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Altermagnetism from coincident Van Hove
singularities: application to κ-Cl

Yue Yu 1 , Han Gyeol Suh1, Mercè Roig 2 & Daniel F. Agterberg 1

Realizing two-dimensional (2D) altermagnets is important for spintronics
applications. Here we propose a microscopic template for stabilizing 2D
altermagnetism through Van Hove singularities that are coincident in both
energy andmomentum. These coincident Van Hove singularities are a generic
consequence of non-symmorphic symmetries in nine 2D space groups. Due to
nontrivial symmetry properties of theHamiltonian, these coincident VanHove
singularities allow new hopping interactions between the Van Hove singula-
rities that do not appear in analogous Van Hove singularity based patch
models for cuprates and graphene. We show these new interactions can give
rise to various weak coupling, and BCS-based instabilities, including alter-
magnetism, nematicity, inter-band d-wave superconductivity, and orbital
altermagnetic order. We apply our results to quasi-2D organic κ-Cl in which
altermagnetism is known to appear.

Altermagnetism, distinct from ferromagnetism and anti-
ferromagnetism, exhibits zero net magnetization with momentum-
dependent collinear spin textures1–13. Analogous to unconventional
superconductors, it establishes a profound connection between
magnetism and topology, hosting nonzero Berry curvature for
anomalous Hall transport2,14–21. The momentum-dependent spin
splitting serves as a intrinsic platform for spin-current coupling22,
enabling practical control in spin devices through the application of
magnetic fields23,24, electrical currents1,25–29, strain30–34, torque35,36, and
heat37,38. When coupled with superconductors, altermagnetism can
induce intriguing phenomena39–41, such as the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state42,43 and new platforms for enabling
Majorana particles44.

As demonstrated through density functional theory (DFT)-based
Hartree-Fock calculations3, the random phase approximation45, and
analysis of Fermi surface Pomeranchuk instabilities3,46, altermagnetism
is believed to be stabilized through strong on-site Coulomb interac-
tions. Searches for this strong coupling instability form the basis for
identifying new altermagnetic materials. In principle, in 2D, Van Hove
singularities offer a weak coupling route towards stabilizing alter-
magnetism. Van Hove singularities are saddle points in the energy
dispersion and induce a logarithmic divergence in the 2D density of
states. Tuning the chemical potential across such singularities results

in divergent susceptibilities, signaling an instability into a variety of
possible competing orders that have been examined in cuprates,
graphene, and Kagome metals47–62. However, in these applications,
altermagnetism is not one of these competing orders, suggesting that
this route is not viable for stabilizing this state. Indeed, the closest
relative to altermagnetism that has been found is a non-collinear var-
iant that appears only for fine-tuned higher-order Van Hove
singularities62.

In contrast to the strong-coupling mechanisms typically exam-
ined with RPA-like approaches, here we identify a weak-coupling
mechanism based on usual 2D logarithmic Van-Hove singularities
that stabilize altermagnetism. Two ingredients are key to realizing
this mechanism. The first is the existence of a pair of Van Hove sin-
gularities that are coincident in both energy and momentum. The
second, which does not hold for all coincident Van Hove singularites,
is a specific symmetry property of the Hamiltonian, which give rise to
a new hopping interaction between these Van Hove singularities.
This hopping interaction does not appear in Van Hove-based patch
models for cuprates50–53 and graphene47–49,62 where it is forbidden by
translation invariance. Both ingredients are a generic consequence of
non-symmorphic symmetries that exist in nine 2D space groups,
when spin-orbit coupling is neglected. Furthermore, unlike the Van
Hove driven spin density wave transitions that occur in cuprate50–53,
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graphene47–49,62, and Kagome metal54 patch models, our alter-
magnetic mechanism does not require nesting or near-nesting of the
bands. Instead, it is based on the BCS instability, which typically
yields only a superconducting instability for the other Van Hove
singularity scenarios. Our analysis also stabilizes other orders
including interband d-wave superconductivity, nematicity, and
orbital altermagnetism. To be concrete, we apply our analysis to the
organic material κ-Cl where an altermagnetic state is believed
to occur.

Results
Coincident Van Hove singularities
The phase diagram of the quasi-2D orthorhombic organic compound
κ-(ET)2Cu[N(CN)2]Cl (κ-Cl, 2D layer group L25 (pba2)) shares simila-
rities with cuprates63, exhibiting unconventional superconductivity
adjacent to magnetism under pressure64–66 and anion substitution67–74.
Previous theoretical studies, largely based on strong coupling RPA-like
calculations, reveal superconducting and altermagetic states75–77. DFT
calculations reveal a Van Hove singularity at the S = (π, π) point78.
Recently, considerable hole-doping has been achieved in κ-Cl79. As the
VanHove singularity is approached, a substantial reduction in spectral
weight is observed, revealing the importance of electronic
correlations79. Here we show that this Van Hove singularity consists of
a pair of Van Hove singularities that are coincident in both energy and
momentum, and also satisfies the symmetry conditions that allow the
new hopping interaction mentioned above. We also show that in the
vicinity of the Van Hove singularity, interactions that fall outside of
RPA-like approaches drive a weak-coupling instability to alter-
magnetism and other novel states.

For pedagogical purposes, we start with a tight-binding
Hamiltonian. A general group theory analysis can be found later.
κ-Cl has four ET molecules per unit cell, forming two molecule-
dimers (Fig. 1) at positions: (r1, r2) = {(0, 0), (1/2, 1/2)}. As a minimal
model capturing the coincident Van Hove singularities, we con-
sider one orbital on each dimer position. The Pauli matrices τi act
in dimer (or sublattice) space and the Pauli matrices σi act in spin
space. While spin-orbit coupling (SOC) is negligible1,78, the normal

state tight-binding Hamiltonian is:

H =2t1 cos kx + 2t2 cos ky +4t3 cos kx cos ky

+4t4 cos
kx

2
cos

ky

2
τx + t5 sin kx sin kyτz � μ:

ð1Þ

Here, τx term describes inter-sublattice hopping (thick black arrows in
Fig. 1). τz term captures the difference in intra-sublattice hopping
between (1, 1) and (1, − 1) directions (solid/dashed red arrows in Fig. 1),
which is opposite on the two sublattices. Each band is doubly
degenerate, consisting of spin-up and down states. Due to the
nonsymmorphic symmetries, the band without SOC is 4-fold degen-
erate at the entire Brillouin zone boundary kx = π and ky = π80. Near the
Brillouin zone corner S=(π, π), where the coincident Van Hove
singularities appear, we obtain the kp Hamiltonian:

Hðπ + kx ,π + kyÞ= txk2
x + tyk

2
y + kxkyðt4τx + t5τzÞ � eμ, ð2Þ

with eμ=μ+ 2t1 + 2t2 � 4t3, tx = (t1 − 2t3), and ty = (t2 − 2t3). This
expansion reveals a central property of all the theories we examine
here, both the operators τx and τz are multiplied by the momentum
function kxky. Since the Hamiltonian must be invariant under all
orthorhombic symmetries, this implies that both τx and τz share the
same symmetry as kxky at the S point. A group theory analysis (given in
detail later) applied to the momentum points and 2D and 3D space
groups in Table 1 reveals that the kp-theory of Eq. (2) also appears in
these cases and has the most general form allowed by symmetry (for
the 3D groups, a term azk

2
z is also allowed, and the physics discussed

here occurs in the quasi-2D limit, where az is small relative to tx and ty).
The other non-trivial sublattice operator τy is time-reversal odd, but
invariant under all crystal symmetries. τy can only appear in a
Hamiltonian multiplied by spin-1/2 operators80 as a SOC term. Here
we ignore SOC and include a discussion of its effects in the appendix.

The resulting dispersions of the two bands are

E1, 2 = txk
2
x + tyk

2
y ±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t24 + t

2
5

q
kxky � eμ: ð3Þ

Fig. 1 | Crystal structure. a Hopping parameters. b Altermagnet where arrows
represent spins. c Orbital altermagnet where arrows represent currents (even-
parity current looporder).We name this state an orbital altermagnet since the local

moments induced by the current loops form an altermagnet (which has the same
symmetries as the altermagnet depicted in (b)).
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The saddle point conditions for these two dispersions are the same:
t24 + t

2
5 + ðtx � tyÞ2>ðtx + tyÞ2. Consequently, eachband hosts a VanHove

singularity at the band crossing point S = (π, π).
In the following, we work in the band basis for which the kp

Hamiltonian, Eq. (2) is diagonal. To diagonalize the kp Hamiltonian,
we take a k-independent unitary transformation u= cosðθ=2ÞI �
i sinðθ=2Þτy where cosθ= t5=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t24 + t

2
5

q
. In the band basis, eτy is

unchanged from τy in the sublattice basis. eτx and eτz in the band basis
are linear combinations of τx and τz, with eτx = cosθτx � sinθτz andeτz = sinθτx + cos θτz . Since τx,z have the same symmetry and θ is a
constant, gτx, z should remain the same symmetry as kxky. As interac-
tions can be constructed from multiplying Fermionic bilinears with
the same symmetry, this indicates the existence of a new interaction
term with respect to kp theories in which τx and τz have different
symmetries.

Patch model and interactions
The coincident Van Hove singularities provide a novel platform to
study strongly interacting fermions and a natural mechanism for sta-
bilizing 2D altermagnetism. To understand this, it is useful to consider
a patch model50. Here, the density of states (DOS) of each band is
approximated as a patch situated solely at the Van Hove point. With a
Van Hove singularity on each band, we end up with two DOS patches
located at the same point: (π, π), as shown in Fig. 2. This patch model
has similaritieswith that examined for cuprates. For cuprates, there are
also two Van Hove singularities, but these Van Hove singularities are
not coincident and appear at the two distinct momenta (0, π) and
(π, 0). The key difference between patch models for coincident Van
Hovepoints and those for the cuprates is in the interactions allowedby
symmetry. Both models contain the standard interactions g1, g2, g3,
and g4. However, our coincident VanHove patchmodel contains a new
hopping interaction, g5, shown in Fig. 3

This g5-interaction involves a hopping between the two bands
(DOS patches) which, due to momentum conservation, is permissible
onlywhen twopatches coincide. The existenceof coincident VanHove
singularities is not sufficient for the existence of the g5 interaction.
Additionally, the Hamiltonian must satisfy the symmetry condition
discussed just below Eq. 2 that eτx and eτz have the same symmetry. To
demonstrate this, we use Cooper pair operators to derive the g5
interaction. Cooper pair operators are convenient since they auto-
matically encode the Pauli exclusion principle. The interactions in
Fig. 3 involve annihilating two electrons (a Cooper pair) from the left
and then creating another Cooper pair with the same symmetry to the
right. For g5, the corresponding Cooper pairs are eτxiσy :

Δxy, 1 = c2#c1" + c1#c2" and eτz iσy : Δxy, 2 = c1#c1" � c2#c2" (here 1 and 2 in
Fermionic operators label the bands). Since these two Cooper pairs
share the same symmetry, the interaction g5Δ

y
xy, 1Δxy, 2 is symmetry

allowed. If the ~τx and ~τz operators had different symmetries, this
interaction would be symmetry forbidden. Expanding g5Δ

y
xy, 1Δxy, 2

yields

Hint
g5

= g5ðc2#c1" + c1#c2"Þyðc1#c1" � c2#c2"Þ+h:c: ð4Þ

In the two g5 panels in Fig. 3, the two input electrons from the left
annihilates the Cooper pair Δxy,2, and the two output electrons to the
right creates the Cooper pair Δy

xy, 1. The sign difference on the two
bands in Δxy,2 results in the sign difference between the two ± g5
panels.

The g5 interaction can be generated by an on-site Hubbard
interaction after transforming to the band basis, so its magnitude can
be large. In particular, for the interaction

Hint =U
X
m

nm"nm#, ð5Þ

where m denotes the sublattice index, we find its components in

the band basis (denoted by g0
i ): g

0
1 = g

0
2 = g

0
3 = ðU=2Þsin2θ, g0

3 + g
0
4 =U,

g0
4 � g0

3 =Ucos2θ, and g0
5 = ðU=2Þ sinθ cosθ. Recall cosθ �

t5=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t24 + t

2
5

q
, the existence of g5 thus requires both kxky(t4τx+ t5τz) terms

Table 1 | 2D layer groups and 3D space groups87,88 hosting the
kp Hamiltonian in Eq.(2) at quadratic level

2D L17ðp21=b11Þ, L21ðp21212Þ, L25ðpba2Þ
L44ðpbamÞ, L54ðp4212Þ, L56ðp4bmÞ

L58ðp421 mÞ, L60ðp4b2Þ, L63ðp4=mbmÞ
3D 18ðP21212ÞR&S, 19ðP212121ÞS&T ðkykzÞ&UðkxkzÞ

55ðPbamÞR&S, 56ðPccnÞR, 58ðPnnmÞS
62ðPnmaÞU,90ðP4212ÞM&A, 92ðP41212ÞM

94ðP42212ÞM&A, 96ðP43212ÞM, 127ðP4=mbmÞM&A
128ðP4=mncÞM, 135ðP42=mbcÞM, 136ðP42=mnmÞM

138ðP42=ncmÞA, 212ðP4332ÞM,213ðP4132ÞM
For 2D layer groups, the kp Hamiltonian is centered at the (π, π) point. For 3D space groups, the
corresponding high-symmetry points are included. In 19T(19U), the coefficients of τx,z terms are
kykz(kxkz) instead of kxky.

Fig. 2 | Density of states is concentrated near the band crossing point (π, π),
where the twobands are shown in different colors. In the patchmodel, states on
the red band are replaced by a single point at (π, π), while states on the blue band
are replaced by another point at (π, π). Here, we take t1 = t2 = t5 = 1, t3 = 0, t4 = 8, and
μ = − 4. 20002 points are sampled, and states with energy (∣E∣ < 0.1) are plotted.

Fig. 3 | Allowed interactions for two coincident patches. a–f The exchange
interaction g1, inter-patch Hubbard interaction g2, pair-hopping interaction g3,
intra-patch Hubbard interaction g4, and the new hopping interaction g5. Here,
upper propagators are for spin-up, while lower ones are for spin-down. Solid&
dashed lines label bands 1 and 2.
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in the dispersion. In single-band cuprates, even if we fold the Brillouin
zone such that the two Van Hove singularities coincide, g5 will still
vanish as it corresponds to θ = π/2.

When the chemical potential is tuned close to the Van Hove sin-
gularity, the enhancement in the density of states results in substantial
corrections to interaction strengths. These corrections originate
through the intra- and inter-band particle-particle (χ intrapp , χ interpp ) and
particle-hole (χ intraph , χ intraph ) susceptibilities for the free fermions47–61.
Here, these susceptibilities are

χ intraph = � limq!0
1
N

P
k
f ½E1ðkÞ��f ½E1ðk+qÞ�

E1ðkÞ�E1ðk +qÞ

χ interph = � limq!0
1
N

P
k
f ½E1ðkÞ��f ½E2ðk+qÞ�

E1ðkÞ�E2ðk+qÞ

χ intrapp = � limq!0
1
N

P
k
f ½E1ð�kÞÞ�f ð�E1ðk+qÞ�

E1ð�kÞ+ E1ðk +qÞ

χ interpp = � limq!0
1
N

P
k
f ½E1ð�kÞ��f ½�E2ðk+qÞ�

E1ð�kÞ+ E2ðk+qÞ ,

ð6Þ

where f[E] is the Fermi Dirac distribution. The dominant corrections
stem from χ intrapp . This is because χ intrapp exhibits the conventional BCS
logarithmicdivergencemultipliedby the logarithmic divergence in the
density of states (χ intrapp diverges as log2Λ=T) while other suscept-
ibilities only exhibit the latter and hence diverge as logΛ=T . Keeping
only the dominant interaction corrections, the one-loop BCS correc-
tions to the interactions are:

Δg1 = � 2χ intrapp g2
5

Δg2 = � 2χ intrapp g2
5

Δg3 = � 2χ intrapp g3g4

Δg4 = � χ intrapp ðg2
3 + g

2
4Þ

Δg5 = � χ intrapp ðg4 � g3Þg5

!
Δðg4 + g3Þ= � χ intrapp ðg4 + g3Þ2

Δðg4 � g3Þ= � χ intrapp ðg4 � g3Þ2

" #
:

ð7Þ

Let us start with g5 = 0, then these equations are the same as those
found in cuprate patchmodels50,52. Hence, a bare attractive g0

4 + g
0
3 (or

g0
4 � g0

3 ) enhances itself and gives an intra-band s-wave superconduct-
ing Δ = iσy (or d-wave superconducting Δ= i eτzσy) instability. For onsite
Hubbard interactions and generic θ, we have g0

4>g
0
3>0, causing the

BCS correction to suppress these two instabilities.
The g5-interaction introduces new one-loop BCS corrections to

the exchange interaction g1, and the inter-band Hubbard interaction
g2, as shown in Fig. 4. The first diagram in panel (a) illustrates a cor-
rection to the exchange interaction g1. This correction involves two g5
interactions. This diagram features two internal solid lines moving in
the same direction, which are evaluated to be the negative BCS sus-
ceptibility, �χ intrapp , from the first band. Similarly, the second diagram
has two − g5 interaction lines and a negative BCS susceptibility from
the second band. These two diagrams thus add up toΔg1 = � 2χ intrapp g2

5

in Eq.(7). The two diagrams in panel (b) add up to Δg2 = � 2χ intrapp g2
5.

Within BCS corrections, g5 does not affect g3,4.
Notably, these corrections are always negative, regardless of the

signs of interactions. This can drive g1,2 < 0. In the appendix, we con-
sider a patch renormalization group study including subleading cor-
rections, which are important as g4 − g3 vanish

81. We consider the small
g3,4 sector and explicitly show that BCS corrections from g5 can push
the RG flow to stable fixed points with divergent g1,2 < 0.

Competing instabilities
The above discussion reveals that negative g1 and g2 can become the
dominant interactions, and so we may neglect other interactions. We
find that g1 and g2 generically lead to competing instabilities in the
intra-band particle–hole, inter-band particle-hole, and inter-band par-
ticle-particle channels (Table 2). These instabilities are obtained from
self-consistent one-loop vertex corrections in the appendix, and here
are illustrated from a mean-field perspective. Specifically, d-wave
altermagnetism eτzσ requires an antiferromagnetic interaction
between the two bands, which is contributed by the attractive inter-
band Hubbard interaction g2 (marked in blue below):

S1zS2z = ðn1" � n1#Þðn2" � n2#Þ
= � ðn1"n2# +n2"n1#Þ+n1"n2" +n1#n2#

ð8Þ

The altermagnetism is in the intra-band particle-hole channel, so the
instability criteria is χ intraph jg2j>1, as shown in Table 2. Other instabilities
include inter-band dxy superconductivity, ϵxy nematicity, and orbital
altermagnetic order. These order parameters inherit non-trivial
symmetries through the band degrees of freedom eτi, even though
the coincident Van Hove singularity is located at a single momentum
point. The orbital altermagnetic order eτy is a current-loop order
breaking time-reversal symmetry while preserving all crystal reflection
symmetries (Fig. 1). This state will induce an anomalous Hall effect
under the application of an ϵxy strain, even without the presence of
SOC (a detailed explanation is in the appendix). When SOC is present,
this current loop order and the conventional d-wave spin altermag-
netic order eτzσz will coexist as these two orders share the same
symmetry. It is notable that the d-wave superconductivity we find is
inter-band, and cannot be stabilized through a conventional BCS
mechanism.

While the one-loop correction for the interaction comes from the
dominant intra-band particle-particle (BCS) channel, the one-loop
correction for the vertices all belong to the three subleading channels.
Theultimate leading instability canbedeterminedby themagnitudeof
the three eigenvalues χ interpp jg1 + g2j, χ interph jg1j and χ intraph jg2j. The three

susceptibilities share the same scaling: χ / logΛi=T , generically with
different energy cutoff Λi. To examine what parameter range enables
the different instabilities, we set the cutoffs in all three susceptibilities
the sameand consider the limit g1 = g2. This limit occurswhen only BCS
corrections from on-site Coulomb interactions are included but gen-
erally g1 ≠ g2. The results then depend upon the kp dispersion in Eq.(3).
Figure 5 reveals that all instability channels are stable for some choice

Fig. 4 | g5-interaction leads to intra-band particle-particle corrections. (a) The
correction to g1. (b) The correction to g2.

Table 2 | Orders stabilized by coincident Van Hove points and
corresponding symmetries and eigenvalues

Instability Eigenvalue

d-wave altermagnetism: eτzσ � kxkyσ χ intraph jg2j
Nematicity: eτx � kxky χ interph jg1j
Orbital altermagnetism: eτy χ interph jg1j
d-wave SC: eτxðiσyÞ � kxkyðiσyÞ χ interpp jg1 +g2j
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of a �
ffiffiffiffiffiffiffiffiffiffi
t24 + t

2
5

p
2tx

(Van Hove dispersion requires a > 1). We note that once

g1 > g2 (or g1 < g2), the inter-band (or intra-band) altermagnetic phase
will expand.

It is worth noting that the above results are not captured by the
standard random phase approximation (RPA). The RPA diagram is
shown in panel (a) in Fig. 6. It gives the usual instability criteria
jg2jχ intraph >1 (topleft) and jg1jχ interph >1 (topright). The BCS instability for
altermagnetism is equivalent to a two-loop correction described by
panel (b). This diagram is derived from panel (a) by substituting the g2
interactionwith its g5-correction in Fig. 4. The instability criteria is thus
jΔg2jχ intraph = 2jg5j2χ intrapp χ intraph >1. Since χ intrapp ≫χ intraph , χ interph at low tem-
perature, the BCS correction from g5 describes a stronger weak-
coupling instability. Since the g5 contributions exceed the RPA-based
contributions in the weak-coupling limit, it is reasonable to include
them beyond the conventional RPA-based contributions when
addressing intermediate and strong coupling problems in future
studies.

Our coincident Van Hove mechanism relies on the existence of a
g5 hopping interaction and exclusively yields d-wave altermagnetic
states. Given the discovery of g-wave altermagnetism82,83, it is inter-
esting to ask if there exists a weak-coupling Van Hove scenario that
stabilizes such a g-wave state. In the appendix we show that this is
indeed possible for a different coincident Van Hove scenario that also
applies to many of the space groups examined here. In this case, a
momentum-dependent spin-splitting of the form kxkyðk2

x � k2
yÞ is

generated from coincident Van Hove singularities with a symmetry
that forbid the existence of the g5 interaction. This Van Hove scenario
can be mapped onto the patch model for the cuprates59 and this
mapping reveals that the Neel spin density wave state found for the
cuprate casemaps to the g-wave altermagnetic state. In contrast to the
d-wave altermagnetic that appears when g5 ≠ 0, the g-wave alter-
magnetic state requires nesting to become stable.

Group theory arguments
We now explicitly derive the symmetry requirements that underlie the
kp Hamiltonian in Eq.(2). Key to this argument are non-symmorphic 2-
fold symmetries. For these symmetries, we adopt the notationeO= fOjtg to describe a reflection symmetry O followed by a half-
translation vector t. We also denote a pure translation as {t x, ty}. The

first requirement for Eq.(2) is a 2-fold sublattice degeneracy, which
appears independently of 2-fold spin degeneracy. This degeneracy is
ensured by the product of spinless time-reversal symmetry T (here T is
represented by the complex conjugation operator) and a non-
symmorphic symmetry. For example in κ-Cl, reflection symmetryfMx = fMx j1=2, 1=2g takes the position (x, y) to ( − x + 1/2, y + 1/2). We

have ðT fMxÞ
2
= � 1, which follows for T2 = 1 and ðfMxÞ

2
= f0, 1g= expðikyÞ

when themomentumof the Bloch state has ky=π. The TRIMpoint thus
exhibits 2-fold sublattice degeneracy. In this work, we do not consider
TRIM points with higher sublattice degeneracies.

As the T invariant operators τx and τz both share the same non-
trivial transformation properties as kxky, this places the second con-
straint on possible allowed little co-groups (the group of crystal sym-
metries that keep the relevant momentum point unchanged up to a
reciprocal lattice vector). Specifically, the little co-group must have a
specific irreducible representation that transforms as kxky. This
representation should not mix in other quadratic terms, such as k2

x ,
because that would lead to terms like k2

xτx in the kp Hamiltonian.
Notably, linear terms like kxτx are already excluded from the kp
Hamiltonian by T.

Now suppose τx,z already transform as kxky. Since τy is propor-
tional to the product of τx and τz, it must transform trivially under all
crystal symmetries, and belong to the trivial representation. The trivial
representation should not mix in linear terms like kx, because that
would lead to terms like kxτy in the Hamiltonian.

Let us check the above requirements of little co-groups on κ-Cl,
which has mirror symmetries fMx = fMx j1=2, 1=2g, fMy = fMyj1=2, 1=2g,
and their product C2z. These three symmetries keep the TRIM point
(π, π) invariant. At this TRIM point, these symmetries form the 2mm
point group. In this point group, the A2 representation only hosts kxky
at quadratic level. The trivial A1 representation does not contain k-odd
terms in (kx, ky). The above requirement of little co-groups are thus
satisfied.

The third requirement is on the symmetry operators. Because T
commutes with all crystal symmetries, these symmetries are repre-
sented by real 2 × 2 matrices. Since τy is invariant under all crystal
symmetries, these matrices should commute with τy. Hence, they are
either ± τ0(identity) or ± iτy. This implies that all the symmetry
operators at the TRIM point should commute with each other.

If a symmetry preserves τx,z ~ kxky, then τx,z should commute with
the symmetry matrix. The symmetry operator is then ± τ0. Such
symmetries are thus squared to + 1. If a symmetry flips kxky, then τx,z
should anticommute with the symmetry matrix. The symmetry matrix
is then ± iτy. Such symmetries are thus squared to -1.

We can now deduce the remaining symmetry requirements for
the kp Hamiltonian in Eq.(2): (1) All the symmetry operators at the
TRIM point commute with each other. (2) Symmetries preserving kxky

Fig. 5 | Susceptibilities χinterpp , χinterph and χintraph , normalized with respect to χintraph ,

with tx = ty and a �
ffiffiffiffiffiffiffiffiffiffi
t24 + t

2
5

p
2tx

. 2χ interpp is plotted as the SC vertex is contributedby both

g1 and g2.N = 20002 points are sampled, for kx,y∈ [ − 5, 5]. TemperatureT/tx =0.01 is
taken. q = (10−4, 0) is used in χ intraph . q = (0, 0) is used in χ interph and χ interpp .

Fig. 6 | Comparison of conventional and the g5 bubbles to magnetism.
aConventional Stoner bubbles fromg1,2, for intra-bandand inter-bandparticle-hole
channel. b Contribution through intra-band particle-particle channel from the g5
interaction. The two pairs of vertical propagators can be from both patches.
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are squared to + 1 while symmetries flipping kxky are squared to − 1. As
shown below, these requirements can be checked without explicitly
introducing matrix representations for the symmetries.

Let us check the above requirements for the symmetries on κ-Cl.
Firstly, fMx and fMy commute as:

fMx jtxx , tyxgfMyjtxy , tyyg
= f�2txy , 2t

y
xgfMyjtxy , tyygfMx jtxx , tyxg

= f�1, 1gfMyjtxy , tyygfMx jtxx , tyxg
ð9Þ

In real space, the commutator is evaluated into a translation operation
{− 1, 1},which is equal to + 1 at the (kx, ky) = (π,π) point. Symmetries fMx ,fMy, and their product C2z thus commute with each other.

Note that kxky is odd under fMx and fMy, but even under their
product C2z. Consequently, we require fMx

2
= fMy

2
= � 1, and C2

2z = + 1.
To check this:

fMx
2
= f0, 1g= expðikyÞ= � 1fMy

2
= f1, 0g= expðikxÞ= � 1

C2
2z = f0,0g= 1:

ð10Þ

The symmetry conditions are thus satisfied in κ-Cl. Table 1 is obtained
by checking the above three requirements for TRIM points in all 2D
layer groups and 3D space groups.

Discussion
Here we have identified coincident Van Hove singularities as a plat-
form to realize 2D altermagnetic states and other novel electronic
states. These states are stabilized due to a new interaction term, g5,
through a weak-coupling BCS mechanism that leads to alter-
magnetism, nematic, d-wave superconducting, and orbital alter-
magnetic orders. Our results apply to nine 2D space groups and we
have chosen a specific application in κ-Cl, where altermagnetismwith
the same symmetry found here is observed in κ-Cl84 and d-wave
superconductivity is reported under pressure64,65 and anion
substitution67–74. Another relevant 2D material is monolayer RuF4 in
layer group L17(p21/b11). It has the same kpHamiltonian as κ-Cl at the
(π, π) point, and recent DFT calculation85 reveals an altermagnetic
instability within an RPA-like approach.

Although our study focuses on 2D systems, the same coincident
Van Hove singularities exist at high symmetry momenta in the 3D
space groups listed in Table 1. Strictly speaking, in 3D, there is no
divergence in the density of states near the Van Hove singularity.
However, the density of states can still be large near the Van Hove
momentum in the quasi-2D limit. In this case, the BCS weak-coupling
instability will still aid in stabilizing the altermagnetic states. Among
these 3D space groups, 55(Pbam), 58(Pnnm), 62(Pnma), 136(P42/
mnm), and 138(P42/ncm) are known to host multiple altermagnetic
candidates, according to the search on MAGNDATA database86. In
these 3D materials, the contribution of the coincident Van
Hove singularity to the ordering instability can be revealed by
studying the doping dependence of the altermagnetic transition
temperature.

Data availability
All study data are included in the article and/or SI Appendix.

Code availability
Codes are available at https://doi.org/10.5281/zenodo.10994906.
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