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Altermagnets feature vanishing net magnetization, like antiferromagnets, but exhibit time-reversal symmetry
breaking and momentum-dependent spin-split band structures. Motivated by the fact that all proposed altermag-
nets have paramagnetic states with multiple magnetic ions in the unit cell, we develop a class of realistic minimal
models for altermagnetism through a comparative analysis of the magnetic atom Wyckoff site symmetry and the
space group symmetry. Specifically, we develop electronic models for all centrosymmetric space groups with
magnetic atoms occupying inversion symmetric Wyckoff positions with multiplicity two. These forty models
include monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic materials and describe
d-wave, g-wave, and i-wave altermagnetism. We further define and examine an altermagnetic susceptibility

and mean field instabilities within a Hubbard model to reveal that these models have altermagnetic ground
states. We shed insight on why most altermagnets form in nonsymmorphic space groups. We also provide the
symmetry-required form of the spin-orbit coupling and show it yields a Berry curvature that is linear in this
coupling for all forty models. We apply our models to representative cases of RuO,, MnF,, FeSb,, «-Cl, CrSb,

and MnTe.
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I. INTRODUCTION

Altermagnetism has been recently recognized as a new
class of magnetic order [1-8]. This exceptional state shares
common features with both conventional ferromagnets and
antiferromagnets. In particular, altermagnets exhibit energy
splitting between spin states, similar to ferromagnets, while
still featuring vanishing net magnetization, akin to antifer-
romagnets. Nevertheless, the opposite spin sublattices in an
altermagnet are not related by translation or inversion, but
instead they are connected by a crystal rotation symmetry.
A large number of materials have been proposed to host
this collinear-compensated magnetic order [6,7], including the
rutile metals RuO, [2,3,9] and MnF, [4,8], FeSb, [5], «-Cl
[10,11], MnTe [12] and CrSb [13]. In Ref. [14], a search
through the MAGNDATA database of magnetic materials
yields 62 altermagnetic candidate materials.

The unique electronic structure of altermagnets exhibiting
a spin splitting in reciprocal space makes them candidates
for spintronics applications [4,15—17]. Specifically, the van-
ishing net magnetization consequently leads to insensitivity
to external magnetic field perturbations, and allows for ap-
plications without requiring relativistic spin-orbit coupling
(SOC). Another consequence predicted for this time-reversal
symmetry breaking phase includes the anomalous Hall effect
[3,18], previously associated mainly with ferromagnetism. In
the case of MnTe or RuO,, for example, recent experimental
reports are consistent with the expected response of altermag-
nets, including the crystal Hall effect [19,20], spin currents
[21], spin-splitting torque phenomena [22,23], and broken
Kramer’s degeneracy in the band structure [12,24,25].

Understanding the origin of altermagnetism in these mate-
rials is necessary to study the detailed nature of this phase, and
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predict new physical properties and useful functionalities for
applications. For such purposes, a crucial and useful step is
to identify realistic minimal tight-binding models that provide
a platform to study the altermagnetic phase and understand
what favors this phase over conventional ferromagnetism and
antiferromagnetism. Additionally, realistic tight-binding mod-
els provide a setup to obtain analytic expressions for the Berry
curvature and study the anomalous Hall response.

Minimal models should naturally account for, and give
insight into: stable altermagnetic order, the characteristic mo-
mentum dependent spin splittings, and SOC-generated Berry
curvature. In addition, these models should be sufficiently
general to allow for an understanding of altermagnetism in
monoclinic, orthorhombic, tetragonal, hexagonal, and cubic
materials and give rise to d-wave, g-wave, or i-wave alter-
magnetism. In this work, we provide such minimal models
of altermagnetism.

Our strategy for developing minimal models relies on the
relationship between the site symmetry (S) of magnetic atoms
and the point group symmetry (P) of the space group. This
is motivated by the realization that in altermagnetic materials
S is generically a smaller group than P. This follows because
the magnetic sublattice atoms must be related by elements of
P [6], and these elements therefore cannot belong to S. This
local point group symmetry breaking allows the development
of local multipolar moments that are symmetry forbidden
in P [26]. For example in RuO,, the Ru has site symmetry
S = Dy, while the point group symmetry is P = Dyj. S allows
for local xy quadrupolar order to appear at the two Ru sites.
P implies that this xy quadrupolar order is of opposite sign
on the two Ru sites. In our minimal models, this local point
group symmetry breaking is key to determining the structure
of the altermagnetic spin splitting. Since these altermagnetic

©2024 American Physical Society
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states are typically inversion invariant, it is natural to consider
groups P and S that contain inversion symmetry.

Specifically, we construct models for all space groups
that contain inversion symmetry and also contain inversion
symmetric Wyckoff positions of multiplicity 2. Our minimal
models therefore exhibit two bands in the paramagnetic state.
It is worthwhile contrasting our models with simpler single-
band models [27,28] in which Fermi-surface instabilities of
the Pomeranchuk type occur in the spin-triplet channel with
high orbital partial waves. In these models, the order parame-
ter is the altermagnetic spin splitting itself. In our case, the
altermagnetic spin splitting is a secondary order parameter
which is induced through a combination of Néel order (the
primary order parameter) and the local point group symmetry
breaking discussed above. We believe our minimal models
are more realistic than single band models for two reasons:
(i) there are no known microscopic theories that give rise to
altermagnetic Pomeranchuk instabilities and (ii) DFT results
for altermagnetism in RuO, show that the largest band split-
tings in the altermagnetic state occur at band degeneracies
[2,9], such degeneracies are not present in single-band Pomer-
anchuk models.

We note that several earlier works have applied various
tight-binding models to address, e.g., spin-wave dispersions
and superconductivity of altermagnets [29,30]. These toy
models focused on 2D square and Lieb lattices. Here, we take
a different strategy by systematically developing symmetry-
dictated minimal models for all centrosymmetric space groups
with magnetic atoms occupying inversion symmetric Wyckoff
positions with multiplicity two. Through such a comprehen-
sive investigation, we can gain insight into the universal
properties of altermagnets, such as the band structure prop-
erties favorable for altermagnetism and a general form for
the Berry curvature in altermagnets. Additionally, through
comparison with DFT, our models allow for material-specific
studies, as demonstrated below. Finally, distinct from earlier
studies [3,31,32], all minimal models provided below contain
the symmetry-allowed momentum-dependent SOC through-
out the Brillouin zone (BZ), crucial for capturing important
band degeneracies at the faces of the BZ.

The tight-binding models we develop are compared to
DFT results for RuO, to demonstrate that our models capture
key properties of the band structure and altermagnetic spin
splittings. By introducing an altermagnetic susceptibility and
using susceptibility analyses and self-consistent Hartree-Fock
approaches, we show that these minimal models indeed give
rise to altermagnetism for a broad range of parameters. This
susceptibility analysis sheds insight into the reason that of the
53 inversion symmetric materials identified as altermagnetic
in Ref. [14], 52 belong to nonsymmorphic space groups. In
particular, we show that nonsymmorphic symmetry-required
band degeneracies help stabilize altermagnetism. In addition,
we derive the form of the SOC for these models. This SOC
is important for understanding the anomalous Hall effect in
altermagnets. We provide a general analytic expression for the
SOC-derived Berry curvature. The resulting Berry curvature is
linear (as opposed to quadratic as found in previous minimal
models [3,31]) in the SOC. This provides a natural explana-
tion for the large crystal Hall effect in altermagnets. Finally,
we apply our model to tetragonal, e.g., MnF, and RuO,, and

TABLE I. Space groups and Wyckoff positions of multiplicty
2 that allow altermagnetism: monoclinic and orthorhombic groups.
The notation follows the Bilbao crystallographic server [34,35]. We
note that some Wyckoff positions appear with an apparent multi-
plicity greater than 2, this occurs because a unit cell larger than the
primitive unit cell is conventionally used in these cases.

SG (P) Wyckoff (S) Iy Spin splitting (fr,, (K))
11 (Cyp) 2a-2d (C)) B, akyky, + Bhyk.
12 (C) de, 4 (C)) B, akyk, + Bk,
13 (Cop) 2a-2d (C)) B, akyk, + Bk,
14 (Cyp) 2a-2d (C)) B, akyky, + Bhyk.
15 (C) 2a-24 (C) B, akyk, + Bhyk.
49 (DZh) 2a-2d (CZh) Blg kxk).

51 (DZh) 2a-2d (CZh) B2g kxkz

53 (sz,) 2a-2d (CZh) B3g kykz

55 (Day) 2a-2d (Cy) By, kok,

58 (DZh) 2a-2d (Cz;,) B]g kxky

63 (sz,) 4a,4b (Czh) B3g kykz

64 (Dy;) 4a,4b (Cp) By, kyk,

65 (DZh) 46,4f (CZh) B]g kxkz

66 (D) Ac-4f (Cy) By, ok,

67 (DZh) 4c-4f (Cz;,) B3g kxk).

72 (Dz;,) 4C,4d (CZh) B]g kxky

74 (Do) 4a,4b (Con) B, kyky

74 (DZh) 4C,4d (CZh) BZg kxk)

orthorhombic, e.g., k-Cl and FeSb,, d-wave altermagnets, to
hexagonal, e.g., CrSb and MnTe, g-wave altermagnets, and to
cubic i-wave altermagnets.

The paper is organized at follows. In Sec. II, we expose
the minimal model reproducing the DFT band structure for
RuO;, which justifies the choice of the altermagnetic order
parameter. In Sec. III, we focus on the single-orbital minimal
model to analyze and compare the bare susceptibilities in the
ferromagnetic and the altermagnetic channels. We show that
this model is sufficient to capture a leading altermagnetic in-
stability by using both the random phase approximation (RPA)
and self-consistent Hartree-Fock calculations. In Sec. IV, we
consider the same minimal model and use SOC in order to de-
rive an analytic expression linear in the spin-orbit strength for
the Berry curvature in the four-band model. In Sec. V, we ex-
tend the discussion of minimal models to other altermagnetic
candidates with orthorhombic, hexagonal, and cubic lattices.
Finally, Sec. VI presents our discussion and conclusions.

II. MINIMAL MODELS FOR ALTERMAGNETISM

A. General considerations

Our models apply to all centrosymmetric space groups that
contain inversion symmetric Wyckoff positions of multiplicity
2. Tables I and II give these space groups and the correspond-
ing Wyckoff positions. A key input for our models is the
relationship between the point group P and the Wyckoff site
symmetry group S. Specifically, the primary order parameter
we consider is Néel order on the two Wyckoff positions
(perhaps unsurprisingly, we show that this order parameter
naturally accounts for the DFT bands in the altermagnetic
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TABLE II. Space groups and Wyckoft positions that allow alter-
magnetism: tetragonal, rhombehedral, hexagonal, and cubic groups.

SG (P) Wyckoff (S) 'y Spin splitting (fr,, (kK))

83 (Cy) 2e,2f (Co) B, akky + Bk; — k)

84 (Cyp) 2a-2d (Cyp) B, akck, + ﬂ(kf — kf,)

87 (Can) 4c (Con) B, akeky + Bk — k)

123 (D4h) Ze,Zf (Dz;,) Blg k)% — k}z

124 (Dyy,) 2b,2d (Cy,) Ao, kxky(kf, — kf,)

127 (Dg4y) 2a,2b (Cyp) Ay, kxk).(kf — kf,)

127 (D4lz) 2C,2d (DZh) Bzg kxky

128 (Dap) 2a,2b (Cyp) Ag, Kok, (K2 — kf)

131 (D4h) 2a-2d (Dz;,) Blg k% — k)z

132 (D4h) 23,20 (DZh) Bzg kxky

136 (Dan) 2a,2b (D) By, k.ky

139 (D4y) 4c¢ (Do) By, k2 — kf

140 (Dap) 4c (Ca) Asg keky (k7 — k)

140 (Dy4y,) 4d (D»y,) By, kyk,

163 (Dsy) 2b (S¢) Ay, k_vkz(k}z, — Skf)

165 (D3y) 2b (S¢) Ay, kxkz(kx2 — 3k)2,)

167 (D3y) 6b (S¢) A, kxkz(kf — 3k}2,)

176 (Cep,) 2b (S¢) B, ak_vkz(kf — 3k§)
+ﬂkxkz(kf — 3k§)

192 (Dg;) 2b (Cgp) Ay, kxky(kf — 3k)2,)(ky2 — 3kX2)

193 (Dg;) 2b (D3g) By, kek: (ky — 3k7)

194 (Déh) 2a (D3d) Blg k)kz(3kf — k‘z,)

223 (0y) 2a (D3g) Ay, kf(k)z. — kf)

ki (k2 — k2)
k2 — k)

state). As discussed in Ref. [33], this Néel order transforms as
I'y® Fj, where I'y is an irreducible representation (IR) of
the point group G and I is the axial IR of the spin-rotation
group.

The IR I'y plays a central role in our theory and can be
identified from the knowledge of P and S by writing P =
S + hS, where & is a point group symmetry that switches the
two Wyckoff positions. I'y is then identified as the IR of P that
has character 1 for all elements in S and —1 for all elements
in AS. In Tables I and II, I'y is given for each space group
and Wyckoff position. Further, as we show explicitly later,
the altermagnetic spin splitting in all our minimal models is
given by fr,(k)o where ¢ denotes the Néel spin direction
and fr, (k) is a momentum dependent function with the same
symmetry as I'y. In Tables I and II, under the column spin
splitting, we give representative forms of fr, (k). We note that
while we show the microscopic origin fr, (k) for electronic
models that include nondegenerate orbital IRs of the group S,
the form of fr, (k) is also correct for degenerate orbital IRs of
the group S provided the site symmetry group S is not broken
by a local electronic orbital ordering.

B. General minimal electronic model

To construct our minimal tight-binding models we require
I'y identified in Tables I and II. For ease of presentation,
we restrict ourselves to explicitly providing models for the
twenty-seven entries that have primitive unit cells (these are
the Wyckoff positions with multiplicity explicitly labeled by 2
in Tables I and II). The corresponding two sublattice positions
of the magnetic ions in the unit cell will be labeled by the
Pauli matrices 7;, we will label spin degrees of freedom by
Pauli matrices o;. We also assume that the orbital degrees
of freedom belong to a singly degenerate IR of the Wyckoff
site symmetry group S. It is possible to consider orbitals that
belong to degenerate IRs, but these models will necessarily
contain more degrees of freedom and hence are not minimal
(we carry out a limited investigation of the multiorbital case
for RuO; and find that the key features of our minimal model
persist). Our minimal model is remarkably versatile: specifi-
cally the model can be applied to monoclinic, orthorhombic,
tetragonal, rhombehedral, hexagonal, and cubic space groups
and allows for d-wave, g-wave, and i-wave altermagnetism.
Furthermore, this models correctly capture the spin splittings
and the largest band splittings seen by DFT in the altermag-
netic state.

The general minimal model for altermagnetism has the
form

H = &80k + L kTx +1;kT; + ryik -0+ Tzf- g, (1)

with a sublattice independent dispersion &, inter- and in-
trasublattice hopping coefficients #,x and #;x, a SOC term
Ak, and a primary order parameter J. Here the time-reversal
symmetry operator is T = itg0,K (where K is complex conju-
gation). The parameters in this minimal model are constrained
by the space group, point group G, and Wyckoff site sym-
metry group S. We have restricted our minimal models for
nondegenerate IRs of S, and Eq. (1) is valid for all such non-
degenerate IRs since the Hamiltonian is built from electronic
bilinears that are independent of any sign change that arise for
a local rotation. The sublattice operators 1, and t, are invariant
under P and the operators 7, and 7, belong to the IR I'y shown
in Tables I and II (this follows because these two operators
change sign under the interchange of the two sublattice sites).
In addition, translation symmetry implies g9 x = & x+c and
t,x =t k+G, where G is a reciprocal lattice vector and, since
7, and 7, couple the two magnetic atoms, #, k¢ = €012z, x
and XHG = eiG"‘ZXk where t, is the translation between the
two magnetic atoms in the unit cell. All coefficients are even
under kK — —k due to the presence of inversion / in the
Wyckoff site symmetry group S.

Prior to providing specific examples and justifying our
minimal model with materials examples, we highlight impor-
tant general properties of the parameters that appear. First we
note our altermagnetic order parameter encodes collinear mo-
ments parallel to J that have opposite orientation on the two
sublattice magnetic atoms. This term carries no k dependence.
The intrasublattice hopping term . x plays an important role
in our theory and its k dependence must share the same sym-
metry as the t, operator—hence . x belongs to the nontrivial
IR I'y. This term quantifies the existence of local multipole
moments that have opposite sign on the two magnetic atoms
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and appears due to the local point-group symmetry breaking
at the magnetic atom position. As discussed in more detail be-
low, it is this term that gives rise to the momentum-dependent
spin splitting that defines altermagnets. The hopping param-
eter f,x has the full point group symmetry. As we show
later, if this hopping parameter is zero, then altermagnetism
and ferromagnetism are degenerate within an RPA treatment.
Finally, the SOC term follows from 7" and / symmetries. In
particular, both the spin operators and 7, are odd under T, so
their product is T -invariant. From / symmetry, Ak = A_x and
hence this is also T invariant. As we show below, Xk gives rise
to a Berry curvature that is linear in the magnitude of SOC.

It is informative to consider the dispersion relation when
SOC vanishes. This is given by

1/2

Eger = sox +a(t2 + (tx +7-5)%) 2)

This reveals that the altermagnetic spin splitting appears
through the product tzykf -6 and hence is a consequence of
the interplay between the local symmetry breaking and the
Néel order. This provides a microscopic realization of the
Ginzburg-Landau bilinear coupling between the Néel order
and even-parity, odd-time reversal, octupolar order, which
gives rise to the altermagnetic spin splitting [26], as discussed
in the context of RuO, in Ref. [33].

As a specific example of our minimal model, it is worth-
while considering the simplest model for SG 136 and Wyckoff
position 2a (this is the Wyckoff position for the magnetic
atoms in RuO,, MnF,, NiF,, and CoF;). SG 136 has point
group Dy;, and the 2a Wyckoff position has site symmetry D,y,
this implies that 7, and 7, belong to the B,, representation of

Dyy,. The hoppingé tyx and 7 i are illustrated in Fig. 1. Here,

ks ane b ane ke k
Iyx = Io cOS 3 cos 7 cos 7, the factors 3 appear because of

the condition #, x+g = e"G't”tx,k with t;, = (%, %, %). In ad-
dition, #,x = t;osink, sink, has d-wave symmetry-imposed
sign changes which follow from the condition that t, belongs
to the B,, representation and quantifies local point group
symmetry breaking through the appearance of xy quadrupolar
order on the Ru sites due to surrounding O atoms. We note
that for k, = 7 or k, = 7 both #, x and t, i vanish, revealing
symmetry-required nodal planes that exist due to the nonsym-
morphic symmetry elements {szl%, %, %} and {C2y|%, %, %}
[36]. As we show later, these nodal planes aid in stabilizing
the altermagnetic state. Further, for the spin degrees of free-
dom, o; ~ Ay, and (oy, 0y) ~ E,. Consequently, symmetry
arguments imply that Ak is given by

A A si kz . kx k\y
k= Asin = sin — cos -,
o, 2772702
k k, k
Ayx = —Asin = sin = cos —,
’ 2 2 2
k;

ky ky
Azk = A;COS — COS > cos E(COS ky — cos ky). 3)

2
This approach has been applied to define the simplest tight-
binding form for the parameters ¢, g, #; , Xk for 27 Wyckoff
positions in Appendix A, providing many altermagnetic ex-
amples. We note that in the following we will consider
additional hopping terms in our minimal model to fit DFT
results. However, for SG 136, Xk remains the same.

o— © © o | o

FIG. 1. Sketch of the crystal structure for the tetragonal SG
136 and the relevant hoppings in the minimal model presented in
Eq. (1), with the red and blue colors representing the two sublattices.
(a) Crystal structure including the nonmagnetic atoms denoted by
the green color. (b) Three-dimensional lattice illustration of the #, x
hopping between sublattices. [(c) and (d)] Top view of the lattice
showing the #, x hopping with the symmetry-imposed sign change,
which has an opposite sign on the two sublattices due to the presence
of the nonmagnetic atoms.

C. Dispersion relations, altermagnetic spin splittings,
and Weyl-lines

The general form of the dispersion for the minimal model
in Eq. (1) is given by

Ey—tp—+ =&0x + Ot(tik + le + )»ﬁ +J?

+ B2 12 T2 + G x D)2, )

In the limit of vanishing SOC, Xk = 0, the four bands are
generally nondegenerate, except in two cases. The first case
occurs when ¢, x = 0. This defines Weyl planes in momen-
tum space with two twofold degenerate bands where the spin
splitting vanishes. These Weyl planes are symmetry imposed
and always present due to the nontrivial symmetry of operator
7. These Weyl planes are the nodes of the usual altermagnetic
spin splitting and, as mentioned earlier, are entirely given here
by the vanishing of the intrasublatice hopping , k. The second
case corresponds to #, x = 0 (which is often required by sym-
metry to occur on the BZ boundary) and 7, x = +|J], which
defines Weyl lines. Along these lines, we have a twofold de-
generacy together with two nondegenerate bands. These lines
are not symmetry imposed and appear when |z x| is larger than
|f|. As we will discuss in Sec. IV, this occurs in RuO, and
these Weyl lines can be important for the Berry curvature.
When Xk # 0, the Weyl planes discussed above (for which
t,x = 0) become partially gapped to form Weyl lines or Weyl
points. Specifically, when ,x = 0, Weyl lines occur when
symmetry requires the cross product between iy and J to
vanish, Xk x J = 0. The Weyl lines discussed in the previous
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paragraph become gapped if A - J 5 0 and survive otherwise.
Related Weyl lines have been discussed in Refs. [32,37-39].

D. Application to RuO,: Justification for the order parameter

Here we demonstrate how this model can describe the non-
magnetic band structure of tetragonal altermagnetic material
candidate RuO, found in DFT [2], and captures the alter-
magnetic spin splitting of the bands. We are giving explicit
models for materials and examine these with realistic param-
eters, thus all energies are in units of eV (unless specified
otherwise). As shown in Appendix B, the orbital projection
of the nonrelativistic DFT bands reveals that the d,y, d.., d,.
orbitals form bands crossing the Fermi level. We show that the
minimal model can be generalized to a multiorbital case since
the order parameter describing the spin splitting comes only
from opposite spins in the two sublattices. In Appendix C,
we discuss the case of another tetragonal material candi-
date, MnF,, where DFT has also identified an altermagnetic
phase [4].

To construct the specific one-orbital tight-binding mod-
els for this tetragonal material, we consider d,, orbitals on
the Wyckoff position 2a for which the example discussed in
Sec. IT A applies. Specifically, we take the dispersion

g0,k = ti(cosky, + cosky) — u 4+t cos k; + 13 cos k, cos k,

+ t4(cos k, + cos ky) cos k; + t5 cos k, cos ky cos k;,

)]
the hoppings
ke ke
tek = I3 COS — COS — COS —,
’ 2 2 2
I, x = tesink, sink, + t7 sink, sink, cos k, (6)

and the SOC terms given by Eq. (3).

Figure 2(a) displays the normal state bands obtained from
this minimal model using an appropriate choice of hopping
parameters specified in Appendix D. Notably, the minimal
model reproduces the main features of the bands, capturing
the crossings at the Fermi level, as well as the characteristic
nodal lines along the X —M and Z—R—A directions. The t, x T,
term in the minimal model in Eq. (1) is crucial since it is the
only one controlling the splitting of the bands in the A—Z line.
In addition, the #, k7, term is responsible for the splitting of
the band degeneracies in the I'—X and M —I"—Z directions.
The k-dependent SOC terms in Eq. (3) open a band splitting
along the Z—R — Af lines (not shown), in agreement with the
relativistic DFT results included in Appendix B. Figure 2(b)
shows the band structure in the altermagnetic state obtained by
including an order parameter as described in Eq. (1), resulting
in spin splittings in agreement with those obtained by the
magnetic DFT results [2]. Specifically, this model reproduces
the altermagnetic spin splitting along the M—I" and A—Z
directions, driven solely by the term ¢, x7,.

The coupled dy;/d,. orbitals also cross the Fermi level
in the RuO, DFT bands (see Appendix B). Therefore we
have additionally produced a two-orbital tight-binding model
without including couplings with the one-orbital model. For
the two-orbital model, we duplicate the terms of the minimal
model in Eq. (1) for the two orbitals and supplement it with

—— Spin T
=== Spin |

FIG. 2. Normal state (a) and altermagnetic (b) band structures for
RuO, obtained from the minimal model in Eq. (1) taking Eqgs. (5) and
(6), with hopping parameters detailed in Appendix D to reproduce
the DFT results (see Appendix B and Ref. [2]) and J, = 0.2 in (b).
The gray bands correspond to the two-orbital model in Egs. (7) and
(8) with the hoppings in Appendix D. From the latter model there
are two more bands with a twofold spin-degeneracy higher in energy
(not shown).

the following symmetry-allowed terms:

VeltaxHpxTu e xTo) + Valta xHex TatHrxT)
+ te kY Ty + Ao¥yT00:, (7

with

tax = (to +t19 cosk;)(cos k, — cosk,),
k k k
thx = 1] COS Ex cos Ey cos Ez(cos ky — cosky),

Icx = tipsink, sink,(cos k, — cosk,),

lax = 13 sin k, sin k,,

. X . kv ¢4
tox = 14 Sin — sin = cos —,
’ 2 2 2

trk = ap + tis(cos ky + cosky),

ki ky k,
fgk = l16COS > cos 5 cos E(COS ky — cosky), 8)

where we have introduced the Pauli matrices y; to repre-
sent orbital space, with y, ~ Bag, ¥, ~ A, and y, ~ By, in
the point group Dgj,. In contrast to the previous case, the
two-orbital model contains a symmetry-allowed on-site SOC
term Ao, which splits the bands at the I" point. Note that
t13 sin k, sin k,y, has the same symmetry as ¢, x and therefore
also controls the spin splitting along M—I" and A—Z lines.
The band structure from the d,/d,, orbitals is also included in
Fig. 2 and reproduces the relevant features of the DFT bands
demonstrating that our choice of order parameter provides an
accurate description of the altermagnetic state.
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III. SUSCEPTIBILITIES AND STABILIZATION
OF ALTERMAGNETISM

In the previous section, we introduced general minimal
models describing altermagnetism. The purpose of the cur-
rent section is to demonstrate that these models indeed give
rise to a leading altermagnetic instability and to examine
the mechanism driving altermagnetism. For simplicity, we
focus on the one-orbital model case shown in Eq. (1), even
though the discussion can also be extended to the multiorbital
case. In addition, in order to analyze the expressions for the
susceptibility and describe simple mechanisms stabilizing al-
termagnetism, we neglect SOC in this section. We return to
the role of SOC in Sec. IV when discussing Berry curvature
and the altermagnetic driven anomalous Hall effect.

A. Analytic expressions of the susceptibilities

To gain insight into what determines a leading alter-
magnetic versus ferromagnetic instability, we have obtained
analytic expressions for the bare susceptibility in band space
considering the minimal Hamiltonian

H = 0,k T Ly kTx + 1 kT, )

From this expression, we see that the unitary transformation
from sublattice to band basis is generally k-dependent. The
transformation matrix

cos %“ sin %“
Uk = N O (10)
—sin 3 cos >
diagonalizes H’, ie., U,H'Ug =diag(E/, E,_), where
I; k . Ik
cos by = = and sin 6y = - .
2l A/ 2yl

The susceptibility in the usual spin channel is

B
x™(q, ig,) = — /0 (T, Sq(T)S_q(0)), (11

where Sq = 1lv2k \IJE +qT0 Yk with the spinor Wy =
(Y1 1//k’2)T in the sublattice basis. We refer to this as
the ferromagnetic channel since this susceptibility diverges at
q — 0 close to a ferromagnetic instability. Transforming to

the band basis,

oS (E) = f(Eirg)

ign + B — By

1
KM@ i) = = D (i) 12

Kk,a,b

Focusing on the uniform static susceptibility, the ferromag-
netic spin susceptibility has only intraband terms,

M __i df (¢)

O } (13)
de ~
e=E; e=E,

Motivated by the RuO, band structure and the form of the
altermagnetic order parameter shown in Eq. (1), we can obtain
an equivalent expression for the altermagnetic susceptibility,

B ~ N
Mg, ign) = — /0 (T84 q(0)),  (14)

where now Sq = + > \Iflqurzlllk. In the band basis, the al-
termagnetic susceptibility becomes

2 f(E)— (Eisy)

ign+E{—E} q

15)

In the q — 0, ig, — O limit, projecting the t, operator onto
the band basis using Eq. (10),

N
M@ ig== 1 D [l |
Kk,a,b

1
x"™M(0) = x™(0) — v ; sin’ G

+ e “ (16)
de ~
e=E; e=E,

In contrast to the ferromagnetic channel, the altermagnetic
susceptibility contains both intraband and interband contri-
butions, and the competition between them determines the
leading instability. In order to stabilize altermagnetism, the
interband contribution should be larger, whereas if the intra-
band part is dominant ferromagnetism is leading. Note that
sin? 6k > 0 is also needed, i.e., a finite tyx term in Eq. (1),
since otherwise the two instabilities are degenerate.

Importantly, Eq. (16) also shows that band degenera-
cies enhance the interband susceptibility, as they correspond
to Elj — E,_ — 0. Hence, these have an important role in
stabilizing altermagnetism. Without considering SOC, the
nonsymmorphic symmetry ensures these band degeneracies
on nodal planes. In the case of RuQO;, there are nodal planes
in the x,y faces of the BZ and two cross lines on the z
face, as seen in Fig. 2(a). Altermagnetism is also favored if
there exists a nesting line between the two bands, leading
to a divergent interband susceptibility. In a three-dimensional
picture, a nesting line in momentum space can exist between
two spherical Fermi surfaces centered around the same point,
giving rise to a cusp in the density of states.

Examining the intra- and interband susceptibilities using
the tight-binding Hamiltonian in Eq. (1) shows that the band
splitting due to the #, x 7, term has to be sufficiently large for
the interband term to dominate in Eq. (16), which is typically
the case since ¢, x corresponds to nearest neighbor hopping, as
shown in Fig. 1. Expanding Eq. (16) close to the A point re-
veals that the contribution from the van Hove singularity (see
Fig. 2) gives rise to a dominant interband susceptibility, thus
stabilizing altermagnetism. To further emphasize the differ-
ence between symmorphic and nonsymmorphic space groups,
and elucidate the role of band degeneracies in driving the al-
termagnetic instability, we have compared the band structures
and the altermagnetic susceptibilities for a 2D minimal model
for SG 123 (symmorphic) and SG 136 (nonsymmorphic). SG
136 with Wyckoff position 2a has been discussed in Sec. II,
and based on the 2D model discussed in Appendix G inspired
by the RuO, bands in Fig. 2(a), we consider the minimal
model

2f(E.) — FED]
E; —E/f

_ | df(e)
de

H35"%° = t)(cos k, + cos ky) + 1, cosk, cosk, —

ki ky . .
+ t3 cos > cos ?}rx + t4sink, sink, 7, a7
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FIG. 3. [(a) and (c)] Normal state and [(b) and (d)] alter-
magnetic band structures for space groups SG 136 (nonsymmor-
phic) and SG 123 (symmorphic). In both cases, {t, %, 13, 4, u} =
{—0.1,0.1,1.7,0.3,0.2} [see Eqgs. (17) and (18)], with J, = 0.2 in
(b) and (d). (e) Comparison of the altermagnetic susceptibilities, with
T = 10~* and n; = 12002, displaying a significantly larger altermag-
netic susceptibility in the nonsymmorphic case.

with the hoppings illustrated in Fig. 16. As a symmorphic
example, we consider SG 123 and Wyckoff position 2e, which
corresponds to (0, 1/2) and (1/2,0) in a 2D model. SG 123
has also point group Dy, and the 2e Wyckoff position has
site symmetry D, and thus 7, and 7, belong to the B,
representation of Dy;,. The minimal model is then given by

HIS'™ = t)(cosk, + cosky) + 12 cos k, cos ky — 4
ky ky
+ 13 cos 5 cos ?Tx + t4(cos k, — cosky)t,. (18)

Importantly, as opposed to the previous nonsymmorphic ex-
ample, the term 7, = t4(cosk, — cosk,) splits the bands at
the BZ boundary.

In Figs. 3(a) and 3(c), we show the normal state band
structure for SG 136 and SG 123, respectively. The non-
symmorphic space group [see Fig. 3(a)] features band
degeneracies at the BZ boundary, as seen along the X —M
direction. On the contrary, the symmorphic space group is
crucially different, since the band is only degenerate at the
M point. The altermagnetic band structures are displayed in
Figs. 3(b) and 3(d), showing the vastly distinct altermagnetic
spin splitting between the two cases due to the different sym-
metries of the 7, x term. We also note that the required Hubbard
interaction to acquire this spin splitting (in mean field theory)

is U = 1.017 for SG 136 while for SG 123 a significantly
larger U = 1.72 would be needed.

Figure 3(e) shows the noninteracting altermagnetic sus-
ceptibility for both space groups. As seen, for SG 136 the
altermagnetic susceptibility is notably larger when compared
to SG 123. To understand this result, Eq. (16) is crucial as
it points out that band degeneracies have an important role in
stabilizing altermagnetism. Hence, in terms of altermagnetism
the main difference between symmorphic and nonsymmor-
phic space groups is indeed the symmetry-imposed band
degeneracies characteristic of nonsymmorphic space groups.

B. Stabilization of altermagnetism

To demonstrate that the minimal tight-binding models in-
deed give rise to a leading altermagnetic instability, we start
from the Hamiltonian H’ and consider standard intraorbital
Hubbard interaction U given by

Hiy =U Zni,ﬂ,Tni,u,¢, (19)
i
where o denotes the sublattice index, and show that this is
sufficient to give rise to altermagnetism. Note that Ref. [40]
demonstrated that Eq. (19) gives rise to the relevant altermag-
netic interaction in the band basis in the case of coincident van
Hove singularities.
In the multiorbital RPA approximation, the RPA suscepti-
bility matrix can be written as [29,41-43]

[x0(q. ign)(L=U xo(q, ign))~ 1442,
(20)

[XrPA(Q, iG]} 0 =

where ig, is a bosonic Matsubara frequency, [U]/1#2 = U

M3, 1
for i =, = 3 = uq and the bare susceptibility rsnzftrlx is
given by

[x0(q. ig)liihe = ~%E Z G . (K+q,iw, + igy)
K,iw,
x G, (K, iwy). 1)

The matrix product is calculated by combining the sublattice
indices to construct the matrix elements, A, 1,,N,, s+l >
with A = {x0(q, ig,), U}, where in this case N; =2 since
we only have two sublattices, giving thus 4 x4 matrices. In
Eq. (21), the bare Green’s function corresponds to

up, (K (K)

0 .
GO, (K, iw,) = Z B0 (22)

with u/ (k) the k-dependent eigenvector connecting band
space (m) with sublattice space (u), and E, (k) the cor-
responding energy eigenvalue of the Hamiltonian H' for
band m.

To obtain the physical spin susceptibility in the ferromag-

netic channel, we sum over both sublattices

> [xrea(@. igy — o+ il (23)

M,V

Xipa (Q, ©) =

In analogy with the analysis of the bare susceptibilities in
the previous section, we can obtain an expression for the
susceptibility in the t, channel. Therefore the susceptibility in
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FIG. 4. [(a)—(d)] Bare and RPA susceptibilities in the ferromag-
netic and altermagnetic channels [see Eqs. (23) and (24)] for RuO,,
considering the minimal one-orbital model band structures shown in
Fig. 2(a), for U = 1.8, T = 0.02, and n; = 60°. (e) Order parameter
M| =", Iny.o —ny ol for RuO, from a selfconsistent Hartree-Fock
calculation at different fillings n where both an altermagnetic and
ferromagnetic order parameter can be stabilized, for 7 = 0.02 and
ne = 403

the altermagnetic channel for a two-band model can be written
as

Xioa (@, @) = Y (=1 (= 1)’ [xrpa(q. ign — o+in)li).
w,v

(24)
If this susceptibility diverges before the usual spin chan-
nel, it signifies that the altermagnetic phase is favored over
ferromagnetism or spin-density wave order. The form of
Xipa(q, w) also reveals that the altermagnetic instability is fa-
vored when the intersublattice components become negative,
as shown in Appendix E.

Figures 4(a)—4(d) display the RPA results for the RuO,
bands shown in Fig. 2(a), considering only the one-orbital
minimal model in Eq. (1). As seen, altermagnetism becomes
the leading instability and diverges at ¢ — 0. We notice that
the bare susceptibility exhibits the same momentum structure
as the RPA susceptibility, as expected from a single orbital
model. Therefore the discussion in Sec. IIT A gives insight
into the competition between ferromagnetic and altermagnetic
instabilities and the mechanisms stabilizing these phases.

The leading altermagnetism implied from the above sus-
ceptibility analysis can be verified through selfconsistent

Hartree-Fock calculations, an established method to exam-
ine instabilities in Hubbard models and recently discussed
in view of two dimensional models for altermagnetism and
antiferromagnetism [29]. Here, we start from the same tight-
binding Hamiltonian and the Hubbard interaction, Eq. (19),
perform a mean-field decoupling n; ,, o — (i p.0) + i 46,
keep only terms quadratic in the fermionic operators and add
the mean-field Hamiltonian Hyg = U Zi,u,a (M0 )Ni e tO
H'. The expectation value of the local density operator (r; ;)
is then calculated using the eigenstates and eigenvalues in the
symmetry-broken phase at a given temperature 7. Iterations
by updating the mean fields and the chemical potential while
fixing the total number of electrons are performed until self-
consistency is achieved. In Fig. 4(e), we show the magnetic
order parameter |M| = Zu [{nu,4) — (ny,)| for RuO, versus
interaction strength U for both altermagnetic and ferromag-
netic order for a range of fillings n indicated by the inset.
As seen throughout the parameter regime, the altermagnetic
instability dominates by exhibiting the smallest critical inter-
action strength.

IV. BERRY CURVATURE AND CRYSTAL HALL EFFECT

In this section, we study altermagnetism in the presence of
SOC, and derive a general analytic expression for the Berry
curvature in the four-band case using the one-orbital minimal
model introduced in Eq. (1). Previous works have focused on
finding an effective two-band Hamiltonian [7,31], or solving
numerically for the Berry curvature in the four bands case
[3]. In general, these approaches give rise to a vanishing Hall
conductivity quadratic in the SOC strength [18,31], which is
expected to be weak in altermagnets [6]. Here, we obtain an
analytic expression for the Berry curvature linear in the SOC,
leading to a larger nonvanishing Hall conductivity. To capture
this result, care needs to taken in writing down the SOC term,
for example replacing 7, by 7, in the SOC term [3,31] will
yield a Berry curvature that is quadratic in SOC.

A. Berry curvature for the general minimal model

Reference [44] describes an approach to obtain the Berry
curvature for an N-band system without computing the eigen-
states. In particular, they provide a general expression for the
quantum geometric tensor

Thij = Tr(3;P)(1 — Py)(3; Py, (25)

where P, = |¥,) (| is the projection operator onto band
n. The Berry curvature corresponds to the imaginary part,
Qn,ij = —23T,,;j, which is antisymmetric in the indices i, j.

Without loss of generality, we consider SOC Xk to have
an arbitrary orientation and fix the altermagnetic moments
in-plane J= (J, 0, 0). This moment direction choice is conve-
nient for application to previous observations in altermagnetic
material candidates, such as RuO, [19,20]. In this case, fol-
lowing Ref. [44] and labeling the bands by («, 8) as in Eq. (4),
we find the projection operator can be written as

P, —1]1+1L7 144 (26)
a,ﬂ—4 Eﬂ Ea,ﬂ ,
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where H = I, x0x + Ay k70, — A xT0y,  and Eﬂ:i =

B/t + A%\ + A} are the corresponding eigenvalues.
We find a Berry curvature linear in the SOC when the SOC
term has the same spin direction as the altermagnetic order

parameter J. In this case, to linear order, the Berry curvature
becomes

1
Qa,ﬂ,ij ZET Z Emn[(J+:Btz,k)am)‘x,kantx,k

o,p m,n=i, j

+ ﬂ tx,kamtz,kankx,k + :3 Ax,kamtx.kantz,k]v (27)

with &,,, the antisymmetric tensor. This expression is relevant
for any system with the four band Hamiltonian in Eq. (1).
Therefore it is applicable to monoclinic, orthorhombic, tetrag-
onal, rhombohedral, hexagonal, and cubic systems and the
generality of this expression is one of the key result of this
manuscript. This expression reveals that this Berry curvature
result is linear in the component of the SOC parallel to the
Néel order (we note that in RuO,, we have found that the SOC
we consider here is linear in the atomic SOC). This is very
unlike the altermagnetic Rashba model [7], where the Berry
curvature is quadratic in the Rashba SOC and the relevant
SOC is perpendicular to the Néel moment.

B. Application to RuO,

For the tetragonal SG 136, i.e., RuO, and MnF,, the
altermagnetic order parameter t,0, preserves the mirror
symmetries M,, M,, M, and therefore there is a vanishing
anomalous Hall effect and Berry phase. Focusing on the
tetragonal case, 1,0, and 7.0, can generate an anomalous
Hall effect in the presence of SOC. In particular, the former
term breaks the M,, M, mirrors and, as a consequence, it can
generate a finite Hall conductivity o,,, which is given by the
integral over the filled bands of the Berry curvature

e? dk

with f,, (k) the Fermi-Dirac distribution of each band 7.
Recalling the form of the coefficients in the tight-binding

Hamiltonian given in Egs. (3) and (6) for tetragonal systems

with the rutile structure, the Berry curvature in Eq. (27) gives

Qy grz = @)&lg] cos? <%)(cos k, — cosky), 29)
including only the terms that give rise to a nonvanishing Hall
conductivity, i.e. do not average to zero in the BZ integral of
Eq. (28).

In Fig. 5, we show the Berry curvature for the « = + and
B = +£ bands, considering the realistic hopping parameters
in Fig. 2(a) for the one-orbital model reproducing the RuO,
band structure. The same plots are obtained for o« = — by
exchanging the red and blue colors due to inversion symmetry.
We have estimated a realistic SOC strength in RuO, from
the splitting in the Z—R—A path in the relativistic DFT band
structure, as shown in Fig. 9 in Appendix B. In agreement with
previous DFT calculations, the SOC has a weak effect on the
bands [6]. Figure 5(a) shows that €2, is large at the nodal
planes X —M and Z-R, where the normal state band structure

(@) k7 (b)

e ‘ ‘ ey H N N n
-0.80-0.48-0.16 0.16 0.48 0.80 0.5 0.3 0.1-0.1 -1 -10

Q.T,z Q,’I?Z

FIG. 5. Three-dimensional Berry curvature obtained from the
analytic expression in Eq. (29), with « = 4 and (a) § = + and (b)
B = —, considering the one-orbital minimal model [Eqs. (6) and (3)]
normal state band structure for RuO, shown in Fig. 2(a). We choose
J = 0.2 for the altermagnetic order parameter and estimate the SOC
A = 0.1 from the relativistic DFT calculations shown in Fig. 9.

shown in Fig. 2(a) features degeneracies. As discussed in
Sec. III, the band degeneracies lead to a large interband sus-
ceptibility, thus favoring altermagnetism. Consequently, in the
presence of an altermagnetic instability the Berry curvature is
guaranteed to be large at the nodal planes.

In addition, as previously discussed in Sec. II, Fig. 5(b)
shows that the presence of Weyl loops further enhances the
Berry curvature [18]. Neglecting the SOC terms, the eigenen-
ergies for the minimal model in Eq. (4) with in-plane moment

J correspond to Ey—y gy = a\/tik + (J + Br.x)?. When

t,x = 0, one band is twofold degenerate for 7, = +J. The
band degeneracies stem from Weyl loops on the k, = 7 face,
which manifest as band crossings along the Z—A direction in
Fig. 2.

Remarkably, Fig. 5 can be used as an indication of the most
favorable regions that the Fermi surface should touch in order
to obtain a large Berry curvature, thus giving rise to a large
anomalous Hall response. As already suggested for FeSb, in
Ref. [5], the chemical doping can be used the push the Fermi
surface to a large curvature €2 region.

In Figs. 6(a) and 6(b), we show the spin-up and spin-
down Fermi surfaces for RuO,, respectively, indicating the
sublattice weight. Panels (c) and (d) of Fig. 6 display the
projected Berry curvature from Fig. 5 onto the two Fermi
surfaces. As seen, when summing the contributions for the
two Fermi surfaces this will give rise to a nonvanishing
anomalous crystal Hall effect. Figure 6(e) explicitly shows the
conductivity calculated using Eq. (28). In the limit A — 0, the
conductivity scales linearly with SOC (dashed line) and this
parameter is directly proportional to the atomic SOC [45].
Subleading nonlinear contributions are also present due to
the nontrivial dependence of E, g on the SOC (solid line),
as seen from Eq. (4). For stoichiometric RuO,, DFT results
predicted o,, = 36.4 S cm~! [3]. Therefore, considering the
linear in SOC contribution, we obtain a large conductivity.
Note that the calculation has been done using the minimal
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FIG. 6. [(a) and (b)] Spin-up and spin-down Fermi surfaces for
RuO; in the altermagnetic state, considering the minimal model in
Eq. (1) and the state band structure shown in Fig. 2. The colorbar
indicates sublattice weight. [(c) and (d)] Berry curvature shown in
Fig. 5 projected onto the spin-up and spin-down Fermi surfaces. [(e)
and (f)] Conductivity as a function of SOC strength, with J = 0.2
and n = 2013, and magnetic order, with A = 0.1 and n, = 4013,
for T = 0.01. Apgr and Jegr denote the effective SOC and magnetic
moment obtained by comparing with DFT results (see Appendix B
and Ref. [2]).

one-orbital model in Eq. (1) and, as a consequence, we expect
contributions from other bands in RuO,, see Fig. 2(a).
Figure 6(f) displays the conductivity oy, as a function of
magnetic order J. As seen, o,, exhibits a significant J depen-
dence both in terms of amplitude and sign. A similar strong
dependence of the anomalous Hall response to band structure
details has been recently discussed for FeSb, in Ref. [5].
These results suggest that one might significantly enhance the
Hall conductivity by band engineering or optimization of the
altermagnetic order parameter.

V. MINIMAL MODELS FOR OTHER
ALTERMAGNETIC CANDIDATES

In this section, we demonstrate that the general minimal
model in Eq. (1) can also be used to describe other alter-
magnetic candidates with different symmetry properties [6,7].
Here we initially present results on the stability of d-wave
altermagnetism for orthorhombic FeSb,. We then develop
minimal models for g-wave altermagnetism in hexagonal ma-
terials such as CrSb and MnTe and for i-wave altermagnetism

in cubic materials. In Appendix F we use the minimal model
to describe the bands for the organic compound «-Cl, which
provides a platform to study 2D altermagnetism. Motivated by
this, Appendix G presents a minimal 2D model for altermag-
netism in a tetragonal system.

A. FeSb,

Initially FeSb, was proposed to be a ferromagnet [46],
although Ref. [5] recently suggested that this material is non-
magnetic and, more intriguingly, the doped compound could
host unconventional magnetism. FeSb, is an orthorhombic
material with space group 58. This space group has point
group Dy, and Fe occupies the 2a Wyckoff position with site
symmetry Cy;, see row 10 in Table I. This implies that the 7,
and 7, operators belong to the By, representation of D»;. Based
on Ref. [46], we construct a minimal model for d» 2 -orbitals,
considering Wyckoff positions at (0,0,0) and (1/2, 1/2, 1/2).
Thus, the minimal model in Eq. (1) in this case has the same
form for the hoppings ¢, x and ¢, i as in Eq. (6). The SOC is
given by

Lk Ky k,
Ay k = Ay SINn — SIn — COS —,
' 2 2 2
N s k. .k ky
k= Ay sin — sin = cos —,
pie = Ay S SR 08 S
k k, ky,

Aok = A COS EZ cos = cos 5), (30)

and the dispersion &g g corresponds to
g0,k =tix COSky + 1, cos k, + 1, cosk; + 13 cos k, cos k,
+ 14, cos ky cos k; + t4, cos k, cos k;
+ t5 cos k, cos ky cosk, — . 3

Figure 7(a) displays a single band picture inspired by the
FeSb, band structure that crosses the Fermi energy at the R
point [5,46]. Importantly, the spin splitting along the I'—S and
R—Z directions [see inset in Fig. 7(a)] can also be described
by the ¢, x T, term, as seen in Fig. 7(b).

In agreement with Ref. [5], only when lowering the chem-
ical potential we obtain a leading altermagnetic instability,
see also Appendix I. In contrast to the previous results for
other compounds, in this case an RPA analysis reveals that
the altermagnetic susceptibility does not diverge at q — O,
pointing to an incommensurate altermagnetic state as the lead-
ing instability due to Fermi surface nesting (see Appendix I).
However, Ref. [5] only considered a few commensurate vec-
tors, whereas our RPA analysis shows a different q # 0
leading divergence.

Notably, in FeSb, there is a crucial difference com-
pared to the other materials discussed in this work. As seen
from Fig. 7(a), along the R-Z line the two bands disperse
downwards. Therefore we expect that altermagnetism in this
compound is not as stable as in the case of RuO; and «-Cl (see
Appendix F), where the bands close to the A and the S-point,
respectively, disperse in opposite directions giving rise to a
van Hove singularity. As shown in Appendix I, upon small
variations of the filling, altermagnetism becomes unstable and
ferromagnetism is the leading instability. Finally, we would
like to point out that these predictions should be revisited
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FIG. 7. Normal state (a) and altermagnetic (b) band structures
inspired by FeSb, obtained from the minimal model in Eq. (1)
considering Egs. (6),(31), with hopping parameters detailed in
Appendix D and J; = 0.1 in (b). The BZ path is shown in the inset.

when considering a more complete model including the full
set of d-orbitals. Nevertheless, the single-orbital model de-
scribes the right spin splitting and allows us to derive an
expression for the Berry curvature, written in Eq. (29), which
is large at the nodal planes and enhanced by Weyl lines, giving
rise to a nonvanishing conductivity.

B. g-wave altermagnetism

The case of CrSb is interesting since a particularly large
band splitting as high as 1.2 eV has been predicted for this
compound [6,7], and the altermagnetic band splitting has been
recently observed experimentally [13]. CrSb is a metal with
an hexagonal structure and a critical temperature of 705 K,
thus already magnetically ordered at room temperature [47].
Motivated by this material and by MnTe [12], we give a
minimal model that gives rise to g-wave altermagnetism. Both
CrSb and MnTe belong to the space group 194, with point
group Dg;,. The Cr and Mn atoms form an hexagonal lattice
with Wyckoff position 2a, which has site symmetry Ds,.
Consequently, the 7, and 7, operators belong to the By, repre-
sentation of Dy, see Table II. Incorporating t;; = (0, 0, 1/2)
the minimal model in Eq. (1) has the form

ky 3k,
gok =1 <coskx + 2 cos ECOS \/; ") +tcosk, — i,
(32)
while for the hoppings with t, and t,, we obtain
t t ks
"k = 13COS —,
k =13 )
tx = tasink.fy (7 — 3/7), (33)

and SOC
k
Ark = AcOs Ez(fx2 — f\z),
k;
Ayk = —2Acos Efoy’
ke 2 2
Ak = A sin Efx(fx — 3fy), (34)
o ke 3k, _
where we have defined f, = sink, + sin 3 cos 5 and f, =

/3 cos % sin @, see also Table III.

In agreement with the orthorhombic and tetragonal space
groups, for the hexagonal case the symmetry of the term cou-
pling to 7, gives the symmetry of the altermagnetic splitting,
which corresponds to a g-wave. Therefore, also in this case,
the one-orbital minimal model in Eq. (1) is sufficient to de-
scribe the symmetry of the spin splitting. However, in contrast
to the examples of RuO, and FeSb, where only nondegenerate
1D orbital IRs of S exist, the case S = D3, also allows 2D
orbital IRs. In this case, it would be of interest to extend our
microscopic model to include these 2D degenerate orbital IRs
since both degenerate 2D IRs and nondegenerate 1D IRs are
relevant to the electronic structure of CrSb and MnTe.

C. i-wave altermagnetism

In the previous cases, we have shown that the minimal
model in Eq. (1) can give rise to d-wave and g-wave alter-
magnetism. Here, we demonstrate that it is also sufficiently
general to allow for i-wave altermagnetism. In particular, we
focus on the cubic SG 223 with point group O;, and Wyckoff
position 2a with site symmetry 7;,. Consequently, the 7, and ,
operators belong to the A, representation of the point group
Oy, see Table II. The translation between the two magnetic
atoms in the unit cell is t; = (3, 1, 1). Therefore the minimal
model in Eq. (1) has the following form (Table IV):

g0,k = t1(cos ky + cosk, + cosk;) — u,

ky ky k,
tyx = 1 COS — COS — COS —,
' 2 2 2
1. x = t3(cos ky— cos ky)(cos k,— cos k;)(cos k,— cos k),
(35)
with SOC given by
. ky . kz X
Ay k = A SIn — sin — COS —,
' 2 2 2
. kx . kz ky
Ayk = A SIn — sin — €OS =,
2 2 2
ke . ky k,
Ak = Asin 7 sin 5) cos E“ (36)

Since the altermagnetic spin splitting is given by ¢, x and since,
in this case, t, i belongs to the A,, representation of Oy, and
near the I' point, 7, ~ x*(y* — %) + y* (2> —x*) + 2} (x* —
y?), this model describes an i-wave altermagnet.

VI. DISCUSSION AND CONCLUSIONS

We have provided minimal models for orthorhombic,
tetragonal, hexagonal, and cubic space groups. While we did
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TABLE III. Tight-binding coefficients for space groups with a nodal plane and two atoms per unit cell at the inversion center. Abbrevi-

ation ¢; = cosk;, s; = sink;, ¢, = cos 'iz‘ Sijp = sin %, fi = sink, + sin % cos Jgky, and fy, = /3 cos %‘ sin fzk“‘ applies. We note that while
products of f; and f, are convenient for describing the symmetry of the appropriate terms in the Hamiltonian, these products generally contain
nearest neighbor hopping terms together with longer range hopping terms. Within tetragonal and hexagonal space groups, the coefficients for

the two SOC 7,0, , are related. The other coefficients, which are generally different, are omitted from this table. For instance, s, (s, s;) in SG11

means 7158y + £,25)5;.

SG Ty 7, 7,0y 7,0y 7,0,
11(2a-2d) Cyp 85y (S, 52) Cyp Syy2(Sy, 82) Cyp2
14(2a-2d) Cyy2 (858225 C22) 5y(Sy, 82) Cyy2(8x822, C22) Sy2(8xCz/2, S272) Cyy2(8x8272, C22)
51(2a-2d) Cx/2 SyS; Sx/28y Cy2 Cy/28yS;
53(2a-2d) Cx)2C22 SyS; Cx/2Cz)2 Sx/28yCz/2 Sx/252/2
55(2a-2d) Cx/2Cy)2 Sy Sy Sy/2Cy)2S: Cx/28y/25; Cy/2Cy)2
58(2a-2d) Cx/2Cy/2C2)2 SxSy Sx/2Cy/282)2 Cx/28y/282)2 Cx/2Cy/2C2)2
127(2a,2b) Cx/2Cy2 sesy(cy — ¢y) ASy/2Cy 8, ACy28y28; Cx/2Cy)2
127(2c,2d) Cx/2Cy2 Sy Sy ASy/2Cy 8, —ACyp2Sy)2S; CepCyp(ce —¢y)
128(2a,2b) Cx/2Cy2C2p2 Se8y(cy — ¢y) ASy2Cy2820 ACx/2Sy/2822 Cy/2Cy2C22
136(2a,2b) Cx/2Cy/2C2)2 Sy Sy ASy/2Cy282)2 —ACyp2Sy/2822 Cx/2Cy2Cz2(Cx — Cy)
176(2b) e Szfx(fxzz— 3fv22)» e (ff = F) _2)"lcz/§fxfy2 Sz/zfx(ffz— 3fv22),
s Sy (fy =350 +2hac. 0 frfy thocn(fy = 17) sepfy(fy =350
193(2b) Cp s fo(f? = 3fyz) 2xenfify regpn(f2— fyz) sz/zfy(fy2 -3
194(2a) ¢ s S (f2 = 312) hen(f2 = 1) ~2hcpfif sonfu(f2=3f2)

not give examples, our approach can also be applied to mono-
clinic and rhombohedral space groups, see Tables I and II. For
the monoclinic case, an example is SG 14, with point group
Cyp,, Wyckoff position 2a or 2b (this applies to the Re site in
KsRelg [14]), and site symmetry C;, our approach will give
a corresponding minimal model for a d-wave altermagnet.
For the rhombohedral case, an example is SG 167, with point
group Ds;, Wyckoff position 6b (this applies to the Fe site in
FeCoj [14]), and site symmetry Sg, our approach will give a
corresponding minimal model for a g-wave altermagnet.

Our minimal models also highlight the role of nonsym-
morphic band degeneracies in altermagnetism. In particular,
the altermagnetic susceptibility we introduce reveals that band
degeneracies help to stabilize the altermagnetic state. This
susceptibility further reveals that the presence of van Hove
singularities related to the band degeneracies are favorable for
altermagnetism. Indeed, in the case of FeSb,, we find that the
corresponding lack of a van Hove singularity may lead to an
incommensurate altermagnetic state. In addition, the nonsym-
morphic band degeneracies enhance the Berry curvature and
thus lead to a large crystal Hall effect.

The minimal models can also be used to obtain new in-
sight into the properties of altermagnets. For example, as
outlined in Appendix H, we show how our minimal model
can give rise to the existence of topological states and chiral
surface bound states. In addition, superconductivity has been
observed in strained RuO, [48-50], which is surprising since
altermagnetism tends to strongly suppress superconductivity.

Our minimal model suggests an answer for this: in the
presence of strain €,,, the term €,, cos k, cos k, 7, also appears
in the Hamiltonian. This term splits the van Hove singularity
at the A point. As a consequence, we expect that altermag-
netism will be suppressed, potentially favoring other nearby
electronic instabilities. We expect that our minimal models
will serve as a useful tool to examine spatial varying proper-
ties of altermagnets, such as magnetic domain walls, and will
shed insight into the interplay of other electronic instabilities,
such as superconductivity, with altermagnetism.

In conclusion, through the comparison to DFT results, we
have developed realistic models for altermagnetism based on
a two magnetic atom sublattice in nonsymmorphic materials.
These models can be applied to monoclinic, orthorhombic,
tetragonal, thombohedral, and cubic point crystals and can
describe d-wave, g-wave, and i-wave altermagnets. Further-
more, we have shown that these models generically give rise
to a Berry curvature that is linear in the spin-orbit coupling.
We expect that these minimal models will serve as a useful
tool to understand altermagnetism and its properties.
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TABLE IV. Tight-binding coefficients for space groups with two atoms per unit cell at the inversion center, but without nodal plane. The
same abbreviation applies as in the previous table.

SG Tx 7; TyOx Ty0y Ty0;
13(2a-2d) Cz/25 Sx8z/2 Sy (x5 52) Cz/2, SxSz/2 Sy(sz/b Ssz/z) Cz/25 Sx8z/2
49(2a-2d) C2 S8y Se82/2 8y822 C

Cx/2Cy/2, A1Sx/2Cy/28; —A1Cx/28y/28; Sx/28y/25
83(2e,2 /2%y Cy — Cy), SiSy

(2¢20) Sxy28y2(Cx — Cy) ( v): 835, F+A2C1/28y/28; FA28x/2Cy/28; Cxj2Cy2(Cx — Cy)
84(2a,2b) Cz2 (cx — cy), 828y (M1sx + Aasy)szn (=A1Sy + A2sy)sn Cp(cy —¢y)

Cx2Cy2Ceps +A15:2Cy 2 —A1Cx28y2 Cy2CypaCopa(Cr — Cy),
84(2c,2d /2%y Cy — Cy), SySy s s.

( ) Sx/28y/2C2/2 (€x = cy). 88y <+)szx/2Sy/2> /2 <+)‘-2Sx/2cy/2 /2 Sx/28y2Cz2(Cx — Cy)
l23(2€,2f) Cx/zcy/z (Cx — Cy) )\.Cx/zsy/zsz )\.Sx/zcy/zsz sx/ZSy/Z
124(2b,2d) Cp2 Sey(cy — ¢y) AScSz2 ASyS2/2 C
131(2a,2b) C (cx —¢y) ASySz/ AScS22 S¢8yCz2
131(2¢,2d) Cx/2Cy2C0 (cx —¢y) ACxj2Sy/2822 ASx/2Cy /2822 $x/28y/2C22
132(2a,2¢) C SySy ASyS2/2 —ASyS2/2 cplex —¢y)
163(2b) €z/25 L] =3FD)se, Aifeszpn A fyS2p2 C2os

LG = s LS =3fDG = D) +ra(fE = fDezp =202 fifyCp2 LG = fsan
165(2b) €2/25 F(ff =310, A fise AMSysz Co,

LG = sz LB =3FDGf2 = f2) +20afifyczp +ra(fF = fDezp LG = s
192(2b) C2 LS (fE=3fDG = D) AS2 [ ASinfy Cz2
223(2a) Cx/2Cy2C0 (cx —¢y)ey — e )(c; — ¢r) ACxj2Sy/2822 ASx/2Cy /2822 ASx/28y/2C2

through the ESS-Lighthouse Q-MAT. D.F.A. and Y.Y. were
supported by the National Science Foundation Grant No. DM-
REF 2323857.

APPENDIX A: TABLES OF MINIMAL MODELS

Here we provide explicit minimal models for all space
groups in Tables I and II that have primitive lattice structures.
We provide two tables. Table III contains only nonsymmor-
phic space groups with nodal planes in the paramagnetic state.
These nodal planes have fourfold degenerate fermions that
exist when spin-orbit coupling is not included, and they appear
on a planar face of the Brillouin zone. Table IV contains min-
imal models for symmorphic groups and all nonsymmorphic
groups that do not contain nodal planes.

APPENDIX B: DFT CALCULATIONS FOR RuO,

Orbital projection of the DFT bands. In order to construct
low-energy minimal models for RuO,, we perform ab initio
calculations using the crystal structure from Ref. [51]. Within
the full-potential local-orbital (FPLO) code, we calculate the
electronic structure in the paramagnetic state and examine the
orbital character of the band structure by projecting to the d
orbitals in the local octahedral environment of the Ru(1) and
Ru(2) atoms, see Fig. 8. Focusing on the low-energy disper-
sion, one can construct minimal one- and two-orbital models

that partially describe the respective electronic structure. Con-
structing a tight-binding model from a Wannier projection
allows a Hartree-Fock calculation of the full model finding
an altermagnetic instability as discussed in the literature [2].

Relativistic DFT calculations. In order to estimate the
magnitude of the SOC in RuO,, we perform additional ab
initio calculations in the full relativistic setting of FPLO [52]
(version 22.00-62) and plot the band structure for comparison
in Fig. 9, revealing an effective SOC constant A = 0.1 eV, as
used in our minimal models of the main text.

APPENDIX C: THE CASE OF MnF,

In Sec. II, we have presented the minimal one-orbital
model and have demonstrated that it can describe the nor-
mal state and altermagnetic band structure of RuQO,. Here,
we focus on the material candidate MnF, and compare DFT
calculations with the minimal model in Eq. (1) relevant for this
compound both in the normal state and altermagnetic phase.
In the case of MnF,, DFT calculations have revealed that there
is only one orbital close to the Fermi level in the normal state
when performing a non-spin-polarized calculation [4]. The
single-band limit is also shown in Fig. 10 by introducing an
on-site Coulomb interaction U.

DFT calculations. In order to obtain hopping parameters
for a minimal model describing the low-energy band structure
of MnF,, we adopt the crystal structure from x-ray diffraction
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FIG. 8. DFT band structure (black lines) together with the pro-
jection onto atomic d orbitals of the Ru(l) atom (a) and the
Ru(2) atom (b) with the choice of the local coordinate system
as £ =(—1,1,0)/+/2 and 2= (1,1,0)/+/2 for Ru(l) and %=
(—1,-1,0)/v/2and 2 = (—1, 1, 0)/+/2 for Ru(2).

in Ref. [53] with space group P4, /mnm (No. 136) and lattice
constants a = b = 4.873, ¢ = 3.31. The Mn atoms are on the
2a Wyckoff position and the F atoms on the 4f position with
internal parameter (0.305,0.305,0). We verify the electronic
structure as found earlier [4] from calculations using the full-
potential local-orbital (FPLO) code [52], version 22.00-62 as
well as the full potential linearized augmented plane-wave
(LAPW) basis as implemented in WIEN2K [54], both using
the LDA exchange-correlation functional. Without additional
correlations from the LDA + U approach, the entangled Mn
d bands are close to the Fermi level as still visible with weak
correlations, see Figs. 10(a) and 10(b). Once larger corre-
lations are imposed, the d bands are pushed down and up,
leaving a pair of bands from one orbital per Mn close to the
Fermi level. Allowing for spin polarization within a calcula-
tion in WIEN2K where anti-parallel moments are imposed, we
retain two bands for each spin polarization close to the Fermi
level, see Figs. 10(c) and 10(d). A similar state is observed
irrespective of whether imposing a finite U or not. However,
due to the large local moment, the bands acquire an additional
crossing between I" and Z as well as unusual spin shifts along
the path between the A and Z points.

A\ ~ 1

full relativistic
- - - --scalar relativistic

2
go . (/ Er
Lq: ‘ /\

X R|

n
]
<

{4

\

|
e
T

7

-2
r X M r z R A z

M A

FIG. 9. Comparison of the band structure of RuO, from a scalar
relativistic DFT calculation (red, dashed) and a fully relativistic
calculation (black lines) revealing the splitting of the bands due to
SOC.

Minimal model. In Fig. 11(a), we display a minimal one-
orbital model obtained from Eq. (1) relevant for MnF, in the
single-band limit, as shown in Figs. 10(a) and 10(b) in the
normal state DFT calculations. Similar to the case of RuO,
in Fig. 2, in the normal state the minimal model captures
the crossings at the Fermi level and the nodal lines in the
band structure. Note that in the case of MnF,, in the DFT
calculations a large U interaction is introduced to obtain the

(a) 5 b —
(b) 0.4 — U=5¢eV
4 U=1eV
3 0.2
2 z
5 ! S
o . |
-0.2
-1
-2
' XM I' ZRA Z ' XM I' ZRA Z
(c) 5 ()
A\ o
3 -0.2
() —spinf, U=5eV] |5
<L ---spin |, U =5eV <L 0.4
< 1 spin T, U =1eV = Y.
& spin |, U =1eV R
0
SN 06
-1 e
9 = 0.8
I XM I' ZRA Z rXM I ZRA Z

FIG. 10. DFT calculations for MnF,. [(a) and (b)] Electronic
structure as obtained from a paramagnetic LDA+U calculation. The
bands are shown for two different values of the parameter U. [(c) and
(d)] Electronic structure from a spin-polarized calculation by fixing
the total moment to vanish.

144412-14



MINIMAL MODELS FOR ALTERMAGNETISM

PHYSICAL REVIEW B 110, 144412 (2024)

MnF,

|
= 0.01

—0.2-
I X M r Z R A Z

FIG. 11. Normal state (a) and altermagnetic (b) band structures
for MnF, obtained from the minimal model in Eq. (1) with Egs. (5)
and (6), hopping parameters detailed in Table V to reproduce the
DFT results (see Fig. 10) and J, = 0.05 in (b).

single band crossing the Fermi level. However, allowing for
formation of local moments yields a band structure below the
Fermi level with different properties (see Ref. [4] and Fig 10):
the spin splitting in the A—Z line is reversed for one orbital
and the spin-up band approaches the spin-down, as opposed
to the result obtained from the minimal model, as shown
in Fig. 11(b). The more physical picture for MnF, might
be an ordering of large paramagnetic moments occurring at
T = 67 K [55] while the compound stays insulating.

APPENDIX D: HOPPING PARAMETERS
FOR THE MINIMAL MODELS

In order to reproduce the band structures shown in Fig. 2
for RuO,, Fig. 7 for FeSb,, Fig. 11 for MnF,, and Fig. 14 for
k-Cl, we include in Tables V and VI the choice of all hopping
parameters. In particular, Table V details all hoppings for the
one-orbital minimal models. Note that the case of x-Cl is a
two-dimensional model, and therefore some hoppings are not
relevant. Table VI includes all hopping parameters for the two-
orbital model in the RuO; case, to obtain the gray bands in
Fig. 2.

N
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FIG. 12. [(a)-(d)] Bare and RPA susceptibilities in the ferromag-
netic and altermagnetic channels [see Egs. (23) and (24)] for MnF,,
considering the minimal one-orbital model band structures shown
in Fig. 11(a), for U = 0.36, T =0.02, and n; = 60°. (e) Order
parameter |[M| =Y, |n;, —n, .| from a selfconsistent Hartree-
Fock calculation at different fillings n where both an altermagnetic
and ferromagnetic order parameter can be stabilized, for T = 0.02
and n;, = 40°.

APPENDIX E: SUSCEPTIBILITY COMPONENTS
IN SUBLATTICE SPACE

The susceptibility in the altermagnetic channel in Eq. (24)
reveals that when the intersublattice components become neg-
ative the altermagnetic instability is favored. Figure 13 shows
the sublattice components of the susceptibility for the one-
orbital minimal models band structure shown in Fig. 2(a) for
RuO; and Fig. 11(a) for MnF;, with the bare and RPA sus-
ceptibilities shown in Figs. 4(a)—4(d) and Figs. 12(a)-12(d),
respectively. As seen, for a leading altermagnetic instability

TABLE V. Hopping parameters to obtain the band structures for the tetragonal compounds RuO, in Fig. 2 and MnF; in Fig. 11 [see Egs. (5)
and (6)], and the orthorhombic materials FeSb, in Fig. 7 [Egs. (31) and (6)] and «-Cl in Fig. 14 [Eqgs. (F1) and (F2)].

Tetra. 131 123 13 1y ts 17 t7 13 M
RuO, —0.05 0.7 0.5 —0.15 -04 —0.6 0.3 1.7 0.25
MnF, 0 0.13 0 —0.02 0.015 0 0.03 0.33 —0.01
Ortho. Ty ty 1) 13 Ty lyy 15 11 17 13 "
FeSb, —0.1 —0.05 —0.05 0.06 0.1 0.05 —0.05 0.05 —0.1 0.15 —0.12
k-Cl 0.08 —0.01 - —0.03 — — — 0.05 — 0.3 —0.1
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TABLE VI. Hopping parameters for the two-orbital model
shown in Egs. (5)—(8) to obtain the band structure in Fig. 2 (gray line)
relevant for RuO,.

151 12} 13 I4 Is 143 17 I3 2

(a) S () - .

20 T 1 L 04 T~ TS
— Dola)ly

1.0 (@} | 0.2
— [XU(OQ]Q

0.0 ; 0.0

r X M r r X M r

FIG. 13. Intra- and intersublattice components of the bare sus-
ceptibility shown in Eq. (21) considering the one-orbital minimal
model bands shown in Fig. 11 for MnF, (a) and Fig. 2 for RuO,
(b), with T = 0.02 and n;, = 60°.

the intersublattice components become negative along the
I'—X and M—T directions, with [ xo(q)14 = [Xo(q)]ﬁ. In con-
trast, when the ferromagnetic instability is leading they are
both positive along the same lines. Notably, the susceptibili-
ties [xo(q)14 and [x0(q)]5 split in the '—M direction, and the
splitting is reversed in the I'-M’ direction, with M = (r, 7, 0)
and M’ = (—m, 7, 0).

APPENDIX F: ORGANIC «-Cl

The x-Cl organic compound belongs to the 2D layer space
group L25, and it provides a platform to study 2D alter-
magnetism for which it is possible to find a weak-coupling
mechanism to stabilize the altermagnetic state [40]. This ma-
terial differs from the other materials in this work since it
lacks inversion symmetry. This lack of inversion symmetry
will alter the form of the SOC which is expected to be weak.
For these reasons we do not discuss SOC in this section. The
anomalous Hall effect and spin current generation has been
predicted for this material [10,11]. In addition, it has been sug-
gested that the magnetic order can induce finite momentum
superconductivity [56]. In these works, the models considered
have two dimers in the unit cell, which result in four bands,
but due to bonding/antibonding the bands split in two pairs.
Therefore, in the large dimerization limit, we can focus only
on the antibonding set of bands [57]. We argue that this is
sufficient to capture a leading altermagnetic instability. As a
consequence, we can construct the minimal model in Eq. (1)
by considering Wyckoff positions (0,0,0) and (1/2, 1/2,0),
which, through arguments similar to FeSb, gives

€0k = tix cosky +tycosk, + 13 coskycosk, —u,  (F1)

with the hopping terms

t t K os B

vk = I3 COS — COS —,

k=13 > >

I, x = lg sink, sin ky. (F2)

Similar to the rutile case in Eq. (6), here the ¢, k7, term also
gives rise to the spin splitting with a d-wave symmetry.

In Fig. 14(a), we show the band structure by an appropriate
choice of the hopping parameters (listed in Appendix D) in
Egs. (F1) and (F2), following the path shown in the inset
and assuming that the Fermi level is at the double van Hove
singularity at the S point. The obtained bands are in good
agreement with those of Refs. [10,56]. Figure 14(b) shows
the effect of the altermagnetic order parameter in Eq. (1).
As seen, again in agreement with previous works [10,11,56],

RuO, 018 -1 -05 -01 -0.1 —-06 O -02 -3

Iy o I 15%) 13 ha s lie aop
RuO, -0.1 0 —-02 O 0 0 0.1 0 3

the spin splitting is reversed along the k, = k, and k, = —k,
directions, since T, ~ sink, sink,.

As shown in Figs. 15(a)-15(d), for this band the van Hove
singularity at the Fermi level gives rise to a q — 0 peak in
both the ferromagnetic and altermagnetic bare susceptibili-
ties, but the latter is the leading instability. The Hartree-Fock
results in Fig. 15(e) show that the altermagnetic state can
be stabilized at a lower value of the Hubbard interaction U.
When initializing with ferromagnetic ordering, this state is in
principle also stable, and the magnetization sets in gradually
with U. These results are robust against changes in the overall
filling with the modification that the saturation value of the
(sublattice) magnetization first decreases and then increases
again. This can be understood in terms of a nonmonotonic
behavior of the density of states (slope of black curve in inset)
of Fig. 15.

Examining the model in Egs. (F1) and (F2) shows that a
sufficiently large g hopping is crucial to obtain a dominant
interband susceptibility, in agreement with the analysis of
the effect of coincident van Hove singularities in Ref. [40].
Motivated by this, in Appendix G, we describe a toy model
for a 2D tetragonal system inspired by RuO,, giving rise to a
leading altermagnetic instability assuming that the Fermi level
is also at the coincident van Hove singularities.

X I

FIG. 14. Normal state (a) and altermagnetic (b) band structures
for x-Cl obtained from the minimal model in Eq. (1) considering
Egs. (F1) and (F2), with hopping parameters detailed in Appendix D
and J; = 0.05 in (b). The BZ path is shown in the inset.
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FIG. 15. [(a)-(d)] Bare and RPA susceptibilities in the ferro-
magnetic and altermagnetic channels [see Egs. (23) and (24)],
considering the minimal one-orbital model band structure for x-ClI
shown in Fig. 14(a), with U = 0.1 T = 10~* and n; = 400%. (e)
Order parameter |M| for «-Cl calculated within Hartree-Fock using
the Hamiltonian in Eq. (F2), with T = 0.002 and n; = 300°.

APPENDIX G: MINIMAL TWO-DIMENSIONAL MODEL
FOR ALTERMAGNETISM IN A TETRAGONAL SYSTEM

In Sec. II, we introduce the general one-orbital model
describing altermagnets, and demonstrated in Fig. 2 that it
can reproduce the main features of the bands for RuO,. The
dispersion and tight-binding parameters written in Egs. (5)
and (6) correspond to a 3D system. In this Appendix, we
present a minimal 2D model that gives rise to a leading alter-
magnetic instability, inspired by the RuO; bands in Fig. 2(a)
and assuming that the Fermi level is at the coincident van
Hove singularities at the M point [40].

The minimal 2D model for the tetragonal system has the
following form:

Hop = ti(cosky + cosky) + 1 cos ky cosk, — 11

+ 13 cos%cos%rx + 1y sink, sink, T, (G1)
where we have omitted the SOC terms for simplicity. This
model is obtained by evaluating the 3D model in Egs. (3), (5)
and (6) at k, = 0. The hoppings in Eq. (G1) are illustrated in
Fig. 16.

In Fig. 17, we show the band structure obtained from the
minimal model in Eq. (G1), both in the normal state and
the altermagnetic state. We have verified with Hartree-Fock

FIG. 16. Sketch of the relevant hoppings in the minimal model
presented in Eq. (G1), with the red and blue colors representing the
two sublattices.

calculations that this model gives rise to a leading alter-
magnetic instability, as shown in Fig. 17(c). Importantly, the
altermagnetic instability is stabilized at a lower value of the
interaction U compared to the ferromagnetic ordering. In

oq\\\\\
// N
(©) r X M rr X M r
_1L 14 n = 1.40
10 201'2 S
10725 1
Lo-3t 0.8 n=0.90 o
— 2
; 10—4- /
10_5 3 nyn = 1.18151
1076k . . .
0.2 0.4 0.6 0.8

U (eV)

FIG. 17. Normal state (a) and altermagnetic band structure
(b) obtained from the 2D toy model in Eq. (G1) inspired by the
RuO; bands in Fig. 2. The hopping parameters are {t,, 12, 13, 4, U} =
{-0.1,0.1, 1.7, 0.3, 0.3}, with J, = 0.2 for the magnetic order pa-
rameter in (b) [see Eq. (1)]. (c) Order parameter |M| for the bands
in (a) calculated within Hartree-Fock using the Hamiltonian in
Eq. (G1), with T = 0.0001 and n; = 12002
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FIG. 18. Berry curvature in the o, = + sector on the k, =0
plane. We take ts = 1, t¢ +t;, = 1/2, A, = 1/4,and J, =/, = J;3 =
1/4. Here the integral of the Berry curvature over the k, = 0 plane is
47.

addition, Fig. 17(c) shows two more details of this two dimen-
sional toy model. First, for variations slightly away from the
van Hove filling the critical U for the altermagnetic ordering
becomes larger. Second, the order parameter has a steep onset
(note the logarithmic scale) and quickly reaches values where
the electronic structure beomes insulating as also found in a
similar model in Ref. [29].

APPENDIX H: TOPOLOGICAL SURFACE STATE WITH
ALTERMAGNETIC ORDER PARAMETER 17,0,

As an example of the utility of our minimal models,
we develop conditions under which altermagnetism can lead
to topologically protected edge states. As discussed in the
main text, the altermagnetic order parameter t,0, preserves
the mirrors M,, M,, M. Consequently, there is a vanish-
ing anomalous Hall effect and Berry curvature. However,
on the high-symmetry plane, it can exhibit nontrivial topo-
logical properties akin to those of topological crystalline
insulators [58].

For experiments preserving M., it is worth studying the
high-symmetry plane k, =0 and k, = 7. We take k, =0
plane as an example. The minimal Hamiltonian for RuO,
becomes (d,, orbitals only):

ky k,
H(k, =0) =tgcos ) cos E‘Ex
+ (t6 +t7) sink, sin k, ;
ky k
+ A;cos > cos Ey(cos ky — cos ky)ty0;
ke ok
+ Jit,0, 4+ J> sin > sin Etxaz

ke . ky
+ J3 sin 5 sin E)(COS ky —cosky)ty.  (HI)

( a) FeShy (b)
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FIG. 19. (a)-(d) Bare and RPA susceptibilities in the ferromag-
netic and altermagnetic channels [see Eqgs. (23), (24)], considering
the minimal one-orbital model band structure inspired on FeSb,
shown in Fig. 7(a), with U =0.35, T =0.02 and n, = 60°. (e)
Order parameter for FeSb, obtained within Hartree-Fock from the
Hamiltonian in Eq. (31), with T = 0.002 and n;, = 40°.

Here, the J, and J; terms have the same symmetry as the
order parameter J,7,0,, and they have a cos % factor in 3D.
Since momenta are invariant under the M, « o, symmetry, the
Hamiltonian can be block-diagonalized based on the eigen-
values of M,. These blocks correspond to the o, = = sectors.
Since these sectors are independent, we can define the Berry
curvature in each sector separately. As the mirror operators
M, and M, anti-commute with M, they interchange the two
sectors. While analyzing a given sector, these two mirror
symmetries are absent. Therefore the Berry curvature on the
Fermi surface in each sector is generically nonzero, as shown
in Fig. 18. To ensure that the total Berry curvature vanishes,
these two Berry curvatures need to be opposite. This implies
that, on the x = 0 plane, spin-up and spin-down electrons with
k, = 0 generically propagate along opposite y directions.

We now illustrate the possibility of chiral surface bound
states. Focusing on the o, = + sector, with generic param-
eter Jj, the resulting two-band model is fully gapped. As
the parameter J; is tuned, pointwise gap closings can hap-

pen in (Ji, ki, k) space. The closings are at J; =0 and
J1 =4(tg + h)%. Berry phase is thus nonzero for J;
between the two closings, which implies the existence of
chiral surface states. On the x = O surface, these chiral surface

modes have k, = 0, and propagate along the y direction. In the
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o, = — sector, the Berry phase is opposite, and the surface
bound states propagate in the opposite direction. These pairs
of chiral states resemble the quantum spin Hall effect but are
governed by mirror symmetries and located at high-symmetry
planes.

APPENDIX I: RPA AND SELFCONSISTENT
HARTREE-FOCK RESULTS FOR FeSb,

In this Appendix, we present results from RPA analysis and
selfconsistent Hartree-Fock calculations using the minimal
model describing the low-energy electronic structure of FeSb,
where spin-resolved densities are allowed as order parameters.
Figures 19(a)-19(d) display the bare and RPA susceptibili-

ties in the ferromagnetic and altermagnetic channels using
the one-orbital minimal model in Eq. (1) for FeSb,, with
the bands shown in Fig. 7(a). As discussed in Sec. V A, the
RPA analysis shows that the altermagnetic susceptibility is the
leading instability, but diverges at a finite q.

As seen from the Hartree-Fock results in Fig. 19(e),
the altermagnetic state can be stabilized at a lower value
of the Hubbard interaction U. When initializing with fer-
romagnetic ordering, this state is in principle also stable,
and it yields a fully polarized ferromagnet beyond its
critical U. These results are robust against changes in the
overall filling with the modification that the saturation value
of the (sublattice) magnetization increases with filling and the
critical U for FeSb, decreases (when approaching half filling).
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