE model, thereby enabling a neat evaluation of its
effectiveness in enhancing conversational dynamics.

Hypotheses: In this study, we want to statistically test the fol-
lowing hypotheses. (1) Hf a: Our method achieves a statistically
significantly higher focused attention than the baseline method. (2)
Hpu: Our method achieves a statistically significantly higher per-
ceived usability than the baseline method. (3) Hae: Our method
achieves a statistically significantly higher aesthetic appeal and nat-
uralness than the baseline method. (4) Hrw: Our method achieves
a statistically significantly higher rewarding experience than the
baseline method. (5) Hrb: Our method achieves a statistically signif-
icantly higher reactive behavior than the baseline method. (6) Hue:
Our method achieves a statistically significantly higher user engage-
ment than the baseline method, through the quantitative analysis of
objective eye movement signals.
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Figure 6: Comparisons between the ground-truth data and the corresponding generated head motion trajectories by our CVAE model.

Figure 7: Comparisons between the ground-truth data and the corresponding normalized eye motion trajectories by our CVAE model.

Participants: A total of 15 volunteers were recruited from a
university campus to participate in our study. The group consisted
of 5 females and 10 males, with an average age of 27.1 years and
a standard deviation of 3.0. These participants hailed from a range
of academic disciplines, including computer science, biochemistry,
physics, and mechanical engineering. Their familiarity with Vir-
tual Reality (VR) devices varied: 8 (53.3%) of them had no prior
experience with VR devices, 5 (33.3%) had used VR occasion-
ally in the past, and 2 (13.3%) were regular or professional users
of VR. Participants unfamiliar with VR technology were offered
a session to acquaint themselves with the VR devices before the
study commenced, serving as an introductory warm-up. None of
the participants had prior experience in interacting with agents in
VR. Importantly, all participants were kept unaware of the study’s
hypotheses and specific conditions.

Study design: In the study, participants engaged with the sys-
tem over two distinct sessions, unaware of the specific system in
operation for each session. For each participant, the sequence of
our method and the baseline method was randomized across these
sessions. Each interaction session with the virtual agent spanned
approximately 10 minutes. Before starting, participants were guided
to focus on the agent’s non-verbal cues rather than the conversational
content. To ensure uniformity in the conversation across sessions,
a structured sequence of questions and potential follow-ups was
provided. While they were not required to strictly adhere to the ques-
tions provided, they were encouraged to maintain the conversation
within the stipulated topic, ensuring a fluid dialogue. The set of
dialog questions was also displayed on the VR environment wall for
reference, should participants need assistance during the interaction.

During each session, we captured multiple data points includ-
ing the first-person perspective of the user, the audio of both the
participant and the virtual agent, eye-tracking data from the HMD
headset [3], and a third-person video recording of the VR user’s
interaction with the system. Upon completion of each session, par-
ticipants filled out a questionnaire (the full questionnaire is enclosed
in Table 2 in the supplemental document) to provide subjective eval-
uations and feedback on their experiences and the system. Drawing
inspiration from a short form of User Engagement Scale (UES) ques-
tionnaire by O’Brien et al. [51], our questionnaire consisted of five
categories: focused attention (FA), perceived usability (PA), aes-
thetic appeal (AE), reward experience (RW), and reactive behavior
(RB). Participants responded on a 5-point Likert scale, ranging from
1 (strongly disagree) to 5 (strongly agree). It should be noted that
we did not choose the NASA-TLX questionnaire [21] in our study,
because it is designed to mainly assess workload, while the main
focus of our study is the user engagement aspect.

Task: Participants were instructed to attentively observe the vir-
tual agent’s head, eyes, upper torso, and hand movements, as well
as its non-verbal reactive behaviors during their conversation. They
were instructed to ensure that the conversational context remained
within the specified topic, without any significant deviations. Fur-
thermore, they were encouraged to ask follow-up questions based
on the agent’s responses adhering to the topic at hand. The primary
topic was lunar exploration, encompassing its history, present status,
and future possibilities. It was reiterated that the main interest of
this study was not the discussion content, but the agent’s movements
and reactions.

1072

Authorized licensed use limited to: University of Houston. Downloaded on September 21,2025 at 02:10:41 UTC from IEEE Xplore.  Restrictions apply. 



Table 2: Post-experimental questionnaire used in our study

Focused Attention (FA)

FA-1. I was completely absorbed in my interaction with the virtual agent.
FA-2. The agent’s non-verbal cues enhanced my engagement in the conversation.
FA-3. I lost track of time due to the realistic nature of the agent’s movement
FA-4. I was so involved in the conversation that I blocked out things around me.
FA-5. The agent’s body language made me forget I was in a virtual environment

Perceived Usability (PU)

PU-1. I found the multimodal interactions (e.g., speech, eye gaze, nodding, gestures)
with the virtual agent easy to use
PU-2. I felt in control while navigating through the multimodal interactions with the
virtual agent
PU-3. I was able to complete my tasks successfully with the virtual agent
PU-4. I found the features of the multimodal interactions with the virtual agent to be
well-integrated.
PU-5. I found it easy to understand the agent’s non-verbal cues (head nodding, eye
movement).
PU-6. I did not feel frustrated by the lack of synchronization between my movements
and the agent’s reactions.

Aesthetic Appeal (AE)

AE-1. The agent’s movements were fluid and natural.
AE-2. The agent’s facial animations were aesthetically appealing.
AE-3. I found the agent’s gestures to be visually pleasing.
AE-4. The agent’s body language appealed to my visual senses.

Rewarding Experience (RW)

RW-1. Interacting with the virtual agent was worthwhile.
RW-2. I consider my interaction with the virtual agent a success.
RW-3. The interaction with the virtual agent worked out the way I had planned.
RW-4. I would recommend interacting with the virtual agent system to my family and
friends.
RW-5. I continued to interact with the virtual agent out of curiosity.

Reactive Behavior (RB)

RB-1. The virtual agent’s eye gaze was responsive to my actions.
RB-2. The virtual agent’s head and body movements were synchronized with the
conversation.
RB-3. The virtual agent’s hand gestures enhanced the communication.
RB-4. The virtual agent mirrored or complimented my actions effectively.
RB-5. The virtual agent’s non-verbal cues were understandable and realistic.

6.1 Subjective Measures via Questionnaires

We summarize and plot the aggregated user ratings in Figure 8 by
calculating the mean response for each question category listed in
Table 2. Participants gave overall higher ratings when our system
was adopted as compared to the baseline method: 3.77± 0.85 >
3.42±0.97. In addition, this result held for each individual question
group: 3.45± 0.82 > 3.09± 0.93 (FA), 3.81± 0.87 > 3.42± 1.04
(PU), 3.78± 0.82 > 3.45± 0.86 (AE), 4.27± 0.72 > 4.11± 0.76
(RW), and 3.53±0.77 > 3.01±0.79 (RB). By isolating the results
for each individual question, we observed that our method performed
better than the baseline method across all questions, as illustrated in
Figure 9.

Based on the collected user rating data, we also performed sta-
tistical tests to verify the aforementioned hypotheses: Hf a, Hpu,
Hae, Hrw, and Hrb. A one-way repeated measures ANOVA in-
dicated that the agent motion generation method had a statisti-
cally significant effect on the user ratings (F1,748 = 28.21, p <
.001,h2

partial = 0.036) and thus rejected the null hypothesis. Sim-
ilarly, a two-sided independent T-test confirmed the rejection
of the null hypothesis (t748 = 5.31, p < .001). A one-way re-
peated measures ANOVA breakdown for each individual ques-
tion group gave: F1,148 = 6.26, p < .05,h2

partial = 0.041 (FA),
F1,178 = 7.31, p < .01,h2

partial = 0.039 (PU), F1,118 = 4.63, p <

.05,h2
partial = 0.038 (AE), F1,148 = 1.74, p = 0.18,h2

partial = 0.012

Figure 8: Aggregated user ratings for each question group (capped
lines indicate 95% confidence intervals). Notably, our method enabled
better user experience than the baseline method in terms of all five
categories of subjective evaluations.

(RW), F1,148 = 16.37, p < .001,h2
partial = 0.100 (RB). Notably, the

superior performance of our method over the baseline method is
statistically significant for all individual question groups except for
RW (rewarding experience). In other words, our hypotheses Hf a,
Hpu, Hae, and Hrw are statistically verified to be true, while for Hrw
we failed to reject the null hypothesis.

6.2 Objective Behavioral Measures
In our user study, a Varjo Aero HMD headset was used to record
the eye-tracking data of participants, serving as a robust medium
for analyzing user engagement [56]. Based on the recorded eye
tracking data, we compute the following objective behavioral mea-
sures to compare our method and the baseline method: gaze stability
measure, pupil diameter measure, gaze allocation, and mutual gaze.

Gaze stability measure: The Varjo Base software logged gaze
data during run-time to capture the stability metric from the recent
history of combined gaze ray samples [62]. The travel distances
in the gaze ray angles of recent samples are summed up as ÂDq ,
where Dq represents the change in gaze angles between consecutive
samples. An interpolation was performed to map this summed value
to the stability range [0,1], with 0 indicating a large traveled distance
(poor stability) and 1 indicating a small traveled distance (good
stability). The mapping is defined by empirically determined angle
constants and historical samples [62]. This stability metric serves
as a reflection of the user’s focus steadiness, with a score of 1.0
denoting absolute stability and thereby a high level of engagement.
Similar methodologies have been used to measure user engagement
levels from eye tracking data [31, 52, 57].

We used the above methodology to evaluate both our method
and the baseline method in terms of user engagement, measured
through the stability metric. Figure 10(a) illustrates the average
stability metrics and 95% confidence intervals for a total of 15
participants using both our method and the baseline method. Figure
10(b) compares the aggregated results between our method and the
baseline method. As clearly observed from these two figures, our
method achieved significantly higher stability metrics, individual-
wise or aggregated, than the baseline method.

A one-way ANOVA analysis revealed a significant differ-
ence between the two methods, with F1,224029 = 31,591, p <
0.001,h2

partial = 0.000141, indicating that our method achieved sta-
tistically significantly higher stability metrics and thus user engage-
ments than the baseline method.

Pupil diameter measure: We also computed the pupil diam-
eter measure to compare our method and the baseline method.
Specifically, we averaged the pupil diameters of both eyes for
each participant. Figure 11(a) shows the comparison of the aver-
aged pupil diameters between our method and the baseline method,
while Figure 11(b) shows the aggregated comparison. A one-way
ANOVA was conducted to examine statistical significance between
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Figure 9: Question-wise user rating breakdown (from top to bottom:
focused attention (FA), perceived usability (PU), aesthetic appeal
(AE), rewarding experience (RW), and reactive behavior (RB)). Our
method achieved higher user ratings than the baseline method for all
the questions.

the two methods. This analysis yielded F1,224029 = 16,394, p <
0.001,h2

partial = 0.000073, elucidating a statistically significant dif-
ference between the two methods.

As reported in previous literature [61, 69], the pupil diameters
of humans are positively related to their attention in various tasks.
For example, in the psychophysiological experimental study by van
den Brink et al. [61], they found robust linear relationships between
the pupil diameter and several measures of task performance, which
suggested that attentional lapses tended to occur when pupil diameter
was small. In another recent experimental study by Zijlstra et al. [69],
they found that, for humans, a small but significant attentional bias
towards dilated pupils, compared to intermediate-sized pupils and
intermediate-sized pupils when compared to small pupils. Therefore,
as mentioned above, the pupil diameters of participants using our

Figure 10: (a) The average stability metrics (capped lines indicate 95%
confidence intervals) of individual participants in our study between
our method and the baseline method. (b) Aggregated average stability
metrics between our method and the baseline method

system are statistically significantly larger than the pupil diameters
of the same participants using the baseline system. These results
provide statistically-grounded objective measures to support that
participants pay significantly more attention to the virtual agent and
thus have more user engagement when using our system, compared
to the baseline system.

Figure 11: (a) The average pupil diameters (capped lines indicate 95%
confidence intervals) of individual participants in our study between
our method and the baseline method. (b) Aggregated average pupil
diameters between our method and the baseline method.

Gaze allocation: We also collected gaze allocation information
of participants during the user study. Specifically, according to the
eye gaze at each frame (real-time tracked by the VR headset), we
real-time compute which triangle in the virtual agent mesh intersects
with the participant’s gaze and store the triangle index. Then, we
assume that the participant assigns the gaze to this specific triangle at
that moment. Finally, we visualize the gaze allocation counts of the
triangles in the virtual agent mesh in Figure 12. As clearly shown in
this figure, when participants interacted with the virtual agent using
our method, they allocated more gazes to the face of the virtual agent
than using the baseline method. Based on previous research studies
on gaze allocation in face-to-face human communication [23], a
person PA generally assigns more gaze to the face of the partner PB
in dyadic conversations when PB pays more attention to PA (e.g., eye
contact) during communication. Extending this finding from face-
to-face human communication to human-agent interaction in this
work, the comparative result in Figure 12 implies that, during human-
agent interaction, the automated virtual agent by our method pays
more attention to participants than the virtual agent by the baseline
method; therefore, when our method is used, the participants assign
more of their gaze to the face of the virtual agent.

Eye contact (mutual gaze): Utilizing the VR user’s real-time
tracked gaze and the virtual agent’s animated gaze, we are able to
determine the proportion of eye contact (mutual gaze) shared be-
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tween the VR user and the virtual agent throughout their interaction.
Additionally, we calculated both the proportion of time the VR user
spent looking at the virtual agent and the proportion of time the
virtual agent spent focusing on the VR user. Specifically, we created
a 3D bounding sphere for the head of the VR user (or the virtual
agent). When the gaze of PA intersects the bounding sphere of PB at
time t, we consider that PA looks at PB. Mutual gaze means that PA
and PB look at each other at that moment. Figure 13 illustrates the
comparative results between our method and the baseline method.
From this figure, we can see that the virtual agent generated by
our method had substantially more mutual gaze (27.0%) than the
virtual agent generated by the baseline method (16.4%). In terms of
the proportion of time one side spent looking at the other side, our
method also achieved higher proportions than the baseline method.

In sum, the aforementioned hypothesis Hue was statistically ver-
ified to be true. Our findings on objective behavioral measures
provide grounded evidence that our method can improve user en-
gagement, compared to the traditional baseline method, which also
lays a promising first step for further exploration of optimizing
methods for better user engagement and attention.

OursBasline

Figure 12: Gaze allocation visualization of our user study.
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Figure 13: Comparative results of eye contact and gazes between our
method and the baseline method in our user study.

7 DISCUSSION, LIMITATIONS AND FUTURE WORK

Our experimental results validate that our method consistently out-
performed the baseline method in terms of selected user factors
on both subjective and objective measures. Participants provided

higher subjective ratings for focused attention, perceived usability,
aesthetic appeal, rewarding experience, and reactive behavior when
using our method compared to the baseline. Objective eye track-
ing data corroborated these findings, showing greater gaze stability,
larger pupil diameters (indicative of greater attention), more focused
gaze allocation on the virtual agent’s face, and longer mutual gaze
duration. These improvements suggest enhanced user engagement
and interaction quality through more realistic agent behaviors. It is
crucial to highlight that this superior performance was not due to
aesthetically superior character assets or the introduction of more
interaction modalities. Both our method and the baseline method
utilized identical interaction modalities, 3D character models, and
algorithms for generating text responses, hand gestures, and lip-sync
animations. The sole differentiation was the method employed for
dynamic motion generation of the torso, arms, head, and eyes. In
essence, our approach, when juxtaposed with traditional animation
graph techniques, proves its merit in generating more interactive and
responsive behaviors for intelligent virtual agents.

While our user study provides compelling evidence of our
method’s benefits, the relatively small sample size may limit its
generalizability. Future studies could benefit from a larger and more
diverse pool to validate these results across different demograph-
ics. The primary focus of the current study was to investigate the
capabilities of reactive motion generation in virtual agents, exclud-
ing the acoustic audio features and the semantic content derived
from speech audio. Despite these omissions, we have laid a robust
foundational framework that can be considerably augmented by fur-
ther harnessing the available audio data. The potential integration
of these audio features is promising in improving reactive motion
generation, making virtual agents more lively, responsive, and en-
gaging during interactions. Moreover, our system’s motion synthesis
model uses motion signals rather than language features, allowing
for support of multiple languages. Additionally, the integrated large
language model can generate responses in various languages.

Nevertheless, the scope of conversational motions in our current
study is somewhat confined, since our dataset is centered primarily
on stand-up conversations. We avoided the data capture of seated
conversations due to potential occlusion issues with the seating
equipment. While these are prevalent, they only capture a small
segment of possible interaction scenarios. By incorporating a di-
verse range of dyadic conversation settings, such as seated dialogues,
walking discussion, or exchanges within a vehicular context, we
could achieve a more holistic grasp and modeling of reactive motion
in virtual agents. Although leveraging a large, diverse datasets and
latest generative models can enhance the current motion quality, solv-
ing the problem of real-time efficiency is crucial for the integration
into end-to-end conversation systems. Future directions of research
could involve modeling multi-party communication behaviors using
this foundational framework.

8 CONCLUSION

We introduce a learning-based framework designed to generate multi-
modal agent behaviors that are acutely aware of user actions. Specifi-
cally, we employ a CVAE-based neural network model that perceives
VR-tracked user activities in real-time, subsequently guiding the
virtual agents’ responses, spanning both verbal and non-verbal cues
such as head/eye movements and body language. Our high-fidelity
social communication dataset enables the model to mimic human
interpersonal communications. We hope this research establishes
the critical step toward human-mimetic virtual agents as a promis-
ing interface that bridges VR users with the rapidly advancing AI
technologies such as LLM.
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[39] S. Levine, P. Krähenbühl, S. Thrun, and V. Koltun. Gesture controllers.
In Acm siggraph 2010 papers, pp. 1–11. 2010. 2

[40] Y. Liang, Q. Feng, L. Zhu, L. Hu, P. Pan, and Y. Yang. Seeg: Se-
mantic energized co-speech gesture generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10473–10482, 2022. 2

[41] X. Liu, Q. Wu, H. Zhou, Y. Xu, R. Qian, X. Lin, X. Zhou, W. Wu,
B. Dai, and B. Zhou. Learning hierarchical cross-modal association
for co-speech gesture generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10462–
10472, 2022. 2

[42] M. Luck and R. Aylett. Applying artificial intelligence to virtual reality:
Intelligent virtual environments. Applied artificial intelligence, 14(1):3–
32, 2000. 2

[43] X. Ma and Z. Deng. Natural eye motion synthesis by modeling gaze-

1076

Authorized licensed use limited to: University of Houston. Downloaded on September 21,2025 at 02:10:41 UTC from IEEE Xplore.  Restrictions apply. 



head coupling. In Proc. of 2009 IEEE Virtual Reality Conference, pp.
143–150. IEEE, 2009. 2

[44] R. Maatman, J. Gratch, and S. Marsella. Natural behavior of a listening
agent. In International Workshop on Intelligent Virtual Agents, pp.
25–36. Springer, 2005. 2

[45] S. Marsella, Y. Xu, M. Lhommet, A. Feng, S. Scherer, and A. Shapiro.
Virtual character performance from speech. In Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pp. 25–35, 2013. 2

[46] S. Masuko and J. Hoshino. Generating head–eye movement for virtual
actor. Systems and Computers in Japan, 37(12):33–44, 2006. 2

[47] M. Neff, M. Kipp, I. Albrecht, and H.-P. Seidel. Gesture modeling and
animation based on a probabilistic re-creation of speaker style. ACM
Transactions On Graphics (TOG), 27(1):1–24, 2008. 2

[48] B. Nojavanasghari, Y. Huang, and S. Khan. Interactive generative
adversarial networks for facial expression generation in dyadic interac-
tions. arXiv preprint arXiv:1801.09092, 2018. 2

[49] N. Ogawa, T. Narumi, and M. Hirose. Effect of avatar appearance on
detection thresholds for remapped hand movements. IEEE transactions
on visualization and computer graphics, 27(7):3182–3197, 2020. 2

[50] C. S. Oh, J. N. Bailenson, and G. F. Welch. A systematic review of
social presence: Definition, antecedents, and implications. Frontiers in
Robotics and AI, 5:409295, 2018. 2

[51] H. L. O’Brien, P. Cairns, and M. Hall. A practical approach to mea-
suring user engagement with the refined user engagement scale (ues)
and new ues short form. International Journal of Human-Computer
Studies, 112:28–39, 2018. 5

[52] T. Renshaw, R. Stevens, and P. D. Denton. Towards understanding en-
gagement in games: an eye-tracking study. On the Horizon, 17(4):408–
420, 2009. 6

[53] D. Roth, J.-L. Lugrin, D. Galakhov, A. Hofmann, G. Bente, M. E.
Latoschik, and A. Fuhrmann. Avatar realism and social interaction
quality in virtual reality. In Proc. of 2016 IEEE virtual reality (VR), pp.
277–278. IEEE, 2016. 2

[54] K. Ruhland, S. Andrist, J. Badler, C. Peters, N. Badler, M. Gleicher,
B. Mutlu, and R. Mcdonnell. Look me in the eyes: A survey of
eye and gaze animation for virtual agents and artificial systems. In
Eurographics State-of-the-Art Report, pp. 69–91, 2014. 2

[55] M. E. Sargin, Y. Yemez, E. Erzin, and A. M. Tekalp. Analysis of head
gesture and prosody patterns for prosody-driven head-gesture anima-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(8):1330–1345, 2008. 2

[56] C. Shagass, R. A. Roemer, and M. Amadeo. Eye-tracking perfor-
mance and engagement of attention. Archives of General Psychiatry,
33(1):121–125, 1976. 6

[57] P. Sharma, S. Joshi, S. Gautam, S. Maharjan, S. R. Khanal, M. C. Reis,
J. Barroso, and V. M. de Jesus Filipe. Student engagement detection
using emotion analysis, eye tracking and head movement with machine
learning. In Proc. of International Conference on Technology and
Innovation in Learning, Teaching and Education, pp. 52–68. Springer,
2022. 6

[58] K. Sohn, H. Lee, and X. Yan. Learning structured output representa-
tion using deep conditional generative models. Advances in neural
information processing systems, 28, 2015. 3

[59] M. Stone, D. DeCarlo, I. Oh, C. Rodriguez, A. Stere, A. Lees, and
C. Bregler. Speaking with hands: Creating animated conversational
characters from recordings of human performance. ACM Transactions
on Graphics (TOG), 23(3):506–513, 2004. 2
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