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Altermagnets feature vanishing net magnetization, like antiferromagnets, but exhibit time-reversal symmetry
breaking and momentum-dependent spin-split band structures. Motivated by the fact that all proposed altermag-
nets have paramagnetic states with multiple magnetic ions in the unit cell, we develop a class of realistic minimal
models for altermagnetism through a comparative analysis of the magnetic atom Wyckoff site symmetry and the
space group symmetry. Specifically, we develop electronic models for all centrosymmetric space groups with
magnetic atoms occupying inversion symmetric Wyckoff positions with multiplicity two. These forty models
include monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic materials and describe
d-wave, g-wave, and i-wave altermagnetism. We further define and examine an altermagnetic susceptibility
and mean field instabilities within a Hubbard model to reveal that these models have altermagnetic ground
states. We shed insight on why most altermagnets form in nonsymmorphic space groups. We also provide the
symmetry-required form of the spin-orbit coupling and show it yields a Berry curvature that is linear in this
coupling for all forty models. We apply our models to representative cases of RuO2, MnF2, FeSb2, κ-Cl, CrSb,
and MnTe.
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I. INTRODUCTION

Altermagnetism has been recently recognized as a new
class of magnetic order [1–8]. This exceptional state shares
common features with both conventional ferromagnets and
antiferromagnets. In particular, altermagnets exhibit energy
splitting between spin states, similar to ferromagnets, while
still featuring vanishing net magnetization, akin to antifer-
romagnets. Nevertheless, the opposite spin sublattices in an
altermagnet are not related by translation or inversion, but
instead they are connected by a crystal rotation symmetry.
A large number of materials have been proposed to host
this collinear-compensated magnetic order [6,7], including the
rutile metals RuO2 [2,3,9] and MnF2 [4,8], FeSb2 [5], κ-Cl
[10,11], MnTe [12] and CrSb [13]. In Ref. [14], a search
through the MAGNDATA database of magnetic materials
yields 62 altermagnetic candidate materials.

The unique electronic structure of altermagnets exhibiting
a spin splitting in reciprocal space makes them candidates
for spintronics applications [4,15–17]. Specifically, the van-
ishing net magnetization consequently leads to insensitivity
to external magnetic field perturbations, and allows for ap-
plications without requiring relativistic spin-orbit coupling
(SOC). Another consequence predicted for this time-reversal
symmetry breaking phase includes the anomalous Hall effect
[3,18], previously associated mainly with ferromagnetism. In
the case of MnTe or RuO2, for example, recent experimental
reports are consistent with the expected response of altermag-
nets, including the crystal Hall effect [19,20], spin currents
[21], spin-splitting torque phenomena [22,23], and broken
Kramer’s degeneracy in the band structure [12,24,25].

Understanding the origin of altermagnetism in these mate-
rials is necessary to study the detailed nature of this phase, and

predict new physical properties and useful functionalities for
applications. For such purposes, a crucial and useful step is
to identify realistic minimal tight-binding models that provide
a platform to study the altermagnetic phase and understand
what favors this phase over conventional ferromagnetism and
antiferromagnetism. Additionally, realistic tight-binding mod-
els provide a setup to obtain analytic expressions for the Berry
curvature and study the anomalous Hall response.

Minimal models should naturally account for, and give
insight into: stable altermagnetic order, the characteristic mo-
mentum dependent spin splittings, and SOC-generated Berry
curvature. In addition, these models should be sufficiently
general to allow for an understanding of altermagnetism in
monoclinic, orthorhombic, tetragonal, hexagonal, and cubic
materials and give rise to d-wave, g-wave, or i-wave alter-
magnetism. In this work, we provide such minimal models
of altermagnetism.

Our strategy for developing minimal models relies on the
relationship between the site symmetry (S) of magnetic atoms
and the point group symmetry (P) of the space group. This
is motivated by the realization that in altermagnetic materials
S is generically a smaller group than P. This follows because
the magnetic sublattice atoms must be related by elements of
P [6], and these elements therefore cannot belong to S. This
local point group symmetry breaking allows the development
of local multipolar moments that are symmetry forbidden
in P [26]. For example in RuO2, the Ru has site symmetry
S = D2h while the point group symmetry is P = D4h. S allows
for local xy quadrupolar order to appear at the two Ru sites.
P implies that this xy quadrupolar order is of opposite sign
on the two Ru sites. In our minimal models, this local point
group symmetry breaking is key to determining the structure
of the altermagnetic spin splitting. Since these altermagnetic
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states are typically inversion invariant, it is natural to consider
groups P and S that contain inversion symmetry.

Specifically, we construct models for all space groups
that contain inversion symmetry and also contain inversion
symmetric Wyckoff positions of multiplicity 2. Our minimal
models therefore exhibit two bands in the paramagnetic state.
It is worthwhile contrasting our models with simpler single-
band models [27,28] in which Fermi-surface instabilities of
the Pomeranchuk type occur in the spin-triplet channel with
high orbital partial waves. In these models, the order parame-
ter is the altermagnetic spin splitting itself. In our case, the
altermagnetic spin splitting is a secondary order parameter
which is induced through a combination of Néel order (the
primary order parameter) and the local point group symmetry
breaking discussed above. We believe our minimal models
are more realistic than single band models for two reasons:
(i) there are no known microscopic theories that give rise to
altermagnetic Pomeranchuk instabilities and (ii) DFT results
for altermagnetism in RuO2 show that the largest band split-
tings in the altermagnetic state occur at band degeneracies
[2,9], such degeneracies are not present in single-band Pomer-
anchuk models.

We note that several earlier works have applied various
tight-binding models to address, e.g., spin-wave dispersions
and superconductivity of altermagnets [29,30]. These toy
models focused on 2D square and Lieb lattices. Here, we take
a different strategy by systematically developing symmetry-
dictated minimal models for all centrosymmetric space groups
with magnetic atoms occupying inversion symmetric Wyckoff
positions with multiplicity two. Through such a comprehen-
sive investigation, we can gain insight into the universal
properties of altermagnets, such as the band structure prop-
erties favorable for altermagnetism and a general form for
the Berry curvature in altermagnets. Additionally, through
comparison with DFT, our models allow for material-specific
studies, as demonstrated below. Finally, distinct from earlier
studies [3,31,32], all minimal models provided below contain
the symmetry-allowed momentum-dependent SOC through-
out the Brillouin zone (BZ), crucial for capturing important
band degeneracies at the faces of the BZ.

The tight-binding models we develop are compared to
DFT results for RuO2 to demonstrate that our models capture
key properties of the band structure and altermagnetic spin
splittings. By introducing an altermagnetic susceptibility and
using susceptibility analyses and self-consistent Hartree-Fock
approaches, we show that these minimal models indeed give
rise to altermagnetism for a broad range of parameters. This
susceptibility analysis sheds insight into the reason that of the
53 inversion symmetric materials identified as altermagnetic
in Ref. [14], 52 belong to nonsymmorphic space groups. In
particular, we show that nonsymmorphic symmetry-required
band degeneracies help stabilize altermagnetism. In addition,
we derive the form of the SOC for these models. This SOC
is important for understanding the anomalous Hall effect in
altermagnets. We provide a general analytic expression for the
SOC-derived Berry curvature. The resulting Berry curvature is
linear (as opposed to quadratic as found in previous minimal
models [3,31]) in the SOC. This provides a natural explana-
tion for the large crystal Hall effect in altermagnets. Finally,
we apply our model to tetragonal, e.g., MnF2 and RuO2, and

TABLE I. Space groups and Wyckoff positions of multiplicty
2 that allow altermagnetism: monoclinic and orthorhombic groups.
The notation follows the Bilbao crystallographic server [34,35]. We
note that some Wyckoff positions appear with an apparent multi-
plicity greater than 2, this occurs because a unit cell larger than the
primitive unit cell is conventionally used in these cases.

SG (P) Wyckoff (S) �N Spin splitting ( f�N (k))

11 (C2h) 2a-2d (Ci) Bg αkykx + βkykz
12 (C2h) 4e, 4f (Ci) Bg αkykx + βkykz
13 (C2h) 2a-2d (Ci) Bg αkykx + βkykz
14 (C2h) 2a-2d (Ci) Bg αkykx + βkykz
15 (C2h) 2a-2d (Ci) Bg αkykx + βkykz

49 (D2h) 2a-2d (C2h) B1g kxky
51 (D2h) 2a-2d (C2h) B2g kxkz
53 (D2h) 2a-2d (C2h) B3g kykz
55 (D2h) 2a-2d (C2h) B1g kxky
58 (D2h) 2a-2d (C2h) B1g kxky
63 (D2h) 4a,4b (C2h) B3g kykz
64 (D2h) 4a,4b (C2h) B3g kykz
65 (D2h) 4e,4f (C2h) B1g kxkz
66 (D2h) 4c-4f (C2h) B1g kxky
67 (D2h) 4c-4f (C2h) B3g kxky
72 (D2h) 4c,4d (C2h) B1g kxky
74 (D2h) 4a,4b (C2h) B3g kxky
74 (D2h) 4c,4d (C2h) B2g kxky

orthorhombic, e.g., κ-Cl and FeSb2, d-wave altermagnets, to
hexagonal, e.g., CrSb and MnTe, g-wave altermagnets, and to
cubic i-wave altermagnets.

The paper is organized at follows. In Sec. II, we expose
the minimal model reproducing the DFT band structure for
RuO2, which justifies the choice of the altermagnetic order
parameter. In Sec. III, we focus on the single-orbital minimal
model to analyze and compare the bare susceptibilities in the
ferromagnetic and the altermagnetic channels. We show that
this model is sufficient to capture a leading altermagnetic in-
stability by using both the random phase approximation (RPA)
and self-consistent Hartree-Fock calculations. In Sec. IV, we
consider the same minimal model and use SOC in order to de-
rive an analytic expression linear in the spin-orbit strength for
the Berry curvature in the four-band model. In Sec. V, we ex-
tend the discussion of minimal models to other altermagnetic
candidates with orthorhombic, hexagonal, and cubic lattices.
Finally, Sec. VI presents our discussion and conclusions.

II. MINIMAL MODELS FOR ALTERMAGNETISM

A. General considerations

Our models apply to all centrosymmetric space groups that
contain inversion symmetric Wyckoff positions of multiplicity
2. Tables I and II give these space groups and the correspond-
ing Wyckoff positions. A key input for our models is the
relationship between the point group P and the Wyckoff site
symmetry group S. Specifically, the primary order parameter
we consider is Néel order on the two Wyckoff positions
(perhaps unsurprisingly, we show that this order parameter
naturally accounts for the DFT bands in the altermagnetic
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TABLE II. Space groups and Wyckoff positions that allow alter-
magnetism: tetragonal, rhombehedral, hexagonal, and cubic groups.

SG (P) Wyckoff (S) �N Spin splitting ( f�N (k))

83 (C4h) 2e,2f (C2h) Bg αkxky + β(k2
x − k2

y )

84 (C4h) 2a-2d (C2h) Bg αkxky + β(k2
x − k2

y )

87 (C4h) 4c (C2h) Bg αkxky + β(k2
x − k2

y )

123 (D4h) 2e,2f (D2h) B1g k2
x − k2

y

124 (D4h) 2b,2d (C4h) A2g kxky(k2
x − k2

y )

127 (D4h) 2a,2b (C4h) A2g kxky(k2
x − k2

y )

127 (D4h) 2c,2d (D2h) B2g kxky

128 (D4h) 2a,2b (C4h) A2g kxky(k2
x − k2

y )

131 (D4h) 2a-2d (D2h) B1g k2
x − k2

y

132 (D4h) 2a,2c (D2h) B2g kxky
136 (D4h) 2a,2b (D2h) B2g kxky
139 (D4h) 4c (D2h) B1g k2

x − k2
y

140 (D4h) 4c (C4h) A2g kxky(k2
x − k2

y )

140 (D4h) 4d (D2h) B2g kxky

163 (D3d ) 2b (S6) A2g kykz(k2
y − 3k2

x )

165 (D3d ) 2b (S6) A2g kxkz(k2
x − 3k2

y )

167 (D3d ) 6b (S6) A2g kxkz(k2
x − 3k2

y )

176 (C6h) 2b (S6) Bg αkykz(k2
y − 3k2

x )

+βkxkz(k2
x − 3k2

y )

192 (D6h) 2b (C6h) A2g kxky(k2
x − 3k2

y )(k2
y − 3k2

x )

193 (D6h) 2b (D3d ) B2g kxkz(k2
x − 3k2

y )

194 (D6h) 2a (D3d ) B1g kykz(3k2
x − k2

y )

223 (Oh) 2a (D3d ) A2g k4
x (k2

y − k2
z )

+k4
y (k2

z − k2
x )

+k4
z (k2

x − k2
y )

state). As discussed in Ref. [33], this Néel order transforms as
�N ⊗ �S

A, where �N is an irreducible representation (IR) of
the point group G and �S

A is the axial IR of the spin-rotation
group.

The IR �N plays a central role in our theory and can be
identified from the knowledge of P and S by writing P =
S + hS, where h is a point group symmetry that switches the
two Wyckoff positions. �N is then identified as the IR of P that
has character 1 for all elements in S and −1 for all elements
in hS. In Tables I and II, �N is given for each space group
and Wyckoff position. Further, as we show explicitly later,
the altermagnetic spin splitting in all our minimal models is
given by f�N (k)�σ where �σ denotes the Néel spin direction
and f�N (k) is a momentum dependent function with the same
symmetry as �N . In Tables I and II, under the column spin
splitting, we give representative forms of f�N (k). We note that
while we show the microscopic origin f�N (k) for electronic
models that include nondegenerate orbital IRs of the group S,
the form of f�N (k) is also correct for degenerate orbital IRs of
the group S provided the site symmetry group S is not broken
by a local electronic orbital ordering.

B. General minimal electronic model

To construct our minimal tight-binding models we require
�N identified in Tables I and II. For ease of presentation,
we restrict ourselves to explicitly providing models for the
twenty-seven entries that have primitive unit cells (these are
the Wyckoff positions with multiplicity explicitly labeled by 2
in Tables I and II). The corresponding two sublattice positions
of the magnetic ions in the unit cell will be labeled by the
Pauli matrices τi, we will label spin degrees of freedom by
Pauli matrices σi. We also assume that the orbital degrees
of freedom belong to a singly degenerate IR of the Wyckoff
site symmetry group S. It is possible to consider orbitals that
belong to degenerate IRs, but these models will necessarily
contain more degrees of freedom and hence are not minimal
(we carry out a limited investigation of the multiorbital case
for RuO2 and find that the key features of our minimal model
persist). Our minimal model is remarkably versatile: specifi-
cally the model can be applied to monoclinic, orthorhombic,
tetragonal, rhombehedral, hexagonal, and cubic space groups
and allows for d-wave, g-wave, and i-wave altermagnetism.
Furthermore, this models correctly capture the spin splittings
and the largest band splittings seen by DFT in the altermag-
netic state.

The general minimal model for altermagnetism has the
form

H = ε0,k + tx,kτx + tz,kτz + τy�λk · �σ + τz �J · �σ , (1)

with a sublattice independent dispersion ε0,k, inter- and in-
trasublattice hopping coefficients tx,k and tz,k, a SOC term
�λk, and a primary order parameter �J . Here the time-reversal
symmetry operator is T = iτ0σyK (where K is complex conju-
gation). The parameters in this minimal model are constrained
by the space group, point group G, and Wyckoff site sym-
metry group S. We have restricted our minimal models for
nondegenerate IRs of S, and Eq. (1) is valid for all such non-
degenerate IRs since the Hamiltonian is built from electronic
bilinears that are independent of any sign change that arise for
a local rotation. The sublattice operators τ0 and τx are invariant
under P and the operators τy and τz belong to the IR �N shown
in Tables I and II (this follows because these two operators
change sign under the interchange of the two sublattice sites).
In addition, translation symmetry implies ε0,k = ε0,k+G and
tz,k = tz,k+G, where G is a reciprocal lattice vector and, since
τy and τx couple the two magnetic atoms, tx,k+G = eiG·t12tx,k
and �λk+G = eiG·t12 �λk where t12 is the translation between the
two magnetic atoms in the unit cell. All coefficients are even
under k → −k due to the presence of inversion I in the
Wyckoff site symmetry group S.

Prior to providing specific examples and justifying our
minimal model with materials examples, we highlight impor-
tant general properties of the parameters that appear. First we
note our altermagnetic order parameter encodes collinear mo-
ments parallel to �J that have opposite orientation on the two
sublattice magnetic atoms. This term carries no k dependence.
The intrasublattice hopping term tz,k plays an important role
in our theory and its k dependence must share the same sym-
metry as the τz operator—hence tz,k belongs to the nontrivial
IR �N . This term quantifies the existence of local multipole
moments that have opposite sign on the two magnetic atoms
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and appears due to the local point-group symmetry breaking
at the magnetic atom position. As discussed in more detail be-
low, it is this term that gives rise to the momentum-dependent
spin splitting that defines altermagnets. The hopping param-
eter tx,k has the full point group symmetry. As we show
later, if this hopping parameter is zero, then altermagnetism
and ferromagnetism are degenerate within an RPA treatment.
Finally, the SOC term follows from T and I symmetries. In
particular, both the spin operators and τy are odd under T , so
their product is T -invariant. From I symmetry, �λk = �λ−k and
hence this is also T invariant. As we show below, �λk gives rise
to a Berry curvature that is linear in the magnitude of SOC.

It is informative to consider the dispersion relation when
SOC vanishes. This is given by

Eα=± = ε0,k + α
(
t2
x,k + (tz,k + �J · �σ )2

)1/2
. (2)

This reveals that the altermagnetic spin splitting appears
through the product tz,k �J · �σ and hence is a consequence of
the interplay between the local symmetry breaking and the
Néel order. This provides a microscopic realization of the
Ginzburg-Landau bilinear coupling between the Néel order
and even-parity, odd-time reversal, octupolar order, which
gives rise to the altermagnetic spin splitting [26], as discussed
in the context of RuO2 in Ref. [33].

As a specific example of our minimal model, it is worth-
while considering the simplest model for SG 136 and Wyckoff
position 2a (this is the Wyckoff position for the magnetic
atoms in RuO2, MnF2, NiF2, and CoF2). SG 136 has point
group D4h and the 2a Wyckoff position has site symmetry D2h,
this implies that τy and τz belong to the B2g representation of
D4h. The hoppings tx,k and tz,k are illustrated in Fig. 1. Here,
tx,k = t0 cos kx

2 cos ky
2 cos kz

2 , the factors ki
2 appear because of

the condition tx,k+G = eiG·t12tx,k with t12 = ( 1
2 , 1

2 , 1
2 ). In ad-

dition, tz,k = tz0 sin kx sin ky has d-wave symmetry-imposed
sign changes which follow from the condition that τz belongs
to the B2g representation and quantifies local point group
symmetry breaking through the appearance of xy quadrupolar
order on the Ru sites due to surrounding O atoms. We note
that for kx = π or ky = π both tx,k and tz,k vanish, revealing
symmetry-required nodal planes that exist due to the nonsym-
morphic symmetry elements {C2x| 1

2 , 1
2 , 1

2 } and {C2y| 1
2 , 1

2 , 1
2 }

[36]. As we show later, these nodal planes aid in stabilizing
the altermagnetic state. Further, for the spin degrees of free-
dom, σz ∼ A2g and (σx, σy) ∼ Eg. Consequently, symmetry
arguments imply that �λk is given by

λx,k = λ sin
kz
2

sin
kx
2

cos
ky
2

,

λy,k = −λ sin
kz
2

sin
ky
2

cos
kx
2

,

λz,k = λz cos
kz
2

cos
kx
2

cos
ky
2

(cos kx − cos ky). (3)

This approach has been applied to define the simplest tight-
binding form for the parameters tx,k, tz,k, �λk for 27 Wyckoff
positions in Appendix A, providing many altermagnetic ex-
amples. We note that in the following we will consider
additional hopping terms in our minimal model to fit DFT
results. However, for SG 136, �λk remains the same.

(a) (bb))

(c) (dd))))

FIG. 1. Sketch of the crystal structure for the tetragonal SG
136 and the relevant hoppings in the minimal model presented in
Eq. (1), with the red and blue colors representing the two sublattices.
(a) Crystal structure including the nonmagnetic atoms denoted by
the green color. (b) Three-dimensional lattice illustration of the tx,k
hopping between sublattices. [(c) and (d)] Top view of the lattice
showing the tz,k hopping with the symmetry-imposed sign change,
which has an opposite sign on the two sublattices due to the presence
of the nonmagnetic atoms.

C. Dispersion relations, altermagnetic spin splittings,
and Weyl-lines

The general form of the dispersion for the minimal model
in Eq. (1) is given by

Eα=±,β=± = ε0,k + α
(
t2
x,k + t2

z,k + �λ2
k + �J2

+ β2
√
t2
z,k

�J2 + (�λk × �J )2
)1/2

. (4)

In the limit of vanishing SOC, �λk = 0, the four bands are
generally nondegenerate, except in two cases. The first case
occurs when tz,k = 0. This defines Weyl planes in momen-
tum space with two twofold degenerate bands where the spin
splitting vanishes. These Weyl planes are symmetry imposed
and always present due to the nontrivial symmetry of operator
τz. These Weyl planes are the nodes of the usual altermagnetic
spin splitting and, as mentioned earlier, are entirely given here
by the vanishing of the intrasublatice hopping tz,k. The second
case corresponds to tx,k = 0 (which is often required by sym-
metry to occur on the BZ boundary) and tz,k = ±| �J|, which
defines Weyl lines. Along these lines, we have a twofold de-
generacy together with two nondegenerate bands. These lines
are not symmetry imposed and appear when |tz,k| is larger than
| �J|. As we will discuss in Sec. IV, this occurs in RuO2 and
these Weyl lines can be important for the Berry curvature.

When �λk �= 0, the Weyl planes discussed above (for which
tz,k = 0) become partially gapped to form Weyl lines or Weyl
points. Specifically, when tz,k = 0, Weyl lines occur when
symmetry requires the cross product between �λk and �J to
vanish, �λk × �J = 0. The Weyl lines discussed in the previous
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paragraph become gapped if �λk · �J �= 0 and survive otherwise.
Related Weyl lines have been discussed in Refs. [32,37–39].

D. Application to RuO2: Justification for the order parameter

Here we demonstrate how this model can describe the non-
magnetic band structure of tetragonal altermagnetic material
candidate RuO2 found in DFT [2], and captures the alter-
magnetic spin splitting of the bands. We are giving explicit
models for materials and examine these with realistic param-
eters, thus all energies are in units of eV (unless specified
otherwise). As shown in Appendix B, the orbital projection
of the nonrelativistic DFT bands reveals that the dxy, dxz, dyz
orbitals form bands crossing the Fermi level. We show that the
minimal model can be generalized to a multiorbital case since
the order parameter describing the spin splitting comes only
from opposite spins in the two sublattices. In Appendix C,
we discuss the case of another tetragonal material candi-
date, MnF2, where DFT has also identified an altermagnetic
phase [4].

To construct the specific one-orbital tight-binding mod-
els for this tetragonal material, we consider dxy orbitals on
the Wyckoff position 2a for which the example discussed in
Sec. II A applies. Specifically, we take the dispersion

ε0,k = t1(cos kx + cos ky) − μ + t2 cos kz + t3 cos kx cos ky

+ t4(cos kx + cos ky) cos kz + t5 cos kx cos ky cos kz,
(5)

the hoppings

tx,k = t8 cos
kx
2

cos
ky
2

cos
kz
2

,

tz,k = t6 sin kx sin ky + t7 sin kx sin ky cos kz, (6)

and the SOC terms given by Eq. (3).
Figure 2(a) displays the normal state bands obtained from

this minimal model using an appropriate choice of hopping
parameters specified in Appendix D. Notably, the minimal
model reproduces the main features of the bands, capturing
the crossings at the Fermi level, as well as the characteristic
nodal lines along the X−M and Z−R−A directions. The tz,kτz
term in the minimal model in Eq. (1) is crucial since it is the
only one controlling the splitting of the bands in the A−Z line.
In addition, the tx,kτx term is responsible for the splitting of
the band degeneracies in the �−X and M−�−Z directions.
The k-dependent SOC terms in Eq. (3) open a band splitting
along the Z−R − A f lines (not shown), in agreement with the
relativistic DFT results included in Appendix B. Figure 2(b)
shows the band structure in the altermagnetic state obtained by
including an order parameter as described in Eq. (1), resulting
in spin splittings in agreement with those obtained by the
magnetic DFT results [2]. Specifically, this model reproduces
the altermagnetic spin splitting along the M−� and A−Z
directions, driven solely by the term tz,kτz.

The coupled dxz/dyz orbitals also cross the Fermi level
in the RuO2 DFT bands (see Appendix B). Therefore we
have additionally produced a two-orbital tight-binding model
without including couplings with the one-orbital model. For
the two-orbital model, we duplicate the terms of the minimal
model in Eq. (1) for the two orbitals and supplement it with

FIG. 2. Normal state (a) and altermagnetic (b) band structures for
RuO2 obtained from the minimal model in Eq. (1) taking Eqs. (5) and
(6), with hopping parameters detailed in Appendix D to reproduce
the DFT results (see Appendix B and Ref. [2]) and Jz = 0.2 in (b).
The gray bands correspond to the two-orbital model in Eqs. (7) and
(8) with the hoppings in Appendix D. From the latter model there
are two more bands with a twofold spin-degeneracy higher in energy
(not shown).

the following symmetry-allowed terms:

γz(ta,k+tb,kτx+tc,kτz ) + γx(td,k+te,kτx+t f ,kτz )

+ tg,kγyτy + λ0γyτ0σz, (7)

with

ta,k = (t9 + t10 cos kz )(cos kx − cos ky),

tb,k = t11 cos
kx
2

cos
ky
2

cos
kz
2

(cos kx − cos ky),

tc,k = t12 sin kx sin ky(cos kx − cos ky),

td,k = t13 sin kx sin ky,

te,k = t14 sin
kx
2

sin
ky
2

cos
kz
2

,

t f ,k = a0 + t15(cos kx + cos ky),

tg,k = t16 cos
kx
2

cos
ky
2

cos
kz
2

(cos kx − cos ky), (8)

where we have introduced the Pauli matrices γi to repre-
sent orbital space, with γx ∼ B2g, γy ∼ A2g and γz ∼ B1g in
the point group D4h. In contrast to the previous case, the
two-orbital model contains a symmetry-allowed on-site SOC
term λ0, which splits the bands at the � point. Note that
t13 sin kx sin kyγx has the same symmetry as tz,k and therefore
also controls the spin splitting along M−� and A−Z lines.
The band structure from the dxz/dyz orbitals is also included in
Fig. 2 and reproduces the relevant features of the DFT bands
demonstrating that our choice of order parameter provides an
accurate description of the altermagnetic state.
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III. SUSCEPTIBILITIES AND STABILIZATION
OF ALTERMAGNETISM

In the previous section, we introduced general minimal
models describing altermagnetism. The purpose of the cur-
rent section is to demonstrate that these models indeed give
rise to a leading altermagnetic instability and to examine
the mechanism driving altermagnetism. For simplicity, we
focus on the one-orbital model case shown in Eq. (1), even
though the discussion can also be extended to the multiorbital
case. In addition, in order to analyze the expressions for the
susceptibility and describe simple mechanisms stabilizing al-
termagnetism, we neglect SOC in this section. We return to
the role of SOC in Sec. IV when discussing Berry curvature
and the altermagnetic driven anomalous Hall effect.

A. Analytic expressions of the susceptibilities

To gain insight into what determines a leading alter-
magnetic versus ferromagnetic instability, we have obtained
analytic expressions for the bare susceptibility in band space
considering the minimal Hamiltonian

H ′ = ε0,k + tx,kτx + tz,kτz. (9)

From this expression, we see that the unitary transformation
from sublattice to band basis is generally k-dependent. The
transformation matrix

Uk =
(

cos θk
2 sin θk

2

− sin θk
2 cos θk

2

)
(10)

diagonalizes H ′, i.e., U †
kH

′Uk = diag(E+
k ,E−

k ), where
cos θk = tz,k√

t2
z,k+t2

x,k

and sin θk = tx,k√
t2
z,k+t2

x,k

.

The susceptibility in the usual spin channel is

χFM(q, iqn) = −
∫ β

0
eiqnτ 〈TτSq(τ )S−q(0)〉, (11)

where Sq = 1
N

∑
k �

†
k+qτ0�k, with the spinor �k =

(ψk,1 ψk,2)T in the sublattice basis. We refer to this as
the ferromagnetic channel since this susceptibility diverges at
q → 0 close to a ferromagnetic instability. Transforming to
the band basis,

χFM(q, iqn) = − 1

N

∑
k,a,b

∣∣〈uak∣∣ubk+q

〉∣∣2 f
(
Ea
k

) − f
(
Eb
k+q

)
iqn + Ea

k − Eb
k+q

. (12)

Focusing on the uniform static susceptibility, the ferromag-
netic spin susceptibility has only intraband terms,

χFM(0) = − 1

N

∑
k

{
df (ε)

dε

∣∣∣∣∣
ε=E+

k

+ df (ε)

dε

∣∣∣∣∣
ε=E−

k

}
. (13)

Motivated by the RuO2 band structure and the form of the
altermagnetic order parameter shown in Eq. (1), we can obtain
an equivalent expression for the altermagnetic susceptibility,

χAM(q, iqn) = −
∫ β

0
eiqnτ 〈Tτ S̃q(τ )S̃−q(0)〉, (14)

where now S̃q = 1
N

∑
k �

†
k+qτz�k. In the band basis, the al-

termagnetic susceptibility becomes

χAM(q, iqn)=− 1

N

∑
k,a,b

∣∣〈uak∣∣τz∣∣ubk+q

〉∣∣2 f
(
Ea
k

)− f
(
Eb
k+q

)
iqn+Ea

k−Eb
k+q

.

(15)
In the q → 0, iqn → 0 limit, projecting the τz operator onto
the band basis using Eq. (10),

χAM(0) = χFM(0) − 1

N

∑
k

sin2 θk

{
2[ f (E−

k ) − f (E+
k )]

E−
k − E+

k

−
[
df (ε)

dε

∣∣∣∣∣
ε=E+

k

+ df (ε)

dε

∣∣∣∣∣
ε=E−

k

]}
. (16)

In contrast to the ferromagnetic channel, the altermagnetic
susceptibility contains both intraband and interband contri-
butions, and the competition between them determines the
leading instability. In order to stabilize altermagnetism, the
interband contribution should be larger, whereas if the intra-
band part is dominant ferromagnetism is leading. Note that
sin2 θk > 0 is also needed, i.e., a finite tx,k term in Eq. (1),
since otherwise the two instabilities are degenerate.

Importantly, Eq. (16) also shows that band degenera-
cies enhance the interband susceptibility, as they correspond
to E+

k − E−
k → 0. Hence, these have an important role in

stabilizing altermagnetism. Without considering SOC, the
nonsymmorphic symmetry ensures these band degeneracies
on nodal planes. In the case of RuO2, there are nodal planes
in the x, y faces of the BZ and two cross lines on the z
face, as seen in Fig. 2(a). Altermagnetism is also favored if
there exists a nesting line between the two bands, leading
to a divergent interband susceptibility. In a three-dimensional
picture, a nesting line in momentum space can exist between
two spherical Fermi surfaces centered around the same point,
giving rise to a cusp in the density of states.

Examining the intra- and interband susceptibilities using
the tight-binding Hamiltonian in Eq. (1) shows that the band
splitting due to the tx,kτx term has to be sufficiently large for
the interband term to dominate in Eq. (16), which is typically
the case since tx,k corresponds to nearest neighbor hopping, as
shown in Fig. 1. Expanding Eq. (16) close to the A point re-
veals that the contribution from the van Hove singularity (see
Fig. 2) gives rise to a dominant interband susceptibility, thus
stabilizing altermagnetism. To further emphasize the differ-
ence between symmorphic and nonsymmorphic space groups,
and elucidate the role of band degeneracies in driving the al-
termagnetic instability, we have compared the band structures
and the altermagnetic susceptibilities for a 2D minimal model
for SG 123 (symmorphic) and SG 136 (nonsymmorphic). SG
136 with Wyckoff position 2a has been discussed in Sec. II,
and based on the 2D model discussed in Appendix G inspired
by the RuO2 bands in Fig. 2(a), we consider the minimal
model

HSG136
2D = t1(cos kx + cos ky) + t2 cos kx cos ky − μ

+ t3 cos
kx
2

cos
ky
2

τx + t4 sin kx sin kyτz, (17)
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FIG. 3. [(a) and (c)] Normal state and [(b) and (d)] alter-
magnetic band structures for space groups SG 136 (nonsymmor-
phic) and SG 123 (symmorphic). In both cases, {t1, t2, t3, t4, μ} =
{−0.1, 0.1, 1.7, 0.3, 0.2} [see Eqs. (17) and (18)], with Jz = 0.2 in
(b) and (d). (e) Comparison of the altermagnetic susceptibilities, with
T = 10−4 and nk = 12002, displaying a significantly larger altermag-
netic susceptibility in the nonsymmorphic case.

with the hoppings illustrated in Fig. 16. As a symmorphic
example, we consider SG 123 and Wyckoff position 2e, which
corresponds to (0, 1/2) and (1/2, 0) in a 2D model. SG 123
has also point group D4h and the 2e Wyckoff position has
site symmetry D2h, and thus τy and τz belong to the B1g

representation of D4h. The minimal model is then given by

HSG123
2D = t1(cos kx + cos ky) + t2 cos kx cos ky − μ

+ t3 cos
kx
2

cos
ky
2

τx + t4(cos kx − cos ky)τz. (18)

Importantly, as opposed to the previous nonsymmorphic ex-
ample, the term tz,k = t4(cos kx − cos ky) splits the bands at
the BZ boundary.

In Figs. 3(a) and 3(c), we show the normal state band
structure for SG 136 and SG 123, respectively. The non-
symmorphic space group [see Fig. 3(a)] features band
degeneracies at the BZ boundary, as seen along the X−M
direction. On the contrary, the symmorphic space group is
crucially different, since the band is only degenerate at the
M point. The altermagnetic band structures are displayed in
Figs. 3(b) and 3(d), showing the vastly distinct altermagnetic
spin splitting between the two cases due to the different sym-
metries of the tz,k term. We also note that the required Hubbard
interaction to acquire this spin splitting (in mean field theory)

is U = 1.017 for SG 136 while for SG 123 a significantly
larger U = 1.72 would be needed.

Figure 3(e) shows the noninteracting altermagnetic sus-
ceptibility for both space groups. As seen, for SG 136 the
altermagnetic susceptibility is notably larger when compared
to SG 123. To understand this result, Eq. (16) is crucial as
it points out that band degeneracies have an important role in
stabilizing altermagnetism. Hence, in terms of altermagnetism
the main difference between symmorphic and nonsymmor-
phic space groups is indeed the symmetry-imposed band
degeneracies characteristic of nonsymmorphic space groups.

B. Stabilization of altermagnetism

To demonstrate that the minimal tight-binding models in-
deed give rise to a leading altermagnetic instability, we start
from the Hamiltonian H ′ and consider standard intraorbital
Hubbard interaction U given by

Hint = U
∑
i,μ

ni,μ,↑ni,μ,↓, (19)

where μ denotes the sublattice index, and show that this is
sufficient to give rise to altermagnetism. Note that Ref. [40]
demonstrated that Eq. (19) gives rise to the relevant altermag-
netic interaction in the band basis in the case of coincident van
Hove singularities.

In the multiorbital RPA approximation, the RPA suscepti-
bility matrix can be written as [29,41–43]

[χRPA(q, iqn)]μ1,μ2
μ3,μ4

= [χ0(q, iqn)(1−Uχ0(q, iqn))−1]μ1,μ2
μ3,μ4

,

(20)

where iqn is a bosonic Matsubara frequency, [U ]μ1,μ2
μ3,μ4

= U
for μ1 = μ2 = μ3 = μ4 and the bare susceptibility matrix is
given by

[χ0(q, iqn)]μ1,μ2
μ3,μ4

= − 1

Nβ

∑
k,iωn

G0
μ1μ3

(k + q, iωn + iqn)

× G0
μ2μ4

(k, iωn). (21)

The matrix product is calculated by combining the sublattice
indices to construct the matrix elements, Aμ1+μ2Ns,μ3+μ4Ns ,
with A = {χ0(q, iqn),U }, where in this case Ns = 2 since
we only have two sublattices, giving thus 4×4 matrices. In
Eq. (21), the bare Green’s function corresponds to

G0
μν (k, iωn) =

∑
m

uμ
m(k)uν∗

m (k)

iωn − Em(k)
, (22)

with uμ
m(k) the k-dependent eigenvector connecting band

space (m) with sublattice space (μ), and Em(k) the cor-
responding energy eigenvalue of the Hamiltonian H ′ for
band m.

To obtain the physical spin susceptibility in the ferromag-
netic channel, we sum over both sublattices

χFM
RPA(q, ω) =

∑
μ,ν

[χRPA(q, iqn → ω + iη)]μ,μ
ν,ν . (23)

In analogy with the analysis of the bare susceptibilities in
the previous section, we can obtain an expression for the
susceptibility in the τz channel. Therefore the susceptibility in
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FIG. 4. [(a)–(d)] Bare and RPA susceptibilities in the ferromag-
netic and altermagnetic channels [see Eqs. (23) and (24)] for RuO2,
considering the minimal one-orbital model band structures shown in
Fig. 2(a), for U = 1.8, T = 0.02, and nk = 603. (e) Order parameter
|M| = ∑

α |n↑,α − n↓,α| for RuO2 from a selfconsistent Hartree-Fock
calculation at different fillings n where both an altermagnetic and
ferromagnetic order parameter can be stabilized, for T = 0.02 and
nk = 403.

the altermagnetic channel for a two-band model can be written
as

χAM
RPA(q, ω) =

∑
μ,ν

(−1)μ(−1)ν[χRPA(q, iqn → ω+iη)]μ,μ
ν,ν .

(24)
If this susceptibility diverges before the usual spin chan-
nel, it signifies that the altermagnetic phase is favored over
ferromagnetism or spin-density wave order. The form of
χAM

RPA(q, ω) also reveals that the altermagnetic instability is fa-
vored when the intersublattice components become negative,
as shown in Appendix E.

Figures 4(a)–4(d) display the RPA results for the RuO2

bands shown in Fig. 2(a), considering only the one-orbital
minimal model in Eq. (1). As seen, altermagnetism becomes
the leading instability and diverges at q → 0. We notice that
the bare susceptibility exhibits the same momentum structure
as the RPA susceptibility, as expected from a single orbital
model. Therefore the discussion in Sec. III A gives insight
into the competition between ferromagnetic and altermagnetic
instabilities and the mechanisms stabilizing these phases.

The leading altermagnetism implied from the above sus-
ceptibility analysis can be verified through selfconsistent

Hartree-Fock calculations, an established method to exam-
ine instabilities in Hubbard models and recently discussed
in view of two dimensional models for altermagnetism and
antiferromagnetism [29]. Here, we start from the same tight-
binding Hamiltonian and the Hubbard interaction, Eq. (19),
perform a mean-field decoupling ni,μ,σ → 〈ni,μ,σ 〉 + δni,μ,σ ,
keep only terms quadratic in the fermionic operators and add
the mean-field Hamiltonian HMF = U

∑
i,μ,σ 〈ni,μ,σ 〉ni,μ,σ̄ to

H ′. The expectation value of the local density operator 〈ni,μ,σ 〉
is then calculated using the eigenstates and eigenvalues in the
symmetry-broken phase at a given temperature T . Iterations
by updating the mean fields and the chemical potential while
fixing the total number of electrons are performed until self-
consistency is achieved. In Fig. 4(e), we show the magnetic
order parameter |M| = ∑

μ |〈nμ,↑〉 − 〈nμ,↓〉| for RuO2 versus
interaction strength U for both altermagnetic and ferromag-
netic order for a range of fillings n indicated by the inset.
As seen throughout the parameter regime, the altermagnetic
instability dominates by exhibiting the smallest critical inter-
action strength.

IV. BERRY CURVATURE AND CRYSTAL HALL EFFECT

In this section, we study altermagnetism in the presence of
SOC, and derive a general analytic expression for the Berry
curvature in the four-band case using the one-orbital minimal
model introduced in Eq. (1). Previous works have focused on
finding an effective two-band Hamiltonian [7,31], or solving
numerically for the Berry curvature in the four bands case
[3]. In general, these approaches give rise to a vanishing Hall
conductivity quadratic in the SOC strength [18,31], which is
expected to be weak in altermagnets [6]. Here, we obtain an
analytic expression for the Berry curvature linear in the SOC,
leading to a larger nonvanishing Hall conductivity. To capture
this result, care needs to taken in writing down the SOC term,
for example replacing τy by τx in the SOC term [3,31] will
yield a Berry curvature that is quadratic in SOC.

A. Berry curvature for the general minimal model

Reference [44] describes an approach to obtain the Berry
curvature for an N-band system without computing the eigen-
states. In particular, they provide a general expression for the
quantum geometric tensor

Tn,i j = Tr(∂iPn)(1 − Pn)(∂ jPn), (25)

where Pn = |ψn〉〈ψn| is the projection operator onto band
n. The Berry curvature corresponds to the imaginary part,
�n,i j = −2�Tn,i j , which is antisymmetric in the indices i, j.

Without loss of generality, we consider SOC �λk to have
an arbitrary orientation and fix the altermagnetic moments
in-plane �J = (J, 0, 0). This moment direction choice is conve-
nient for application to previous observations in altermagnetic
material candidates, such as RuO2 [19,20]. In this case, fol-
lowing Ref. [44] and labeling the bands by (α, β ) as in Eq. (4),
we find the projection operator can be written as

Pα,β = 1

4

[
1 + H̃

Ẽβ

][
1 + H

Eα,β

]
, (26)
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where H̃ = tz,kσx + λy,kτxσz − λz,kτxσy and Ẽβ=± =
β
√
t2
z,k + λ2

z,k + λ2
y,k are the corresponding eigenvalues.

We find a Berry curvature linear in the SOC when the SOC
term has the same spin direction as the altermagnetic order
parameter J . In this case, to linear order, the Berry curvature
becomes

�α,β,i j = 1

E3
α,β

∑
m,n=i, j

εmn[(J + βtz,k )∂mλx,k∂ntx,k

+ β tx,k∂mtz,k∂nλx,k + β λx,k∂mtx,k∂ntz,k], (27)

with εmn the antisymmetric tensor. This expression is relevant
for any system with the four band Hamiltonian in Eq. (1).
Therefore it is applicable to monoclinic, orthorhombic, tetrag-
onal, rhombohedral, hexagonal, and cubic systems and the
generality of this expression is one of the key result of this
manuscript. This expression reveals that this Berry curvature
result is linear in the component of the SOC parallel to the
Néel order (we note that in RuO2, we have found that the SOC
we consider here is linear in the atomic SOC). This is very
unlike the altermagnetic Rashba model [7], where the Berry
curvature is quadratic in the Rashba SOC and the relevant
SOC is perpendicular to the Néel moment.

B. Application to RuO2

For the tetragonal SG 136, i.e., RuO2 and MnF2, the
altermagnetic order parameter τzσz preserves the mirror
symmetries Mx,My,Mz and therefore there is a vanishing
anomalous Hall effect and Berry phase. Focusing on the
tetragonal case, τzσx and τzσy can generate an anomalous
Hall effect in the presence of SOC. In particular, the former
term breaks the Mx,Mz mirrors and, as a consequence, it can
generate a finite Hall conductivity σxz, which is given by the
integral over the filled bands of the Berry curvature

σi j = −e2

h̄

∫
BZ

dk
(2π )3

∑
n

fn(k)�n,i j, (28)

with fn(k) the Fermi-Dirac distribution of each band n.
Recalling the form of the coefficients in the tight-binding

Hamiltonian given in Eqs. (3) and (6) for tetragonal systems
with the rutile structure, the Berry curvature in Eq. (27) gives

�α,β,xz = 1

8E3
α,β

λt8J cos2

(
ky
2

)
(cos kz − cos kx ), (29)

including only the terms that give rise to a nonvanishing Hall
conductivity, i.e. do not average to zero in the BZ integral of
Eq. (28).

In Fig. 5, we show the Berry curvature for the α = + and
β = ± bands, considering the realistic hopping parameters
in Fig. 2(a) for the one-orbital model reproducing the RuO2

band structure. The same plots are obtained for α = − by
exchanging the red and blue colors due to inversion symmetry.
We have estimated a realistic SOC strength in RuO2 from
the splitting in the Z−R−A path in the relativistic DFT band
structure, as shown in Fig. 9 in Appendix B. In agreement with
previous DFT calculations, the SOC has a weak effect on the
bands [6]. Figure 5(a) shows that �xz is large at the nodal
planes X−M and Z-R, where the normal state band structure

FIG. 5. Three-dimensional Berry curvature obtained from the
analytic expression in Eq. (29), with α = + and (a) β = + and (b)
β = −, considering the one-orbital minimal model [Eqs. (6) and (3)]
normal state band structure for RuO2 shown in Fig. 2(a). We choose
J = 0.2 for the altermagnetic order parameter and estimate the SOC
λ = 0.1 from the relativistic DFT calculations shown in Fig. 9.

shown in Fig. 2(a) features degeneracies. As discussed in
Sec. III, the band degeneracies lead to a large interband sus-
ceptibility, thus favoring altermagnetism. Consequently, in the
presence of an altermagnetic instability the Berry curvature is
guaranteed to be large at the nodal planes.

In addition, as previously discussed in Sec. II, Fig. 5(b)
shows that the presence of Weyl loops further enhances the
Berry curvature [18]. Neglecting the SOC terms, the eigenen-
ergies for the minimal model in Eq. (4) with in-plane moment

J correspond to Eα=±,β=± = α
√
t2
x,k + (J + βtz,k )2. When

tx,k = 0, one band is twofold degenerate for tz,k = ±J . The
band degeneracies stem from Weyl loops on the kz = π face,
which manifest as band crossings along the Z−A direction in
Fig. 2.

Remarkably, Fig. 5 can be used as an indication of the most
favorable regions that the Fermi surface should touch in order
to obtain a large Berry curvature, thus giving rise to a large
anomalous Hall response. As already suggested for FeSb2 in
Ref. [5], the chemical doping can be used the push the Fermi
surface to a large curvature � region.

In Figs. 6(a) and 6(b), we show the spin-up and spin-
down Fermi surfaces for RuO2, respectively, indicating the
sublattice weight. Panels (c) and (d) of Fig. 6 display the
projected Berry curvature from Fig. 5 onto the two Fermi
surfaces. As seen, when summing the contributions for the
two Fermi surfaces this will give rise to a nonvanishing
anomalous crystal Hall effect. Figure 6(e) explicitly shows the
conductivity calculated using Eq. (28). In the limit λ → 0, the
conductivity scales linearly with SOC (dashed line) and this
parameter is directly proportional to the atomic SOC [45].
Subleading nonlinear contributions are also present due to
the nontrivial dependence of Eα,β on the SOC (solid line),
as seen from Eq. (4). For stoichiometric RuO2, DFT results
predicted σxz = 36.4 S cm−1 [3]. Therefore, considering the
linear in SOC contribution, we obtain a large conductivity.
Note that the calculation has been done using the minimal

144412-9



MERCÈ ROIG et al. PHYSICAL REVIEW B 110, 144412 (2024)

FIG. 6. [(a) and (b)] Spin-up and spin-down Fermi surfaces for
RuO2 in the altermagnetic state, considering the minimal model in
Eq. (1) and the state band structure shown in Fig. 2. The colorbar
indicates sublattice weight. [(c) and (d)] Berry curvature shown in
Fig. 5 projected onto the spin-up and spin-down Fermi surfaces. [(e)
and (f)] Conductivity as a function of SOC strength, with J = 0.2
and nk = 2013, and magnetic order, with λ = 0.1 and nk = 4013,
for T = 0.01. λDFT and Jeff denote the effective SOC and magnetic
moment obtained by comparing with DFT results (see Appendix B
and Ref. [2]).

one-orbital model in Eq. (1) and, as a consequence, we expect
contributions from other bands in RuO2, see Fig. 2(a).
Figure 6(f) displays the conductivity σxz as a function of
magnetic order J . As seen, σxz exhibits a significant J depen-
dence both in terms of amplitude and sign. A similar strong
dependence of the anomalous Hall response to band structure
details has been recently discussed for FeSb2 in Ref. [5].
These results suggest that one might significantly enhance the
Hall conductivity by band engineering or optimization of the
altermagnetic order parameter.

V. MINIMAL MODELS FOR OTHER
ALTERMAGNETIC CANDIDATES

In this section, we demonstrate that the general minimal
model in Eq. (1) can also be used to describe other alter-
magnetic candidates with different symmetry properties [6,7].
Here we initially present results on the stability of d-wave
altermagnetism for orthorhombic FeSb2. We then develop
minimal models for g-wave altermagnetism in hexagonal ma-
terials such as CrSb and MnTe and for i-wave altermagnetism

in cubic materials. In Appendix F we use the minimal model
to describe the bands for the organic compound κ-Cl, which
provides a platform to study 2D altermagnetism. Motivated by
this, Appendix G presents a minimal 2D model for altermag-
netism in a tetragonal system.

A. FeSb2

Initially FeSb2 was proposed to be a ferromagnet [46],
although Ref. [5] recently suggested that this material is non-
magnetic and, more intriguingly, the doped compound could
host unconventional magnetism. FeSb2 is an orthorhombic
material with space group 58. This space group has point
group D2h and Fe occupies the 2a Wyckoff position with site
symmetry C2h, see row 10 in Table I. This implies that the τz
and τy operators belong to the B1g representation of D2h. Based
on Ref. [46], we construct a minimal model for dx2−y2 -orbitals,
considering Wyckoff positions at (0,0,0) and (1/2, 1/2, 1/2).
Thus, the minimal model in Eq. (1) in this case has the same
form for the hoppings tx,k and tz,k as in Eq. (6). The SOC is
given by

λx,k = λx sin
kz
2

sin
kx
2

cos
ky
2

,

λy,k = λy sin
kz
2

sin
ky
2

cos
kx
2

,

λz,k = λz cos
kz
2

cos
kx
2

cos
ky
2

, (30)

and the dispersion ε0,k corresponds to

ε0,k = t1x cos kx + t1y cos ky + t2 cos kz + t3 cos kx cos ky

+ t4x cos kx cos kz + t4y cos ky cos kz

+ t5 cos kx cos ky cos kz − μ. (31)

Figure 7(a) displays a single band picture inspired by the
FeSb2 band structure that crosses the Fermi energy at the R
point [5,46]. Importantly, the spin splitting along the �−S and
R−Z directions [see inset in Fig. 7(a)] can also be described
by the tz,kτz term, as seen in Fig. 7(b).

In agreement with Ref. [5], only when lowering the chem-
ical potential we obtain a leading altermagnetic instability,
see also Appendix I. In contrast to the previous results for
other compounds, in this case an RPA analysis reveals that
the altermagnetic susceptibility does not diverge at q → 0,
pointing to an incommensurate altermagnetic state as the lead-
ing instability due to Fermi surface nesting (see Appendix I).
However, Ref. [5] only considered a few commensurate vec-
tors, whereas our RPA analysis shows a different q �= 0
leading divergence.

Notably, in FeSb2 there is a crucial difference com-
pared to the other materials discussed in this work. As seen
from Fig. 7(a), along the R-Z line the two bands disperse
downwards. Therefore we expect that altermagnetism in this
compound is not as stable as in the case of RuO2 and κ-Cl (see
Appendix F), where the bands close to the A and the S-point,
respectively, disperse in opposite directions giving rise to a
van Hove singularity. As shown in Appendix I, upon small
variations of the filling, altermagnetism becomes unstable and
ferromagnetism is the leading instability. Finally, we would
like to point out that these predictions should be revisited
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FIG. 7. Normal state (a) and altermagnetic (b) band structures
inspired by FeSb2 obtained from the minimal model in Eq. (1)
considering Eqs. (6),(31), with hopping parameters detailed in
Appendix D and Jz = 0.1 in (b). The BZ path is shown in the inset.

when considering a more complete model including the full
set of d-orbitals. Nevertheless, the single-orbital model de-
scribes the right spin splitting and allows us to derive an
expression for the Berry curvature, written in Eq. (29), which
is large at the nodal planes and enhanced by Weyl lines, giving
rise to a nonvanishing conductivity.

B. g-wave altermagnetism

The case of CrSb is interesting since a particularly large
band splitting as high as 1.2 eV has been predicted for this
compound [6,7], and the altermagnetic band splitting has been
recently observed experimentally [13]. CrSb is a metal with
an hexagonal structure and a critical temperature of 705 K,
thus already magnetically ordered at room temperature [47].
Motivated by this material and by MnTe [12], we give a
minimal model that gives rise to g-wave altermagnetism. Both
CrSb and MnTe belong to the space group 194, with point
group D6h. The Cr and Mn atoms form an hexagonal lattice
with Wyckoff position 2a, which has site symmetry D3d .
Consequently, the τz and τy operators belong to the B1g repre-
sentation of D6h, see Table II. Incorporating t12 = (0, 0, 1/2)
the minimal model in Eq. (1) has the form

ε0,k = t1

(
cos kx + 2 cos

kx
2

cos

√
3ky
2

)
+ t2 cos kz − μ,

(32)
while for the hoppings with τz and τx, we obtain

tx,k = t3 cos
kz
2

,

tz,k = t4 sin kz fy
(
f 2
y − 3 f 2

x

)
, (33)

and SOC

λx,k = λ cos
kz
2

(
f 2
x − f 2

y

)
,

λy,k = −2λ cos
kz
2
fx fy,

λz,k = λz sin
kz
2
fx

(
f 2
x − 3 f 2

y

)
, (34)

where we have defined fx ≡ sin kx + sin kx
2 cos

√
3ky
2 and fy ≡√

3 cos kx
2 sin

√
3ky
2 , see also Table III.

In agreement with the orthorhombic and tetragonal space
groups, for the hexagonal case the symmetry of the term cou-
pling to τz gives the symmetry of the altermagnetic splitting,
which corresponds to a g-wave. Therefore, also in this case,
the one-orbital minimal model in Eq. (1) is sufficient to de-
scribe the symmetry of the spin splitting. However, in contrast
to the examples of RuO2 and FeSb2 where only nondegenerate
1D orbital IRs of S exist, the case S = D3d also allows 2D
orbital IRs. In this case, it would be of interest to extend our
microscopic model to include these 2D degenerate orbital IRs
since both degenerate 2D IRs and nondegenerate 1D IRs are
relevant to the electronic structure of CrSb and MnTe.

C. i-wave altermagnetism

In the previous cases, we have shown that the minimal
model in Eq. (1) can give rise to d-wave and g-wave alter-
magnetism. Here, we demonstrate that it is also sufficiently
general to allow for i-wave altermagnetism. In particular, we
focus on the cubic SG 223 with point group Oh and Wyckoff
position 2a with site symmetry Th. Consequently, the τy and τz
operators belong to the A2g representation of the point group
Oh, see Table II. The translation between the two magnetic
atoms in the unit cell is t12 = ( 1

2 , 1
2 , 1

2 ). Therefore the minimal
model in Eq. (1) has the following form (Table IV):

ε0,k = t1(cos kx + cos ky + cos kz ) − μ,

tx,k = t2 cos
kx
2

cos
ky
2

cos
kz
2

,

tz,k = t3(cos kx− cos ky)(cos kx− cos kz )(cos ky− cos kz ),
(35)

with SOC given by

λx,k = λ sin
ky
2

sin
kz
2

cos
kx
2

,

λy,k = λ sin
kx
2

sin
kz
2

cos
ky
2

,

λz,k = λ sin
kx
2

sin
ky
2

cos
kz
2

. (36)

Since the altermagnetic spin splitting is given by tz,k and since,
in this case, tz,k belongs to the A2g representation of Oh and
near the � point, tz,k ∼ x4(y2 − z2) + y4(z2 − x2) + z4(x2 −
y2), this model describes an i-wave altermagnet.

VI. DISCUSSION AND CONCLUSIONS

We have provided minimal models for orthorhombic,
tetragonal, hexagonal, and cubic space groups. While we did
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TABLE III. Tight-binding coefficients for space groups with a nodal plane and two atoms per unit cell at the inversion center. Abbrevi-

ation ci ≡ cos ki, si ≡ sin ki, ci/2 ≡ cos ki
2 , si/2 ≡ sin ki

2 , fx ≡ sin kx + sin kx
2 cos

√
3ky
2 , and fy ≡ √

3 cos kx
2 sin

√
3ky
2 applies. We note that while

products of fx and fy are convenient for describing the symmetry of the appropriate terms in the Hamiltonian, these products generally contain
nearest neighbor hopping terms together with longer range hopping terms. Within tetragonal and hexagonal space groups, the coefficients for
the two SOC τyσx,y are related. The other coefficients, which are generally different, are omitted from this table. For instance, sy(sx, sz ) in SG11
means tz1sysx + tz2sysz.

SG τx τz τyσx τyσy τyσz

11(2a-2d) cy/2 sy(sx, sz ) cy/2 sy/2(sx, sz ) cy/2

14(2a-2d) cy/2(sxsz/2, cz/2) sy(sx, sz ) cy/2(sxsz/2, cz/2) sy/2(sxcz/2, sz/2) cy/2(sxsz/2, cz/2)

51(2a-2d) cx/2 sxsz sx/2sy cx/2 cx/2sysz

53(2a-2d) cx/2cz/2 sysz cx/2cz/2 sx/2sycz/2 sx/2sz/2

55(2a-2d) cx/2cy/2 sxsy sx/2cy/2sz cx/2sy/2sz cx/2cy/2

58(2a-2d) cx/2cy/2cz/2 sxsy sx/2cy/2sz/2 cx/2sy/2sz/2 cx/2cy/2cz/2

127(2a,2b) cx/2cy/2 sxsy(cx − cy ) λsx/2cy/2sz λcx/2sy/2sz cx/2cy/2

127(2c,2d) cx/2cy/2 sxsy λsx/2cy/2sz −λcx/2sy/2sz cx/2cy/2(cx − cy )

128(2a,2b) cx/2cy/2cz/2 sxsy(cx − cy ) λsx/2cy/2sz/2 λcx/2sy/2sz/2 cx/2cy/2cz/2

136(2a,2b) cx/2cy/2cz/2 sxsy λsx/2cy/2sz/2 −λcx/2sy/2sz/2 cx/2cy/2cz/2(cx − cy )

176(2b) cz/2
sz fx ( f 2

x − 3 f 2
y ),

sz fy( f 2
y − 3 f 2

x )
λ1cz/2( f 2

x − f 2
y )

+2λ2cz/2 fx fy

−2λ1cz/2 fx fy
+λ2cz/2( f 2

x − f 2
y )

sz/2 fx ( f 2
x − 3 f 2

y ),
sz/2 fy( f 2

y − 3 f 2
x )

193(2b) cz/2 sz fx ( f 2
x − 3 f 2

y ) 2λcz/2 fx fy λcz/2( f 2
x − f 2

y ) sz/2 fy( f 2
y − 3 f 2

x )

194(2a) cz/2 sz fy( f 2
y − 3 f 2

x ) λcz/2( f 2
x − f 2

y ) −2λcz/2 fx fy sz/2 fx ( f 2
x − 3 f 2

y )

not give examples, our approach can also be applied to mono-
clinic and rhombohedral space groups, see Tables I and II. For
the monoclinic case, an example is SG 14, with point group
C2h, Wyckoff position 2a or 2b (this applies to the Re site in
K2ReI6 [14]), and site symmetry Ci, our approach will give
a corresponding minimal model for a d-wave altermagnet.
For the rhombohedral case, an example is SG 167, with point
group D3d , Wyckoff position 6b (this applies to the Fe site in
FeCo3 [14]), and site symmetry S6, our approach will give a
corresponding minimal model for a g-wave altermagnet.

Our minimal models also highlight the role of nonsym-
morphic band degeneracies in altermagnetism. In particular,
the altermagnetic susceptibility we introduce reveals that band
degeneracies help to stabilize the altermagnetic state. This
susceptibility further reveals that the presence of van Hove
singularities related to the band degeneracies are favorable for
altermagnetism. Indeed, in the case of FeSb2, we find that the
corresponding lack of a van Hove singularity may lead to an
incommensurate altermagnetic state. In addition, the nonsym-
morphic band degeneracies enhance the Berry curvature and
thus lead to a large crystal Hall effect.

The minimal models can also be used to obtain new in-
sight into the properties of altermagnets. For example, as
outlined in Appendix H, we show how our minimal model
can give rise to the existence of topological states and chiral
surface bound states. In addition, superconductivity has been
observed in strained RuO2 [48–50], which is surprising since
altermagnetism tends to strongly suppress superconductivity.

Our minimal model suggests an answer for this: in the
presence of strain εxy, the term εxy cos kx cos kyτz also appears
in the Hamiltonian. This term splits the van Hove singularity
at the A point. As a consequence, we expect that altermag-
netism will be suppressed, potentially favoring other nearby
electronic instabilities. We expect that our minimal models
will serve as a useful tool to examine spatial varying proper-
ties of altermagnets, such as magnetic domain walls, and will
shed insight into the interplay of other electronic instabilities,
such as superconductivity, with altermagnetism.

In conclusion, through the comparison to DFT results, we
have developed realistic models for altermagnetism based on
a two magnetic atom sublattice in nonsymmorphic materials.
These models can be applied to monoclinic, orthorhombic,
tetragonal, rhombohedral, and cubic point crystals and can
describe d-wave, g-wave, and i-wave altermagnets. Further-
more, we have shown that these models generically give rise
to a Berry curvature that is linear in the spin-orbit coupling.
We expect that these minimal models will serve as a useful
tool to understand altermagnetism and its properties.
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TABLE IV. Tight-binding coefficients for space groups with two atoms per unit cell at the inversion center, but without nodal plane. The
same abbreviation applies as in the previous table.

SG τx τz τyσx τyσy τyσz

13(2a-2d) cz/2, sxsz/2 sy(sx, sz ) cz/2, sxsz/2 sy(sz/2, sxcz/2) cz/2, sxsz/2

49(2a-2d) cz/2 sxsy sxsz/2 sysz/2 cz/2

83(2e,2f)
cx/2cy/2,

sx/2sy/2(cx − cy )
(cx − cy ), sxsy

λ1sx/2cy/2sz
+λ2cx/2sy/2sz

−λ1cx/2sy/2sz
+λ2sx/2cy/2sz

sx/2sy/2,

cx/2cy/2(cx − cy )

84(2a,2b) cz/2 (cx − cy ), sxsy (λ1sx + λ2sy )sz/2 (−λ1sy + λ2sx )sz/2 cz/2(cx − cy )

84(2c,2d)
cx/2cy/2cz/2,

sx/2sy/2cz/2
(cx − cy ), sxsy

(+λ1sx/2cy/2

+λ2cx/2sy/2

)
sz/2

(−λ1cx/2sy/2

+λ2sx/2cy/2

)
sz/2

cx/2cy/2cz/2(cx − cy ),
sx/2sy/2cz/2(cx − cy )

123(2e,2f) cx/2cy/2 (cx − cy ) λcx/2sy/2sz λsx/2cy/2sz sx/2sy/2

124(2b,2d) cz/2 sxsy(cx − cy ) λsxsz/2 λsysz/2 cz/2

131(2a,2b) cz/2 (cx − cy ) λsysz/2 λsxsz/2 sxsycz/2

131(2c,2d) cx/2cy/2cz/2 (cx − cy ) λcx/2sy/2sz/2 λsx/2cy/2sz/2 sx/2sy/2cz/2

132(2a,2c) cz/2 sxsy λsxsz/2 −λsysz/2 cz/2(cx − cy )

163(2b)
cz/2,

fx (3 f 2
y − f 2

x )sz/2

fy( f 2
y − 3 f 2

x )sz,
fx fy( f 2

x − 3 f 2
y )(3 f 2

x − f 2
y )

λ1 fxsz/2

+λ2( f 2
x − f 2

y )cz/2

λ1 fysz/2

−2λ2 fx fycz/2

cz/2,

fx (3 f 2
y − f 2

x )sz/2

165(2b)
cz/2,

fy(3 f 2
x − f 2

y )sz/2

fx ( f 2
x − 3 f 2

y )sz,
fx fy( f 2

x − 3 f 2
y )(3 f 2

x − f 2
y )

λ1 fxsz/2

+2λ2 fx fycz/2

λ1 fysz/2

+λ2( f 2
x − f 2

y )cz/2

cz/2,

fy(3 f 2
x − f 2

y )sz/2

192(2b) cz/2 fx fy( f 2
x − 3 f 2

y )(3 f 2
x − f 2

y ) λsz/2 fx λsz/2 fy cz/2

223(2a) cx/2cy/2cz/2 (cx − cy )(cy − cz )(cz − cx ) λcx/2sy/2sz/2 λsx/2cy/2sz/2 λsx/2sy/2cz/2

through the ESS-Lighthouse Q-MAT. D.F.A. and Y.Y. were
supported by the National Science Foundation Grant No. DM-
REF 2323857.

APPENDIX A: TABLES OF MINIMAL MODELS

Here we provide explicit minimal models for all space
groups in Tables I and II that have primitive lattice structures.
We provide two tables. Table III contains only nonsymmor-
phic space groups with nodal planes in the paramagnetic state.
These nodal planes have fourfold degenerate fermions that
exist when spin-orbit coupling is not included, and they appear
on a planar face of the Brillouin zone. Table IV contains min-
imal models for symmorphic groups and all nonsymmorphic
groups that do not contain nodal planes.

APPENDIX B: DFT CALCULATIONS FOR RuO2

Orbital projection of the DFT bands. In order to construct
low-energy minimal models for RuO2, we perform ab initio
calculations using the crystal structure from Ref. [51]. Within
the full-potential local-orbital (FPLO) code, we calculate the
electronic structure in the paramagnetic state and examine the
orbital character of the band structure by projecting to the d
orbitals in the local octahedral environment of the Ru(1) and
Ru(2) atoms, see Fig. 8. Focusing on the low-energy disper-
sion, one can construct minimal one- and two-orbital models

that partially describe the respective electronic structure. Con-
structing a tight-binding model from a Wannier projection
allows a Hartree-Fock calculation of the full model finding
an altermagnetic instability as discussed in the literature [2].

Relativistic DFT calculations. In order to estimate the
magnitude of the SOC in RuO2, we perform additional ab
initio calculations in the full relativistic setting of FPLO [52]
(version 22.00-62) and plot the band structure for comparison
in Fig. 9, revealing an effective SOC constant λ = 0.1 eV, as
used in our minimal models of the main text.

APPENDIX C: THE CASE OF MnF2

In Sec. II, we have presented the minimal one-orbital
model and have demonstrated that it can describe the nor-
mal state and altermagnetic band structure of RuO2. Here,
we focus on the material candidate MnF2 and compare DFT
calculations with the minimal model in Eq. (1) relevant for this
compound both in the normal state and altermagnetic phase.
In the case of MnF2, DFT calculations have revealed that there
is only one orbital close to the Fermi level in the normal state
when performing a non-spin-polarized calculation [4]. The
single-band limit is also shown in Fig. 10 by introducing an
on-site Coulomb interaction U .

DFT calculations. In order to obtain hopping parameters
for a minimal model describing the low-energy band structure
of MnF2, we adopt the crystal structure from x-ray diffraction
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FIG. 8. DFT band structure (black lines) together with the pro-
jection onto atomic d orbitals of the Ru(1) atom (a) and the
Ru(2) atom (b) with the choice of the local coordinate system
as x̂ = (−1, 1, 0)/

√
2 and ẑ = (1, 1, 0)/

√
2 for Ru(1) and x̂ =

(−1, −1, 0)/
√

2 and ẑ = (−1, 1, 0)/
√

2 for Ru(2).

in Ref. [53] with space group P42/mnm (No. 136) and lattice
constants a = b = 4.873, c = 3.31. The Mn atoms are on the
2a Wyckoff position and the F atoms on the 4f position with
internal parameter (0.305,0.305,0). We verify the electronic
structure as found earlier [4] from calculations using the full-
potential local-orbital (FPLO) code [52], version 22.00-62 as
well as the full potential linearized augmented plane-wave
(LAPW) basis as implemented in WIEN2K [54], both using
the LDA exchange-correlation functional. Without additional
correlations from the LDA +U approach, the entangled Mn
d bands are close to the Fermi level as still visible with weak
correlations, see Figs. 10(a) and 10(b). Once larger corre-
lations are imposed, the d bands are pushed down and up,
leaving a pair of bands from one orbital per Mn close to the
Fermi level. Allowing for spin polarization within a calcula-
tion in WIEN2K where anti-parallel moments are imposed, we
retain two bands for each spin polarization close to the Fermi
level, see Figs. 10(c) and 10(d). A similar state is observed
irrespective of whether imposing a finite U or not. However,
due to the large local moment, the bands acquire an additional
crossing between � and Z as well as unusual spin shifts along
the path between the A and Z points.

FIG. 9. Comparison of the band structure of RuO2 from a scalar
relativistic DFT calculation (red, dashed) and a fully relativistic
calculation (black lines) revealing the splitting of the bands due to
SOC.

Minimal model. In Fig. 11(a), we display a minimal one-
orbital model obtained from Eq. (1) relevant for MnF2 in the
single-band limit, as shown in Figs. 10(a) and 10(b) in the
normal state DFT calculations. Similar to the case of RuO2

in Fig. 2, in the normal state the minimal model captures
the crossings at the Fermi level and the nodal lines in the
band structure. Note that in the case of MnF2, in the DFT
calculations a large U interaction is introduced to obtain the

FIG. 10. DFT calculations for MnF2. [(a) and (b)] Electronic
structure as obtained from a paramagnetic LDA+U calculation. The
bands are shown for two different values of the parameterU . [(c) and
(d)] Electronic structure from a spin-polarized calculation by fixing
the total moment to vanish.
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FIG. 11. Normal state (a) and altermagnetic (b) band structures
for MnF2 obtained from the minimal model in Eq. (1) with Eqs. (5)
and (6), hopping parameters detailed in Table V to reproduce the
DFT results (see Fig. 10) and Jz = 0.05 in (b).

single band crossing the Fermi level. However, allowing for
formation of local moments yields a band structure below the
Fermi level with different properties (see Ref. [4] and Fig 10):
the spin splitting in the A−Z line is reversed for one orbital
and the spin-up band approaches the spin-down, as opposed
to the result obtained from the minimal model, as shown
in Fig. 11(b). The more physical picture for MnF2 might
be an ordering of large paramagnetic moments occurring at
T = 67 K [55] while the compound stays insulating.

APPENDIX D: HOPPING PARAMETERS
FOR THE MINIMAL MODELS

In order to reproduce the band structures shown in Fig. 2
for RuO2, Fig. 7 for FeSb2, Fig. 11 for MnF2, and Fig. 14 for
κ-Cl, we include in Tables V and VI the choice of all hopping
parameters. In particular, Table V details all hoppings for the
one-orbital minimal models. Note that the case of κ-Cl is a
two-dimensional model, and therefore some hoppings are not
relevant. Table VI includes all hopping parameters for the two-
orbital model in the RuO2 case, to obtain the gray bands in
Fig. 2.

FIG. 12. [(a)–(d)] Bare and RPA susceptibilities in the ferromag-
netic and altermagnetic channels [see Eqs. (23) and (24)] for MnF2,
considering the minimal one-orbital model band structures shown
in Fig. 11(a), for U = 0.36, T = 0.02, and nk = 603. (e) Order
parameter |M| = ∑

α |n↑,α − n↓,α| from a selfconsistent Hartree-
Fock calculation at different fillings n where both an altermagnetic
and ferromagnetic order parameter can be stabilized, for T = 0.02
and nk = 403.

APPENDIX E: SUSCEPTIBILITY COMPONENTS
IN SUBLATTICE SPACE

The susceptibility in the altermagnetic channel in Eq. (24)
reveals that when the intersublattice components become neg-
ative the altermagnetic instability is favored. Figure 13 shows
the sublattice components of the susceptibility for the one-
orbital minimal models band structure shown in Fig. 2(a) for
RuO2 and Fig. 11(a) for MnF2, with the bare and RPA sus-
ceptibilities shown in Figs. 4(a)–4(d) and Figs. 12(a)–12(d),
respectively. As seen, for a leading altermagnetic instability

TABLE V. Hopping parameters to obtain the band structures for the tetragonal compounds RuO2 in Fig. 2 and MnF2 in Fig. 11 [see Eqs. (5)
and (6)], and the orthorhombic materials FeSb2 in Fig. 7 [Eqs. (31) and (6)] and κ-Cl in Fig. 14 [Eqs. (F1) and (F2)].

Tetra. t1 t2 t3 t4 t5 t6 t7 t8 μ

RuO2 −0.05 0.7 0.5 −0.15 −0.4 −0.6 0.3 1.7 0.25
MnF2 0 0.13 0 −0.02 0.015 0 0.03 0.33 −0.01

Ortho. t1x t1y t2 t3 t4x t4y t5 t6 t7 t8 μ

FeSb2 −0.1 −0.05 −0.05 0.06 0.1 0.05 −0.05 0.05 −0.1 0.15 −0.12
κ-Cl 0.08 −0.01 - −0.03 — — — 0.05 — 0.3 −0.1
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FIG. 13. Intra- and intersublattice components of the bare sus-
ceptibility shown in Eq. (21) considering the one-orbital minimal
model bands shown in Fig. 11 for MnF2 (a) and Fig. 2 for RuO2

(b), with T = 0.02 and nk = 603.

the intersublattice components become negative along the
�−X and M−� directions, with [χ0(q)]AB = [χ0(q)]BA. In con-
trast, when the ferromagnetic instability is leading they are
both positive along the same lines. Notably, the susceptibili-
ties [χ0(q)]AA and [χ0(q)]BB split in the �−M direction, and the
splitting is reversed in the �-M ′ direction, with M = (π, π, 0)
and M ′ = (−π, π, 0).

APPENDIX F: ORGANIC κ-Cl

The κ-Cl organic compound belongs to the 2D layer space
group L25, and it provides a platform to study 2D alter-
magnetism for which it is possible to find a weak-coupling
mechanism to stabilize the altermagnetic state [40]. This ma-
terial differs from the other materials in this work since it
lacks inversion symmetry. This lack of inversion symmetry
will alter the form of the SOC which is expected to be weak.
For these reasons we do not discuss SOC in this section. The
anomalous Hall effect and spin current generation has been
predicted for this material [10,11]. In addition, it has been sug-
gested that the magnetic order can induce finite momentum
superconductivity [56]. In these works, the models considered
have two dimers in the unit cell, which result in four bands,
but due to bonding/antibonding the bands split in two pairs.
Therefore, in the large dimerization limit, we can focus only
on the antibonding set of bands [57]. We argue that this is
sufficient to capture a leading altermagnetic instability. As a
consequence, we can construct the minimal model in Eq. (1)
by considering Wyckoff positions (0,0,0) and (1/2, 1/2, 0),
which, through arguments similar to FeSb2 gives

ε0,k = t1x cos kx + t1y cos ky + t3 cos kx cos ky − μ, (F1)

with the hopping terms

tx,k = t8 cos
kx
2

cos
ky
2

,

tz,k = t6 sin kx sin ky. (F2)

Similar to the rutile case in Eq. (6), here the tz,kτz term also
gives rise to the spin splitting with a d-wave symmetry.

In Fig. 14(a), we show the band structure by an appropriate
choice of the hopping parameters (listed in Appendix D) in
Eqs. (F1) and (F2), following the path shown in the inset
and assuming that the Fermi level is at the double van Hove
singularity at the S point. The obtained bands are in good
agreement with those of Refs. [10,56]. Figure 14(b) shows
the effect of the altermagnetic order parameter in Eq. (1).
As seen, again in agreement with previous works [10,11,56],

TABLE VI. Hopping parameters for the two-orbital model
shown in Eqs. (5)–(8) to obtain the band structure in Fig. 2 (gray line)
relevant for RuO2.

t1 t2 t3 t4 t5 t6 t7 t8 μ

RuO2 0.18 −1 −0.5 −0.1 −0.1 −0.6 0 −0.2 −3

t9 t10 t11 t12 t13 t14 t15 t16 a0

RuO2 −0.1 0 −0.2 0 0 0 0.1 0 3

the spin splitting is reversed along the kx = ky and kx = −ky
directions, since τz ∼ sin kx sin ky.

As shown in Figs. 15(a)–15(d), for this band the van Hove
singularity at the Fermi level gives rise to a q → 0 peak in
both the ferromagnetic and altermagnetic bare susceptibili-
ties, but the latter is the leading instability. The Hartree-Fock
results in Fig. 15(e) show that the altermagnetic state can
be stabilized at a lower value of the Hubbard interaction U .
When initializing with ferromagnetic ordering, this state is in
principle also stable, and the magnetization sets in gradually
withU . These results are robust against changes in the overall
filling with the modification that the saturation value of the
(sublattice) magnetization first decreases and then increases
again. This can be understood in terms of a nonmonotonic
behavior of the density of states (slope of black curve in inset)
of Fig. 15.

Examining the model in Eqs. (F1) and (F2) shows that a
sufficiently large t8 hopping is crucial to obtain a dominant
interband susceptibility, in agreement with the analysis of
the effect of coincident van Hove singularities in Ref. [40].
Motivated by this, in Appendix G, we describe a toy model
for a 2D tetragonal system inspired by RuO2, giving rise to a
leading altermagnetic instability assuming that the Fermi level
is also at the coincident van Hove singularities.

FIG. 14. Normal state (a) and altermagnetic (b) band structures
for κ-Cl obtained from the minimal model in Eq. (1) considering
Eqs. (F1) and (F2), with hopping parameters detailed in Appendix D
and Jz = 0.05 in (b). The BZ path is shown in the inset.
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FIG. 15. [(a)–(d)] Bare and RPA susceptibilities in the ferro-
magnetic and altermagnetic channels [see Eqs. (23) and (24)],
considering the minimal one-orbital model band structure for κ-Cl
shown in Fig. 14(a), with U = 0.1 T = 10−4 and nk = 4002. (e)
Order parameter |M| for κ-Cl calculated within Hartree-Fock using
the Hamiltonian in Eq. (F2), with T = 0.002 and nk = 3002.

APPENDIX G: MINIMAL TWO-DIMENSIONAL MODEL
FOR ALTERMAGNETISM IN A TETRAGONAL SYSTEM

In Sec. II, we introduce the general one-orbital model
describing altermagnets, and demonstrated in Fig. 2 that it
can reproduce the main features of the bands for RuO2. The
dispersion and tight-binding parameters written in Eqs. (5)
and (6) correspond to a 3D system. In this Appendix, we
present a minimal 2D model that gives rise to a leading alter-
magnetic instability, inspired by the RuO2 bands in Fig. 2(a)
and assuming that the Fermi level is at the coincident van
Hove singularities at the M point [40].

The minimal 2D model for the tetragonal system has the
following form:

H2D = t1(cos kx + cos ky) + t2 cos kx cos ky − μ

+ t3 cos
kx
2

cos
ky
2

τx + t4 sin kx sin kyτz, (G1)

where we have omitted the SOC terms for simplicity. This
model is obtained by evaluating the 3D model in Eqs. (3), (5)
and (6) at kz = 0. The hoppings in Eq. (G1) are illustrated in
Fig. 16.

In Fig. 17, we show the band structure obtained from the
minimal model in Eq. (G1), both in the normal state and
the altermagnetic state. We have verified with Hartree-Fock

FIG. 16. Sketch of the relevant hoppings in the minimal model
presented in Eq. (G1), with the red and blue colors representing the
two sublattices.

calculations that this model gives rise to a leading alter-
magnetic instability, as shown in Fig. 17(c). Importantly, the
altermagnetic instability is stabilized at a lower value of the
interaction U compared to the ferromagnetic ordering. In

FIG. 17. Normal state (a) and altermagnetic band structure
(b) obtained from the 2D toy model in Eq. (G1) inspired by the
RuO2 bands in Fig. 2. The hopping parameters are {t1, t2, t3, t4, μ} =
{−0.1, 0.1, 1.7, 0.3, 0.3}, with Jz = 0.2 for the magnetic order pa-
rameter in (b) [see Eq. (1)]. (c) Order parameter |M| for the bands
in (a) calculated within Hartree-Fock using the Hamiltonian in
Eq. (G1), with T = 0.0001 and nk = 12002.
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FIG. 18. Berry curvature in the σz = + sector on the kz = 0
plane. We take t8 = 1, t6 + t7 = 1/2, λz = 1/4, and J1 = J2 = J3 =
1/4. Here the integral of the Berry curvature over the kz = 0 plane is
4π .

addition, Fig. 17(c) shows two more details of this two dimen-
sional toy model. First, for variations slightly away from the
van Hove filling the critical U for the altermagnetic ordering
becomes larger. Second, the order parameter has a steep onset
(note the logarithmic scale) and quickly reaches values where
the electronic structure beomes insulating as also found in a
similar model in Ref. [29].

APPENDIX H: TOPOLOGICAL SURFACE STATEWITH
ALTERMAGNETIC ORDER PARAMETER τzσz

As an example of the utility of our minimal models,
we develop conditions under which altermagnetism can lead
to topologically protected edge states. As discussed in the
main text, the altermagnetic order parameter τzσz preserves
the mirrors Mx, My, Mz. Consequently, there is a vanish-
ing anomalous Hall effect and Berry curvature. However,
on the high-symmetry plane, it can exhibit nontrivial topo-
logical properties akin to those of topological crystalline
insulators [58].

For experiments preserving Mz, it is worth studying the
high-symmetry plane kz = 0 and kz = π . We take kz = 0
plane as an example. The minimal Hamiltonian for RuO2

becomes (dxy orbitals only):

H (kz = 0) = t8 cos
kx
2

cos
ky
2

τx

+ (t6 + t7) sin kx sin kyτz

+ λz cos
kx
2

cos
ky
2

(cos kx − cos ky)τyσz

+ J1τzσz + J2 sin
kx
2

sin
ky
2

τxσz

+ J3 sin
kx
2

sin
ky
2

(cos kx − cos ky)τy. (H1)

FIG. 19. (a)–(d) Bare and RPA susceptibilities in the ferromag-
netic and altermagnetic channels [see Eqs. (23), (24)], considering
the minimal one-orbital model band structure inspired on FeSb2

shown in Fig. 7(a), with U = 0.35, T = 0.02 and nk = 603. (e)
Order parameter for FeSb2 obtained within Hartree-Fock from the
Hamiltonian in Eq. (31), with T = 0.002 and nk = 403.

Here, the J2 and J3 terms have the same symmetry as the
order parameter J1τzσz, and they have a cos kz

2 factor in 3D.
Since momenta are invariant under the Mz ∝ σz symmetry, the
Hamiltonian can be block-diagonalized based on the eigen-
values of Mz. These blocks correspond to the σz = ± sectors.
Since these sectors are independent, we can define the Berry
curvature in each sector separately. As the mirror operators
Mx and My anti-commute with Mz, they interchange the two
sectors. While analyzing a given sector, these two mirror
symmetries are absent. Therefore the Berry curvature on the
Fermi surface in each sector is generically nonzero, as shown
in Fig. 18. To ensure that the total Berry curvature vanishes,
these two Berry curvatures need to be opposite. This implies
that, on the x = 0 plane, spin-up and spin-down electrons with
kz = 0 generically propagate along opposite y directions.

We now illustrate the possibility of chiral surface bound
states. Focusing on the σz = + sector, with generic param-
eter J1, the resulting two-band model is fully gapped. As
the parameter J1 is tuned, pointwise gap closings can hap-
pen in (J1, kx, ky) space. The closings are at J1 = 0 and
J1 = 4(t6 + t7) t8/J2

(1+|t8/J2|)2 . Berry phase is thus nonzero for J1

between the two closings, which implies the existence of
chiral surface states. On the x = 0 surface, these chiral surface
modes have kz = 0, and propagate along the y direction. In the
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σz = − sector, the Berry phase is opposite, and the surface
bound states propagate in the opposite direction. These pairs
of chiral states resemble the quantum spin Hall effect but are
governed by mirror symmetries and located at high-symmetry
planes.

APPENDIX I: RPA AND SELFCONSISTENT
HARTREE-FOCK RESULTS FOR FeSb2

In this Appendix, we present results from RPA analysis and
selfconsistent Hartree-Fock calculations using the minimal
model describing the low-energy electronic structure of FeSb2

where spin-resolved densities are allowed as order parameters.
Figures 19(a)–19(d) display the bare and RPA susceptibili-

ties in the ferromagnetic and altermagnetic channels using
the one-orbital minimal model in Eq. (1) for FeSb2, with
the bands shown in Fig. 7(a). As discussed in Sec. V A, the
RPA analysis shows that the altermagnetic susceptibility is the
leading instability, but diverges at a finite q.

As seen from the Hartree-Fock results in Fig. 19(e),
the altermagnetic state can be stabilized at a lower value
of the Hubbard interaction U . When initializing with fer-
romagnetic ordering, this state is in principle also stable,
and it yields a fully polarized ferromagnet beyond its
critical U . These results are robust against changes in the
overall filling with the modification that the saturation value
of the (sublattice) magnetization increases with filling and the
criticalU for FeSb2 decreases (when approaching half filling).
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