(o)
R2D2: Remembering, Replaying and Dynamic Decision Making
with a Reflective Agentic Memory

Tenghao Huang!
Pavan Kapanipathi®

Kinjal Basu?
Jonathan May!

Ibrahim Abdelaziz?
Muhao Chen?

1University of Southern California, 2IBM Research, 3University of California, Davis
tenghaoh@usc.edu

Abstract

The proliferation of web agents necessitates
advanced navigation and interaction strategies
within complex web environments. Current
models often struggle with efficient navigation
and action execution due to limited visibility
and understanding of web structures. Our pro-
posed R2D2 framework addresses these chal-
lenges by integrating two paradigms: Remem-
ber and Reflect. The Remember paradigm uses
a replay buffer that aids agents in reconstruct-
ing the web environment dynamically, thus en-
abling the formulation of a detailed “map” of
previously visited pages. This helps in reducing
navigational errors and optimizing the decision-
making process during web interactions. Con-
versely, the Reflect paradigm allows agents to
learn from past mistakes by providing a mecha-
nism for error analysis and strategy refinement,
enhancing overall task performance. We eval-
uate R2D2 using the WebArena benchmark,
demonstrating substantial improvements over
existing methods, including a 50% reduction
in navigation errors and a threefold increase
in task completion rates. Our findings suggest
that a combination of memory-enhanced navi-
gation and reflective learning promisingly ad-
vances the capabilities of web agents, poten-
tially benefiting various applications such as
automated customer service and personal digi-
tal assistants.

1 Introduction

Web agents—autonomous Al agents designed to
navigate and perform natural language-described
tasks within web environments—have become in-
creasingly integral to applications such as online
customer service (Huang et al., 2025), automated
data retrieval (Huang et al., 2024), and personalized
digital assistants.! These agents interact with com-
plex web interfaces to execute user-described tasks,

Work done during Tenghao’s internship at IBM research.

'https://www.anthropic.com/news/
3-5-models—-and-computer—-use

What is the

—
bestselling [X X))
product of
Quarter 1, 2023? Sales Reports

ﬁ@ Products
User —

Based on the tab names,
the logit distribution is:

ll [Products] [Reports] [Sales])

—B
ReACT
<«
@ Homepage T @
Products ®
O
O
©Homepage © Reports °
Sales ©
O
(o) Now I see through! Things
!E! are clear to me!
R2D2 (

[Products] [Reports] [Sales]

Figure 1: Traditional methodologies conceptualize web
navigation within the framework of an Unknown MDP.
The ReACT agent operates under high uncertainty due
to incomplete information regarding the outcomes of
its actions, leading to erroneous navigational paths and
impeding effective task resolution. R2D2 transforms
the task into a Known MDP, improving robustness.

often emulating human actions like clicking but-
tons, filling forms, and extracting information (Shi
et al., 2017; Liu et al., 2018; Yao et al., 2022; Zhou
et al., 2024b). Despite recent advancements in
web agents’ capabilities, a persistent challenge re-
mains: agents frequently fail to navigate effectively
within intricate web environments as illustrated in
Fig. 1.

The fundamental challenges associated with pre-

30318

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 30318-30330

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use

®
ON(]

a) ReACT

b) Tree-search

Q 1
©Q O |
— _ a{?_—] ‘
(’Aj a _Replay Buffer)
A) 4 L 4 \v/’// S — —
c)R2D2

Figure 2: This diagram represents various approaches for web agents framed as a search problem, where each node
symbolizes a webpage. (a) ReACT: The agent chooses the best immediate actions without any proactive strategy.
(b) Tree-search with reflections: the agent investigates different routes by actively navigating websites and allows
for reversing direction (shown by dashed arrows). Both a) and b) approaches are Unknown-MDP-based. At each
timestep, these agents’ observation space is constrained, which typically results in suboptimal or inefficient results.
¢) R2D2: Our proposed framework constructs the search space, leveraging stored state information from a replay
buffer. By transforming the task into a Known MDP, R2D2 enhances its ability to navigate and interact with web

interfaces.

vious methodologies are twofold. First, these ap-
proaches model web navigation as an Unknown
Markov Decision Process (MDP), wherein the
agent has limited visibility into the consequences
of its actions, often leading to suboptimal perfor-
mance outcomes. Second, prior methods engage
in complex reasoning during the inference phase
while observing a stream of experiences, and in
their simplest forms, they discard incoming tra-
jectories immediately after a single episode. This
rapid forgetting of potentially valuable experiences
impedes the agent’s capacity to leverage useful in-
formation for future decision-making.

Meanwhile, a primary obstacle in enhancing
web agent performance lies in navigation-related
failures, which account for approximately 60% of
their operational errors (as illustrated in Fig. 6).
These failures occur when agents become disori-
ented within the web environment, preventing them
from reaching the target webpages necessary to ex-
ecute desired tasks. Such navigation inefficiencies
significantly hinder the overall effectiveness of web
agents. The remaining 40% of errors stem from ex-
ecution failures and edge cases, where agents either
misinterpret user intentions or mishandle specific
web elements.

Inspired by cognitive studies showing that hu-
mans excel at complex tasks by iteratively re-
fining strategies based on feedback (Palenciano
et al., 2021; Zenkri et al., 2024), as well as by
approaches in robotics for structured exploration
of unfamiliar spaces (Thrun, 2002), we propose
the R2D2 (Remembering, Replaying, and Dynamic
Decision Making) framework that enhances both
navigation and task execution for web agents. Our
method transforms the task from an Unknown-
MDP into a Known MDP by introducing the Re-

member Paradigm. It leverages a structured replay
buffer of the agent’s experiences that guides the
agent to more promising avenues (Blundell et al.,
2016; Schaul et al., 2016; Parisotto and Salakhut-
dinov, 2018; Savinov et al., 2018). At a high level,
our approach enables the agent to record and re-
call previously visited pages—essentially construct-
ing a dynamic map of the web environment—and
then leverage this knowledge to refine its strategies.
By converting the agent’s experience into a well-
organized search space, we empower it to identify
reliable navigation routes to target resources rather
than re-deriving them from scratch during infer-
ence. This reduces the computational overhead at
test time and helps avoid repetitive or unproductive
exploration.

To enable continual improvement based on both
successes and failures, R2D2 incorporates the Re-
flect Paradigm. Previous efforts in this domain of-
ten focus narrowly on immediate, execution-level
errors and struggle with more pervasive navigation
challenges (Shinn et al., 2023; Pan et al., 2024;
Wang et al., 2024a). In contrast, our method lever-
ages the refined, known search space described ear-
lier to minimize navigational missteps, allowing the
reflection mechanism to operate more effectively
on remaining execution problems. By reducing the
burden of basic wayfinding, the agent’s reflective
capabilities can more efficiently identify and cor-
rect subtle issues, ultimately leading to a higher
overall success rate on complex web tasks.

Our proposed method diverges from traditional
techniques by providing a more comprehensive and
structured representation of the agent’s historical
experiences. Instead of simply recalling past states
(Agashe et al., 2024) or relying on on-the-fly rea-
soning (Koh et al., 2024; Zhou et al., 2024a), our

30319

approach organizes the agent’s accumulated expe-
riences into a coherent and reusable resource that
effectively guides future decisions. We evaluate
our approach using the WEBARENA benchmark
(Zhou et al., 2024b), where it achieves substantial
gains compared to baseline models, including ap-
proximately a 50% reduction in navigation errors
and a threefold increase in overall task completion
rates. Moreover, R2D2 outperforms state-of-the-
art methods by 17%, thereby demonstrating a more
robust and informed capability for executing com-
plex web-based tasks.

2 Related Works

Enhancing Web Agents. Existing research has
shown that language models, without intervention,
struggle to express linguistic intent in formal in-
struction that can control an extra-linguistic envi-
ronment, such as web site navigation (Shi et al.,
2017; Liu et al., 2018; Yao et al., 2022; Zhou et al.,
2024b; Deng et al., 2023). This inadequacy stems
primarily from the intrinsic challenges associated
with perception, strategic planning, and task execu-
tion in the intricate web environments.

To mitigate these challenges, enhancements to
web agents have been characterized as one of three
principal strategies: (1) Perception Alignment: This
strategy aims to augment agents’ capabilities in in-
terpreting graphical user interface elements by inte-
grating multimodal data from webpages, enhancing
both textual and visual comprehension (Gou et al.,
2025; Liu et al., 2025). (2) Post-hoc Reflection:
Studies indicate that enabling agents to engage in
reflective practices post-interaction can facilitate
learning from historical trajectories, thereby im-
proving future task executions (Shinn et al., 2023;
Song et al., 2024; Pan et al., 2024; Wang et al.,
2024a). (3) Online Search Algorithms: This in-
volves the adoption of sophisticated search algo-
rithms, including Monte Carlo Tree Search and
other tree-based exploration methods, integrated
with high-level planning driven by LL.M-derived
knowledge (Koh et al., 2024; Meng et al., 2024;
Zhang et al., 2025). Furthermore, Gu et al. 2024
discusses speculative planning that leverages simu-
lations of world models.

Despite these enhancements, the performance
of current web agents are constrained by the as-
sumptions of Unknown MDP, where the potential
outcomes of actions are not available. In contrast,
this paper proposes a novel approach where we

reconstruct the web environment’s structure based
on an agent’s exploratory actions, thereby furnish-
ing it with outcome information crucial for making
informed and grounded decisions.

Continual Exploration of the Agentic Environ-
ment. Tasking agents to explore an unknown en-
vironment has been an active research direction
(Brohan et al., 2023). Recent studies have focused
on how agents abstract experiences into actionable
skills, a development that is becoming increasingly
central to advancements in this field (Wang et al.,
2023, 2024c; Liu et al., 2024). Within the do-
main of web-based agents, these skills are often
conceptualized as workflows. Sodhi et al. (2024)
have introduced a novel framework that leverages
human-engineered workflows to compose policies
to tackle web tasks. Although this improves agent
performance, manually crafting such workflows
can be a tedious process.

Unlike previous strategies that rely solely on
high-quality successful trajectories or hand-crafted
workflows, R2D2 introduces a two-part mecha-
nism that continuously learns from the full range of
agent experiences, including failed attempts. R2D2
moves beyond the limitations of purely Unknown-
MDP-based assumptions and handcrafted work-
flows, resulting in more informed, robust decision-
making and improved overall performance.

3 Method

In this section, we present our framework, which
tackles complex web navigation tasks by integrat-
ing two paradigms: Remember and Reflect. The
Remember paradigm constructs a structured re-
play buffer from past observations (§3.2), while
the Reflect paradigm diagnoses and corrects errors
in failed trajectories (§3.3). We then introduce
mechanisms of the reflective memory (§3.4). Fi-
nally, we illustrate how these paradigms interact to
improve the agent’s performance through retrieval
and in-context learning demonstrations (§3.5).

3.1 Method Overview

Given a user’s task query ¢ and an initial obser-
vation og from the environment, the agent must
produce a sequence of actions to address q. We
define an episode as the process where the agent
starts from oy and executes a trajectory t. Let
t = {a1,aq9,...,an} be the trajectory of length
H, where each ay is an action at step h. Af-
ter each action ay, the agent receives an obser-

30320

Observe

i

Act

Experience
Sequences

Build

‘l::i”
‘.N"‘k LLM
A*Search
Navigation
Errors
Environment

Reflect

—

— e

Retrieve + in-context demo

TN

\ Replay Buffer) Reflective
_____ Memory
(" Revised)
|_ Trajectory _|——{ J

Figure 3: An overview of the R2D2 architecture, highlighting the Remember and Reflect Paradigms. The Remember
paradigm constructs a structured replay buffer from previous observations, enabling the agent to use past episodic
data through A* search for navigation. Meanwhile, the Reflect paradigm diagnoses errors and generates corrective
insights, which are then stored in a reflective memory for future decision-making processes.

vation op, thereby forming an observation se-
quence O = {01,09,...,0r}. Consider N dis-
tinct user queries {q1,q2,...,qn}, each associ-
ated with its own episode and observation se-
quence O; = {0i1,0i2,...,0im}. Across all
N user queries, R2D2 forms the union of these
observations: O, = Uf\; 1 0;.

R2D2 addresses errors in trajectories by catego-
rizing them into two distinct types: (1) Naviga-

tion failure. We define O* as the key observations
essential for successfully addressing the query g.
After performing the trajectory ¢, the observation
sequence may not contain all the key observations,
which leads to agents’ navigation failure in the en-
vironment, formally O N O* # O*. The agent
fails because of incomplete information or tools
to address the user query. (2) Execution failure.

After performing t, O N O* = O*. In other words,
navigation was successful, since the proper path
was followed, but the agent still failed to address
the user query.

The Remember paradigm aims to build a replay
buffer from O, allowing the agent to store and
revisit past observations and experiences (Blun-
dell et al., 2016; Schaul et al., 2016; Parisotto and
Salakhutdinov, 2018; Savinov et al., 2018). The
Reflection paradigm then corrects trajectories that
failed due to execution issues, providing explicit
rationales for these execution failures. The success-
ful and corrected trajectories and their rationales
are stored in a reflective memory for the agent’s fu-
ture reference. Finally, the Retriever leverages this
reflective memory by selecting relevant corrected
trajectories as in-context demonstrations, thereby

continually improving the agent’s performance.

3.2 Remember Paradigm

R2D2 first determines? the error type of a failed
trajectory t. For all navigation failures, R2D2 per-
forms search within the replay buffer to correct
their navigation behaviors.

Building the Replay Buffer. To effectively rep-
resent the web environment and enable its system-
atic reconstruction from the observation sequence
O.n, R2D2 structures the replay buffer as a directed
graph G = (O, E). Here, the vertex set O includes
the root node ogp, which corresponds to the home-
page observation, and each subsequent vertex rep-
resents another webpage observation o;. The edge
set E consists of tuples ((0;,0;),a) where each
edge corresponds to an action a that transitions the
agent from one observation o; to another observa-
tion 0j. Due to the noisy and dynamic nature of
web pages, R2D2 stores the differences between
consecutive observations at each vertex rather than
the full webpage state.

A* Search within the Buffer. Our search al-
gorithm employs a best-first search (A*) strategy
(Hart et al., 1968; Meng et al., 2024) to navigate
and evaluate web environments effectively. Instead
of expanding nodes level-by-level, R2D2 incorpo-
rates a heuristic that guides the search toward po-
tentially relevant and promising webpages more
efficiently (Bonet and Geftner, 1999; Guez et al.,
2018; Moldovan and Abbeel, 2012). This heuris-
tic, provided by the LLLM, estimates the relevance

Please refer to Fig. 7 in Appendices for the detailed
prompt.

30321

and utility of exploring a particular webpage node,
thereby reducing unnecessary expansions and fo-
cusing on paths that are more likely to yield correct
information.

In A* search, each node o in the replay buffer
graph is associated with both a cost (e.g., the depth
from the start node or the number of steps taken)
and a heuristic h (o), which estimates how close o
is to a relevant webpage that can answer the query
q. We derive the heuristic by prompting the LLM
to assess the likelihood that the subtree rooted at o
will yield information relevant to gq. A* search pro-
ceeds by maintaining a priority queue that selects
which node to expand next based on the sum of the
cost-to-come and the heuristic estimate. Webpages
that are deemed relevant are added to a candidate
queue, prioritizing content that potentially answers
the query, while non-relevant pages are bypassed to
streamline the search. This exploration continues
until all reachable nodes have been evaluated. Sub-
sequently, for each candidate node in the queue,
paths are constructed back to the root, mapping
feasible routes that could satisfy the query. The
LLM then ranks these paths based on relevance
and utility, culminating in the selection of the opti-
mal trajectory P*.

Algorithm 1 Optimized Web Search Using A* and
Language Model

Require: User query g, Initial observation og
Ensure: Optimal solution trajectory P for ¢
1: Initialize replay buffer graph G = (O, E)

2: Add root node og to O

3: Initialize priority queue Q 4~ with (og, f(00) = h(00))

4: Initialize candidate queue Qcqna

5: while Q 4+ is not empty do

6: (0i, f(0:)) < dequeue(Q)

7: if IsRelevant(o;, g, LLM) then

8: Qcand — enqueue(Qcandv (Oia f(ol)))

9: endif

10: for each action a available at o; do

11: 0; + Transition(o;, a) {Obtain next observation
via action a}

12: if 0; not in Visited then

13: h(o;) < Heuristic(oj, q)

14: f(05) <= f(oi) + h(0;)

is Qa- enqueue(Q, (05, £(0,)))

16: end if

17: end for

18: end while

19: Initialize trajectory set 7 «+ 0

20: for each 0; in Qcqna do

21: t + Backtrack(o;) {Generate trajectory from og to o0;

by following parent pointers }

222 T« Tu{t}

23: end for

24: P* + RankAndSelectOptimal(7, g) {Use LLM to rank
trajectories based on relevance and utility }

25: return P~

This A*-base approach enables more informed
and targeted exploration of the replay buffer. By
guiding the agent through the environment with
a heuristic informed by the LLM, R2D2 narrows
down the search space and accelerates the discov-
ery of relevant information. This ultimately results
in faster and more accurate trajectory generation,
effectively addressing complex user queries.

3.3 Reflect Paradigm

We discussed details of how we address navigation
failures in §3.2. We now discuss using reflection
techniques to address execution errors.

The reflection process is designed to enhance the
system’s capability to learn from mistakes within
trajectories rather than only successes (Madaan
et al., 2023; Shinn et al., 2023). When the failure
reason of a trajectory ¢ is classified as an execution
failure, we prompt the LLM to identify the first er-
roneous action a;. The trajectory is then truncated
to include only the actions before the error point,
{a1,as,...,a;—1}, which are considered correct.
Following this, a detailed reflection on the erro-
neous action a; is generated, providing a rationale
for its failure and potential strategies for avoidance
in the future. This reflection, along with the trun-
cated trajectory, is stored in the reflective memory
(Weston et al., 2015; Mirowski et al., 2017; Wayne
et al., 2018) that is to be introduced in §3.4.

3.4 Reflective Memory Mechanism

We introduce the reflective memory mechanism
that stores corrected and truncated trajectories for
future retrieval. The reflective memory is struc-
tured as a key-value store:

Key-Value Architecture. The reflective memory
mechanism functions as a key-value store where
each user query is encoded into a unique query vec-
tor serving as the key, encapsulating the query’s
semantic intent for efficient retrieval via vector sim-
ilarity metrics. The corresponding value comprises
a truncated and corrected trajectory, as described
in §3.1, along with reflective insights. Specifically,
for execution failures, only steps up to the first error
are stored, while for navigation failures, corrected
trajectory segments are retained once identified.
During inference, a new query vector is generated
and matched against existing keys to retrieve the
most relevant trajectories.

Basic Operations. In alignment with conventional
memory module architectures, the reflective mem-

30322

ory mechanism defines two basic operations: (1)
Lookup. Given a query, the memory retrieves the
value(s) associated with the closest key vectors. (2)
Update. If a newly truncated trajectory provides a
more accurate or enriched reflection for an exist-
ing query, the memory updates the current value.
R2D2 uses an LLM to make such decision. Please
refer to Fig. 8 in the Appendix for an example.

3.5 Paradigm Coordination and Inference

Exploration Phase. Using a ReACT agent (Yao
et al.), R2D2 processes user queries and collects
observational data to build Oy. Trajectories are
classified and corrected via Remember and Reflect
paradigms, then stored in the memory.

Inference Phase. During inference, user queries
are encoded into vectors and matched against re-
flective memory to retrieve relevant trajectories as
in-context demonstrations (Karpukhin et al., 2020;
Brown et al., 2020). These demonstrations guide
the agent’s response. Failed trajectories undergo re-
flection, and the memory is updated to improve fu-
ture performance. This coordination allows R2D2
to leverage past experiences and reflections, ensur-
ing continuous learning and enhanced handling of
complex queries.

4 Experiments

In this section, we evaluate the proposed R2D2
framework for web agent tasks and compare it with
baseline methods. We first delve into the details of
our experimental setup (§4.1), discuss the results
obtained (§4.2), and perform ablation studies to
understand the strengths of different components
(§4.3). Furthermore, we provide a comprehensive
error analysis (§4.5).

4.1 Experimental Setup

Benchmark. We use the WebArena benchmark
(Zhou et al., 2024b). This benchmark comprises
diverse web interaction scenarios, ranging from
web shopping to customer relationship manage-
ment system (CMS). The dataset consists of 812
user queries with annotated ground truth trajecto-
ries. The Webarena benchmark further provides a
set of validators to programmatically validate the
functional correctness of each task.

Implementation Details. We choose gpt-40° as
our main LLM for both Remember and Reflect

3OpenAI. (2024). ChatGPT (November 20th version).

paradigm. We use the retriv* framework as the
backbone of the reflective memory index, and se-
lect “sentence-transformers/all-MiniLM-L6-v2” as
the dense embedding model for our retriever.

Baselines. We compare our framework against
several representative agent frameworks: (1) Re-
ACT (Yao et al.): a widely-used framework, which
takes an observation of the environment as input,
performs Chain-of-Thought reasoning, and then
generates the next action. (2) Tree-Search (Koh
et al., 2024): an inference-time tree-search strat-
egy to perform best-first tree-search in web envi-
ronments. It enables agents to revert to the most
recently validated state upon encountering a failed
trajectory. (3) LATS (Zhou et al., 2024a): a method
based on Monte Carlo tree search that employs
LLMs as agents, value functions, and optimizers
for decision-making. (4) Anticipatory Reflection
(Wang et al., 2024a): a method that explicitly con-
siders potential failures before action, alignment
and backtracking after actions to maintain task ob-
jectives. (5) AutoEval (Pan et al., 2024): methods
that boost agent performance using domain-general
automatic evaluators. (6) BrowserGym (Chezelles
et al., 2024): a framework that incorporates addi-
tional actions and observation tools for agents to
interact with the environment.’

4.2 Main Results

Overall Performance. As shown in Tab. 1, our
R2D2 model consistently achieves higher success
rates than both Tree-Search and ReACT across all
tasks. For example, on the CMS and Reddit tasks,
R2D2 outperforms Tree-Search by substantial mar-
gins. These gains demonstrate the effectiveness
of combining a systematic replay buffer with a
reflective memory paradigm. By leveraging past in-
teractions, R2D2 avoids repeated mistakes, leading
to more accurate and efficient decisions.

Substantial Improvements in Complex Domains.
The results in the CMS and GitLab domains are
particularly notable. R2D2 achieved a 30% suc-
cess rate in CMS and 28% in GitLab, considerably
higher than other tested methods. These domains

*https://github.com/AmenRa/retriv

SThere are other methods that use different setups, such as
SteP (Sodhi et al., 2024), that employs human-engineered
workflows, and AWM (Wang et al., 2024b), which uses
BrowserGym framework and customizes a larger action space
than standard WebArena. For the sake of direct comparison,
these frameworks that depend on additional human efforts are
not taken into comparison here.

30323

https://github.com/AmenRa/retriv

Method Tasks Total SR
CMS Reddit Shopping Map GitLab

ReACT(Yao et al.) - - - - - 13.1%
Tree-Search (Koh et al., 2024)" 17% 11% 28% 26% 13% 19%
AutoEval (Pan et al., 2024):t - - - - - 20.2%
LATS (Zhou et al., 2024a)* 15% 25% 30% 27% 17% 22.5%
AR (Wang et al., 2024a)* 16% 24% 32% 27% 18% 23.4%
BrowserGym (Drouin et al., 2024)i - - - - - 23.5%
R2D2} 30% 21% 36% 28 % 28% 27.3%

Table 1: Performance comparison across multiple web-based tasks. Reported success rates (SR) are organized by
model and method, including baseline approaches and our proposed R2D2. Superscripts indicate the model used: ¥
GPT-40, ¥ GPT-4. The baseline results are from corresponding papers.

often require complex navigations with web inter-
faces, where R2D2’s capability to leverage past
visited states and reflect on past actions proves es-
pecially beneficial.

Comparison with Reflection-based Frameworks.
When compared to complex frameworks employ-
ing sophisticated reflection mechanisms (e.g., AR,
AutoEval), R2D2 holds its own or exceeds perfor-
mance, with a total success rate (SR) of 27.3%.
While AR and AutoEval offer robust reflection
capabilities, R2D2’s integrated approach to first
remembering and then reflecting allows it to pre-
emptively correct paths and further refine strategies.
The success can be attributed to the method’s dual-
paradigm system. We show more analysis in §4.3.

4.3 Ablation Study

Ablating rounds of execution. To better under-
stand the strength of our proposed framework, we
compare R2D2 with advanced baselines that em-
phasize reflection techniques. Fig. 4 illustrates a
marked increase in the success rate of R2D2 during
initial episodes. Upon manual inspection, we at-
tribute this early performance enhancement primar-
ily to the effective resolution of navigation failures.
By the fifth episode, R2D2 substantially outper-
forms AR and LATS, confirming its methodolog-
ical superiority. This highlights R2D2’s ability to
leverage historical data and adaptive strategies ef-
fectively. While AR demonstrates commendable
learning capabilities through its anticipatory reflec-
tion, it fails to match R2D2’s effectiveness. LATS,
in contrast, shows minimal improvement. These
findings support the practical superiority of the
R2D2 model in dynamic learning environments.

Ablating Remember & Reflect Paradigms. In
this ablation study focused on the CMS domain, the

Overall SR by Number of Episodes
0.300

—— AR
LATS
—o— R2D2

0.275 -

0.250 -

0.225 -

0.200 1

Success Rate

0.175

0.150

0.125

0 1 2 3 4 5
Number of Episodes

Figure 4: Performance comparison with different
reflection-based methods. R2D2 achieves marked in-
crease at the first episode. Our manual inspection in
Fig. 6 shows 75% of the initial increase is attributed to
fixing the navigation failures.

full R2D2 model substantially outperforms its vari-
ants, as shown in Fig. 5. The “— Reflection” vari-
ant, which lacks advanced reflection capabilities,
shows moderate gains, while the “— Navigation”
variant, which removes navigation, achieves only
marginal improvement. Notably, the “— Reflection”
variant, though initially showing some improve-
ment, demonstrates a limited performance increase
in later episodes, suggesting that while navigation
capabilities can provide early benefits, their effec-
tiveness without reflection support plateaus quickly.
This observation highlights the critical role of nav-
igation in sustaining performance improvements
over time, reinforcing that reflection alone is in-
sufficient for long-term success in complex web
environments.

Ablating Failed Trajectories. To elucidate the
learning dynamics of R2D2, we conduct a study
to isolate the impact of failed trajectories. During

30324

SR by Number of Episodes - CMS

—8— R2D2
- Navigation
- Reflection

0.300

0.275 1

0.250 1

0.225

0.200

0.175

0.150 4

0.125— T T T T :
0 1 2 3 4 5

Number of Episodes

Figure 5: Performance comparison with ablation vari-
ants. Removing navigation or reflection capabilities
from R2D2 is very harmful to performance.

Method Accuracy Steps
Tree-Search (Koh et al., 2024) 19.2% 33.8
AutoEval (Pan et al., 2024) 20.2% 29.2
R2D2 27.3% 13.1

Table 2: Comparison of task accuracy and number of
actions required. R2D2 reduces the number of online
steps while maintaining a higher success rate.

this study, only successful trajectories are provided
as in-context demonstrations at inference time,
thereby restricting R2D2 to learning exclusively
from positive examples. This variant falls 6.8%
from the full implementation of R2D2 to 20.5%.
This also reveals a critical limitation: the number of
positive examples is insufficient to provide robust
navigation and reflection to the agent during infer-
ence. Consequently, if no relevant successful trajec-
tory is identified at retrieval time. These findings
substantiate the hypothesis that failed trajectories,
despite not directly addressing user queries, are in-
strumental in enriching R2D2’s strategic repertoire,
and R2D2 extends beyond the mere memorization
of positive examples.

4.4 Efficiency Analysis

Beyond improving task success rates, R2D2 also
demonstrates significant efficiency gains by reduc-
ing the number of online steps required per task.
As shown in Table 2, we compare the average
steps taken to successfully address a task between
R2D2 and open-sourced representative baselines.
R2D2 completes tasks with fewer steps on average,
achieving a higher success rate.® Because web-

80Offline memory construction for R2D2 involves at most
five actions per task, and the replay buffer creation is rule-
based, making it lightweight.

Error composition by method
36

mmm vanilla
E R2D2

E N S

Figure 6: Error analysis of a vanilla ReACT agent’s and
R2D2’s trajectories. “E” indicates execution failures,
“N” indicates navigation failures, and “S” indicates suc-
cess. R2D2 substantially reduces navigation failures,
achieving a higher success rate.

based tasks are often bottlenecked by interactions
with the live environment rather than by language
model queries, minimizing the number of online
steps reduces latency and overall inference time.
Consequently, R2D2 ’s ability to leverage a cached
replay buffer avoids frequent back-and-forth roll-
outs, leading to improved efficiency alongside its
superior performance.

4.5 Error Analysis

As shown in Fig. 6, we manually inspect the tra-
jectories of the same 60 queries executed by the
vanilla ReACT agent and R2D2 agent. About 60%
of the vanilla ReACT agent trajectories stall at the
navigation stage, preventing the opportunity to fail
in execution. In contrast, the R2D2 agent substan-
tially reduces navigation failures, reliably guiding
itself toward the right content and thereby reach-
ing a point where it is possible to fail in execution
more frequently. As a result, R2D2 achieves a
higher pass rate overall. We further annotate and
discuss erroneous trajectories in Appx. SA. We
also conduct a qualitative evaluation of the R2D2
framework, as detailed in Appx. §C.

5 Conclusion

The R2D2 framework significantly enhances web
agents’ capabilities by integrating Remember and
Reflect paradigms, enabling more effective naviga-
tion and interaction in complex web environments.
This approach leads to measurable improvements
in performance, reducing errors and increasing task
completion rates. R2D2 not only outperforms exist-
ing models but also offers a scalable solution adapt-
able to various domains. Future work could extend

30325

its application, further optimizing agent functional-
ity across broader scenarios.

Acknowledgments

Muhao Chen was supported by the DARPA Found-
Sci Grant HR00112490370, the NSF of the United
States Grant ITE 2333736. This work is partially
supported by DARPA award HR00112220046.
Any opinions, findings, conclusions, or recommen-
dations expressed here are those of the authors and
do not necessarily reflect the view of our sponsors.

Limitations

Language Studied. Our experiments were exclu-
sively conducted in English. This limitation re-
stricts our understanding of the model’s efficacy
across different linguistic contexts, potentially over-
looking cultural and language-specific nuances that
could affect the agent’s performance in non-English
web environments.

Focus on a Single Benchmark. Our experiments
are confined to the WebArena benchmark using
GPT-40, which may raise concerns about their
broader applicability. However, WebArena spans
a broad set of tasks, ranging from online shopping
to social media interactions, and R2D2’s strong
performance across these varied scenarios sug-
gests that our cached-search approach and Remem-
ber/Reflect paradigms are not restricted to a single
domain.

Resource Constraints. Each complete pass
through WebArena incurs a cost of approximately
$200 in GPT-40 usage, making large-scale or multi-
benchmark experimentation logistically challeng-
ing. That said, our approach does not inherently
depend on GPT-40. We anticipate that future re-
search can replicate these methods using different
LLM backends or other text-based environments,
suggesting that our approach is not fundamentally
limited in scope or generalizability.

References

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang,
Ang Li, and Xin Eric Wang. 2024. Agent s: An open
agentic framework that uses computers like a human.

Charles Blundell, Benigno Uria, Alexander Pritzel,
Yazhe Li, Avraham Ruderman, Joel Z Leibo, Jack
Rae, Daan Wierstra, and Demis Hassabis. 2016.
Model-free episodic control. stat, 1050:14.

Blai Bonet and Hector Geffner. 1999. Planning as
heuristic search: New results. In European Con-
ference on Planning, pages 360-372. Springer.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jas-
mine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan,
Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel
Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Ut-
sav Malla, Deeksha Manjunath, Igor Mordatch, Ofir
Nachum, Carolina Parada, Jodilyn Peralta, Emily
Perez, Karl Pertsch, Jornell Quiambao, Kanishka
Rao, Michael Ryoo, Grecia Salazar, Pannag San-
keti, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke,
Austin Stone, Clayton Tan, Huong Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. 2023. Rt-1: Robotics transformer for real-
world control at scale.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Thibault Le Sellier De Chezelles, Maxime Gasse,
Alexandre Drouin, Massimo Caccia, Léo Boisvert,
Megh Thakkar, Tom Marty, Rim Assouel, Sa-
har Omidi Shayegan, Lawrence Keunho Jang,
Xing Han Lu, Ori Yoran, Dehan Kong, Frank F. Xu,
Siva Reddy, Quentin Cappart, Graham Neubig, Rus-
lan Salakhutdinov, Nicolas Chapados, and Alexandre
Lacoste. 2024. The browsergym ecosystem for web
agent research.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36:28091-28114.

Alexandre Drouin, Maxime Gasse, Massimo Caccia,
Issam H Laradji, Manuel Del Verme, Tom Marty,
David Vazquez, Nicolas Chapados, and Alexandre
Lacoste. 2024. Workarena: How capable are web
agents at solving common knowledge work tasks?
In International Conference on Machine Learning,
pages 11642-11662. PMLR.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2025. Navigating the digital world as humans do:
Universal visual grounding for GUI agents. In The
Thirteenth International Conference on Learning
Representations.

30326

http://arxiv.org/abs/2410.08164
http://arxiv.org/abs/2410.08164
http://arxiv.org/abs/2212.06817
http://arxiv.org/abs/2212.06817
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2412.05467
http://arxiv.org/abs/2412.05467
https://openreview.net/forum?id=kxnoqaisCT
https://openreview.net/forum?id=kxnoqaisCT

Yu Gu, Boyuan Zheng, Boyu Gou, Kai Zhang, Cheng
Chang, Sanjari Srivastava, Yanan Xie, Peng Qi, Huan
Sun, and Yu Su. 2024. Is your llm secretly a world
model of the internet? model-based planning for web
agents.

Arthur Guez, Théophane Weber, loannis Antonoglou,
Karen Simonyan, Oriol Vinyals, Daan Wierstra,
Rémi Munos, and David Silver. 2018. Learning to
search with mctsnets. In International conference on
machine learning, pages 1822—-1831. PMLR.

Peter Hart, Nils Nilsson, and Bertram Raphael. 1968. A
formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100-107.

Kung-Hsiang Huang, Akshara Prabhakar, Sidharth
Dhawan, Yixin Mao, Huan Wang, Silvio Savarese,
Caiming Xiong, Philippe Laban, and Chien-Sheng
Wu. 2025. CRMArena: Understanding the capacity
of LLM agents to perform professional CRM tasks
in realistic environments. In Proceedings of the 2025
Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 3830-3850, Albuquerque, New Mexico.
Association for Computational Linguistics.

Wenhao Huang, Zhouhong Gu, Chenghao Peng, Jiaging
Liang, Zhixu Li, Yanghua Xiao, Ligian Wen, and
Zulong Chen. 2024. AutoScraper: A progressive
understanding web agent for web scraper generation.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2371-2389, Miami, Florida, USA. Association for
Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769—6781,
Online. Association for Computational Linguistics.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Rus-
lan Salakhutdinov. 2024. Tree search for language
model agents. arXiv preprint arXiv:2407.01476.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian-
lin Shi, and Percy Liang. 2018. Reinforcement learn-
ing on web interfaces using workflow-guided explo-
ration. In International Conference on Learning Rep-
resentations.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai
Lam, Chenyan Xiong, Wenhu Chen, Graham Neubig,
and Xiang Yue. 2025. Harnessing webpage uis for
text-rich visual understanding. In The Thirteenth In-
ternational Conference on Learning Representations.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei
Xiao. 2024. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. In The
Twelfth International Conference on Learning Repre-
sentations.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36:46534-46594.

Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun
Peng, and Kai-Wei Chang. 2024. LLM-a*: Large lan-
guage model enhanced incremental heuristic search
on path planning. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
1087-1102, Miami, Florida, USA. Association for
Computational Linguistics.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert
Soyer, Andy Ballard, Andrea Banino, Misha Denil,
Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu,
et al. 2017. Learning to navigate in complex envi-
ronments. In International Conference on Learning
Representations.

Teodor Mihai Moldovan and Pieter Abbeel. 2012. Safe
exploration in markov decision processes.

Ana F Palenciano, Carlos Gonzalez-Garcia, Jan
De Houwer, Marcel Brass, and Baptist Liefooghe.
2021. Exploring the link between novel task proce-
duralization and motor simulation. Journal of Cogni-
tion, 4(1).

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,
Sergey Levine, and Alane Suhr. 2024. Autonomous
evaluation and refinement of digital agents. In First
Conference on Language Modeling.

Emilio Parisotto and Ruslan Salakhutdinov. 2018. Neu-
ral map: Structured memory for deep reinforcement
learning. In International Conference on Learning
Representations.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen
Koltun. 2018. Semi-parametric topological mem-
ory for navigation. In International Conference on
Learning Representations.

Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. 2016. Prioritized experience replay.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3135-3144. PMLR.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634-8652.

Paloma Sodhi, S.R.K Branavan, Yoav Artzi, and Ryan
McDonald. 2024. Step: Stacked LLM policies for
web actions. In First Conference on Language Mod-
eling.

30327

http://arxiv.org/abs/2411.06559
http://arxiv.org/abs/2411.06559
http://arxiv.org/abs/2411.06559
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://aclanthology.org/2025.naacl-long.194/
https://aclanthology.org/2025.naacl-long.194/
https://aclanthology.org/2025.naacl-long.194/
https://aclanthology.org/2024.emnlp-main.141
https://aclanthology.org/2024.emnlp-main.141
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=7Jwpw4qKkb
https://openreview.net/forum?id=7Jwpw4qKkb
https://doi.org/10.18653/v1/2024.findings-emnlp.60
https://doi.org/10.18653/v1/2024.findings-emnlp.60
https://doi.org/10.18653/v1/2024.findings-emnlp.60
http://arxiv.org/abs/1205.4810
http://arxiv.org/abs/1205.4810
http://arxiv.org/abs/1511.05952
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://openreview.net/forum?id=5fg0VtRxgi
https://openreview.net/forum?id=5fg0VtRxgi

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization of LLM
agents. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7584—7600, Bangkok,
Thailand. Association for Computational Linguistics.

Sebastian Thrun. 2002. Probabilistic robotics. Commu-
nications of the ACM, 45(3):52-57.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi (Jim) Fan,
and Anima Anandkumar. 2023. Voyager: An open-
ended embodied agent with large language models.
Trans. Mach. Learn. Res., 2024.

Haoyu Wang, Tao Li, Zhiwei Deng, Dan Roth, and
Yang Li. 2024a. Devil’s advocate: Anticipatory re-
flection for LLM agents. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 966-978, Miami, Florida, USA. Association
for Computational Linguistics.

Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham
Neubig. 2024b. Agent workflow memory.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, et al. 2024c.
Jarvis-1: Open-world multi-task agents with memory-
augmented multimodal language models. [EEE
Transactions on Pattern Analysis and Machine In-
telligence.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi
Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska,
Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam
Santoro, et al. 2018. Unsupervised predictive
memory in a goal-directed agent. arXiv preprint
arXiv:1803.10760.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. In 3rd International Conference
on Learning Representations, ICLR 2015.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
In Advances in Neural Information Processing Sys-
tems, volume 35, pages 20744-20757. Curran Asso-
ciates, Inc.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Oussama Zenkri, Florian Bolenz, Thorsten Pachur, and
Oliver Brock. 2024. Extracting principles of explo-
ration strategies with a complex ecological task. In
International Conference on Simulation of Adaptive
Behavior, pages 289-300. Springer.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,
and Volker Tresp. 2025. Webpilot: A versatile and
autonomous multi-agent system for web task execu-
tion with strategic exploration. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 39, pages 23378-23386.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2024a. Lan-
guage agent tree search unifies reasoning, acting, and
planning in language models. International Confer-
ence on Machine Learning (ICML).

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. 2024b. We-
barena: A realistic web environment for building
autonomous agents. In The Twelfth International
Conference on Learning Representations.

A Error Analysis

Among all the execution failures of R2D2, the er-
rors can be classified as following:

Pessimistic Reflection (30.3%). When the agent
makes a mistake and enters the reflection phase,
it occasionally produces overly pessimistic ratio-
nales. Instead of proposing a plausible alternative
action or a corrective step—such as trying a differ-
ent button or re-verifying information on the same
page—the agent may hastily conclude that the ser-
vice is unavailable, broken, or that no solution ex-
ists. This pessimism not only mischaracterizes the
underlying issue but also inhibits effective learning
from the mistake. By prematurely giving up, the
agent misses opportunities to refine its approach,
explore subtle variations in the action sequence, or
simply retry a failed step with slight modifications.

Lack of GUI understanding (24.2%). In certain
scenarios, the agent struggles to properly interpret
or interact with the graphical user interface (GUI)
elements of the webpage. For example, when
the user’s query requires submitting information
through an online form, the agent may fail to pin-
point the correct input fields or submission buttons,
even after correctly navigating to the right page.
As aresult, it may click on the wrong element, re-
peatedly fail to submit required information, or get
stuck trying to identify how to move forward.

Difficulty with Executing Complex Plan (20.2%).
After reaching the desired section of a website,
the agent may still falter when asked to carry out
intricate, multi-step tasks. For instance, it could be
instructed to iterate through a list of items, adding
each one to a cart, verifying their details, and then

30328

https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://api.semanticscholar.org/CorpusID:258887849
https://api.semanticscholar.org/CorpusID:258887849
https://aclanthology.org/2024.findings-emnlp.53
https://aclanthology.org/2024.findings-emnlp.53
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf

proceeding to a checkout process. This difficulty
suggests that, although navigation is now more
reliable, the agent still needs improved reasoning
capabilities and better long-term action planning to
handle scenarios that demand careful step-by-step
execution.

B Prompt Details

In this section, Fig. 7 and Fig. 8 show prompt de-
tails in the paradigms.

Error Classification Prompt

Please review the agent’s attempt to answer the user’s query and decide whether it
failed because it never gathered all the key pieces of information (navigation failure),
{Examples}

or because it had everything it needed but still couldn’t answer correctly (execution
failure),

{Examples}

After making your decision, briefly explain why, and suggest how the agent might
improve—either by finding the missing information or by reflecting on its reasoning
steps.

Figure 7: Error classification prompt to determine agent
trajectory error type.

C Qualitative Analysis

As shown in Tab. 3, an illustrative case can be ob-
served in the user query asking for the billing name
of the oldest complete order. The trajectory imple-
mented by gpt-4o failed to resolve the query as it
did not properly navigate the complex web inter-
face. In contrast, the trajectory of R2D2 shows a se-
ries of steps that meticulously navigate through the
interface. This targeted navigation led directly to
the successful completion of the task, emphasizing
the necessity of precise and thoughtful navigation
strategies to effectively interact with and extract
information from sophisticated web environments.

In instances where navigation is executed cor-
rectly but is insufficient to solve the task, the re-
flection module of R2D2 plays a crucial role. A
clear example of this is the task to list the top two
search terms in the store. While the gpt-4o tra-
jectory navigates correctly to the *Search Terms’
section, it does not delve deeper into analyzing or
sorting the data, resulting in incomplete and inac-
curate information retrieval. Conversely, R2D2 not
only accesses the correct section but also actively
manipulates the data display by sorting the search
terms according to their hits, thereby precisely iden-
tifying and articulating the top search terms. This
demonstrates the power of R2D2’s reflective capa-
bilities.

Trajectory Evaluation Prompt for Update Operation

Please review these two agent’s trajectories to answer the user’s
query and decide which one is better or closer to achieve the goal.
{Examples}

After making your decision, briefly explain why.

Figure 8: Trajectory evaluation prompt for Update Op-
eration. The LLM compares two trajectory and deter-
mines which one is better for addressing the user query.

D Further Efficiency Analysis of R2D2

The R2D2 framework’s efficiency and decision-
making capabilities are significantly shaped by its
two core components: the “Remember” and “Re-
flect” paradigms. This analysis will primarily focus
on the “Remember” paradigm, which is responsi-
ble for dynamically reconstructing the web environ-
ment, effectively building a “map” that the agent
uses for navigation. Its complexity is characterized
by the replay buffer and the A* search algorithm.

Space Complexity of Replay Buffer. The replay
buffer stores a graph where nodes represent ob-
served web page states and edges represent transi-
tions (actions). We would like to highlight that the
replay buffer’s space complexity is O(1), contend-
ing that its overall size is bounded by the number
of website pages in a given domain. In practice,
to ensure scalability even in potentially larger or
more dynamic environments, we employ an evic-
tion policy (e.g., removing least recently or least
frequently visited nodes). This maintains a buffer
of a fixed maximum size.

Time Complexity of Ax Search. The Ax search
operates on the replay buffer graph. Its time com-
plexity is generally O(N log N) when using an
efficient priority queue, where N is the number
of nodes (states) expanded from the replay buffer
graph during a specific search process. The search
process, which relies on offline memory, requires
fewer steps than other online search or reflection
baselines as shown in Tab. 2. Because the primary
time overhead is attributed to stepping within the
web environment, we approximate the inference-
time latency by counting the number of steps; And
calls to the LLM contribute minimally to the overall
time cost in our research implementation. Further-
more, in a production environment the LLM latency
can be made nearly arbitrarily small, making the
number of webpage steps even more significant to
algorithm latency.

30329

User Query

gpt-4o Failed Traj.

R2D2 Intermediates

R2D2 Final Traj.

Get the billing name of the oldest
complete order.

1. Click *SALES’ icon 2. Click
order_id/65 3. Scroll down 4. Stop
action: Grace Nguyen

5.

ROUND 1

Navigation: 1. Click 'SALES’ 2.
Click *Orders’

Reflection: Agent fails to reach the
correct page.

1. Click "SALES’ icon 2. Click
’Orders’ 3. Click *1 Purchase Date’ 4.
Click "Filters” icon 5. Click *Status’ 6.
Type *Complete’ 7. Click *Apply
Filters’ 8. Click ’View’ 9. Stop action:
John Lee

10.

List the top 2 search terms in my
store.

1. Click "CATALOG’ 2. Click
’SALES’ 3. Click 'REPORTS’ 4.
Click "CATALOG’

5.

ROUND 1

Navigation: 1. Click 'REPORTS’ 2.

Click ’Search Terms’
Reflection: Agent fails to reach the
correct page.

ROUND 3

Navigation: Correct navigation!
Reflection: Arrives correctly but
needs to sort entries.

1. Click "REPORTS’ 2. Click ’Search
Terms’ 3. Click "Hits’ 4. Click |
Hits’ 5. Click ’1 Hits’ 6. Stop action:
Top 2 search terms are "hollister’ (19
hits) and *Joust Bag’ (10 hits).

4

Table 3: Comparison of action trajectories for resolving user queries. This table illustrates how the GPT-40 model
fails to navigate complex web interfaces, whereas the proposed R2D2 framework successfully manages both
intermediate steps and final actions to accurately address the same queries.

30330

