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Realizing two-dimensional (2D) altermagnets is important for spintronics
applications. Here we propose a microscopic template for stabilizing 2D
altermagnetism through Van Hove singularities that are coincident in both
energy and momentum. These coincident Van Hove singularities are a generic
consequence of non-symmorphic symmetries in nine 2D space groups. Due to
nontrivial symmetry properties of the Hamiltonian, these coincident Van Hove
singularities allow new hopping interactions between the Van Hove singula-
rities that do not appear in analogous Van Hove singularity based patch
models for cuprates and graphene. We show these new interactions can give

rise to various weak coupling, and BCS-based instabilities, including alter-
magnetism, nematicity, inter-band d-wave superconductivity, and orbital
altermagnetic order. We apply our results to quasi-2D organic k-Cl in which
altermagnetism is known to appear.

Altermagnetism, distinct from ferromagnetism and anti-
ferromagnetism, exhibits zero net magnetization with momentum-
dependent collinear spin textures' . Analogous to unconventional
superconductors, it establishes a profound connection between
magnetism and topology, hosting nonzero Berry curvature for
anomalous Hall transport**?. The momentum-dependent spin
splitting serves as a intrinsic platform for spin-current coupling®,
enabling practical control in spin devices through the application of
magnetic fields*?, electrical currents"*?’, strain****, torque®-*¢, and
heat*%, When coupled with superconductors, altermagnetism can
induce intriguing phenomena®**, such as the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state**** and new platforms for enabling
Majorana particles**.

As demonstrated through density functional theory (DFT)-based
Hartree-Fock calculations®, the random phase approximation®, and
analysis of Fermi surface Pomeranchuk instabilities**¢, altermagnetism
is believed to be stabilized through strong on-site Coulomb interac-
tions. Searches for this strong coupling instability form the basis for
identifying new altermagnetic materials. In principle, in 2D, Van Hove
singularities offer a weak coupling route towards stabilizing alter-
magnetism. Van Hove singularities are saddle points in the energy
dispersion and induce a logarithmic divergence in the 2D density of
states. Tuning the chemical potential across such singularities results

in divergent susceptibilities, signaling an instability into a variety of
possible competing orders that have been examined in cuprates,
graphene, and Kagome metals*’"*2. However, in these applications,
altermagnetism is not one of these competing orders, suggesting that
this route is not viable for stabilizing this state. Indeed, the closest
relative to altermagnetism that has been found is a non-collinear var-
iant that appears only for fine-tuned higher-order Van Hove
singularities®.

In contrast to the strong-coupling mechanisms typically exam-
ined with RPA-like approaches, here we identify a weak-coupling
mechanism based on usual 2D logarithmic Van-Hove singularities
that stabilize altermagnetism. Two ingredients are key to realizing
this mechanism. The first is the existence of a pair of Van Hove sin-
gularities that are coincident in both energy and momentum. The
second, which does not hold for all coincident Van Hove singularites,
is a specific symmetry property of the Hamiltonian, which give rise to
a new hopping interaction between these Van Hove singularities.
This hopping interaction does not appear in Van Hove-based patch
models for cuprates® and graphene**? where it is forbidden by
translation invariance. Both ingredients are a generic consequence of
non-symmorphic symmetries that exist in nine 2D space groups,
when spin-orbit coupling is neglected. Furthermore, unlike the Van

Hove driven spin density wave transitions that occur in cuprate®®>,
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graphene* **%2, and Kagome metal’* patch models, our alter-
magnetic mechanism does not require nesting or near-nesting of the
bands. Instead, it is based on the BCS instability, which typically
yields only a superconducting instability for the other Van Hove
singularity scenarios. Our analysis also stabilizes other orders
including interband d-wave superconductivity, nematicity, and
orbital altermagnetism. To be concrete, we apply our analysis to the
organic material k-Cl where an altermagnetic state is believed
to occur.

Results

Coincident Van Hove singularities

The phase diagram of the quasi-2D orthorhombic organic compound
K-(ET),Cu[N(CN),ICI (x-Cl, 2D layer group L25 (pba2)) shares simila-
rities with cuprates®, exhibiting unconventional superconductivity
adjacent to magnetism under pressure®*®° and anion substitution® "%,
Previous theoretical studies, largely based on strong coupling RPA-like
calculations, reveal superconducting and altermagetic states”””. DFT
calculations reveal a Van Hove singularity at the S = (1, m) point’®,
Recently, considerable hole-doping has been achieved in k-CI”°. As the
Van Hove singularity is approached, a substantial reduction in spectral
weight is observed, revealing the importance of electronic
correlations”. Here we show that this Van Hove singularity consists of
a pair of Van Hove singularities that are coincident in both energy and
momentum, and also satisfies the symmetry conditions that allow the
new hopping interaction mentioned above. We also show that in the
vicinity of the Van Hove singularity, interactions that fall outside of
RPA-like approaches drive a weak-coupling instability to alter-
magnetism and other novel states.

For pedagogical purposes, we start with a tight-binding
Hamiltonian. A general group theory analysis can be found later.
k-Cl has four ET molecules per unit cell, forming two molecule-
dimers (Fig. 1) at positions: (ry, r2) = {(0, 0), (1/2, 1/2)}. As a minimal
model capturing the coincident Van Hove singularities, we con-
sider one orbital on each dimer position. The Pauli matrices t; act
in dimer (or sublattice) space and the Pauli matrices g; act in spin
space. While spin-orbit coupling (SOC) is negligible"’%, the normal
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Fig. 1| Crystal structure. a Hopping parameters. b Altermagnet where arrows
represent spins. ¢ Orbital altermagnet where arrows represent currents (even-
parity current loop order). We name this state an orbital altermagnet since the local

state tight-binding Hamiltonian is:

H=2t, cosk, +2t, cosk, +4t; cosk, cosk,
1
+4t, cos%cos%rxﬂs sink, sink,t, — 1. @
Here, 7, term describes inter-sublattice hopping (thick black arrows in
Fig. 1). 7, term captures the difference in intra-sublattice hopping
between (1, 1) and (1, - 1) directions (solid/dashed red arrows in Fig. 1),
which is opposite on the two sublattices. Each band is doubly
degenerate, consisting of spin-up and down states. Due to the
nonsymmorphic symmetries, the band without SOC is 4-fold degen-
erate at the entire Brillouin zone boundary k, = and k, = 1*°. Near the
Brillouin zone corner S=(m, m), where the coincident Van Hove
singularities appear, we obtain the kp Hamiltonian:

H(T+ Ky, T+ K ) = 6K+ £k + Kok (84T, + E5T,) — [, )
with i=p+2t,+2t, —4t3, t, = (t; - 2t3), and &, = (&; - 2t3). This
expansion reveals a central property of all the theories we examine
here, both the operators 7, and 7, are multiplied by the momentum
function k.k,. Since the Hamiltonian must be invariant under all
orthorhombic symmetries, this implies that both 7, and 7, share the
same symmetry as k., at the S point. A group theory analysis (given in
detail later) applied to the momentum points and 2D and 3D space
groups in Table 1 reveals that the kp-theory of Eq. (2) also appears in
these cases and has the most general form allowed by symmetry (for
the 3D groups, a term azk§ is also allowed, and the physics discussed
here occurs in the quasi-2D limit, where a, is small relative to ¢, and ¢).
The other non-trivial sublattice operator 1, is time-reversal odd, but
invariant under all crystal symmetries. 7, can only appear in a
Hamiltonian multiplied by spin-1/2 operators®® as a SOC term. Here
we ignore SOC and include a discussion of its effects in the appendix.

The resulting dispersions of the two bands are

2
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moments induced by the current loops form an altermagnet (which has the same
symmetries as the altermagnet depicted in (b)).
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Table 1| 2D layer groups and 3D space groups®”®® hosting the
kp Hamiltonian in Eq.(2) at quadratic level

2D L17(p2,/b11), L21(p2,2,2), L25(pba 2)
L44(pbam), L54(p42,2), L56(p4bm)
L58(p 42, m), L60(p 4 b2), L63(p4/mbm)

3D 18(P2,2,2)R&S, 19(P2;2,2/)S&T (k, k,)&U(k,k.)
55(Pbam)R&S, 56(Pccn)R, 58(Pnnm)S
62( Pnma)U, 90(P42,2)M&A, 92(P4,2,2)M
94( P4,2,2)M&A, 96(P452,2)M, 127(P4/mbm)M&A
128( P4/mnc)M, 135(P4,/mbc)M, 136(P4,/mnm)M
138( P4,/ncm)A, 212(P4532)M, 213(P4,32)M

For 2D layer groups, the kp Hamiltonian is centered at the (i1, M) point. For 3D space groups, the
corresponding high-symmetry points are included. In 19T(19V), the coefficients of 1, , terms are
kyk(kyk,) instead of kk,.

The saddle point conditions for these two dispersions are the same:
t5+ 2 +(t, — t,)°>(t, +1,)*. Consequently, each band hosts a Van Hove
singularity at the band crossing point S = (i, m).

In the following, we work in the band basis for which the kp
Hamiltonian, Eq. (2) is diagonal. To diagonalize the kp Hamiltonian,
we take a k-independent unitary transformation u= cos(8/2)/ —

isin(6/2)t, where cos@=ts/\/t;+t3. In the band basis, 7, is
unchanged from 1y, in the sublattice basis. 7, and 7, in the band basis
are linear combinations of 7, and 7., with 7, = cos 8r, — sin 6z, and
7, = sin 01, + cos O7,. Since 7,,, have the same symmetry and 6 is a
constant, 7, , should remain the same symmetry as k.k,. As interac-
tions can be constructed from multiplying Fermionic bilinears with
the same symmetry, this indicates the existence of a new interaction
term with respect to kp theories in which 7, and 7, have different
symmetries.

Patch model and interactions
The coincident Van Hove singularities provide a novel platform to
study strongly interacting fermions and a natural mechanism for sta-
bilizing 2D altermagnetism. To understand this, it is useful to consider
a patch model®. Here, the density of states (DOS) of each band is
approximated as a patch situated solely at the Van Hove point. With a
Van Hove singularity on each band, we end up with two DOS patches
located at the same point: (i, i), as shown in Fig. 2. This patch model
has similarities with that examined for cuprates. For cuprates, there are
also two Van Hove singularities, but these Van Hove singularities are
not coincident and appear at the two distinct momenta (0, m) and
(m, 0). The key difference between patch models for coincident Van
Hove points and those for the cuprates is in the interactions allowed by
symmetry. Both models contain the standard interactions g;, 2>, g3,
and g,. However, our coincident Van Hove patch model contains a new
hopping interaction, gs, shown in Fig. 3

This gs-interaction involves a hopping between the two bands
(DOS patches) which, due to momentum conservation, is permissible
only when two patches coincide. The existence of coincident Van Hove
singularities is not sufficient for the existence of the gs interaction.
Additionally, the Hamiltonian must satisfy the symmetry condition
discussed just below Eq. 2 that 7, and T, have the same symmetry. To
demonstrate this, we use Cooper pair operators to derive the gs
interaction. Cooper pair operators are convenient since they auto-
matically encode the Pauli exclusion principle. The interactions in
Fig. 3 involve annihilating two electrons (a Cooper pair) from the left
and then creating another Cooper pair with the same symmetry to the
right. For gs, the corresponding Cooper pairs are T,io,:
Ay 1=C5,C1y +€1,Cyy and T,ioy, 2 Ay, 5 =1 €1y — € Cyy (here 1and 21in
Fermionic operators label the bands). Since these two Cooper pairs

share the same symmetry, the interaction gSAj;y,leyyz is symmetry

k /m

k /7
X

Fig. 2 | Density of states is concentrated near the band crossing point (m, m),
where the two bands are shown in different colors. In the patch model, states on
the red band are replaced by a single point at (i, ), while states on the blue band
are replaced by another point at (17, m). Here, we take t; = t, = ts=1,£3=0, t, = 8, and
1 =—4.2000? points are sampled, and states with energy (|£] < 0.1) are plotted.

Fig. 3 | Allowed interactions for two coincident patches. a-f The exchange

interaction g, inter-patch Hubbard interaction g, pair-hopping interaction g3,
intra-patch Hubbard interaction g4, and the new hopping interaction gs. Here,
upper propagators are for spin-up, while lower ones are for spin-down. Solid&
dashed lines label bands 1 and 2.

allowed. If the 7, and 7, operators had different symmetries, this
interaction would be symmetry forbidden. Expanding gSAj;yrley’2
yields

e .
HE =g5(cy, 1y *€1,C2) €y 61y — €3,62) Hhc. “)

In the two gs panels in Fig. 3, the two input electrons from the left
annihilates the Cooper pair A,,,», and the two output electrons to the
right creates the Cooper pair A;y’l. The sign difference on the two
bands in A, results in the sign difference between the two + gs
panels.

The gs interaction can be generated by an on-site Hubbard
interaction after transforming to the band basis, so its magnitude can

be large. In particular, for the interaction
Hint =U Z nmﬁnmy (S)
m

where m denotes the sublattice index, we find its components in
the band basis (denoted by g?): g% =g2 =g9 =(U/2)sin’0, g9 +g9=U,
g9 —g9=Ucos?8, and g2=(U/2)sinfcosh. Recall cosf=

t5/4/t2 + 2, the existence of gs thus requires both kuky (£, T, + &5T,) terms
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in the dispersion. In single-band cuprates, even if we fold the Brillouin
zone such that the two Van Hove singularities coincide, g5 will still
vanish as it corresponds to 6 = /2.

When the chemical potential is tuned close to the Van Hove sin-
gularity, the enhancement in the density of states results in substantial
corrections to interaction strengths. These corrections originate
through the intra- and inter-band particle-particle (xg’;"’, )(%” ) and
particle-hole (X;,”,f’“, )(Z}f’“) susceptibilities for the free fermions*’ .
Here, these susceptibilities are

intra — : 1 SfIERI-fIE,(K+q)]
Xpn = = liMqox 2k A Rk
inter — i 1 SfIEOI-fIE,(k+q)]
Xpn" = — Moy a0 Frkra ©)
Xintr(l = _ lim lz SfIEL(K)—f(—E (k+q)]
pp q—>0N Lk E (K +E(k+q)

SIE(-KI-f[-Ey(k+q)]
E(-K)+Ey(k+q)

Xppe' = —limg_o & X
where fIE] is the Fermi Dirac distribution. The dominant corrections
stem from )(zg’“. This is because Xf;",fm exhibits the conventional BCS
logarithmic divergence multiplied by the logarithmic divergence in the
density of states ()(Z'p"“ diverges as Iong/ T) while other suscept-
ibilities only exhibit the latter and hence diverge as logA/T. Keeping
only the dominant interaction corrections, the one-loop BCS correc-
tions to the interactions are:

Agy = - 2xp783
Agy= —2xp0m83

Agy= —2xiurag.g,
Agy= —xpy(@3+8d) )

Ags= — Xp3'*(8s — 83)8s
Ay +83)= — Xppr (g4 +g3)°
Agy —83)= —X%m(g4 -8

Let us start with g5 = O, then these equations are the same as those
found in cuprate patch models®**”. Hence, a bare attractive g9 +g9 (or
g9 — g9) enhances itself and gives an intra-band s-wave superconduct-
ing A = io,, (or d-wave superconducting A =it,g)) instability. For onsite
Hubbard interactions and generic 6, we have g9>g9>0, causing the
BCS correction to suppress these two instabilities.

The gs-interaction introduces new one-loop BCS corrections to
the exchange interaction g, and the inter-band Hubbard interaction
2>, as shown in Fig. 4. The first diagram in panel (a) illustrates a cor-
rection to the exchange interaction g;. This correction involves two g5
interactions. This diagram features two internal solid lines moving in
the same direction, which are evaluated to be the negative BCS sus-
ceptibility, —Xj,”p"“, from the first band. Similarly, the second diagram
has two - gs interaction lines and a negative BCS susceptibility from
the second band. These two diagrams thus add up to Ag; = — ZX;',"[,"“gg

- - e

- - -

Fig. 4 | gs-interaction leads to intra-band particle-particle corrections. (a) The
correction to g;. (b) The correction to g».

in Eq.(7). The two diagrams in panel (b) add up to Ag, = — 2x5r9g?.
Within BCS corrections, g5 does not affect g3 4.

Notably, these corrections are always negative, regardless of the
signs of interactions. This can drive gj, < 0. In the appendix, we con-
sider a patch renormalization group study including subleading cor-
rections, which are important as g, — g3 vanish®. We consider the small
834 sector and explicitly show that BCS corrections from g5 can push
the RG flow to stable fixed points with divergent g;, < 0.

Competing instabilities

The above discussion reveals that negative g; and g, can become the
dominant interactions, and so we may neglect other interactions. We
find that g; and g, generically lead to competing instabilities in the
intra-band particle-hole, inter-band particle-hole, and inter-band par-
ticle-particle channels (Table 2). These instabilities are obtained from
self-consistent one-loop vertex corrections in the appendix, and here
are illustrated from a mean-field perspective. Specifically, d-wave
altermagnetism 7,0 requires an antiferromagnetic interaction
between the two bands, which is contributed by the attractive inter-
band Hubbard interaction g, (marked in blue below):

81285, =Ny — g )Ny — Ny )
= — (N yy + Ny Ny )+ N Ny 1y 1

®

The altermagnetism is in the intra-band particle-hole channel, so the
instability criteria is XZ;{"‘ |g,1>1, as shown in Table 2. Other instabilities
include inter-band d,, superconductivity, €,, nematicity, and orbital
altermagnetic order. These order parameters inherit non-trivial
symmetries through the band degrees of freedom 7;, even though
the coincident Van Hove singularity is located at a single momentum
point. The orbital altermagnetic order 7, is a current-loop order
breaking time-reversal symmetry while preserving all crystal reflection
symmetries (Fig. 1). This state will induce an anomalous Hall effect
under the application of an €, strain, even without the presence of
SOC (a detailed explanation is in the appendix). When SOC is present,
this current loop order and the conventional d-wave spin altermag-
netic order 7,0, will coexist as these two orders share the same
symmetry. It is notable that the d-wave superconductivity we find is
inter-band, and cannot be stabilized through a conventional BCS
mechanism.

While the one-loop correction for the interaction comes from the
dominant intra-band particle-particle (BCS) channel, the one-loop
correction for the vertices all belong to the three subleading channels.
The ultimate leading instability can be determined by the magnitude of
the three eigenvalues X3 |g; +&, |, X5’ 1gy| and x4{™®|g;|. The three

susceptibilities share the same scaling: y « logA;/T, generically with
different energy cutoff A;. To examine what parameter range enables
the different instabilities, we set the cutoffs in all three susceptibilities
the same and consider the limit g; = g». This limit occurs when only BCS
corrections from on-site Coulomb interactions are included but gen-
erally g; # 5. The results then depend upon the kp dispersion in Eq.(3).
Figure 5 reveals that all instability channels are stable for some choice

Table 2 | Orders stabilized by coincident Van Hove points and
corresponding symmetries and eigenvalues

Instability Eigenvalue
d-wave altermagnetism: T,0 ~ k,k,0 )(Z’f,'algz\
Nematicity: T, ~ k.k, pgaslled]
Orbital altermagnetism: 7, Xorergy|

d-wave SC: 7,(ig,) ~ k.k,(io,) XTterg, + g, |
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Fig. 5 | Susceptibilities x5, X" and x4, normalized with respect to x4,

witht,=¢,anda = —Vft”é 2)(%‘?' is plotted as the SC vertex is contributed by both

giand g». N=2000” points are sampled, for k., € [ - 5, 5. Temperature 7/t, = 0.01 s
taken. q = (10™*, 0) is used in )(;',",f’“. q = (0, 0) is used in )(;',",fe' and )(Z}f".

2 2
ofa= —V;";[S (Van Hove dispersion requires a > 1). We note that once

g1 > 8> (or g3 < g»), the inter-band (or intra-band) altermagnetic phase
will expand.

It is worth noting that the above results are not captured by the
standard random phase approximation (RPA). The RPA diagram is
shown in panel (a) in Fig. 6. It gives the usual instability criteria
g |,\ff,”,f’“>1 (topleft) and |g1|)(Z}fe’>1 (topright). The BCS instability for
altermagnetism is equivalent to a two-loop correction described by
panel (b). This diagram is derived from panel (a) by substituting the g,
interaction with its gs-correction in Fig. 4. The instability criteria is thus
|Ag2\xz’,f’“=2|g5|2)(;,"p"")(z}1”“>1. Since )(f,'},"“>>)(;'f,f"’, X;',”,fe’ at low tem-
perature, the BCS correction from gs describes a stronger weak-
coupling instability. Since the g5 contributions exceed the RPA-based
contributions in the weak-coupling limit, it is reasonable to include
them beyond the conventional RPA-based contributions when
addressing intermediate and strong coupling problems in future
studies.

Our coincident Van Hove mechanism relies on the existence of a
g5 hopping interaction and exclusively yields d-wave altermagnetic
states. Given the discovery of g-wave altermagnetism®>®, it is inter-
esting to ask if there exists a weak-coupling Van Hove scenario that
stabilizes such a g-wave state. In the appendix we show that this is
indeed possible for a different coincident Van Hove scenario that also
applies to many of the space groups examined here. In this case, a
momentum-dependent spin-splitting of the form kxky(ki - kj) is
generated from coincident Van Hove singularities with a symmetry
that forbid the existence of the gs interaction. This Van Hove scenario
can be mapped onto the patch model for the cuprates® and this
mapping reveals that the Neel spin density wave state found for the
cuprate case maps to the g-wave altermagnetic state. In contrast to the
d-wave altermagnetic that appears when gs # O, the g-wave alter-
magnetic state requires nesting to become stable.

Group theory arguments

We now explicitly derive the symmetry requirements that underlie the
kp Hamiltonian in Eq.(2). Key to this argument are non-symmorphic 2-
fold symmetries. For these symmetries, we adopt the notation

0={0|t} to describe a reflection symmetry O followed by a half-
translation vector t. We also denote a pure translation as {t*, #}. The

mm\» A/QM>W©M
b—P— -4 - —p—
\ 4 A
— e - - —4——

Fig. 6 | Comparison of conventional and the g5 bubbles to magnetism.

a Conventional Stoner bubbles from g; ,, for intra-band and inter-band particle-hole
channel. b Contribution through intra-band particle-particle channel from the gs
interaction. The two pairs of vertical propagators can be from both patches.

first requirement for Eq.(2) is a 2-fold sublattice degeneracy, which
appears independently of 2-fold spin degeneracy. This degeneracy is
ensured by the product of spinless time-reversal symmetry T (here T is
represented by the complex conjugation operator) and a non-
symmorphic symmetry. For example in k-Cl, reflection symmetry

I\7x= {M,|1/2,1/2} takes the position (x, y) to (—x +1/2, y + 1/2). We

have (TI\7X)2 = — 1, which follows for 7> =1and (I\Z()2 ={(0,1} = exp(ik,)
when the momentum of the Bloch state has k;, = . The TRIM point thus
exhibits 2-fold sublattice degeneracy. In this work, we do not consider
TRIM points with higher sublattice degeneracies.

As the T invariant operators 7, and 7, both share the same non-
trivial transformation properties as k.k,, this places the second con-
straint on possible allowed little co-groups (the group of crystal sym-
metries that keep the relevant momentum point unchanged up to a
reciprocal lattice vector). Specifically, the little co-group must have a
specific irreducible representation that transforms as k.&k,. This
representation should not mix in other quadratic terms, such as kf(,
because that would lead to terms like k27, in the kp Hamiltonian.
Notably, linear terms like k1, are already excluded from the kp
Hamiltonian by T.

Now suppose 1, already transform as k.. Since 1, is propor-
tional to the product of 7, and z,, it must transform trivially under all
crystal symmetries, and belong to the trivial representation. The trivial
representation should not mix in linear terms like k,, because that
would lead to terms like k,Ty in the Hamiltonian.

Let us check the above requirements of little co-groups on x-Cl,
which has mirror symmetries M, ={M,[1/2,1/2}, /\7y={My|1/2, 1/2},
and their product C,,. These three symmetries keep the TRIM point
(71, m) invariant. At this TRIM point, these symmetries form the 2mm
point group. In this point group, the A, representation only hosts k.,
at quadratic level. The trivial A; representation does not contain k-odd
terms in (ky, k). The above requirement of little co-groups are thus
satisfied.

The third requirement is on the symmetry operators. Because T
commutes with all crystal symmetries, these symmetries are repre-
sented by real 2 x 2 matrices. Since T, is invariant under all crystal
symmetries, these matrices should commute with 7,. Hence, they are
either * to(identity) or =+ ir). This implies that all the symmetry
operators at the TRIM point should commute with each other.

If a symmetry preserves 1, - k., then 7., should commute with
the symmetry matrix. The symmetry operator is then + 7. Such
symmetries are thus squared to + 1. If a symmetry flips k), then 7,
should anticommute with the symmetry matrix. The symmetry matrix
is then = it,. Such symmetries are thus squared to -1.

We can now deduce the remaining symmetry requirements for
the kp Hamiltonian in Eq.(2): (1) All the symmetry operators at the
TRIM point commute with each other. (2) Symmetries preserving k.k,
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are squared to +1while symmetries flipping k., are squared to — 1. As
shown below, these requirements can be checked without explicitly
introducing matrix representations for the symmetries.

Let us check the above requirements for the symmetries on k-Cl.
Firstly, M, and Iﬁy commute as:

M, |65, 1M, |E5, 6}
={=2t},26{M, |t}, UM, |t5, 5}
={—L1{M, |}, )M, |t}, &)

9

In real space, the commutator is evaluated into a translation operation
{-1,1}, whichis equal to +1atthe (ky, k) = (7, ) point. Symmetries I\Z(,
M,, and their product C,, thus commute with each other.

Note that k.k, is odd under M, a@zMy,Ngut even under their
product C,,. Consequently, we require M, =M, = —1, and Cﬁz =+1
To check this:

M,” ={0,1)= exp(ik,)= — 1

M, ={1,0)= expik,)= — 1 (10)

C3,={0,0}=1.

The symmetry conditions are thus satisfied in k-Cl. Table 1 is obtained
by checking the above three requirements for TRIM points in all 2D
layer groups and 3D space groups.

Discussion
Here we have identified coincident Van Hove singularities as a plat-
form to realize 2D altermagnetic states and other novel electronic
states. These states are stabilized due to a new interaction term, gs,
through a weak-coupling BCS mechanism that leads to alter-
magnetism, nematic, d-wave superconducting, and orbital alter-
magnetic orders. Our results apply to nine 2D space groups and we
have chosen a specific application in k-Cl, where altermagnetism with
the same symmetry found here is observed in k-CI** and d-wave
superconductivity is reported under pressure®*® and anion
substitution® 7%, Another relevant 2D material is monolayer RuF, in
layer group L17(p2,/b11). It has the same kp Hamiltonian as k-Cl at the
(mr, m) point, and recent DFT calculation® reveals an altermagnetic
instability within an RPA-like approach.

Although our study focuses on 2D systems, the same coincident
Van Hove singularities exist at high symmetry momenta in the 3D
space groups listed in Table 1. Strictly speaking, in 3D, there is no
divergence in the density of states near the Van Hove singularity.
However, the density of states can still be large near the Van Hove
momentum in the quasi-2D limit. In this case, the BCS weak-coupling
instability will still aid in stabilizing the altermagnetic states. Among
these 3D space groups, 55(Pbam), 58(Pnnm), 62(Pnma), 136(P4,/
mnm), and 138(P4,/ncm) are known to host multiple altermagnetic
candidates, according to the search on MAGNDATA database®. In
these 3D materials, the contribution of the coincident Van
Hove singularity to the ordering instability can be revealed by
studying the doping dependence of the altermagnetic transition
temperature.

Data availability
All study data are included in the article and/or SI Appendix.

Code availability
Codes are available at https://doi.org/10.5281/zenodo.10994906.
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